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Abstract

While many large language models (LLMs)001
have demonstrated evolving reasoning ability,002
they are reported to hold attestation bias in in-003
ference tasks. Instead of focusing on entail-004
ment signals between a premise and a hypoth-005
esis, LLMs are easily misled by whether the006
hypothesis is factual in the models’ knowledge.007
However, previous study on attestation bias re-008
quires the factuality of input sentences to be009
determinable, which is often not true for in-010
ference tasks. In this paper, we propose soft011
attestation, a measurement compatible with all012
kinds of NLI datasets. Then we implement013
a sentence-level explicit inductive inference014
pipeline. By reporting its performance against015
attestation bias on three NLI datasets with four016
mainstream LLMs, we demonstrate that the017
attestation bias persists as a severe problem018
on sentence-level inference, yet it can also be019
exploited to improve LLMs’ inference perfor-020
mance.1021

1 Introduction022

While many contemporary large language mod-023

els (LLMs) claim to have strong reasoning ability,024

recent studies have shown that they are subject025

to severe attestation bias in fundamental natural026

language inference tasks (McKenna et al., 2023).027

When a model is asked to predict whether a premise028

entails a hypothesis, instead of focusing on the in-029

ference signal, an LLM is easily distracted by the030

hypothesis’s out-of-context factuality. As a result,031

LLMs usually perform worse when the entailment032

label between premise and hypothesis disagrees033

with the hypothesis’s attestation (factuality) label.034

Previous work has proposed the idea of explicit035

inductive inference as a solution. By doing in-036

ference on alternative entailment inquiries created037

by LLMs themselves, the attestation bias can be038

1Codes and data on this paper will be released upon publi-
cation.

utilized to mitigate itself, and therefore improve 039

LLMs’ performance on triple-level inference tasks 040

(Liu et al., 2024). However, in most mainstream 041

natural language inference (NLI) challenges and 042

downstream applications, entailment inquiries are 043

often not presented as pairs of well-structured 044

triples. An inference model is usually expected 045

to pick up the entailment structure between sen- 046

tences on its own, which limits the scenario where 047

this pipeline can be used. 048

Furthermore, sentences in many NLI datasets 049

do not have a well-defined factuality label. Pre- 050

vious discussion on attestation bias restrict the in- 051

puts to be either factual or counter-factual by lo- 052

cating named entities, which excludes a lot of NLI 053

datasets and therefore limits its perspective. This 054

encourages us to generalize the process of detect- 055

ing attestation bias, and further examine on more 056

datasets if the attestation bias is still harmful to the 057

latest LLMs. 058

Based on these motivations, this paper first de- 059

fines the soft attestation measurement. Then we 060

probe the attestation bias that exist in latest LLMs, 061

and apply the idea of explicit inductive inference 062

to sentence-level datasets to build a pipeline as a 063

solution. The contributions in this paper can be 064

summarized as follows: 065

1. We discuss a flaw in previous studies of attes- 066

tation bias, and propose the definiton of soft attes- 067

tation as a better measurement that is compatible 068

with more general NLI datasets. 069

2. By applying this measurement, we expand 070

the investigation of attestation bias to more vari- 071

ous NLI datasets with several SOTA LLMs, and 072

show that the attestation bias still remains a severe 073

problem. 074

3. We implement a sentence-level inductive in- 075

ference pipeline. We demonstrate that this pipeline 076

can improve LLMs’ overall performance on NLI 077

task. Under certain circumstances, we show that it 078

can also mitigate the attestation bias by exploiting 079
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the bias itself.080

