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Abstract

While many large language models (LLMs)
have demonstrated evolving reasoning ability,
they are reported to hold attestation bias in in-
ference tasks. Instead of focusing on entail-
ment signals between a premise and a hypoth-
esis, LLMs are easily misled by whether the
hypothesis is factual in the models’ knowledge.
However, previous study on attestation bias re-
quires the factuality of input sentences to be
determinable, which is often not true for in-
ference tasks. In this paper, we propose soft
attestation, a measurement compatible with all
kinds of NLI datasets. Then we implement
a sentence-level explicit inductive inference
pipeline. By reporting its performance against
attestation bias on three NLI datasets with four
mainstream LLMs, we demonstrate that the
attestation bias persists as a severe problem
on sentence-level inference, yet it can also be
exploited to improve LLMs’ inference perfor-
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1 Introduction

While many contemporary large language mod-
els (LLMs) claim to have strong reasoning ability,
recent studies have shown that they are subject
to severe attestation bias in fundamental natural
language inference tasks (McKenna et al., 2023).
When a model is asked to predict whether a premise
entails a hypothesis, instead of focusing on the in-
ference signal, an LLM is easily distracted by the
hypothesis’s out-of-context factuality. As a result,
LLMs usually perform worse when the entailment
label between premise and hypothesis disagrees
with the hypothesis’s attestation (factuality) label.

Previous work has proposed the idea of explicit
inductive inference as a solution. By doing in-
ference on alternative entailment inquiries created
by LLMs themselves, the attestation bias can be
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utilized to mitigate itself, and therefore improve
LLMs’ performance on triple-level inference tasks
(Liu et al., 2024). However, in most mainstream
natural language inference (NLI) challenges and
downstream applications, entailment inquiries are
often not presented as pairs of well-structured
triples. An inference model is usually expected
to pick up the entailment structure between sen-
tences on its own, which limits the scenario where
this pipeline can be used.

Furthermore, sentences in many NLI datasets
do not have a well-defined factuality label. Pre-
vious discussion on attestation bias restrict the in-
puts to be either factual or counter-factual by lo-
cating named entities, which excludes a lot of NLI
datasets and therefore limits its perspective. This
encourages us to generalize the process of detect-
ing attestation bias, and further examine on more
datasets if the attestation bias is still harmful to the
latest LLMs.

Based on these motivations, this paper first de-
fines the soft attestation measurement. Then we
probe the attestation bias that exist in latest LLMs,
and apply the idea of explicit inductive inference
to sentence-level datasets to build a pipeline as a
solution. The contributions in this paper can be
summarized as follows:

1. We discuss a flaw in previous studies of attes-
tation bias, and propose the definiton of soft attes-
tation as a better measurement that is compatible
with more general NLI datasets.

2. By applying this measurement, we expand
the investigation of attestation bias to more vari-
ous NLI datasets with several SOTA LLMs, and
show that the attestation bias still remains a severe
problem.

3. We implement a sentence-level inductive in-
ference pipeline. We demonstrate that this pipeline
can improve LLMs’ overall performance on NLI
task. Under certain circumstances, we show that it
can also mitigate the attestation bias by exploiting



the bias itself.

2 Related work

It is widely observed that LLMs accumulate a bias
towards facts that they memorized from a vast
amount of pre-training corpus (Roberts et al., 2020;
Carlini et al., 2022; Yan et al., 2022). In specific rea-
soning scenarios like solving math problems, this
bias causes LLMs to perform worse even when only
variable names are changed (Gulati et al., 2024).

For inference tasks, McKenna et al. (2023) de-
signed a list of experiments specifically focused
on the attestation bias, and showed that it causes
LLMs to expose a significant performance drop at
inference time. The following works have also con-
firmed that this bias keeps affecting the inference
performance of newer LLMs (Liu et al., 2024).

Other works proposed different ways to alleviate
the negative effect of the attestation bias by present-
ing models with counterfactual examples (Wang
etal., 2022; Zhou et al., 2023; Wang et al., 2023) or
using type labels to mask the entities (Zhou et al.,
2024).

For LLMs, Liu et al. (2024) proposed a novel
explicit inductive inference pipeline that can utilize
the attestation bias to mitigate itself. On triple-level
inference tasks, this work argues that if the premise
can be controlled to be attested, the attestation la-
bel of the hypothesis will then statistically align
with the entailment label between the premise and
the hypothesis, which makes the attestation bias
unharmful. Although this idea brings an intrigu-
ing possibility, whether it can be applied to more
complex circumstances remains an open question,
which we will try to answer in this paper.

