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Abstract

Semantic role labeling (SRL) is a fundamen-001
tal yet challenging task in the NLP commu-002
nity. Recent works of SRL mainly fall into two003
lines: 1) BIO-based; 2) span-based. Despite004
ubiquity, they share some intrinsic drawbacks005
of not explicitly considering internal argument006
structures, which may potentially hinder the007
model’s expressiveness. To remedy this, we008
propose to reduce SRL to a dependency parsing009
task and regard the flat argument spans as latent010
subtrees. In particular, we equip our formula-011
tion with a novel span-constrained TreeCRF012
to make tree structures span-aware, and further013
extend it to the second-order case. Experiments014
on CoNLL05 and CoNLL12 benchmarks reveal015
that the results of our methods outperform all016
previous works and achieve the state-of-the-art.017

1 Introduction018

Semantic role labeling (SRL) is a fundamental yet019

challenging task in the NLP community, involving020

predicate and argument identification, as well as021

semantic role classification. As SRL can provide022

informative linguistic representations, it has been023

widely adopted in downstream tasks like question024

answering (Berant et al., 2013; Yih et al., 2016),025

information extraction (Christensen et al., 2010;026

Lin et al., 2017), and machine translation (Liu and027

Gildea, 2010; Bazrafshan and Gildea, 2013), etc.028

Recent works of SRL mainly fall into two lines:029

1) BIO-based; 2) span-based. The former views030

SRL as a sequence labeling task (Zhou and Xu,031

2015; Strubell et al., 2018; Shi and Lin, 2019).032

For each predicate, each token is tagged with a033

label starting with BIO prefixes indicating if it is at034

the Beginning, Inside, or Outside of an argument.035

The latter (He et al., 2018a; Ouchi et al., 2018),036

in contrast, directly models all predicate-argument037

pairs in a unified graph.038

Despite ubiquity, there are some drawbacks that039

limit the expressiveness of the two methods. First,040

... take ... out of the market ...
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Figure 1: An argument example (below) and its related
subtree structure (above) for the predicate “take”.

framing predicate-argument structures as a BIO- 041

tagging scheme is less effective as it lacks explicit 042

modeling of span-level representations, so that long 043

adjacencies of argument phrases can be ignored 044

(Cohn and Blunsom, 2005; Jie and Lu, 2019; Zhou 045

et al., 2020c; Xu et al., 2021). Second, for a sen- 046

tence with n words, the span-based method needs 047

to consider n3 candidate predicate-argument pairs, 048

thus severely suffering from data sparsity. To re- 049

solve this issue, the span-based method relies on 050

heavy pruning to reduce the searching space, which 051

potentially impairs the performance. 052

Meanwhile, both of the two formulations share 053

some common flaws in terms of explicit modeling 054

of internal argument structures. Internal structures 055

appear to be beneficial to SRL, the reasons are 056

two folds. First, the headword of a phrasal argu- 057

ment is very instructive to localize the semantic 058

roles with respect to the selected predicate (Jo- 059

hansson and Nugues, 2008c; Punyakanok et al., 060

2008). In fact, many linguistic phenomena in SRL 061

like wh-extraction (e.g., who did what to whom) 062

can be transparently reflected by the dependency 063

link from the predicate to the headword of its as- 064

sociated argument (Johansson and Nugues, 2008a; 065

Surdeanu et al., 2008; Hajič et al., 2009). Taking 066

Fig. 1 as an example, the semantic role “A2” of ar- 067

gument “out of the market” for the predicate “take” 068

can be mirrored in the labeled dependency “take 069
A2
ÝÑ out”. Second, constituent-based arguments are 070

highly correlated with the subtrees governed by 071

their headwords (Hacioglu, 2004; Choi and Palmer, 072

2010). For instance, the span boundary of the ar- 073
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gument in Fig. 1 can be properly retrieved by the074

related dependency subtree. Thus considering sub-075

tree structures can intuitively provide very helpful076

clues for argument identification. However, to our077

best knowledge, very few works have made such078

explorations, stuck on the fact that span-style SRL079

has no determined internal argument structures.080

Motivated by the above observations, in this081

work, we propose to model flat arguments as la-082

tent dependency subtrees. In this way, we can re-083

duce SRL to a dependency parsing task seamlessly:084

we view each SRL graph as partially-observed de-085

pendency trees where the exact subtree structure086

for each argument is not realized. Specifically,087

we make use of TreeCRF (Eisner, 2000; Zhang088

et al., 2020) to learn the partially-observed trees089

and marginalize the latent structures out during090

training, as it provides a viable way to conduct091

probabilistic modeling of tree structures. While092

canonical TreeCRF aims to enumerate all possible093

trees, in our setting, we have to impose many span094

constraints on subtrees, aiming to correctly reflect095

the argument boundaries. To accommodate this, we096

further design a novel span-constrained TreeCRF to097

adapt it to our learning procedure, which explicitly098

forbids invalid edges across different arguments099

and the existence of multi-head subtrees (Nivre100

et al., 2014; Zhang et al., 2021a).101

There are further advantages to our reduction.102

Conversion to tree structures enables us to easily103

conduct global inference (Eisner, 1996; McDon-104

ald et al., 2005) in polynomial time, which has al-105

ready been shown to often lead to improved results106

and more meaningful predictions (Toutanova et al.,107

2008; Täckström et al., 2015; FitzGerald et al.,108

2015) compared to local unconstrained methods.109

On the other hand, by drawing on the experience110

in the parsing literature, we can further extend our111

method to some well-studied high-order methods112

(McDonald and Pereira, 2006; Zhang et al., 2020)113

without any obstacle. We note that our formula-114

tion does not need predicates or syntax trees to be115

pre-specified, and is thus fully end-to-end. Our116

contributions can be summarized as follows:1117

• In aware of the importance of internal argument118

structures, we propose to reduce SRL to a depen-119

dency parsing task, and model internal argument120

structures as latent subtrees.121

• We propose a novel span-constrained TreeCRF122

to learn the converted dependency trees, and123

1Our code is available at https://github.com.

