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Abstract

Despite much work on advanced deep learning and generative modeling techniques for
tabular data generation and imputation, traditional methods have continued to win on
imputation benchmarks. We herein present UnmaskingTrees, a simple method for tabular
imputation (and generation) employing gradient-boosted decision trees which are used to
incrementally unmask individual features. This approach o�ers state-of-the-art performance
on imputation and on generation given training data with missingness; and it has competitive
performance on vanilla generation. To solve the conditional generation subproblem, we
propose a tabular probabilistic prediction method, BaltoBot, which fits a balanced tree
of boosted tree classifiers. Unlike older methods, it requires no parametric assumption on
the conditional distribution, accommodating features with multimodal distributions; unlike
newer di�usion methods, it o�ers fast sampling, closed-form density estimation, and flexible
handling of discrete variables. We finally consider our two approaches as meta-algorithms,
demonstrating in-context learning-based generative modeling with TabPFN.

1 Introduction

Given a tabular dataset, it is frequently desirable to impute any missing values within that dataset, and to
generate new synthetic examples. Due to the prevalence of missingness in tabular datsets, imputation has
been a long-standing task in statistics and machine learning (Little and Rubin, 2019). In particular, multiple
imputation methods, which produce multiple samples from the estimated conditional distribution of missing
features, have proved advantageous for downstream inferential and prediction tasks (Rubin, 1996). Multiple
imputation has also been used as a subroutine for counterfactual estimation (Kreindler and Lumsden, 2016;
Yoon et al., 2018b) and domain adaptation (Ragab et al., 2023; McCarter, 2024). Synthetic data generation
for tabular data has also seen recent interest, with applications in addressing data imbalance (Van Breugel
et al., 2021; Kim et al., 2022b) and in preserving privacy (Kotelnikov et al., 2023; Gulati and Roysdon, 2024).

Imputation and generation are closely related tasks. Multiple imputation can be seen as a form of conditional
generation, where the partitioning between output variables and input variables is not known in advance.
Generation is then a special case of imputation where the set of observed conditioning variables is empty.
Furthermore, due to the aforementioned prevalance of missingness in tabular data, generation methods also
frequently need to be able to handle missingness at training time.

On data generation, recent work (Jolicoeur-Martineau et al., 2024b) (ForestDi�usion) has shown state-of-the-
art (SotA) results on data generation using gradient-boosted trees (Chen and Guestrin, 2016) trained on
di�usion or flow-matching objectives, outperforming deep learning-based approaches, particularly on smaller
datasets. However, this approach tended to struggle on tabular imputation tasks, outperformed by MissForest
(Stekhoven and Bühlmann, 2012), an older multiple imputation approach based on random forests (Breiman,
2001).

We address this shortfall by training gradient-boosted trees to autoregressively unmask features in random
order, via permutation language modeling (Yang, 2019). This autoregressive approach, which we dub
UnmaskingTrees, naturally performs conditional generation (i.e. imputation): we simply fill in and condition
on observed values, autoregressively generating the remaining missing values. This contrasts with tabular
di�usion modeling, for which the RePaint inpainting algorithm (Lugmayr et al., 2022) is employed to
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mediocre e�ect (Jolicoeur-Martineau et al., 2024b). Because the predictor for a given feature must condition
on varying subsets of the other features, the ability of gradient-boosted trees to handle missing features
makes them a natural choice for autoregressive modeling. Hence, we maintain the tree-based approach of
Jolicoeur-Martineau et al. (2024b), while replacing their tree-based regressors with our novel tree-based
probabilistic predictors, which we turn to next.

While mean-estimating regression models are satisfactory for di�usion, for autoregression we must inject
noise, and hence must estimate the entire conditional distribution of each feature. We therefore revisit the
long-studied problem of (tabular) probabilistic prediction (Le et al., 2005; Meinshausen and Ridgeway, 2006).
Because the conditional distribution is possibly multi-modal, parametric approaches such as XGBoostLSS
(März, 2019), NGBoost (Duan et al., 2020), and PGBM (Sprangers et al., 2021) are poor choices for our
setting. Meanwhile, quantization of a continuous variable can model its multi-modality, but at the cost
of destroying either low-resolution or high-resolution information. A di�usion-based method, Tree�user
Beltran-Velez et al. (2024), was recently proposed to address these problems. However, as a di�usion method,
it su�ers from slow sampling and is unable to provide closed-form density estimates; furthermore, Tree�user
does not naturally model discrete outcomes. To address these problems, we propose BaltoBot, a balanced
tree of boosted trees. For each individual variable, we recursively divide its output space with the kernel
density integral (KDI) quantizer (McCarter, 2023) into a “meta-tree” of binary classifiers, which for us are
gradient-boosted trees. This allows us to e�ciently generate samples and estimate densities, because each
sample follows only one path from root to leaf of the meta-tree. Performing regression with hierarchical
classification proved successful in computer vision object bounding box prediction (Li et al., 2020), but has
been surprisingly underexplored in tabular ML and in generative modeling.