3 Measuring attestation bias

The attestation bias is clearly defined by the re-
lation between the hypothesis’s attestation label
and the premise-hypothesis pair’s entailment label.
The attestation label itself, on the other hand, can
sometimes be hard to determine. The factuality la-
bel of a sentence describing real-world knowledge
like "Steve Jobs was born in San Francisco" can
be supported or denied by evidence or the model’s
knowledge. However, it is nearly impossible to de-
termine the factuality of sentences like "Tom likes
Mary" without context.

Previous work has carefully avoided them by
selecting only the datasets derived from corpora
where factuality can be determined, e.g. news arti-

cles. Yet, those general sentences appear in many
mainstream NLI datasets, which urge us to include
them into the discussion of attestation bias.

In this paper, we try to improve the measurement
of attestation. When assigning attestation (factu-
ality) labels to sentences, besides "attested" (A)
and "non-attested" (NA), we now allow another
label, "factuality can not be determined" (ND), to
be an option. In previous work, the ND label ei-
ther does not exist or only exists in prompting but
is then merged into the NA label in later analysis.
We note that definition of attestation as the hard
attestation.

In contrast, we propose soft attestation bias. We
argue that it is counter-intuitive to force the factual-
ity label to be binary. While the boundary between
A and ND can be vague, a model usually has strong
evidence to support an NA claim. Therefore, we
define the soft attestation by observing whether the
probability P(NA) is higher than both P(A) and
P(ND), but not necessarily P(A) + P(ND) which
is the case where the A category is merged with the
ND category.

Formally, we call a sentence soft attested when
P(NA) > P(A) A P(NA) > P(ND). More-
over, we define a pair of premise and hypothesis
soft attestation-consistent if their entailment label
agrees with the soft attestation label of the hypoth-
esis. Otherwise, we note them as soft attestation-
adversarial.

In all the following experiments, we always dis-
play results under both the hard and the soft attes-
tation measurement.

4 Sentence-Level Explicit Inductive
Inference

In this section, we explain the design of
the Sentence-Level Explicit Inductive Inference
(SLEII) pipeline. Similar to the triple-level explicit
inductive inference pipeline, the methodology of
the SLEII pipeline is to explicitly help an LLM
to expand a single entailment inquiry to a list of
alternatives, and inductively draw a more reliable
conclusion from all the similar cases. However,
unlike triples which each possess one object and
one subject, sentences include more complex se-
mantic components. It is therefore necessary to
design modules that can handle any kind of input
sentence.

In the SLEII pipeline, each pair of one premise
and one hypothesis sequentially goes through four



modules. To better present the function of each
module, we take the following pair of sentences as
an example to illustrate how this pipeline works:

Premise: John is eating chocolate after
meeting Mary.

Hypothesis: He received some chocolate
as a gift.

Now we introduce the four modules one by one
by process this sentence pair as an example.

4.1 Alignment

This module decides which part of the sentences
should be substituted to create alternative sentences.
By creating variations of the original sentence pair,
we aim to alter the meaning of the sentences within
a reasonable range while keeping the entailment
label between the sentences unchanged. To achieve
this, we only replace those entities that appear in
both sentences. This module locates these entities
and tags them with type labels.

Type labels are necessary here to prevent ambi-
guity problems. While (X kills Y) entails (X is a
cure of Y) when X is medicine and Y is a disease,
in most of the other cases their meaning is entirely
opposite. To avoid this kind of undesirable substi-
tution, the alignment module is asked to provide
a contextualized type label for each entity. Here,
different mentions of the same entity can have dif-
ferent type labels.

We encourage this module to do reference res-
olution between the premise and the hypothesis.
A reference counted as an entity may be tagged
with the type labels like "pronoun”. For instance,
after going through this module, the example will
become:

Premise: [entity#1: person] is eating [en-
tity#2: food] after meeting Mary.

Hypothesis: [entity#1: pronoun] re-
ceived some [entity#2: food] as a gift.

4.2 Premise variation

Once we obtain the tagged premise and hypothesis,
we independently instantiate the premise into alter-
native variations. We encourage the LLM to write
factual sentences if possible. These new premises
are instantiated with entities that are more familiar
to the LLM, and therefore these premises are more
likely to be attested.