further extend it to the second-order case. 124

• Experiments on CoNLL05 and CoNLL12 bench- 125

marks reveal that the results of our proposed 126

methods outperform others by a large margin, 127

and achieve the state-of-the-art. 128

2 SRL as Dependency Parsing 129

Formally, given an input sentence x with n words 130

x1, . . . , xn, our goal is to predict a SRL graph g. 131

Each predicate-argument relation pair pp, ri,jq P g 132

is composed of a predicate p P x and a labeled 133

argument ri,j that governs a consecutive word span 134

xi, . . . , xj with the semantic role r P R, where R 135

is the space of all roles. g can have more than one 136

predicate. We denote the subgraph associated with 137

predicate p as gp, where, as depicted in Fig. 2a, 138

arguments belonging to p are non-overlapping. 139

Optimal structured inference has long been 140

deemed as intractable for the SRL task (Li et al., 141

2020). To sidestep this, our key idea is to decom- 142

pose g into several subcomponents by predicates 143

and find the optimal SRL structure gp of each predi- 144

cate independently. Our reduction of SRL to depen- 145

dency parsing is achieved by casting the search of 146

the optimal gp as parsing a 1-best dependency tree 147

for each predicate. To this end, we design back- 148

and-forth procedures for SRLÑTree conversion 149

and TreeÑSRL recovery. 150

2.1 SRLÑTree Conversion 151

Given x, we define a directed acyclic dependency 152

tree t by assigning a head h P tx0, x1, . . . , xnu to- 153

gether with a relation label r P R to each modifier 154

m P x, where a dummy word x0 is attached before 155

x as the pseudo root node. The subtree governing 156

xi, . . . , xj and rooted at h is denoted as thi,j .2 157

For predicate p, the goal is to convert its related 158

SRL structure gp to a “compatible” dependency 159

tree t. Intuitively, we say “compatible” if we can 160

perfectly associate each predicate-argument pair 161

pp, ri,jq P gp with an arc p
r
ÝÑ h as well as its 162

derived subtree thi,j Ď t, which is also written as 163

p
r
ÝÑ thi,j interchangeably. This implies two span 164

constraints for the converted t: 1) the scope of each 165

subtree thi,j , populated by h and its descendants, 166

must strictly correspond to an argument span; 2) 167

for each argument span, p is allowed to point to 168

only one headword h within the span, otherwise, 169

2In this work, we assume all dependency trees are projec-
tive, i.e., without any crossing arcs. This property allows us to
associate the subtree with its continuous argument span.
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They1 want2 to3 do4 more5 .6

A0 A1

(a) Original structure: the predicate and its arguments are
located in the upper half-plane of the sentence.

They1 want2 to3 do4 more5 .6

PRD

A0 A1
O

(b) Training: convert the predicate-argument structure to a
dependency tree with (dotted) latent annotations.

They1 want2 to3 do4 more5 .6

PRD

A0 A1
O

(c) Decoding: realize a tree rooted at the predicate with the
arc labeled as “PRD”; (dashed) “O” arcs are discarded.

They1 want2 to3 do4 more5 .6

PRD

A0 A1

(d) Recovery: collapse all (dashed) subtrees governed by the
predicate into flat argument spans.

Figure 2: Illustration of our SRLÑTree conversion (Fig. 2a and Fig. 2b), and its inverse TreeÑSRL process (Fig. 2c
and Fig. 2d).