2 Related work081

It is widely observed that LLMs accumulate a bias082

towards facts that they memorized from a vast083

amount of pre-training corpus (Roberts et al., 2020;084

Carlini et al., 2022; Yan et al., 2022). In specific rea-085

soning scenarios like solving math problems, this086

bias causes LLMs to perform worse even when only087

variable names are changed (Gulati et al., 2024).088

For inference tasks, McKenna et al. (2023) de-089

signed a list of experiments specifically focused090

on the attestation bias, and showed that it causes091

LLMs to expose a significant performance drop at092

inference time. The following works have also con-093

firmed that this bias keeps affecting the inference094

performance of newer LLMs (Liu et al., 2024).095

Other works proposed different ways to alleviate096

the negative effect of the attestation bias by present-097

ing models with counterfactual examples (Wang098

et al., 2022; Zhou et al., 2023; Wang et al., 2023) or099

using type labels to mask the entities (Zhou et al.,100

2024).101

For LLMs, Liu et al. (2024) proposed a novel102

explicit inductive inference pipeline that can utilize103

the attestation bias to mitigate itself. On triple-level104

inference tasks, this work argues that if the premise105

can be controlled to be attested, the attestation la-106

bel of the hypothesis will then statistically align107

with the entailment label between the premise and108

the hypothesis, which makes the attestation bias109

unharmful. Although this idea brings an intrigu-110

ing possibility, whether it can be applied to more111

complex circumstances remains an open question,112

which we will try to answer in this paper.113

3 Measuring attestation bias114

The attestation bias is clearly defined by the re-115

lation between the hypothesis’s attestation label116

and the premise-hypothesis pair’s entailment label.117

The attestation label itself, on the other hand, can118

sometimes be hard to determine. The factuality la-119

bel of a sentence describing real-world knowledge120

like "Steve Jobs was born in San Francisco" can121

be supported or denied by evidence or the model’s122

knowledge. However, it is nearly impossible to de-123

termine the factuality of sentences like "Tom likes124

Mary" without context.125

Previous work has carefully avoided them by126

selecting only the datasets derived from corpora127

where factuality can be determined, e.g. news arti-128

cles. Yet, those general sentences appear in many 129

mainstream NLI datasets, which urge us to include 130

them into the discussion of attestation bias. 131

In this paper, we try to improve the measurement 132

of attestation. When assigning attestation (factu- 133

ality) labels to sentences, besides "attested" (A) 134

and "non-attested" (NA), we now allow another 135

label, "factuality can not be determined" (ND), to 136

be an option. In previous work, the ND label ei- 137

ther does not exist or only exists in prompting but 138

is then merged into the NA label in later analysis. 139

We note that definition of attestation as the hard 140

attestation. 141

In contrast, we propose soft attestation bias. We 142

argue that it is counter-intuitive to force the factual- 143

ity label to be binary. While the boundary between 144

A and ND can be vague, a model usually has strong 145

evidence to support an NA claim. Therefore, we 146

define the soft attestation by observing whether the 147

probability P (NA) is higher than both P (A) and 148

P (ND), but not necessarily P (A)+P (ND) which 149

is the case where the A category is merged with the 150

ND category. 151

Formally, we call a sentence soft attested when 152

P (NA) > P (A) ∧ P (NA) > P (ND). More- 153

over, we define a pair of premise and hypothesis 154

soft attestation-consistent if their entailment label 155

agrees with the soft attestation label of the hypoth- 156

esis. Otherwise, we note them as soft attestation- 157

adversarial. 158

In all the following experiments, we always dis- 159

play results under both the hard and the soft attes- 160

tation measurement. 161

4 Sentence-Level Explicit Inductive 162

Inference 163

In this section, we explain the design of 164

the Sentence-Level Explicit Inductive Inference 165

(SLEII) pipeline. Similar to the triple-level explicit 166

inductive inference pipeline, the methodology of 167

the SLEII pipeline is to explicitly help an LLM 168

to expand a single entailment inquiry to a list of 169

alternatives, and inductively draw a more reliable 170

conclusion from all the similar cases. However, 171

unlike triples which each possess one object and 172

one subject, sentences include more complex se- 173

mantic components. It is therefore necessary to 174

design modules that can handle any kind of input 175

sentence. 176

In the SLEII pipeline, each pair of one premise 177

and one hypothesis sequentially goes through four 178
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modules. To better present the function of each179