Our two methods are in fact meta-algorithms that, in combination, can create a generative model out
of any probabilistic binary classifier. To demonstrate this flexibility, we swap out XGBoost (Chen and
Guestrin, 2016) for TabPFN (Hollmann et al., 2022). TabPFN is a deep learning model pretrained to
perform in-context learning for tabular classification. While it has state-of-the-art classification benchmark
performance (McElfresh et al., 2024), it does not perform regression tasks, nor does it inherently perform
generative modeling. Constructing a generative model out of TabPFN (Hollmann et al., 2022) was first
proposed in TabPFGen (Ma et al., 2024), which approximates the posterior from TabPFN-provided likelihoods
by iteratively applying stochastic gradient Langevin dynamics (Welling and Teh, 2011). But unlike the
previous work, ours requires only a few TabPFN forward-passes for each sample rather than many iterative
data updates.

We showcase UnmaskingTrees on two tabular case studies, and on the benchmark of 27 tabular datasets
presented by Jolicoeur-Martineau et al. (2024b). Our approach o�ers state-of-the-art performance on
imputation and state-of-the-art performance on generation given training data with missingness; and it has
competitive performance on vanilla generation. We also demonstrate that BaltoBot is on its own a promising
method for probabilistic prediction, showing its advantages on synthetic case studies and on a heavy-tailed
sales forecasting benchmark.

Finally, we provide code with an easy-to-use sklearn-style API at https://github.com/
another-anonymous-account/unmasking-trees. In addition to being useful for practitioners, we
hope our work sparks study within the tabular ML community about whether di�usion or autoregression is
better for tabular data. Previous autoregressive tabular modeling methods, TabMT (Gulati and Roysdon,
2024) and DP-TBART (Castellon et al., 2023), use Transformer (Vaswani, 2017) models, making them
less applicable for the GPU-poor; they also lack publicly-available implementations. Our simple, e�cient
implementations of UnmaskingTrees and BaltoBot contribute to investigating this question.

2 Method

2.1 UnmaskingTrees for tabular joint distribution modeling

UnmaskingTrees combines the gradient-boosted trees of ForestDi�usion (Jolicoeur-Martineau et al., 2024b)
with the training objective of generalized autoregressive language modeling (Yang, 2019), inheriting the
benefits of both. Consider a dataset with N examples and D features. We learn the joint distribution over
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D-dimensional example x by maximizing the expected log-likelihood with respect to all possible permutations
of the factorization order,

log p(x) = logE‡œU(GD)

Ë DŸ

t=1

p
!
x‡(t)|x‡(<t)

"È
,

where ‡ is a permutation drawn uniformly from U(GD), the permutation group on D features; x‡(<t) denotes
all features that precede the t-th feature in the permuted sequence of features. If we were to have marginalized
over permutations, we would have obtained a masked language modeling procedure with a randomly-sampled
masking rate r ≥ U(0, 1) (Liao et al., 2020; Kitouni et al., 2023; 2024); such a procedure was previously shown
to have benefits in combination with tabular Transformer models (Gulati and Roysdon, 2024) (TabMT).

For each example, we generate new training samples by randomly sampling an order over the features, then
incrementally masking the features in that random order. Given duplication factor K, we repeat this process
K times with K di�erent random permutations, leading to a training dataset with KND samples. Given this,
we train XGBoost (Chen and Guestrin, 2016) models to predict each unmasked sample given the more-masked
example derived from it, one per feature. We model categorical features via softmax-based classification with
cross-entropy loss; our approach for continuous features is described in Section 2.2.

For both generation and imputation, we generate features of each sample in random order. For imputation
rather than generation tasks, we begin by filling in each sample with the observed values, and run inference
on the remaining unobserved features. Implementing this is very simple: it requires about 70 lines of Python
code for training, and about 20 lines for inference. The training algorithm for UnmaskingTrees is given in
Algorithm 1.

Algorithm 1 Unmasking Trees training
Require: dataset X œ RN◊D; duplication factor K.