it can be further split by separate subtrees due to170

the nature of tree projectivity (Ma and Zhao, 2015;171

Yang and Tu, 2021b).172

One big challenge is that internal structures in173

SRL annotations are lacking, so that there are no174

determined subtree realizations for argument spans,175

and we can not simply establish a one-to-one map-176

ping between gp and a single t (Johansson and177

Nugues, 2008c; Choi and Palmer, 2010). Taking178

these considerations into account, we view each ar-179

gument span as a blackbox, representing it as latent180

tree annotations during training. Specifically, we181

apply the following rules to construct a partially-182

observed tree for gp:183

1. For predicate p, we first link the root node to p,184

forming a labeled dependency x0
PRD
ÝÝÑ p.185

2. For each argument ri,j of p, we view it as latent186

subtrees T pp, ri,jq. A completed subtree thi,j P187

T pp, ri,jq is restricted to be single-rooted at a188

headword h, and other words txi, . . . , xjuzh189

are taken as descendants of h. The semantic190

role r is assigned as the label of the dependency191

pointing from p to headword h.192

3. For a non-argument span pi, jq, we label the193

dependency linking from p to words inside194

txi, . . . , xju as “O” for distinction with seman-195

tic roles, yielding a pair pp,Oi,jq. Then the con-196

struction process resembles that for argument197

spans, except that we do not limit the number of198

heads inside pi, jq.199

In this way, we can successfully convert gp into a200

partially-observed tree T pgpq with predicate p as201

the root. As illustrated by Fig. 2b, the predicate202

“want” links to only one word of each argument203

span, taking the semantic role as the dependency 204

label; all dependencies crossing different argument 205

spans are explicitly prohibited, and all word pairs 206

inside an argument are deemed feasible to form a 207

directed dependency. Please note that we do not 208

assign any label to dependencies inside arguments 209

as they have no realistic correspondences to SRL 210

structures. 211

2.2 TreeÑSRL Recovery 212

Supposing we have trained our dependency parser, 213

during the evaluation phase, for predicate p, we 214

produce a 1-best tree t˚ with the constraint that x0 215

points to the predicate word. Then, we divide t˚ 216

into multiple subtrees headed by p. For each sub- 217

tree lying on the span pi, jq, we decide whether it 218

corresponds to an argument according to the label 219

of dependency p
r
ÝÑ h, where h is the span head- 220

word. If r is not “O”, then h and its descendants 221

form an entire argument span with semantic role r. 222

In this case, we recursively make a top-down traver- 223

sal starting from h, and collapse the subtree into 224

a flat structure, forming a predicate-argument pair 225

pp, ri,jq. Finally, we collate all arguments of pred- 226

icate p into a single graph g˚
p . The resulting SRL 227

output becomes g˚ “ tg˚
pu. A recovery example 228

is demonstrated in Fig. 2d. 229

3 Methodology 230

Now we elaborate the model architecture of our 231

proposed dependency parser. Following Dozat and 232

Manning (2017); Zhang et al. (2020), our model 233

consists of a contextualized encoder and a (second- 234

order) scoring module. We further propose a span- 235

3



aware TreeCRF to calculate the probabilities of the236

converted partially-observed dependency trees.237

3.1 Neural Parameterization238

Given the sentence x “ x0, x1, . . . , xn, we first239

obtain the hidden representation of each token xi240

via a deep contextualized encoder.241

h0,h1, . . . ,hn “ Encoderpx0, x1, . . . , xnq (1)242

In this work, we experiment with two alternative en-243

coders, i.e., BiLSTMs (Gal and Ghahramani, 2016)244

and pretrained language models (PLMs) (Devlin245

et al., 2019). We leave more setting details in § A.246

(Second-order) Tree parameterization Dozat247

and Manning (2017) decompose t into two separate248

y and r, where y is a skeletal tree, and r is the249

related strictly-ordered label sequence. We denote250

the head of the modifier m as ym. For each head-251

modifier pair h Ñ m P y, we score them using252

two MLPs followed by a Biaffine layer:253

r
head{mod
i “ MLPhead{modphiq

sph Ñ mq “ BiAF
´

rheadh , rmod
m

¯ (2)254

The score of the dependency h Ñ m with label255

r P R is calculated analogously. We use two extra256

MLPs and |R| Biaffine layers to obtain all label257

scores.258

We also make use of adjacent-sibling informa-259

tion (McDonald and Pereira, 2006) to further en-260

hance the first-order biaffine parser. Following261

Wang et al. (2019); Zhang et al. (2020), we em-262

ploy three extra MLPs as well as a Triaffine layer263

for second-order subtree scoring,264

r
head{mod{sib
i “ MLPhead{mod{sibphiq

sph Ñ s,mq “ TriAF
´

rheadh , rmod
m , rsibs

¯ (3)265

where s and m are two adjacent modifiers of h, and266

s populates between h and m.267

Under the first-order factorization (McDonald268

et al., 2005), the score of y becomes269

spx,yq “
ÿ

hÑmPy

sph Ñ mq (4)270

For the second-order case (McDonald and Pereira,271

2006), we further incorporate adjacent-sibling sub-272

tree scores into tree scoring:273

spx,yq “
ÿ

hÑm

sph Ñ mq `
ÿ

hÑs,m

sph Ñ s,mq

(5)274

Then we parameterize the probability of skeletal 275

tree y and its label sequence r as 276

P py | xq “
exp pspx,yqq

Zpxq ”
ř

y1PY pxq exp pspx,y1qq

P pr | x,yq “
ź

h
r

ÝÑmPt

P pr | x, h Ñ mq

(6) 277

where Y pxq is the set of all possible legal unla- 278

beled trees, and Zpxq is known as the partition 279

function. Each label r is independent of tree y 280

and other labels, thus P pr | x, h Ñ mq is locally 281

normalized over all r1 P R. Finally, we define the 282