module, we take the following pair of sentences as180

an example to illustrate how this pipeline works:181

Premise: John is eating chocolate after182

meeting Mary.183

Hypothesis: He received some chocolate184

as a gift.185

Now we introduce the four modules one by one186

by process this sentence pair as an example.187

4.1 Alignment188

This module decides which part of the sentences189

should be substituted to create alternative sentences.190

By creating variations of the original sentence pair,191

we aim to alter the meaning of the sentences within192

a reasonable range while keeping the entailment193

label between the sentences unchanged. To achieve194

this, we only replace those entities that appear in195

both sentences. This module locates these entities196

and tags them with type labels.197

Type labels are necessary here to prevent ambi-198

guity problems. While (X kills Y) entails (X is a199

cure of Y) when X is medicine and Y is a disease,200

in most of the other cases their meaning is entirely201

opposite. To avoid this kind of undesirable substi-202

tution, the alignment module is asked to provide203

a contextualized type label for each entity. Here,204

different mentions of the same entity can have dif-205

ferent type labels.206

We encourage this module to do reference res-207

olution between the premise and the hypothesis.208

A reference counted as an entity may be tagged209

with the type labels like "pronoun". For instance,210

after going through this module, the example will211

become:212

Premise: [entity#1: person] is eating [en-213

tity#2: food] after meeting Mary.214

Hypothesis: [entity#1: pronoun] re-215

ceived some [entity#2: food] as a gift.216

4.2 Premise variation217

Once we obtain the tagged premise and hypothesis,218

we independently instantiate the premise into alter-219

native variations. We encourage the LLM to write220

factual sentences if possible. These new premises221

are instantiated with entities that are more familiar222

to the LLM, and therefore these premises are more223

likely to be attested.224

For each premise, we create k different new al-225

ternatives. Now our example looks like this:226

Premise′1: Jane is eating an apple after 227

meeting Mary. 228

Premise′2: Steve is eating popcorn after 229

meeting Mary. 230

...... 231

Premise′k: Tom is eating chips after meet- 232

ing Mary. 233

An explanation of the mapping relations between 234

tags and entities will be generated and passed to 235

the next module. 236

4.3 Hypothesis instantiation 237

This module then derives the alternative hypothe- 238

ses, based on the mapping information received 239

from the previous module on how entities in the 240

corresponding premise are replaced. Now we have 241

a list of k variations of new sentence pairs. The 242

example will look like this: 243

Premise′1: Jane is eating an apple after 244

meeting Mary. 245

Hypothesis′1: She received some apples 246

as a gift. 247

...... 248

Premise′k: Tom is eating chips after meet- 249

ing Mary. 250

Hypothesis′k: He received some chips as 251

a gift. 252

4.4 Prediction 253

Finally, based on each alternative pair of (Premise′k, 254

Hypothesis′k), this module queries the LLM to get 255

an alternative score sk. Note the score of the origi- 256

nal entry as s0, the final weighted SLEII score Sw 257

is calculated with a weight parameter w: 258

Sw = (1− w)s0 + w
k∑

i=0

si (1) 259

5 Experimental setup 260

5.1 Dataset 261

To evaluate our pipeline on sentence-level inference 262

tasks, we test the soft attestation measurement and 263

the SLEII pipeline on three NLI datasets. 264
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SNLI The Stanford Natural Language Inference265

