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Abstract

The success of foundation models in natural language processing has sparked a
growing interest in developing analogous models for time series (TS) analysis.
These time series foundation models (TSFM), pre-trained on vast amounts of
TS data, demonstrate capabilities of zero-shot and few-shot inference on unseen
datasets. However, the intrinsic heterogeneity of TS data presents unique chal-
lenges: accurate inference often necessitates a deep understanding of the underlying
data-generating process and the sensing apparatus, which cannot be readily inferred
from the raw data alone. Furthermore, recent advances in state-space models
raise the question of whether they may offer advantages over transformer-based
architectures for TS analysis.
This paper investigates these questions in two key areas: (a) a fair comparison of
methods for integrating metadata into TSFMs and (b) the comparative effectiveness
of state-space models (SSM) versus transformer models for TS forecasting. Our
results, based on experiments across 11 datasets, suggest advantages for SSM
building blocks as well as for incorporating the notion of real-world timestamps.
More specifically, on our curated in-domain and out-of-domain datasets, an SSM
approach incorporating timestamps outperforms three existing TSFMs on forecast-
ing tasks while using 6,000× fewer trainable parameters and 10× less training data.
The paper aims to highlight the potential for SSM building blocks and general
directions for future TSFM research.

1 Introduction

Recent advancements in natural language processing have inspired the development of Time Series
Foundation Models (TSFMs) capable of zero-shot and few-shot inference on unseen data [11, 12, 26].
These models aim to generalize forecasting across diverse time series (TS) tasks, similar to how
language models handle various tasks without fine-tuning. However, unlike natural language (NL),
which has clear syntactic and semantic structures, TS data is often less structured, lacks explicit
context, and relies heavily on domain-specific attributes. This makes directly applying methods
developed for NL to TS a non-trivial task. Moreover, existing TSFM approaches primarily treat TS
forecasting as a value prediction problem [2, 4, 17], neglecting the contextual elements that could
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enrich model understanding. Therefore, this paper explores whether integrating language-based
metadata and utilizing timestamps as additional input channels can improve TSFM performance.

Most TSFM approaches rely on transformer (TM) architectures for handling sequential data. Recent
advances in structured state-space models (SSMs) [27, 7] provide an alternative by modeling latent
states and capturing long-range dependencies. However, SSMs have mainly been tested on their
training datasets, limiting comparisons with TM architectures in TSFM. To address this, we evaluated
the two architectures on curated in-domain and out-of-domain scenarios.

Our contributions are summarized as follows: (1) We compare the performance of SSM-based against
TM-based TSFMs, highlighting the potential of using SSM as a building block. (2) We show that by
incorporating timestamps as side channels, SSM models outperform existing TSFMs with 6,000×
fewer trainable parameters and requiring 10× less training data. Though these results were obtained
from our curated datasets, we anticipate generalization to broader applications. (3) We demonstrate
that simple approaches for combining language-based metadata into TSFMs are insufficient, and
discuss potential further research directions for the broader TSFM community.

2 Related works

Existing TSFMs. TSFMs [5, 4, 2, 20, 24] are a rapidly evolving area creating foundation models
capable of generalizing to diverse, unseen TS datasets. Unlike language models, which are trained on
self-contained textual data, TSFMs face unique challenges due to the need to incorporate additional
contextual information. For instance, many TS analysis tasks often require incorporating additional
covariates and the notion of time to provide context [8, 22, 28, 25].

In contrast, the majority of TSFMs reduce the TS forecasting task to value prediction similar to NL
data [2, 4, 17], disregarding external factors and the dependency on integrating a time dimension.
However, many real signals like temperature, electricity demand, or stock prices exhibit different
statistical properties based on the time of day, week, or season [16, 8]. This non-stationarity ne-
cessitates models that dynamically adapt to temporal variations using absolute timestamps. Although
some works [20, 24] incorporate timestamps as covariates, there are no direct comparisons on the
usage of timestamps in TSFMs, making it difficult to draw deterministic conclusions.

Large Language Models for TS. Recent works have explored adapting Large Language Models
(LLMs) for TS forecasting by reprogramming pre-trained models [11, 9]. While these efforts
incorporate NL metadata and TS data, the models’ capability of general TS analysis without the
need for retraining on new datasets has not been shown. On the other hand, [6] demonstrated that
LLMs could perform zero-shot TS forecasting using Byte Pair Encoding (BPE) tokenization with
inserted spaces between digits. However, LLMs are not inherently designed for TS tasks, so their
performance in zero-shot inference remains inconsistent, and they fail to understand TS effectively
[18, 15]. The above limitations suggest a combination of the flexibility of LLMs and the specificity
of TSFMs as a way forward.

3 Methodology

In this section, we describe our proposed model architectures. Let N be the dataset size, i ∈
{1, 2, ..., N} be the index of a TS. Let xi ∈ Rc be the C historical observations, let Si be the list of
timestamps with length C, let ŷi ∈ RH be the forecast for the future H observations, and yi ∈ RH

be the ground truth for the future H observations. The objective of the training is to minimize the
Mean Square Error (MSE) loss: L = 1

N

∑N
i=1 ||yi − ŷi||22.