probability of the labeled tree t as the product of 283

the probabilities of its two sub-components. 284

P pt | xq “ P py | xq ¨ P pr | x,yq (7) 285

3.2 Training and Inference 286

During training, we seek to maximize the proba- 287

bility P pg | xq of the SRL graph g, which is then 288

decomposed by predicates. Accordingly, we define 289

the training objective as 290

Lpx, gq “ ´
ÿ

p

logP pgp | xq (8) 291

where P pgp | xq is further expanded as the summa- 292

tion of probabilities of all compatible trees T pgpq 293

defined in § 2.1. 294

P pgp | xq “
ÿ

t”py,rqPT pgpq

P py | xq ¨ P pr | x,yq

“
1

Zpxq

ÿ

t

exppspx,yqq ¨ P pr | x,yq
looooooooooooooomooooooooooooooon

exppspx,tqq

(9) 295

The denominator Zpxq can be efficiently computed 296

via (second-order) Inside algorithm in Opn3q time 297

complexity (Eisner, 2016; Zhang et al., 2020; Rush, 298

2020). As for the numerator, we make a slight 299

change of the formula and define the labeled tree 300

score as: 301

spx, tq “ spx,yq ` logpP pr | x,yqq (10) 302

In this way, the numerator is exactly the summation 303

of all legal labeled tree scores.3 304

In support of end-to-end learning, we conduct 305

predicate identification by assigning a special la- 306

bel “O” to x0 Ñ p if p is a non-predicate word, 307

3It is noteworthy that we do not assign any label to h Ñ

m P y while h R tx0, pu, i.e., any dependency inside an
argument span, thus its logarithmic label probability is set to
0 and does not contribute to tree scoring.
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R-COMB : COMB :

@y, h ă m ď i,

h Ñ m P y,

ph, r˚,iq P g if yh “ x0

@y, s ď i ă m

h m

Ih,m

m i

Cm,i

h i

Ch,i

s i

Cs,i

i ` 1 m

Cm,i`1

s m

Ss,m

R-LINK : R-LINK2 :

@y, h ă m,

h Ñ m P y

@y, h ă s ă m,

h Ñ m P y,

h Ñ s,m Ę y if yh “ x0

h h

Ch,h

h ` 1 m

Cm,h`1

h m

Ih,m

h s

Ih,s

s m

Ss,m

h m

Ih,m

Figure 3: Deduction rules for our span-constrained In-
side/Eisner algorithm (R-COMB and R-LINK) and its
second-order extension (COMB and R-LINK2). Our
modified rule constraints are highlighted in green color.
We only show R-rules, and the symmetric L-rules are
omitted for brevity.

and marginalize unobserved parts out during train-308

ing. As a result, P pgp | xq is exactly the label309

probability of x0 Ñ p, i.e., P pO | x, x0 Ñ pq.310

Span-constrained TreeCRF The calculation of311

the numerator of Eq. 9 differs from the traditional312

case of partial tree learning (Li et al., 2016) in that313

we impose span constraints mentioned in § 2.1 to314

the tree space T pgpq, where the common Inside315

algorithm is not adequate to. To resolve this, in this316

work, we propose a span-constrained TreeCRF to317

accommodate these constraints. We illustrate the318

deduction rules (Pereira and Warren, 1983) of our319

tailored TreeCRF and its second-order extension in320

Fig. 3. Basically, we avoid the arc h Ñ m crossing321

different spans by prohibiting the merge operation322

of its related incomplete span Ih,m (R-LINK). To323

prevent multiple headwords in the same argument,324

inspired by Zhang et al. (2021a), for predicate p,325

we only allow merging the complete span Cp,m if326

m is the endpoint of an argument (R-COMB). For327

second-order case, we further prohibit the subtree328

p Ñ s,m once s and m are located in the same329

argument (R-LINK2).330

Inference During inference, as shown in Fig. 2c, 331

for each candidate predicate p, we use (second- 332

order) Eisner algorithm to parse an optimal projec- 333

tive tree rooted at p, 334

t˚ “ arg max
t”py,rq,s.t.,yp“x0

spx, tq (11) 335

where the score spx, tq is calculated by Eq. 4. In 336

practice, we first predict the label sequence r lo- 337

cally as it is independent of the skeletal tree, and 338

then only realize the tree with the label of x0 Ñ p 339

being PRD for efficiency. Dependencies with the 340

label “O” are discarded. 341

4 Experiments 342

Following previous works, we measure our pro- 343

posed first-order CRF and second-order CRF2O on 344

two SRL benchmarks: CoNLL05 and CoNLL12. 345

For CoNLL05, we adopt the standard data split of 346

Carreras and Màrquez (2005). For CoNLL12, we 347

extract data from OntoNotes (Pradhan et al., 2013), 348

and follow the split of Pradhan et al. (2012). We 349

adopt the official scripts provided by CoNLL05 350

shared task4 for evaluation. More experimental 351

setups are presented in § A. 352

4.1 Main results 353

Table 1 gives our main results on CoNLL05 in- 354

domain WSJ data, out-of-domain Brown data, and 355

CoNLL12 Test data. By default, our model works 356

in an end-to-end fashion, i.e., predicting all predi- 357

cates and associated arguments simultaneously. For 358

comparisons with previous works, we report the 359

results of using gold predicates as well. We achieve 360

this by only parsing trees rooted at the pre-specified 361

predicates. 362

We can clearly see that our CRF outperforms 363

previous works by a large margin on all three 364

datasets, especially showing larger gains on out- 365

of-doamin Brown data. The second-order CRF2O 366

further brings 0.4, 0.7, and 0.1 F1 improvements 367

over CRF on the three datasets, respectively. As 368

shown in § 4.2, we attribute the improvements to 369

better performing at global consistency and long- 370

range dependencies. 371

The results under the setting of w/ gold predi- 372

cates show similar trends. The bottom lines show 373

the results of utilizing PLMs. Compared with the 374

previous state-of-the-art BIO-based parser (Shi and 375

Lin, 2019), our CRF model enhanced with BERT 376

4https://www.cs.upc.edu/~srlconll
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CoNLL05 CoNLL12
WSJ Brown Test