For each premise, we create k different new al-
ternatives. Now our example looks like this:

Premise: Jane is eating an apple after
meeting Mary.

Premise,: Steve is eating popcorn after
meeting Mary.

Premise),: Tom is eating chips after meet-
ing Mary.

An explanation of the mapping relations between
tags and entities will be generated and passed to
the next module.

4.3 Hypothesis instantiation

This module then derives the alternative hypothe-
ses, based on the mapping information received
from the previous module on how entities in the
corresponding premise are replaced. Now we have
a list of k variations of new sentence pairs. The
example will look like this:

Premise): Jane is eating an apple after
meeting Mary.

Hypothesis]: She received some apples
as a gift.

Premise) : Tom is eating chips after meet-
ing Mary.

Hypothesis) : He received some chips as
a gift.
4.4 Prediction

Finally, based on each alternative pair of (Premisey,
Hypothesis),), this module queries the LLM to get
an alternative score sj. Note the score of the origi-
nal entry as s, the final weighted SLEII score S,
is calculated with a weight parameter w:

k
Sw=1-w)so+w) s )
=0

S Experimental setup

5.1 Dataset

To evaluate our pipeline on sentence-level inference
tasks, we test the soft attestation measurement and
the SLEII pipeline on three NLI datasets.



SNLI The Stanford Natural Language Inference
dataset (Bowman et al., 2015) is a classic NLI
dataset that provides three-way classification (en-
tailment/contradiction/neutral) entailment inquiries.
It contains 570k human-written sentence pairs with
crowd-sourced labels, and is widely used for NLI
evaluation. Results are reported on the test set.

RTE The Recognizing Textual Entailment
dataset from GLUE (Wang et al., 2019) integrate
the data from the RTE challenge series. The texts
are derived from real-world corpus like news and
scientific articles, which makes them a suitable
source of potential attestation bias. In this dataset,
the "neutral" and "contradiction" labels are merged
into the "not_entailment" label. Since the labels of
the test set are not accessible for RTE, we report
our results on the validation set.

MNLI The Multi-Genre Natural Language In-
ference dataset (Williams et al., 2018) is also a
widely used dataset formatted the same as SNLI
but with sentences from more diverse corpus like
transcribed speech, fiction, and government reports.
The test set’s golden labels are also not directly
available. We report results on the "dev_matched"
development set.

For all datasets, we select the best value of the
weight parameter w between O to 1 on the training
sets, and apply them to the test sets to report results.

5.2 Large language models

We aim to cover the latest state-of-the-art LLMs
from various sources. In this paper, our pipeline is
tested with four mainstream LLMs that are claimed
to have robust reasoning abilities.

GPT-40 mini (OpenAl, 2024) is a cost-efficient
variant of OpenAl’s GPT-4 architecture. It claims
to have powerful reasoning abilities over many nat-
ural language understanding benchmarks. The ver-
sion that we use is "gpt-40-mini-2024-07-18".

LLama 3 (Meta, 2024) is an open-source LLM
published by Meta. In our experiment, we choose
the "Llama3-8B-Instruct” version, a smaller ver-
sion with 8 billion parameters.

Gemini 2.0 Flash (Google, 2024) is an enhanced
comprehensive model published by Google. The
version we used in our experiments is "gemini-2.0-
flash".

Claude 3.5 Haiku (Anthropic, 2024) is an up-
dated version of Anthropic’s fastest LLM. The
model version that we use is "claude-3-5-haiku-
20241022" .

When we need to collect the probability of
choices, if the LLM provides token probability ac-
cess, we use the probability at the output choice
mark token (A, B, or C) to represent the choice
probability. When the token probabilities are not
accessible, we assign 1 to the returned choice and
0 to the others.

To guarantee replicable results, whenever we
query one of the LLMs, either the temperature pa-
rameter is set to 0, or the "do_sample" flag is turned
off.

5.3 Prompts

In each module, the content of the prompts may
affect the final results. We tried different prompt
variations in our pilot studies on the training sets,
and fixed the prompts that we use before doing final
experiments on the test sets.

Following Liu et al. (2024), we set the number
of variations k to 10 in our experiments. For the
alignment, premise variation, and hypothesis in-
stantiation module, we give few-shot examples to
guarantee expected results. For the prediction and
factuality determination module, we use zero-shot
prompts to avoid instability from prompt engineer-
ing. More description of the prompts used in our
experiments are included in appendix C.