Structured State-space model (SSM). We follow the design of SSM architectures [27] to capture
long-term temporal dependencies. A time series xi is first mapped to a high dimensional embedding
ei with an MLP layer. ei is further input to the SSM encoder-decoder model with companion matrix
parameterization. The design of the companion matrices is to capture autoregressive processes,
effectively expressing time series models such as ARIMA and exponential smoothing.

Transformer-based model (TM). We employ the decoder-only GPT-2 architecture [19] after the
time series xi is mapped to a high dimensional embedding ei. The model is trained to adapt to
variable context and horizon lengths, with the training objective of predicting the value of the next
timestamps. Following the convention in language modeling [23], the ground truth value at each
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Figure 1: Model architectures.

Dataset Domain SSM TS-SSM LA-SSM TM TS-TM LA-TM Moment* Chronos* Moirai*

# param (M) - 0.052 0.058 0.091 0.050 0.051 0.091 385 710 311

elecdemand energy 0.446 0.443 1.619 0.688 0.584 2.044 0.748 0.55 0.317
subseasonal weather 18.407 16.266 25.54 19.055 20.111 19.008 17.432 17.598 16.813
pems04 traffic 47.398 39.516 117.517 64.285 78.387 53.443 39.82 43.814 40.0
covid healthcare 469.921 394.01 1296.571 750.06 866.71 693.272 487.717 147.721 9.57e8
rlp traffic 3.843 8.664 13.596 4.004 3.879 3.847 3.491 3.786 98.602
loop_seattle traffic 2.609 2.542 2.518 2.15 2.22 3.133 1.882 2.258 1.998
ECL energy 108.338 104.863 360.632 191.275 153.534 219.78 194.311 56.154 59.874
smart* energy 0.627 0.607 1.582 0.668 0.67 0.722 0.639 0.699 27.395

ID ranking - 4.13 3.0 8.13 5.63 5.88 6.75 3.5 3.38 4.63

Ecobee temperature 1.535 1.357 1.999 1.743 1.534 2.079 1.729 1.61 1.257
restaurant sale 14.368 13.286 17.055 14.102 14.161 13.844 13.25 15.195 13.437
air nature 22.989 20.669 73.081 21.988 22.306 24.631 23.067 25.056 21.81

OOD ranking - 5.33 1.67 8.67 5.0 4.33 6.67 4.33 7.0 2.0

AVG ranking - 4.45 2.64 8.27 5.45 5.45 7.72 3.72 4.36 3.91
*Moirai has seen a majority of the datasets during training. Moment and Chronos have seen the ECL and covid datasets during training.

Table 1: Performance of models across domains. The best results are bold, and the second best are
underscored. Our models were not trained in temperature, sale, and nature domains.
decoding step t is used as the input to be conditioned for step t + 1 during training time, where
t ∈ {1, 2, ...,H − 1}.

Language-augmented SSM (LA-SSM). Following [10], we generate a text description for a TS
xi containing dataset-related metadata, such as context, sampling rate, and data collection time. To
inject language variations into metadata, we use GPT-4o-mini[1] to generate 50 versions of metadata
for each dataset. Finally, we combine the metadata with sample-related data (minimum, maximum,
median, and lag) to produce the description Ti. We then use SentenceBert [21] to generate the
embeddings of the above text description Ti and calculate the average embedding li, which is input
to a learnable MLP. We concatenate the embeddings produced by an MLP layer ei to li to generate
the embedding [li, ei] for the SSM blocks, shown in Fig. 1(a).

Timestamp-encoded SSM (TS-SSM). Similarly, in Fig. 1(b), we encode timestamps Si for the
i-th TS into a five-dimensional vector si containing year, month, date, hour, and minute values. We
concatenate the embeddings ei produced by the MLP to si to generate the embedding [si, ei] for the
SSM blocks.

LA-TM and TS-TM. Using the same configuration in Fig. 1, we also design the Language-
augmented- and Timestamp-encoded-TMs. The only differences are that we replace the encoder-
decoder-SSM blocks with the GPT-2 decoder blocks.

4 Experiments

For model training, we use 0.3% of the training datasets from Moirai[24], resulting in a training dataset
with 98M observations (see Table 3 in the Appendix). We test models on new datasets for zero-shot
forecasting (we exclude the training datasets). We also test existing TSFMs, including Chronos[2],
Moirai[24], and Moment[5] (we used largest versions). Table 2 summarizes the evaluation datasets
and their visibility to TSFMs’ training. While Moirai, Moment, and Chronos have different levels
of familiarity with the datasets in Table 2, our models have not been exposed to them. Training and
inference use standardized normalization [2] for zero mean and unit variance. Following [27], we use
AdamW [13] with a 0.001 learning rate, cosine scheduler with warmup, batch size 256, and train for
4 epochs on 4× H100-96G GPUs with FP32. We use C = 192 and H = 48 for both phases. 3