dataset (Bowman et al., 2015) is a classic NLI266

dataset that provides three-way classification (en-267

tailment/contradiction/neutral) entailment inquiries.268

It contains 570k human-written sentence pairs with269

crowd-sourced labels, and is widely used for NLI270

evaluation. Results are reported on the test set.271

RTE The Recognizing Textual Entailment272

dataset from GLUE (Wang et al., 2019) integrate273

the data from the RTE challenge series. The texts274

are derived from real-world corpus like news and275

scientific articles, which makes them a suitable276

source of potential attestation bias. In this dataset,277

the "neutral" and "contradiction" labels are merged278

into the "not_entailment" label. Since the labels of279

the test set are not accessible for RTE, we report280

our results on the validation set.281

MNLI The Multi-Genre Natural Language In-282

ference dataset (Williams et al., 2018) is also a283

widely used dataset formatted the same as SNLI284

but with sentences from more diverse corpus like285

transcribed speech, fiction, and government reports.286

The test set’s golden labels are also not directly287

available. We report results on the "dev_matched"288

development set.289

For all datasets, we select the best value of the290

weight parameter w between 0 to 1 on the training291

sets, and apply them to the test sets to report results.292

5.2 Large language models293

We aim to cover the latest state-of-the-art LLMs294

from various sources. In this paper, our pipeline is295

tested with four mainstream LLMs that are claimed296

to have robust reasoning abilities.297

GPT-4o mini (OpenAI, 2024) is a cost-efficient298

variant of OpenAI’s GPT-4 architecture. It claims299

to have powerful reasoning abilities over many nat-300

ural language understanding benchmarks. The ver-301

sion that we use is "gpt-4o-mini-2024-07-18".302

LLama 3 (Meta, 2024) is an open-source LLM303

published by Meta. In our experiment, we choose304

the "Llama3-8B-Instruct" version, a smaller ver-305

sion with 8 billion parameters.306

Gemini 2.0 Flash (Google, 2024) is an enhanced307

comprehensive model published by Google. The308

version we used in our experiments is "gemini-2.0-309

flash".310

Claude 3.5 Haiku (Anthropic, 2024) is an up-311

dated version of Anthropic’s fastest LLM. The312

model version that we use is "claude-3-5-haiku-313

20241022" .314

When we need to collect the probability of 315

choices, if the LLM provides token probability ac- 316

cess, we use the probability at the output choice 317

mark token (A, B, or C) to represent the choice 318

probability. When the token probabilities are not 319

accessible, we assign 1 to the returned choice and 320

0 to the others. 321

To guarantee replicable results, whenever we 322

query one of the LLMs, either the temperature pa- 323

rameter is set to 0, or the "do_sample" flag is turned 324

off. 325

5.3 Prompts 326

In each module, the content of the prompts may 327

affect the final results. We tried different prompt 328

variations in our pilot studies on the training sets, 329

and fixed the prompts that we use before doing final 330

experiments on the test sets. 331

Following Liu et al. (2024), we set the number 332

of variations k to 10 in our experiments. For the 333

alignment, premise variation, and hypothesis in- 334

stantiation module, we give few-shot examples to 335

guarantee expected results. For the prediction and 336

factuality determination module, we use zero-shot 337

prompts to avoid instability from prompt engineer- 338

ing. More description of the prompts used in our 339

experiments are included in appendix C. 340

6 Results and discussion 341

In this section, we first discuss the effect of apply- 342

ing soft attestation measurement. Then we show 343

how the SOTA LLMs perform against both the hard 344

and the soft attestation bias as a baseline. Follow- 345

ing that, we report the performance of the SLEII 346

pipeline and its impact on attestation bias. 347

6.1 Hard attestation vs. soft attestation 348

As discussed in section 3, we first compare the hard 349

and the soft attestation bias. To better understand 350

how each LLM classifies the datasets, we inspect 351

the data proportion when entries are classified ac- 352

cording to their hypotheses’ attestation label. 353

The results in table 1 show how each LLM 354

sets divergent standards for determining factual- 355

ity. When responding to the same prompt asking 356

about the factuality of a hypothesis, it can be seen 357

that the four LLMs we tested give very different 358

responses. This also demonstrates the distinction 359

between "factuality" and "attestation", as factuality 360

is an objective property, while attestation represents 361

the sentence’s faithfulness within an LLM. 362
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Model Att. measure Dataset

SNLI RTE MNLI

A NA ND A NA ND A NA ND

cons. adv. cons. adv. cons. adv.

Llama3-8B 83% 16% 0% 91% 8% 0% 56% 42% 1%
hard 42% 56% 59% 41% 55% 42%
soft 42% 56% 59% 41% 56% 42%

GPT4o-mini 5% 90% 4% 17% 58% 25% 39% 42% 18%
hard 56% 42% 43% 56% 44% 53%
soft 56% 43% 44% 55% 43% 56%

Gemini-2.0 20% 1% 80% 65% 22% 12% 31% 13% 54%
hard 8% 8% 49% 29% 27% 12%
soft 36% 63% 58% 42% 47% 51%

Claude-3.5 47% 1% 51% 61% 13% 36% 24% 4% 72%
hard 23% 32% 43% 25% 19% 9%
soft 36% 62% 56% 43% 51% 47%

0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Percentages of the data size when the hypothesis of an entry is determined by the LLM to be attested (A), not
attested (NA), or its factuality can not be determined (ND). cons. and adv. note the size of the attestation-consistent
subset and the attestation-adversarial subset.