6 Results and discussion

In this section, we first discuss the effect of apply-
ing soft attestation measurement. Then we show
how the SOTA LLMs perform against both the hard
and the soft attestation bias as a baseline. Follow-
ing that, we report the performance of the SLEII
pipeline and its impact on attestation bias.

6.1 Hard attestation vs. soft attestation

As discussed in section 3, we first compare the hard
and the soft attestation bias. To better understand
how each LLM classifies the datasets, we inspect
the data proportion when entries are classified ac-
cording to their hypotheses’ attestation label.

The results in table 1 show how each LLM
sets divergent standards for determining factual-
ity. When responding to the same prompt asking
about the factuality of a hypothesis, it can be seen
that the four LLMs we tested give very different
responses. This also demonstrates the distinction
between "factuality" and "attestation", as factuality
is an objective property, while attestation represents
the sentence’s faithfulness within an LLM.



Model Att. measure Dataset
SNLI RTE MNLI
A | NA|[ND| A | NA [ND| A | NA | ND
cons. ady. ‘ cons. ady. ‘ cons. ady.
Llama3-8B 83% | 16% | 0% | 91% | 8% | 0% | 56% | 42% | 1%
hard 42% 56% 59% 41% 55% | 42%
soft 42% 56% 59% 41% 56% | 42%
GPT4o-mini 5% | 90% | 4% | 17% | 58% | 25% | 39% | 42% | 18%
hard 56% 42% 43% 56% 4% | 53%
soft 56% 43% 44% 55% 43% | 56%
Gemini-2.0 20% | 1% | 80% | 65% | 22% | 12% | 31% | 13% | 54%
hard 8% 8% 49% 29% 27% | 12%
soft 36% 63% 58% 42% 47% | 51%
Claude-3.5 41% | 1% | 51% | 61% | 13% | 36% | 24% | 4% | 72%
hard 23% 32% 43% 25% 19% 9%
soft 36% 62% 56% 43% 51% | 47%

Table 1: Percentages of the data size when the hypothesis of an entry is determined by the LLM to be attested (A), not
attested (NA), or its factuality can not be determined (ND). cons. and adv. note the size of the attestation-consistent

subset and the attestation-adversarial subset.

While Llama3-8B barely assigns NA labels to
any hypothesis, Gemini-2.0 and Claude-3.5 con-
sider the majority of hypotheses in the SNLI and
MNLI datasets as "their factuality can not be de-
termined". Yet, the size ratios between cons. and
ady. are mostly close to fifty-fifty splits, indicating
that attestation-adversarial inference is an essential
sub-task in various NLI scenarios.

The size percentage of the attestation-consistent
(cons.) subsets and the attestation-adversarial
(adv.) subsets are relative to the entire datasets.
For Gemini-2.0 and Claude-3.5, we observed a
negative correlation between the number of NA
labels a model assigns to hypotheses and the total
data coverage under hard attestation setting, as the
ratios of cons. and adv. do not add up to one. This
happens because the logit scores of output tokens
in these two models are not available. By default,
we assign 0, 0, 1 to the probability of the A, NA,
ND Iabels when the model’s choice is ND. As a
result, this kind of entry falls in neither of cons.
nor adv. under hard attestation setting.

6.2 Attestation bias persists

In contrast to the non-consistent results in the pre-
vious section, we now display LLMs’ universal

vulnerability against attestation bias. Following
McKenna et al. (2023) and Liu et al. (2024), we
report LLMs’ inference performance in the normal-
ized area under the precision-recall curve in table 2.
The diff. columns mark the performance difference
between cons. and adv. settings.

Apart from the exception of GPT40-mini, the
other three models suffer from a severe perfor-
mance drop from cons. to adv. under both attes-
tation measures. While a slight performance drop
can be evidence of an LLM’s real inference ability,
the reversed attestation bias effect that GPT40-mini
exposes is beyond our expectation. Since the train-
ing data and training method of GPT40-mini are
not publicly available, we are not able to provide
a reasonable explanation. Nevertheless, we can
draw an overall conclusion that through years of
LLM evolution, attestation bias is still a significant
obstacle limiting many models from doing contex-
tualized logical inference.