1: {# Build self-supervised training set}
2: Set Xtrain = ÿ, Ytrain = ÿ.
3: for k = 1, . . . , K do
4: for n = 1, . . . , N do
5: Draw random permutation ‡ from U(GD)
6: Set x := Xn,: and y := Xn,:.
7: for d = 1, . . . , D do
8: Mask random element x‡(d) := [MASK].
9: Append Xtrain := Xtrain fi {x}, Ytrain := Ytrain fi {y}

10: end for
11: end for
12: end for
13: {# Train conditional generation models}
14: for d = 1, . . . , D do
15: if feature d in X is a continuous feature then
16: Run BaltoBot with ([Xtrain]:,j ”=d, [Ytrain]:,d).
17: else
18: Train XGBClassifier on ([Xtrain]:,j ”=d, [Ytrain]:,d).
19: end if
20: end for

2.2 BaltoBot for tabular probabilistic prediction

A key problem when autoregressively generating continuous data is that a regression model will attempt
to predict the mean of a conditional distribution, whereas we would like it to sample from the possibly-
multimodal conditional distribution. The simplest solution is to quantize continuous features into bins,
because classification over histograms is inherently multimodal; TabMT (Gulati and Roysdon, 2024) did this
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with 1d k-Means clustering (Lloyd, 1982). Yet this not only destroys information within bins due to rounding,
it also destroys information about the proximity among the ordered bins. Thus, it forces us to choose between
a small number of quantization bins, yielding low resolution; or to choose a large number of bins, risking
catastrophic errors due to overfitting and/or clumping of generated samples due to poor calibration. This not
only limits performance, but also necessitates hyperparameter tuning (Gulati and Roysdon, 2024).

Inspired by this, we propose a general-purpose solution to the tabular probabilistic prediction problem. For
each individual regression output variable, we build a height-H balanced tree of binary classifiers. Consider a
node with height h on this “meta-tree”, which is fit with (Xtrain œ Rn◊d

, ytrain œ Rn). Using kernel density
integral quantization (KDI) (McCarter, 2023), which adaptively interpolates between uniform quantization and
quantile quantization, we obtain binarized ỹtrain œ [0, 1]n. Thus, the input space to every node is partitioned
into two with the splitting point determined by KDI. We train an XGBoost classifier on (Xtrain, ỹtrain). If
h > 0, we then recursively pass {(X(i)

, y
(i)) œ (Xtrain, ytrain)|ỹ(i) = 0} to its left child, and analogously for

ỹ
(i) = 1 to its right child. At a leaf node, h = 0, if given a single unique training set output value in a bin,

we record this value. At inference time, given a query input X, we descend the tree by obtaining predicted
probabilities from each node’s XGBoost classifier, then sampling from these. Once we reach a leaf node, we
either sample uniformly from its appropriate bin, or we return the lone output value if a singleton bin.

At training and inference time, each XGBoost model within the meta-tree only sees examples that fall into
its corresponding region of the output space. Thus, for a meta-tree with height H (and thus 2H models),
each example is only passed as input to H di�erent models. While lower-level classifiers receive less data and
are poorer quality, the magnitude of such errors are smaller due to our hierarchical partitioning approach.
Furthermore, our singleton-bin technique allows us to adaptively generate discrete and even mixed-type
variables, if these discrete outcomes are high-frequency relative to the total size of the data and to the height
of the meta-tree. (Up to 2H discrete outcomes can be produced by BaltoBot.) Finally, eschewing di�usion
modeling enables us to perform closed-form conditional density estimation. The training and inference
algorithms for BaltoBot are given in Algorithms 2 and 3, respectively.

Algorithm 2 BaltoBot training
Require: dataset (X œ RN◊D

, y œ RN ); BaltoBot meta-tree height H;
1: if H = 0 or unique(y) = C for some constant C then
2: Save bounds := (min(y), max(y)).
3: else
4: Obtain split point p from KDI quantization on y.
5: Train XGBoost binary classifier on (X, 1{y Æ p}).
6: Train “left-child” BaltoBot on {(X(i)

, y(i)) œ (X, y)|y(i) Æ p}, with height H ≠ 1.
7: Train “right-child” BaltoBot on {(X(i)

, y(i)) œ (X, y)|y(i)
> p}, with height H ≠ 1.

8: end if

Algorithm 3 BaltoBot inference
Require: input query x œ RD; trained BaltoBot model.

1: if bounds is defined then
2: Sample uniformly from U(bounds).
3: Return.
4: else
5: Obtain prediction from XGBoost binary classifier.
6: if prediction = left-child then
7: Run inference on “left-child” BaltoBot with input query x.
8: else if prediction = right-child then
9: Run inference on “right-child” BaltoBot with input query x.