While Llama3-8B barely assigns NA labels to363

any hypothesis, Gemini-2.0 and Claude-3.5 con-364

sider the majority of hypotheses in the SNLI and365

MNLI datasets as "their factuality can not be de-366

termined". Yet, the size ratios between cons. and367

adv. are mostly close to fifty-fifty splits, indicating368

that attestation-adversarial inference is an essential369

sub-task in various NLI scenarios.370

The size percentage of the attestation-consistent371

(cons.) subsets and the attestation-adversarial372

(adv.) subsets are relative to the entire datasets.373

For Gemini-2.0 and Claude-3.5, we observed a374

negative correlation between the number of NA375

labels a model assigns to hypotheses and the total376

data coverage under hard attestation setting, as the377

ratios of cons. and adv. do not add up to one. This378

happens because the logit scores of output tokens379

in these two models are not available. By default,380

we assign 0, 0, 1 to the probability of the A, NA,381

ND labels when the model’s choice is ND. As a382

result, this kind of entry falls in neither of cons.383

nor adv. under hard attestation setting.384

6.2 Attestation bias persists385

In contrast to the non-consistent results in the pre-386

vious section, we now display LLMs’ universal387

vulnerability against attestation bias. Following 388

McKenna et al. (2023) and Liu et al. (2024), we 389

report LLMs’ inference performance in the normal- 390

ized area under the precision-recall curve in table 2. 391

The diff. columns mark the performance difference 392

between cons. and adv. settings. 393

Apart from the exception of GPT4o-mini, the 394

other three models suffer from a severe perfor- 395

mance drop from cons. to adv. under both attes- 396

tation measures. While a slight performance drop 397

can be evidence of an LLM’s real inference ability, 398

the reversed attestation bias effect that GPT4o-mini 399

exposes is beyond our expectation. Since the train- 400

ing data and training method of GPT4o-mini are 401

not publicly available, we are not able to provide 402

a reasonable explanation. Nevertheless, we can 403

draw an overall conclusion that through years of 404

LLM evolution, attestation bias is still a significant 405

obstacle limiting many models from doing contex- 406

tualized logical inference. 407

It is also worth noting that the results yielded 408

by the hard and soft attestation measures are very 409

close under most settings. The results in section 6.1 410

show that the soft attestation measurement guaran- 411

tees full coverage of every data point, compared 412

to the ND hypotheses lost in the hard attestation 413
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Model Att. measure Dataset

SNLI RTE MNLI

cons. adv. diff. cons. adv. diff. cons. adv. diff.

Llama3-8B hard 96.9 23.6 -73.3 94.1 39.8 -54.3 83.1 30.0 -53.1
soft 96.6 23.8 -72.8 94.1 39.8 -54.3 83.2 29.8 -53.4

GPT4o-mini hard 65.9 97.6 +31.7 75.8 96.9 +21.1 77.7 88.8 +11.1
soft 90.1 93.0 +2.9 80.6 96.8 +16.2 82.2 86.5 +4.3

Gemini-2.0 hard 99.1 51.7 -47.4 85.6 67.0 -18.6 78.9 65.9 -13.0
soft 99.6 52.5 -47.1 86.1 65.1 -21.0 86.4 58.5 -27.9

Claude-3.5 hard 95.3 50.4 -44.9 95.3 40.0 -55.3 92.1 68.2 -23.9
soft 92.6 51.5 -41.1 88.6 42.6 -46.0 85.2 48.2 -37.0

Table 2: AUCnorm (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets under hard
and soft attestation measurement. The diff. columns mark the performance difference from cons. to adv.