P R F1 P R F1 P R F1

He et al. (2017) 80.20 82.30 81.20 67.60 69.60 68.50 78.60 75.10 76.80
He et al. (2018a) 81.20 83.90 82.50 69.70 71.90 70.80 79.40 80.10 79.80
Strubell et al. (2018)˚ 81.77 83.28 82.51 68.58 70.10 69.33 - - -

CRF 83.18 85.38 84.27 70.40 72.97 71.66 79.47 82.80 81.10
CRF2O 83.26 86.20 84.71 70.70 74.16 72.39 79.27 83.24 81.21

Li et al. (2019) + ELMo 85.20 87.50 86.30 74.70 78.10 76.40 84.90 81.40 83.10
CRF + BERT 86.53 88.02 87.27 78.77 80.71 79.73 84.08 85.79 84.92
CRF2O + BERT 86.78 88.59 87.67 79.29 82.10 80.67 84.19 86.21 85.19
CRF + RoBERTa 87.23 88.81 88.01 80.02 82.22 81.10 84.95 87.00 85.97
CRF2O + RoBERTa 87.43 89.32 88.36 80.14 82.49 81.30 85.09 86.99 86.03

w/ gold predicates
He et al. (2017) 82.00 83.40 82.70 69.70 70.50 70.10 80.20 76.60 78.40
Ouchi et al. (2018) 84.70 82.30 83.50 76.00 70.40 73.10 84.40 81.70 83.00
Tan et al. (2018) 84.50 85.20 84.80 73.50 74.60 74.10 81.90 83.60 82.70
Strubell et al. (2018)˚ 84.70 84.24 84.47 73.89 72.39 73.13 - - -
Zhang et al. (2021b) 85.30 85.17 85.23 74.98 73.85 74.41 83.09 83.71 83.40

CRF 85.38 85.56 85.47 74.39 73.76 74.07 83.21 83.85 83.53
CRF2O 85.47 86.40 85.93 74.92 75.00 74.96 83.02 84.31 83.66

Shi and Lin (2019) + BERT 88.60 89.00 88.80 81.90 82.10 82.00 85.90 87.00 86.50
Zhang et al. (2021b) + BERT 87.70 88.15 87.93 81.52 81.36 81.44 86.00 86.84 86.42
CRF + BERT 88.70 88.32 88.51 82.58 81.47 82.02 87.20 87.38 87.29
CRF2O + BERT 88.80 88.88 88.84 82.95 82.82 82.89 87.35 87.78 87.57
CRF + RoBERTa 89.38 89.15 89.27 83.80 82.96 83.38 88.00 88.39 88.19
CRF2O + RoBERTa 89.57 89.69 89.63 83.83 83.60 83.72 88.05 88.59 88.32

Table 1: Results on CoNLL05 WSJ, Brown, and CoNLL12 Test data. All results are averaged over 4 runs
with different random seeds. Strubell et al. (2018) incidentally report results with error (higher) precisions (see
discussions in their code issue), and the above results marked by ˚ are obtained by rerunning their released models.

shows competitive performance without using any377

pretrained word embeddings as well as LSTM378

layers. The results of CRF2O are 88.84, 82.89,379

and 87.57 respectively. By utilizing RoBERTa,380

our CRF2O obtains further gains and achieves381

new state-of-the-art on all three datasets under382

the end-to-end setting. As a reference, the recent383

best-performing syntax-related work (Zhou et al.,384

2020a) achieve 88.64 and 89.81 respectively on385

CoNLL05 Test data after using BERT and XLNet386

(Yang et al., 2019). Our models show very compet-387

itive results.388

4.2 Analysis389

To better understand in what aspects our CRF and390

CRF2O are helpful, we conduct detailed analy-391

ses on CoNLL05 Dev data. To this end, we re-392

implement the BIO-based model (BIO) of Strubell393

et al. (2018) and the span-based model (SPAN) of394

He et al. (2018a). For BIO, we follow Zhang et al.395

(2021b) by further employing linear-chain CRF396

Dev Test

P R F1 CM F1 CM

BIO 86.80 86.38 86.59 69.24 88.22 71.95
SPAN 87.68 86.75 87.21 68.43 88.44 70.22
CRF 87.71 87.49 87.60 70.99 88.51 72.40
CRF2O 87.71 87.91 87.81 71.99 88.84 73.40

Table 2: Finetuning results on CoNLL05 data under the
setting of w/ gold predicates.

(Lafferty et al., 2001) during training and perform 397

Viterbi decoding to satisfy BIO constraints. For 398

fair comparisons, we adopt the same experimental 399

setups in that we report the results of finetuning on 400

BERT and assume all predicates are given. 401

We first make comprehensive comparisons for 402

the four methods in Table 2. We can observe that 403

under the same settings, our CRF widens the ad- 404

vantages over BIO and SPAN, and CRF2O further 405

improves the performance on Dev data. 406
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Figure 4: F1 scores breakdown by argument length
(Fig. 4a) and predicate-argument distance (Fig. 4b).