It is also worth noting that the results yielded
by the hard and soft attestation measures are very
close under most settings. The results in section 6.1
show that the soft attestation measurement guaran-
tees full coverage of every data point, compared
to the ND hypotheses lost in the hard attestation



Model Att. measure Dataset
SNLI RTE MNLI

cons. adv. diff. cons. adv. diff. cons. adv. diff.
Llama3-8B  hard 969 236 -73.3 | 941 398 -543 | 83.1 300 -53.1
soft 96.6 238 -72.8 | 94.1 398 -543 | 832 298 -534
GPT40-mini  hard 659 97.6 +431.7 | 758 969 +21.1 | 77.7 88.8 +11.1
soft 90.1 93.0 +29 | 80.6 96.8 +162 | 822 86.5 +4.3
Gemini-2.0  hard 99.1 517 -474 | 8.6 670 -18.6 | 789 659 -13.0
soft 99.6 525 -47.1 | 86.1 65.1 -21.0 | 864 585 -27.9
Claude-3.5  hard 953 504 -449 | 953 400 -553 | 92.1 682 -23.9
soft 926 515 -41.1 | 88.6 426 -46.0 | 852 482 -37.0

Table 2: AUC,,,,- (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets under hard
and soft attestation measurement. The diff. columns mark the performance difference from cons. to adv.

measurement. On this basis, we advocate for future
works to use soft attestation measurement as well
as the hard one, as it suits a larger variety of NLI
datasets while fundamentally reflecting the same
property of the attestation bias.

6.3 Overall performance of SLEII pipeline

Now we discuss whether sentence-level attestation
bias can also be exploited by applying explicit in-
ductive inference. Table 3 shows the overall per-
formance of the SLEII pipeline. Although the
attestation-consistent and attestation-adversarial
subsets are not involved in this section, we still di-
vide the results under each setting into two columns
marked with hard and soft. Here, the hard columns
only take into account those entries where the hy-
potheses have A or NA label, omitting entries with
ND hypotheses as the hard attestation measurement
does. The soft columns consider every entry, no
matter the attestation label of a hypothesis is A,
NA, or ND.

The SLEIl,, rows mark the results when the
weight parameter w in equation 1 is set to the best
value selected over the same experiments on train-
ing sets. The pure SLEII scores are calculated by
setting w to 1, which means it does not look at the
original entailment inquiry at all. A table of all w
values is included in appendix B.

It can be observed that the pure SLEII pipeline
sometimes performs worse than baseline, while
SLEIIy,, reaches best performance under most com-
binations of LLM and dataset. After looking into
the alternative premises and hypotheses generated
by the models, we believe this is caused by the im-

proved robustness of inferring over multiple exam-
ples. While predicting inference only on generated
alternatives without looking at the original entry
is risky, when using the alternatives as backup ev-
idence, it can correct cases where the model gets
the original inference wrong, without harming ones
that are already answered correctly by the baseline.

6.4 Mitigate the attestation bias

Liu et al. (2024) proved with the triple-level explicit
inductive inference pipeline that, with careful de-
sign, the attestation bias of LLMs can be exploited
to mitigate itself. In this section, we present a simi-
lar analysis to discuss whether the same effect can
be found in sentence-level inference.

Table 4 and 5 show the AUC,,,,, results under
the hard and soft attestation measurement respec-
tively. Similar to table 2, the diff. columns report
the performance difference between cons. and adv.
subsets. The diff. results closest to zero are high-
lighted as an indicator of more robust inference
ability against the attestation bias.

For hard attestation measurement, the pure
SLEII pipeline always increases the diff. value
over baseline, contributing to the performance of
SLEIl,, in many cases. This effect indeed mit-
igates the negative effect of attestation bias for
Llama3-8B, Gemini-2.0, and Claude-3.5, although
it further escalates the situation for GPT40-mini
due to its reverse attestation bias.