measurement. On this basis, we advocate for future414

works to use soft attestation measurement as well415

as the hard one, as it suits a larger variety of NLI416

datasets while fundamentally reflecting the same417

property of the attestation bias.418

6.3 Overall performance of SLEII pipeline419

Now we discuss whether sentence-level attestation420

bias can also be exploited by applying explicit in-421

ductive inference. Table 3 shows the overall per-422

formance of the SLEII pipeline. Although the423

attestation-consistent and attestation-adversarial424

subsets are not involved in this section, we still di-425

vide the results under each setting into two columns426

marked with hard and soft. Here, the hard columns427

only take into account those entries where the hy-428

potheses have A or NA label, omitting entries with429

ND hypotheses as the hard attestation measurement430

does. The soft columns consider every entry, no431

matter the attestation label of a hypothesis is A,432

NA, or ND.433

The SLEIIbw rows mark the results when the434

weight parameter w in equation 1 is set to the best435

value selected over the same experiments on train-436

ing sets. The pure SLEII scores are calculated by437

setting w to 1, which means it does not look at the438

original entailment inquiry at all. A table of all w439

values is included in appendix B.440

It can be observed that the pure SLEII pipeline441

sometimes performs worse than baseline, while442

SLEIIbw reaches best performance under most com-443

binations of LLM and dataset. After looking into444

the alternative premises and hypotheses generated445

by the models, we believe this is caused by the im-446

proved robustness of inferring over multiple exam- 447

ples. While predicting inference only on generated 448

alternatives without looking at the original entry 449

is risky, when using the alternatives as backup ev- 450

idence, it can correct cases where the model gets 451

the original inference wrong, without harming ones 452

that are already answered correctly by the baseline. 453

6.4 Mitigate the attestation bias 454

Liu et al. (2024) proved with the triple-level explicit 455

inductive inference pipeline that, with careful de- 456

sign, the attestation bias of LLMs can be exploited 457

to mitigate itself. In this section, we present a simi- 458

lar analysis to discuss whether the same effect can 459

be found in sentence-level inference. 460

Table 4 and 5 show the AUCnorm results under 461

the hard and soft attestation measurement respec- 462

tively. Similar to table 2, the diff. columns report 463

the performance difference between cons. and adv. 464

subsets. The diff. results closest to zero are high- 465

lighted as an indicator of more robust inference 466

ability against the attestation bias. 467

For hard attestation measurement, the pure 468

SLEII pipeline always increases the diff. value 469

over baseline, contributing to the performance of 470

SLEIIbw in many cases. This effect indeed mit- 471

igates the negative effect of attestation bias for 472

Llama3-8B, Gemini-2.0, and Claude-3.5, although 473

it further escalates the situation for GPT40-mini 474

due to its reverse attestation bias. 475

In contrast, the SLEII pipeline’s performance 476

under soft attestation measurement is less ideal. In 477

a few cases, the pure SLEII pipeline presents an at- 478

testation bias even worse than the baseline, causing 479
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Model Pipeline Dataset

SNLI RTE MNLI

hard soft hard soft hard soft

Llama3-8B - 78.5 78.4 78.8 78.8 64.0 63.9
SLEII 51.5 51.5 66.2 66.2 57.3 57.3
SLEIIbw 80.0 79.5 79.8 79.8 64.2 64.2

GPT4o-mini - 96.0 93.9 90.7 91.5 85.1 84.5
SLEII 75.0 84.0 77.4 81.7 71.9 81.9
SLEIIbw 96.0 94.4 90.7 91.5 85.1 84.8

Gemini-2.0 - 77.9 84.4 77.0 75.8 74.3 74.3
SLEII 84.7 87.7 82.4 78.7 77.8 77.5
SLEIIbw 85.0 88.8 84.1 80.6 78.1 78.0

Claude-3.5 - 78.7 79.4 73.7 73.5 86.1 72.2
SLEII 80.1 80.7 76.5 73.2 79.3 77.3
SLEIIbw 83.7 84.4 79.8 76.1 86.6 78.6

Table 3: The overall pipeline performance under each setup (AUCnorm). SLEIIbw marks the results using the best
weight w learned from the training set under the same setting.

Model Pipeline Dataset

SNLI RTE MNLI

cons. adv. diff. cons. adv. diff. cons. adv. diff.