10: end if
11: end if
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2.3 Computational complexity

ForestDi�usion, with T di�usion steps and duplication factor K, constructs a training dataset of size TKN ◊D.
Given the same duplication factor K, UnmaskingTrees will construct a training dataset of size KND ◊ D.
Meanwhile, ForestDi�usion must train DT di�erent XGBoost regression models. We, on the other hand,
train D di�erent BaltoBot models, one per feature; with BaltoBot meta-tree height of H, we then train
a total of D2H XGBoost binary classifiers. However, classifiers lower in the BaltoBot meta-tree become
progressively faster to train. Indeed, each constructed training sample will be seen by DT di�erent XGBoost
regressors with ForestDi�usion, but only DH classifiers with our approach. Given that T ≥ 50 and H ≥ 4,
this yields a large speedup for our approach.

The KDI quantizer (McCarter, 2023) has negligible contribution to runtime, because it uses the polynomial-
exponential kernel density estimator (KDE) (Hofmeyr, 2019), which has linear complexity in sample size for
1d data, unlike the quadratic complexity of the Gaussian KDE.

At inference time, each ForestDi�usion generated sample passes through T steps of the di�usion reverse-
process, for a total of DT XGBoost predictions. For UnmaskingTrees with BaltoBot, each generated sample
instead requires only DH XGBoost predictions, because each sample follows only one path from root to leaf
of the meta-tree. The resulting speedup is especially impactful for the multiple imputation scenario, where
inference time dominates.

2.4 In-context learning-based generation with BaltoBoTabPFN and UnmaskingTabPFN

Within our flexible frameworks for joint and conditional modeling, TabPFN (Hollmann et al., 2022) can be
used as a base learner for probabilistic prediction and generative modeling. For UnmaskingTabPFN joint
modeling, a di�culty arises from TabPFN’s inability to handle inputs Xtrain with missing values (NaNs).
To address this, we developed NanTabPFN, a wrapper for TabPFN that supports missingness in both
training and test features. Based on each test query xtest, we select row indices R and column indices C
so that [Xtrain]R,C has no NaNs, using the following key idea. Consider a particular train example xtrain

and test query xtest, with visible (non-missing) features denoted by sets V(xtrain) and V(xtest). We can
maximize the number of utilized features, while also ensuring that TabPFN receives no NaNs, by restricting
the set of columns to those observed for the test query, C := V(xtest), then choosing training examples
R := {i|C ™ V(x(i)

train
)}. In practice, our procedure is more complicated, because the above choices may result

in either empty C or empty R. If R is empty, we incrementally set random features of xtest to missing until
we are able to obtain a non-empty training set. If C is empty, we introduce a new all-1s feature to both Xtrain

and xtest.

3 Results

We evaluate UnmaskingTrees on two case studies (Section 3.1) and on a tabular benchmark of 27 datasets
(Section 3.2). We then evaluate BaltoBot and BaltoBoTabPFN on tabular probabilistic prediction case
studies (Section 3.3) and on a sales forecasting dataset (Section 3.4). Results were obtained always using
our method’s default hyperparameters: BaltoBot tree height of 4, and duplication factor K = 50. These
hyperparameter values were tuned on the Two Moons and Iris case studies, then applied without further
tuning to the remaining experiments, because tuning is problematic for users with limited computing and/or
data resources. XGBoost hyperparameters were set to their defaults. Experiments were performed on a iMac
(21.5-inch, Late 2015) with 2.8GHz Intel Core i5 processor and 16GB memory.

Overall, UnmaskingTrees (using BaltoBot) has state-of-the-art performance on imputation and on generation
after training on incomplete data; and it has competitive performance on vanilla tabular generation scenarios.
We further demonstrate the benefits of BaltoBot and BaltoBoTabPFN when evaluated in their own right for
probabilistic prediction.
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Figure 1: Results on Two Moons case study. Original data is shown in green; generated data is shown in red;
imputed data is shown in blue.

Figure 2: Results on Iris dataset, with species, petal width, and petal length depicted. Original data and
synthetically-generated datasets are shown on the left columns. The imputed dataset is shown on the right
columns, with ◊ symbols highlighting the samples with any missingness that required imputation.
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3.1 Case studies on Two Moons and Iris datasets

Two Moons dataset We first compare our approach to previous leading methods on the synthetic Two
Moons dataset with 200 training samples and noise level N (0, 0.1). We compare UnmaskingTrees to MissForest
(Stekhoven and Bühlmann, 2012), MICE-Forest (Van Buuren et al., 1999; Wilson et al., 2022) (another
popular traditional multiple imputation method), and ForestDi�usion, with default hyperparameters for
all methods. For ForestDi�usion, we evaluate both the variance-preserving SDE di�usion (Forest-VP) and
flow-matching (Forest-Flow) versions on generation; on imputation, we evaluate Forest-VP with and without
RePaint, again using default RePaint hyperparameters; Forest-Flow does not support imputation.