In contrast, the SLEII pipeline’s performance
under soft attestation measurement is less ideal. In
a few cases, the pure SLEII pipeline presents an at-
testation bias even worse than the baseline, causing



Model Pipeline Dataset
SNLI RTE MNLI
hard  soft ‘ hard  soft ‘ hard  soft

Llama3-8B - 78.5 784 | 78.8 78.8 | 64.0 639
SLEII 515 515|662 662|573 573
SLEIl, | 80.0 79.5 | 79.8 79.8 | 642 642

96.0 939 | 90.7 91.5 | 85.1 845
SLEII 75.0 84.0 | 774 81.7 | 719 819
SLEIly, | 96.0 94.4 | 90.7 91.5 | 85.1 8&4.8

Gemini-2.0 - 779 844 | 77.0 758 | 743 743
SLEII 84.7 87.7|824 787|718 7115
SLEIl, | 85.0 88.8 | 84.1 80.6 | 78.1 78.0

Claude-3.5 - 787 79.4 | 7377 735 | 86.1 722
SLEII 80.1 80.7 | 76,5 732|793 773
SLEIl, | 83.7 84.4 | 79.8 76.1 | 86.6 78.6

GPT40-mini

Table 3: The overall pipeline performance under each setup (AUC,, 5, ). SLEIl},, marks the results using the best
weight w learned from the training set under the same setting.

Model Pipeline Dataset
SNLI RTE MNLI
cons. adv. diff. cons. adv. diff. cons. adv. diff.
Llama3-8B - 96.9 236 -733 | 941 398 -543 | 83.1 30.0 -53.1

SLEII 70.6 119 -58.7 | 785 31.8 -46.7 | 76.0 259 -50.1
SLEIl, | 955 292 -663 | 928 460 -46.8 | 82.0 31.2 -50.8

GPT40-mini - 659 97.6 +31.7| 758 969 +21.1 | 77.7 88.8 +11.1
SLEII 357 922 +56.5 | 541 933 4392 | 745 864 +11.9
SLEIl, | 71.8 97.5 +25.7 | 75.8 969 +21.1 | 784 88.9 +10.5

Gemini-2.0 - 99.1 517 -474 | 8.6 670 -186 | 789 659 -13.0
SLEII 989 541 -448 | 824 819 -05 | 80.8 71.2 -9.6
SLEIlL, | 99.0 546 -444 | 8.1 820 -3.1 | 80.8 717 -9.1

Claude-3.5 - 953 504 -449 | 953 400 -553 | 921 682 -239
SLEII 91.1 482 -429 | 898 465 -433 | 87.8 73.6 -14.2
SLEIl,, 945 50.1 -444 944 436 -50.8 934 724 -21.0

Table 4: AUC,,,,-, (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets under hard
attestation measurement. The diff. column marks the difference from cons. to adv. The diff. value closeset to zero
under each setting is highlighted.



Model Pipeline Dataset
SNLI RTE MNLI

cons. adv. diff. cons. adv. diff. cons. adv. diff.
Llama3-8B - 96.6 238 -72.8 | 941 398 -543 | 832 29.8 -534
SLEI 70.5 123 -582 | 785 319 -46.6 | 762 257 -50.5
SLEIl, | 954 296 -658 | 929 46.1 -46.8 | 82.1 31.0 -51.1
GPT40-mini - 90.1 93.0 +2.9 | 80.6 96.8 +16.2 | 822 86.5 +4.3
SLEI 438 88.1 +443 | 564 936 +372 | 699 73.0 +3.1
SLEIl, | 88.0 949 +69 | 80.6 973 +16.7 | 83.0 86.6 +3.6
Gemini-2.0 - 99.6 525 -47.1 | 86.1 651 -21.0 | 864 585 -279
SLEII 99.0 332 -658 | 840 69.7 -143 | 873 574 -29.9
SLEI, | 99.7 33.6 -66.1 | 86.1 705 -15.6 | 87.7 579 -29.8
Claude-3.5 - 926 515 -41.1 | 88.6 426 -46.0 | 85.2 482 -37.0
SLEI 88.7 46.8 -419 | 825 446 -379 | 91.1 470 -44.1
SLEIl, | 91.6 49.0 -426 | 87.1 451 -420 | 91.6 495 -42.1

Table 5: AUC,,o,-m, (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets under soft
attestation measurement. The diff. column marks the difference from cons. to adv. The diff. value closeset to zero

under each setting is highlighted.

the SLEII,, to perform poorly. This comparison
suggests that although the idea of exploiting the
attestation bias with explicit inductive reasoning is
innovative, it may not work effectively when a lot
of ND sentences are included.

This proposition can be further supported by
focusing on the performance difference between
datasets. Under both attestation measurements,
SLEII pipeline shows best improvement on RTE
and least on SNLI, which is correlative to the nature
of the three datasets. RTE is derived from news
corpora and therefore includes abundant factual
statements, SNLI consists of made-up sentences
with nearly no named entities, and MNLI is a mix-
ture between the former two. This further proved
that the more sentences in the datasets of which
factuality can be determined, the better the explicit
inductive inference pipeline works.