Structural consistency To quantify the benefits407

of our methods in making global decisions for SRL408

structures, we report the percentage of completely409

correct predicates (CM) (He et al., 2018a) in Ta-410

ble 2. We show that the BIO model with linear-411

chain CRF significantly outperforms SPAN, but412

still falls short of our CRF by 1.75. By explic-413

itly modeling sibling information, CRF2O goes414

further beyond CRF by 1 point. In terms of the415

performance broken down by argument length, as416

shown in Fig. 4a, SPAN lags largely behind BIO417

over lengthě8. We guess this is mainly because of418

their aggressive argument pruning strategy. Corre-419

spondingly, CRF and CRF2O demonstrate steady420

improvements over BIO and SPAN. We owe this421

to the superiority of our formulations in modeling422

subtree structures, thus providing rich inter- and423

intra-argument dependency interactions.424

Long-range dependencies Fig. 4b shows the re-425

sults broken down by predicate-argument distance.426

It is clear that the gaps between BIO and other427

methods become larger as the distance increases.428

This is reasonable since BIO lacks explicit con-429

nections for non-adjacent predicate-argument pairs,430

whereas ours provides direct word-to-word map-431

ping. SPAN shows competitive results but is still432

inferior to us. we speculate this is due to their in-433

feriority in ultra-long arguments, as illustrated in434

Fig. 4a.435

4.3 Dependency-based evaluation436

Given above analyses, we have concluded that span-437

style SRL can substantially benefit from our formu-438

lation of recovering SRL from induced trees. This439

naturally opens up the question: can induced trees440

learn plausible structures?441

Observing that our CRF model can conveniently442

determine dependencies from predicates to span443

headwords as by-products of constructing argu-444

P R F1

FIRST 61.16 63.51 62.31
LAST 60.61 62.95 61.76
CRF 72.20 74.98 73.56
CRF + BERT 82.30 84.04 83.16
CRF + BERT (gold) 90.92 92.85 91.88

w/ gold predicates
CRF 75.28 75.24 75.26
CRF + BERT 84.70 84.39 84.54
CRF + BERT (gold) 93.56 93.22 93.39

Table 3: Results for dependency-based evaluation on
CoNLL09 Test data under w/o and w/ gold predicates
settings.

ments, we therefore conduct dependency-based 445

evaluation on CoNLL09 Test data (Hajič et al., 446

2009) to measure the quality of induced depen- 447

dencies. We obtain the results by making predic- 448

tions on CoNLL09 Test with the parser trained on 449

CoNLL05 as they share the same text content. 450

We set up two baselines: 1) FIRST, denoting al- 451

ways take the first word as argument head; 2) LAST, 452

denoting the last word. Following Johansson and 453

Nugues (2008b); Li et al. (2019), we also compare 454

our CRF outputs with the upper bound of utilizing 455

gold syntax tree to determine headwords of pre- 456

dicted arguments. Since CoNLL05 contains only 457

verbal predicates, we discard all nominal predicate- 458

argument structures under the guidance of POS 459

tags starting with N*. Word senses and self-loops 460

are removed as well. Table 3 lists the results. 461

We can clearly see that FIRST performs signifi- 462

cantly better than LAST. This is reasonable since 463

English is often regarded as right-branching, and 464

headwords often precede their dependents. The 465

results of CRF substantially outperform FIRST and 466

LAST, especially after utilizing BERT. It also ex- 467

hibits promising performance even when compared 468

with the upper bound of utilizing gold syntax. This 469

indicates that the induced dependencies of CRF are 470

highly in line with dependency-based annotations 471

(Johansson and Nugues, 2008a; Surdeanu et al., 472

2008). This sheds lights on extensions of our work 473

on supervised dependency-based SRL, which we 474

leave for future work. 475

To gain further insights, we also make use of 476

scores defined in Eq. 4 to extract dependency trees. 477

Surprisingly, we find they are highly in agreement 478

with expert-designed grammars (Marcus et al., 479

1993) when examined on grammar induction task 480

(Klein and Manning, 2004; Gormley et al., 2014). 481
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Further discussions are available in § B.482