3Code and model weights are available at: https://github.com/nesl/Reimagine_TSFM.
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4.1 Zero-shot evaluation on in-domain and out-of-domain datasets

In-domain (ID) evaluation. We select new datasets from the domains used during training (refer to
Table 2) and subsample them for ID evaluation. The first section of Table 1 shows the results of ID
evaluation and the models’ rankings across all ID datasets (the lower, the better). TS-SSM achieves
the best performance among all models, even though the model has fewer trainable parameters and is
trained on less data than existing TSFMs. Besides, by incorporating timestamps as a side channel,
SSM has a larger gain compared to TM. Additionally, SSM models can consistently achieve superior
performance compared to TM, showing the potential of using SSM in TSFM development. Finally,
both LA-SSM and LA-TM perform below baseline, indicating limited effectiveness in incorporating
language-based metadata.

Out-of-domain (OOD) evaluation. We evaluate model generalizability on datasets from unseen
domains, as shown in the second part of Table 1. TS-SSM achieves the best ranking among all
models, even outperforming Moirai, which was trained on these datasets. Incorporating timestamps
improves both SSM and TM performance, while language metadata reduces model effectiveness.

Overall, despite not being trained on the datasets or on data from the same domain, SSM models can
achieve comparable performance to existing TSFMs, with 6,000 to 12,000× fewer parameters and
10 to 850× less training data (details in Table. 4 in Appendix). More importantly, by incorporating
timestamps as side channels, TS-SSM can achieve either the best or second-best results for all datasets
except rlp, loop_seattle, and ECL.

Testing Dataset Domain Frequency # Time Series Moment Chronos Moirai Ours
elecdemand energy 6H 10 No No Yes No
subseasonal weather D 200 No No Yes No
pems04 traffic 5T 200 No No Yes No
covid healthcare D 200 Yes Yes Yes No
rlp (Residential Load Power) traffic 30T 200 No No Yes No
Loop Seattle traffic 5T 200 No No Yes No
ECL energy H 200 Yes Yes Yes No
Smart*[3] energy H 200 No No No1 No

ecobee [14] temperature H 200 No No No No
restaurant sale D 200 No No Yes No
air (China air quality) nature H 200 No No Yes No
1Moirai is trained on the Home dataset in Smart*, while we use the Apartment dataset in Smart* for testing.

Table 2: Testing datasets and their visibility during models’ training. Yes/No indicates whether the
dataset has been incorporated into the models’ training dataset. The first part of the table is used for
ID evaluation, and the second part is used for OOD evaluation.

5 Conclusion

In this work, we demonstrated the effectiveness of SSM building blocks in TSFMs, showing their
superiority in forecasting over TM models. With timestamps as a side channel, TS-SSM outperformed
existing transformer-based TSFMs despite having orders of magnitude fewer parameters.

Limitations & Future work. However, our study also highlights several limitations that open
avenues for future research. First, our initial attempt to integrate language-based metadata into
the model did not yield performance gains. The current incapability of our models to incorporate
language-based metadata could be attributed to the limited model size and approach to properly
learning the language modality.

Additionally, our experiments are limited in scope and dataset size compared to broader TSFM
studies, and our baselines were not exhaustive. Future research should expand dataset diversity and
include more TSFM baselines for a comprehensive comparison.
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A Appendix

A.1 Training dataset characteristics

Table. 3 summarizes the training datasets used in this paper and their corresponding domains.

A.2 Model characteristics

We summarize the size of models, size of training datasets, tokenization, objective function, and
backbone architecture of models in Table. 4.
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Training Dataset Domain Frequency # Time Series # Observations
london_smart_meters Energy 30T 713 9,543,348
bdg-2_bear Energy H 91 1,482,312
bdg-2_fox Energy H 135 2,324,568
era5_1989 Climate H 8192 71,565,312
era5_1990 Climate H 8192 71,565,312
era5_1991 Climate H 8192 71,565,312
cmip6_2005 Climate 6H 8192 59,801,600
cmip6_2010 Climate 6H 8192 59,801,600
weather Climate D 3010 12,717,250
oikolab_weather Climate H 8 800,456
uber_tlc_daily Transport D 262 47,087
SZ_TAXI Transport 15T 156 464,256
PEMS03 Transport 5T 358 9,382,464
hospital Healthcare M 767 55,224
kaggle_web_traffic Web W 145063 16,537,182
tourism_yearly Eco A 419 14,665
tourism_monthly Eco M 366 59,658

Table 3: Trainign datasets and their characteristics

Dataset SSM TS-SSM LA-SSM TM TS-TM LA-TM Moment-Large* Chronos-Large* Moirai-Large*

# param (M) 0.052 0.058 0.091 0.050 0.051 0.091 385 710 311
# observations (B) 0.098 1.13 84 27.65
Tokenization Direct mapping TS to embeddings Fixed-length patches Multi-scale patches Scaling & quantization
Loss MSE MSE Cross-Entropy Negative log likelihood
Backbone SSM GPT-2 T5 encoder Transformer encoder T5 encoder-decoder

Table 4: Model characteristics. The # observations denote the total number of variates in the training
dataset.
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