To summarize, we argue that mitigating the soft
attestation bias is an even more challenging task
that requires a model to handle sentences when
their factuality can not be determined.

7 Conclusion

In this paper, we first propose the concept of soft
attestation, and prove with experiments that it is
a better measurement than hard attestation, as it
allows more NLI datasets to be included in the
research of attestation bias. At the same time, it

captures the same attestation proxy as the hard
measurement does. We advocate the soft attestation
measurement to be used besides the hard one in
future studies of attestation bias.

Then we report the severe attestation bias ex-
isting in three out of four SOTA LLMs. Under
both attestation measurements, the LLMs strug-
gle to achieve average performance on attestation-
adversarial subsets. We conclude that the attesta-
tion bias is still a severe problem impairing SOTA
LLMs’ inference ability.

Finally, by showing results of the SLEII pipeline
under various experimental settings, we argue that
the explicit inductive inference method can be used
to mitigate attestation bias on sentence level. Still,
it is limited to scenarios where the factuality of
input sentences can be determined. For more gen-
eral inference tasks, in remains a difficult challenge
to resolve the attestation bias without relying on
factuality of sentences.

Limitations

For many modules in this paper, it is possible that
prompt engineering may substantially affect the
outcome. For instance, adding and editing few-shot
examples are common ways to control the model’s
response. Further prompt engineering work may
be required into these experiments.

Using the SLEII pipeline to infer on k extra vari-



ations results in k£ times of extra resource spent,
indicating that this method may not be suitable
for computationally intensive cases where a model
needs to process a large number of entries.
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A Computational cost

Our experiments on Llama3-8B-Instruct are ap-
plied on one A6000 GPU. For every 1,000 entries
(10 variations for each entry), the entire pipeline
runs on average for 6 hours.

Other experiments are executed with online
APIs. The typical time consumed for every 1,000
entries is 9 hours for GPT 40-mini, 6 hours for
Gemini 2.0 Flash, and 21 hours for Claude 3.5
Haiku.

B Learned overall weights for SLEII
pipeline

Table 6 reports the weight parameter w learned
from training sets for SLEII pipeline under each
setting.

C Prompts

We list all of the zero-shot prompts and instruc-
tions for prompting in our experiments. For few-
shot prompts that we used, please check the files
associated with this paper.

C.1 Alignment

Two sentences are given. Find the entities that
appears in both sentences, and replace them with
unique tags together with type labels. In this task,
pronouns are also considered as entities. Only
tagged those mentions that refer to an exact same
entities in both sentences. If two mentions of one
entity are semantically different in the two sen-
tences, they should not be tagged. If there is no
entity that appears in both sentences, leave the sen-
tence as it is. Always output the two tagged sen-
tences first, and then provide an explanation.

C.2 Premise variation

Rewrite the given tagged sentence into a factual sen-
tence by replacing the type tags with named entities.
For each rewritten version, start with "Rewritten
version X", then output the rewritten sentence, and
then provide an explanation.

C.3 Hypothesis instantiation

Given two tagged sentences, the Sentence 1 is al-
ready rewritten by replacing the type tags with
actual entities. Explanation on how the tags are
replaced is provided. Now rewrite Sentence 2, so
that the tags that appears in both sentences with the
same ’#’ tag number are replaced with the same
entity.
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C.4 Prediction

Given a premise and a hypothesis, predict whether
the premise entails the hypothesis. Return only one
choice mark *A’, ’B’, or ’C’ to answer the question,
and then explain your choice.

C.5 Determine factuality

Instruction:

Given a statement, determine whether the state-
ment is factual. Return only one choice mark *A’,
"B’, or ’C’ to answer the question.

Prompt:

Statement: statement

Question: Is the statement factual?

Choices:

A. Yes, factual

B. No, not factual

C. Can not be determined



Model Dataset
SNLI RTE MNLI
‘ soft  hard ‘ soft  hard ‘ soft  hard
Llama3-8B | 0.03 0.12 | 0.01 0.01 | 0.23 0.23
GPT40-mini | 0  0.04 0 0 0.24 0.36
Gemini-2.0 | 0.01 0.28 | 0.54 0.54 | 0.52 0.46
Claude-3.5 0.10 044 | 053 0.61 | 041 0.57

Table 6
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