Llama3-8B - 96.9 23.6 -73.3 94.1 39.8 -54.3 83.1 30.0 -53.1
SLEII 70.6 11.9 -58.7 78.5 31.8 -46.7 76.0 25.9 -50.1
SLEIIbw 95.5 29.2 -66.3 92.8 46.0 -46.8 82.0 31.2 -50.8

GPT4o-mini - 65.9 97.6 +31.7 75.8 96.9 +21.1 77.7 88.8 +11.1
SLEII 35.7 92.2 +56.5 54.1 93.3 +39.2 74.5 86.4 +11.9
SLEIIbw 71.8 97.5 +25.7 75.8 96.9 +21.1 78.4 88.9 +10.5

Gemini-2.0 - 99.1 51.7 -47.4 85.6 67.0 -18.6 78.9 65.9 -13.0
SLEII 98.9 54.1 -44.8 82.4 81.9 -0.5 80.8 71.2 -9.6
SLEIIbw 99.0 54.6 -44.4 85.1 82.0 -3.1 80.8 71.7 -9.1

Claude-3.5 - 95.3 50.4 -44.9 95.3 40.0 -55.3 92.1 68.2 -23.9
SLEII 91.1 48.2 -42.9 89.8 46.5 -43.3 87.8 73.6 -14.2
SLEIIbw 94.5 50.1 -44.4 94.4 43.6 -50.8 93.4 72.4 -21.0

Table 4: AUCnorm (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets under hard
attestation measurement. The diff. column marks the difference from cons. to adv. The diff. value closeset to zero
under each setting is highlighted.
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Model Pipeline Dataset

SNLI RTE MNLI

cons. adv. diff. cons. adv. diff. cons. adv. diff.

Llama3-8B - 96.6 23.8 -72.8 94.1 39.8 -54.3 83.2 29.8 -53.4
SLEII 70.5 12.3 -58.2 78.5 31.9 -46.6 76.2 25.7 -50.5
SLEIIbw 95.4 29.6 -65.8 92.9 46.1 -46.8 82.1 31.0 -51.1

GPT4o-mini - 90.1 93.0 +2.9 80.6 96.8 +16.2 82.2 86.5 +4.3
SLEII 43.8 88.1 +44.3 56.4 93.6 +37.2 69.9 73.0 +3.1
SLEIIbw 88.0 94.9 +6.9 80.6 97.3 +16.7 83.0 86.6 +3.6

Gemini-2.0 - 99.6 52.5 -47.1 86.1 65.1 -21.0 86.4 58.5 -27.9
SLEII 99.0 33.2 -65.8 84.0 69.7 -14.3 87.3 57.4 -29.9
SLEIIbw 99.7 33.6 -66.1 86.1 70.5 -15.6 87.7 57.9 -29.8

Claude-3.5 - 92.6 51.5 -41.1 88.6 42.6 -46.0 85.2 48.2 -37.0
SLEII 88.7 46.8 -41.9 82.5 44.6 -37.9 91.1 47.0 -44.1
SLEIIbw 91.6 49.0 -42.6 87.1 45.1 -42.0 91.6 49.5 -42.1

Table 5: AUCnorm (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets under soft
attestation measurement. The diff. column marks the difference from cons. to adv. The diff. value closeset to zero
under each setting is highlighted.