5 Related Works483

Span-style SRL Pioneered by Gildea and Juraf-484

sky (2002), syntax has long been considered indis-485

pensable for the span-style SRL task (Punyakanok486

et al., 2008). With the advent of the neural net-487

work era, syntax-agnostic models make remarkable488

progress (Zhou and Xu, 2015; Tan et al., 2018; He489

et al., 2018a), mainly owing to powerful model490

architectures like BiLSTM (Gal and Ghahramani,491

2016) or Transformer (Vaswani et al., 2017). Mean-492

while, other researchers also pay attention to the uti-493

lization of syntax trees, including serving as guid-494

ance for argument pruning (He et al., 2018b), as495

input features (Marcheggiani and Titov, 2017; Xia496

et al., 2019), or as supervisions for joint learning497

(Swayamdipta et al., 2018). However, to our knowl-498

edge, very few works have been devoted to mining499

internal structures of shallow SRL representation.500

Zhang et al. (2021b) explore headword distribu-501

tions by doing attention over words in argument502

spans. Beyond this, this work proposes to model503

full argument subtree structures by directly reduc-504

ing SRL to a dependency parsing task, and find505

more competitive results.506

Parsing with latent variables Henderson et al.507

(2008, 2013) design a latent variable model to de-508

liver syntactic and semantic interactions under the509

setting of joint learning. In more common situa-510

tions where gold treebanks may lack, Naradowsky511

et al. (2012); Gormley et al. (2014) use LBP for512

the inference of semantic graphs and treat latent513

trees as global factors (Smith and Eisner, 2008)514

to provide soft beliefs for reasonable predicate-515

arguments structures. This work differs in that we516

make hard constraints on syntax tree structures to517

conform to the SRL graph, and take only subtrees518

attached to predicates as latent variables. The in-519

tuition behind latent tree models (Chu et al., 2017;520

Meila and Jordan, 2000; Kim et al., 2017) is to521

utilize tree structures to provide rich structural in-522

teractions for problems with prohibitive high com-523

plexity. This idea is also common in many other524

NLP tasks like text summarization (Liu and Lapata,525

2018), sequence labeling (Zhou et al., 2020c), and526

AMR parsing (Zhou et al., 2020b).527

Reduction to syntactic parsing Researchers528

have investigated several ways to recover SRL529

structures from syntactic trees, due to their high530

coupling nature (Palmer et al., 2005). Early ef- 531

forts of Cohn and Blunsom (2005) derive predicate- 532

arguments to pruned phrase structures equipped 533

with a CKY-style TreeCRF to learn parameters. Jo- 534

hansson and Nugues (2008a) and Choi and Palmer 535

(2010) investigate retrieving semantic boundaries 536

from dependency outputs. Their devised heuristics 537

rely heavily on the quality of output trees, leading 538

to inferior results. Our reduction is also inspired 539

by works on other NLP tasks, including named 540

entity recognition (NER) (Yu et al., 2020), nested 541

NER (Fu et al., 2021), semantic dependency pars- 542

ing (Sun et al., 2017), and EUD parsing (Ander- 543

son and Gómez-Rodríguez, 2021). As the most 544

relevant work, Shi et al. (2020) also propose to 545

reduce SRL to syntactic dependency parsing by in- 546

tegrating syntactic-semantic relations into a single 547

dependency tree by means of joint labels. How- 548

ever, their approach shows non-improved results 549

possibly due to the label sparsity problem and high 550

back-and-forth conversion loss. Also, they use gold 551

treebank supervisions while ours does not rely on 552

any hand-annotated syntax data. 553

We prefer to reduce SRL to dependency pars- 554

ing rather than another paradigm, i.e., constituency 555

parsing, partly due to the fact that dependency trees 556

can offer a more transparent bilexical governor- 557

dependent encoding of predicate-argument rela- 558

tions (Hacioglu, 2004). We also do not take the 559

way of jointly modeling dependencies and phrasal 560

structures with lexicalized trees (Eisner and Satta, 561

1999; Yang and Tu, 2021a) as our approach enjoys 562

a lower time complexity of Opn3q. Nonetheless, 563

we admit the potential advantages of this kind of 564

modeling and leave this as our future work. 565

6 Conclusions 566

In this paper, we propose to reduce SRL to a de- 567

pendency parsing task. Specifically, we view flat 568

phrasal arguments as latent subtrees and design a 569

novel span-constrained TreeCRF to accommodate 570

the span structures. We also borrow traditional 571

second-order parsing techniques and find further 572

gains. Experimental results show that our proposed 573

methods achieve state-of-the-art performance on 574

both CoNLL05 and CoNLL12 benchmarks. Exten- 575

sive analyses reveal the advantages of our modeling 576

of latent subtrees in terms of long-range dependen- 577

cies and global consistency. The evaluation over 578

induced dependencies validates their agreement 579

with linguistic motivated annotations. 580
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A Implementation Details 984

#Train #Dev #Test #OOD #roles

CONLL05 39,832 1,346 2,416 2,399 54
CONLL12 75,187 9,603 9,479 - 63

Table 4: Data statistics for CoNLL05 and CoNLL12
datasets.

Data Table 4 lists detailed data statistics of 985

CoNLL05 and CoNLL12 datasets. For CoNLL05, 986

we follow standard splits of Carreras and Màrquez 987

(2005): sections 02-21 of WSJ corpus as Train data, 988

section 24/23 as Dev/Test data, and three sections 989

(CK01-03) of the Brown corpus as out-of-domain 990

(OOD) data. For CoNLL12, following He et al. 991

(2018a), we use data splits of the CoNLL12 shared 992

task (Pradhan et al., 2012), where the list of file 993

IDs for Train/Dev/Test data can be found on the 994

task webpage.5 We adopt the same splits for both 995

end-to-end and w/ gold predicates settings. 996

Model settings In this work, we set up two alter- 997

native model architectures, i.e, LSTM-based and 998

PLM-based. For the LSTM-based model, we di- 999

rectly adopt most settings of Dozat and Manning 1000

5https://cemantix.org/conll/2012/
download/ids/english/coref/

12

https://aclanthology.org/P19-1454
https://aclanthology.org/P19-1454
https://aclanthology.org/P19-1454
https://ojs.aaai.org/index.php/AAAI/article/view/4717
https://aclanthology.org/2021.naacl-main.271
https://aclanthology.org/2021.naacl-main.271
https://aclanthology.org/2021.naacl-main.271
https://aclanthology.org/2020.coling-main.347
https://aclanthology.org/2020.coling-main.347
https://aclanthology.org/2020.coling-main.347
http://arxiv.org/abs/2108.05838
http://arxiv.org/abs/2108.05838
http://arxiv.org/abs/2108.05838
http://arxiv.org/abs/2108.05838
http://arxiv.org/abs/2108.05838
http://arxiv.org/abs/2108.04750
http://arxiv.org/abs/2108.04750
http://arxiv.org/abs/2108.04750
https://aclanthology.org/2021.acl-long.209
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://aclanthology.org/P16-2033
https://aclanthology.org/P16-2033
https://aclanthology.org/P16-2033
https://aclanthology.org/P16-2033
https://aclanthology.org/P16-2033
https://aclanthology.org/2020.acl-main.577
https://aclanthology.org/2021.acl-long.449
https://aclanthology.org/2021.acl-long.449
https://aclanthology.org/2021.acl-long.449
https://aclanthology.org/2020.acl-main.302
https://aclanthology.org/2020.acl-main.302
https://aclanthology.org/2020.acl-main.302
https://aclanthology.org/2020.acl-main.302
https://aclanthology.org/2020.acl-main.302
https://aclanthology.org/2021.spnlp-1.8
https://aclanthology.org/2021.spnlp-1.8
https://aclanthology.org/2021.spnlp-1.8
https://aclanthology.org/P15-1109
https://aclanthology.org/P15-1109
https://aclanthology.org/P15-1109
https://aclanthology.org/2020.findings-emnlp.398
https://aclanthology.org/2020.findings-emnlp.398
https://aclanthology.org/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397
http://arxiv.org/abs/2011.05009
http://arxiv.org/abs/2011.05009
http://arxiv.org/abs/2011.05009
https://aclanthology.org/2020.tacl-1.42
https://aclanthology.org/2020.tacl-1.42
https://aclanthology.org/2020.tacl-1.42
https://aclanthology.org/2020.tacl-1.42
https://aclanthology.org/2020.tacl-1.42
https://cemantix.org/conll/2012/download/ids/english/coref/
https://cemantix.org/conll/2012/download/ids/english/coref/


46 48 50 52

74

78

82

86

90

F 1
(%

)

64 66 68

74

78

82

86

90

LSTM
BERT

UAS (%)

Figure 5: Relationships between grammar induction and
SRL results on WSJ data, where the x-axis represents
the UAS scores, and y-axis shows the corresponding
SRL F1 values.

(2017) with some adaptions. For each token xi P x,1001

its input vector is the concatenation of three parts,1002

ei “

”

ewordi ; elemma
i ; echari

ı

1003

where ewordi and elemma
i are word and lemma em-1004

beddings, and echari is the outputs of a CharLSTM1005

layer (Lample et al., 2016). We set the dimension1006

of lemma and CharLSTM representations to 100 in1007

our setting. We next feed the input embeddings into1008

3-layer BiLSTMs (Gal and Ghahramani, 2016) to1009

get contextualized representations with dimension1010

800.1011

h0,h1, . . . ,hn “ BiLSTMspe0, e1, . . . , enq1012

Other dimension settings are kept the same as bi-1013

affine parser (Dozat and Manning, 2017). Follow-1014

ing Zhang et al. (2020), we set the hidden size of1015

Triaffine layer to 100 for CRF2O additionally. The1016

training process continues at most 1,000 epochs1017

and is early stopped if the performance on Dev1018

data does not increase in 100 consecutive epochs.1019

For PLM-based models, we opt to directly fine-1020

tune the PLM layers without cascading word em-1021

bedding and LSTM layers for the sake of simplicity.1022

We use “bert-large-cased” for BERT, and1023

“roberta-large” for RoBERTa respectively.1024

We train the model for 10 epochs with batch size of1025

roughly 1000 tokens and use AdamW (Loshchilov1026

and Hutter, 2019) for parameter optimization. The1027

learning rate is 5 ˆ 10´5 for PLMs, and 10´3 for1028

the rest components. We adopt the warmup strat-1029

egy in the first epoch followed by a linear decay in1030

other epochs for the learning rate.1031

B Grammar Induction1032

Can we associate the SRL results with the quality of1033

induced trees? Fig. 5 presents a scatter plot to show1034

Rules Models WSJ

Stanford

NL-PCFGs (Zhu et al., 2020) 40.5
NBL-PCFGs (Yang et al., 2021) 39.1
StructFormer (Shen et al., 2021) 46.2

CRF 48.0
CRF + BERT 65.4

w/ gold POS tags (for reference)

Collins

DMV (Klein and Manning, 2004) 39.4
MaxEnc (Le and Zuidema, 2015) 65.8
NDMV (Jiang et al., 2016) 57.6
CRFAE (Cai et al., 2017) 55.7
L-NDMV (Han et al., 2017) 59.5
NDMV2o (Yang et al., 2020) 67.5

Table 5: Grammar induction results of our CRF model
under different head-finding rules.

the correlations between the results of grammar 1035

induction and SRL. Specifically, we obtain UAS 1036

of induced trees by first picking up all SRL model 1037

checkpoints and then parsing 1-best trees using 1038

Eisner algorithm given scores defined in Eq. 4. We 1039

can see that the two results are highly positively 1040

correlated, showing a roughly linear relationship. 1041

We show precise grammar induction results in 1042

Table 5. The results are not comparable to typical 1043

methods like DMV (Klein and Manning, 2004) or 1044

CRFAE (Cai et al., 2017), as they use gold POS 1045

tags, and we use Stanford Dependencies instead of 1046

Collins rules (Collins, 2003). However, our learned 1047

task-specific trees perform significantly better than 1048

recent works under similar settings. 1049

Another interesting observation is that the gap 1050

between the BERT-based model and the LSTM- 1051

based model is much larger than that on SRL re- 1052

sults. This implies LSTMs tend to be more fitted 1053

to SRL structures, while BERT is able to provide a 1054

strong inductive bias for syntax induction. 1055
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