the SLEIIbw to perform poorly. This comparison480

suggests that although the idea of exploiting the481

attestation bias with explicit inductive reasoning is482

innovative, it may not work effectively when a lot483

of ND sentences are included.484

This proposition can be further supported by485

focusing on the performance difference between486

datasets. Under both attestation measurements,487

SLEII pipeline shows best improvement on RTE488

and least on SNLI, which is correlative to the nature489

of the three datasets. RTE is derived from news490

corpora and therefore includes abundant factual491

statements, SNLI consists of made-up sentences492

with nearly no named entities, and MNLI is a mix-493

ture between the former two. This further proved494

that the more sentences in the datasets of which495

factuality can be determined, the better the explicit496

inductive inference pipeline works.497

To summarize, we argue that mitigating the soft498

attestation bias is an even more challenging task499

that requires a model to handle sentences when500

their factuality can not be determined.501

7 Conclusion502

In this paper, we first propose the concept of soft503

attestation, and prove with experiments that it is504

a better measurement than hard attestation, as it505

allows more NLI datasets to be included in the506

research of attestation bias. At the same time, it507

captures the same attestation proxy as the hard 508

measurement does. We advocate the soft attestation 509

measurement to be used besides the hard one in 510

future studies of attestation bias. 511

Then we report the severe attestation bias ex- 512

isting in three out of four SOTA LLMs. Under 513

both attestation measurements, the LLMs strug- 514

gle to achieve average performance on attestation- 515

adversarial subsets. We conclude that the attesta- 516

tion bias is still a severe problem impairing SOTA 517

LLMs’ inference ability. 518

Finally, by showing results of the SLEII pipeline 519

under various experimental settings, we argue that 520

the explicit inductive inference method can be used 521

to mitigate attestation bias on sentence level. Still, 522

it is limited to scenarios where the factuality of 523

input sentences can be determined. For more gen- 524

eral inference tasks, in remains a difficult challenge 525

to resolve the attestation bias without relying on 526

factuality of sentences. 527

Limitations 528

For many modules in this paper, it is possible that 529

prompt engineering may substantially affect the 530

outcome. For instance, adding and editing few-shot 531

examples are common ways to control the model’s 532

response. Further prompt engineering work may 533

be required into these experiments. 534

Using the SLEII pipeline to infer on k extra vari- 535
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ations results in k times of extra resource spent,536

indicating that this method may not be suitable537

for computationally intensive cases where a model538

needs to process a large number of entries.539
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A Computational cost629

Our experiments on Llama3-8B-Instruct are ap-630

plied on one A6000 GPU. For every 1,000 entries631

(10 variations for each entry), the entire pipeline632

runs on average for 6 hours.633

Other experiments are executed with online634

APIs. The typical time consumed for every 1,000635

entries is 9 hours for GPT 4o-mini, 6 hours for636

Gemini 2.0 Flash, and 21 hours for Claude 3.5637

Haiku.638

B Learned overall weights for SLEII639

pipeline640

Table 6 reports the weight parameter w learned641

from training sets for SLEII pipeline under each642

setting.643

C Prompts644

We list all of the zero-shot prompts and instruc-645

tions for prompting in our experiments. For few-646

shot prompts that we used, please check the files647

associated with this paper.648

C.1 Alignment649

Two sentences are given. Find the entities that650

appears in both sentences, and replace them with651

unique tags together with type labels. In this task,652

pronouns are also considered as entities. Only653

tagged those mentions that refer to an exact same654

entities in both sentences. If two mentions of one655

entity are semantically different in the two sen-656

tences, they should not be tagged. If there is no657

entity that appears in both sentences, leave the sen-658

tence as it is. Always output the two tagged sen-659

tences first, and then provide an explanation.660

C.2 Premise variation661

Rewrite the given tagged sentence into a factual sen-662

tence by replacing the type tags with named entities.663

For each rewritten version, start with "Rewritten664

version X", then output the rewritten sentence, and665

then provide an explanation.666

C.3 Hypothesis instantiation667

Given two tagged sentences, the Sentence 1 is al-668

ready rewritten by replacing the type tags with669

actual entities. Explanation on how the tags are670

replaced is provided. Now rewrite Sentence 2, so671

that the tags that appears in both sentences with the672

same ’#’ tag number are replaced with the same673

entity.674

C.4 Prediction 675

Given a premise and a hypothesis, predict whether 676

the premise entails the hypothesis. Return only one 677

choice mark ’A’, ’B’, or ’C’ to answer the question, 678

and then explain your choice. 679

C.5 Determine factuality 680

Instruction: 681

Given a statement, determine whether the state- 682

ment is factual. Return only one choice mark ’A’, 683

’B’, or ’C’ to answer the question. 684

Prompt: 685

Statement: statement 686

Question: Is the statement factual? 687

Choices: 688

A. Yes, factual 689

B. No, not factual 690

C. Can not be determined 691
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Model Dataset

SNLI RTE MNLI

soft hard soft hard soft hard

Llama3-8B 0.03 0.12 0.01 0.01 0.23 0.23
GPT4o-mini 0 0.04 0 0 0.24 0.36
Gemini-2.0 0.01 0.28 0.54 0.54 0.52 0.46
Claude-3.5 0.10 0.44 0.53 0.61 0.41 0.57

Table 6
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