We show results in Figure 1. On generation, Forest-VP appears to do best according to visual inspection,
while UnmaskingTrees and Forest-Flow perform similarly decently. UnmaskingTabPFN performs poorly, but
does capture the overall shape of the distribution. Next, we turn to imputation, wherein we request a single
imputation for a copy of the original training data with the second dimension (y-axis) values masked out.
ForestDi�usion struggles with and without RePaint, with substantial out-of-distribution imputations, and
MissForest and MICE-Forest share this problem to lesser degrees. Meanwhile, UnmaskingTrees generates
impeccable imputations.

Iris dataset In Figure 2, we show results for the Iris dataset (Fisher, 1936), plotting petal length, petal
width, and species. We compare both methods on generation, and to compare on imputation, we create
another version of the Iris dataset, with missingness completely at random: we randomly select samples with
50% chance to have any missingness, and on these samples, we mask the non-species feature values with 50%
chance. Visually, ForestDi�usion and UnmaskingTrees perform about equally well on generation. Meanwhile,
on imputation, UnmaskingTrees does a better job conditioning on species information than ForestDi�usion.
UnmaskingTrees also produces more diverse imputations than MissForest.

3.2 Benchmarking UnmaskingTrees on 27 tabular datasets

Imputation Here, we add UnmaskingTrees to the benchmark of 8 imputation methods on 27 public datasets,
evaluated according to 9 metrics, developed by Jolicoeur-Martineau et al. (2024b) for evaluating tabular
imputation and generation methods. This benchmark primarily contains smaller-sized (with 103 Æ N Æ 20,640
and 4 Æ D Æ 90) datasets, which our approach is especially geared towards. Namely, we compare our approach
against Forest-VP Jolicoeur-Martineau et al. (2024b), as well as k-NN imputation (Troyanskaya et al., 2001),
ICE (Buck, 1960), MICE-Forest (Van Buuren et al., 1999; Wilson et al., 2022), MissForest (Stekhoven and
Bühlmann, 2012), Softimpute (Hastie et al., 2015), minibatch Sinkhorn optimal transport (Muzellec et al.,
2020), and generative adversarial nets (GAIN) (Yoon et al., 2018a). 1 We follow Jolicoeur-Martineau et al.
(2024b) in computing the per-dataset rank of each method relative to other methods, then reporting the
average over 27 datasets. For all methods other than our own, we compute ranks by reusing the raw scores
provided in Jolicoeur-Martineau et al. (2024b)’s code repository.

Results for imputation are shown in Table 1. UnmaskingTrees wins first place on 3/9 metrics, including both
metrics based on downstream prediction tasks; and it generally outperforms ForestDi�usion, winning on
8/9 metrics. While MissForest wins first place on 4/9 metrics, UnmaskingTrees wins 5-4 head-to-head vs
MissForest; UnmaskingTrees has average averaged rank of 3.2 compared to 3.5 for MissForest. UnmaskingTrees
is also the only method with better than 5th place rank on all metrics.

We report further ablation experiments in Table 2, wherein we run UnmaskingTrees without BaltoBot, and
instead with vanilla quantization using k-Means clustering (Lloyd, 1982) and KDI quantization (McCarter,
2023). Results showing progressive improvements for the UnmaskingTrees framework, for KDI quantization
versus k-Means, and for the BaltoBot method used in our full proposed solution.

Generation with and without missingness We next repeat the experimental setup of Jolicoeur-
Martineau et al. (2024b) for evaluating tabular generation methods. For tabular generation, using the same 27
datasets, Jolicoeur-Martineau et al. (2024b) benchmark their methods (Forest-VP and Forest-Flow) against 6

1We do not add TabMT (Gulati and Roysdon, 2024) and TabPFGen (Ma et al., 2024) to the benchmark because no code was
provided. We do not add UnmaskingTabPFN because of out-of-memory errors on our machine.
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Table 1: Tabular data imputation (27 datasets, 3 experiments per dataset, 10 imputations per experiment)
with 20% missing. Shown are averaged rank over all datasets and experiments (standard-error). Overall best
is highlighted; better of Forest-VP versus ours is boldface blue.

MinMAE ¿ AvgMAE ¿ Wtrain ¿ Wtest ¿ MAD ¿ R
2 ¿ F1 ¿ Pbias ¿ Covrate ¿

KNN 5.5 (0.5) 6.3 (0.4) 4.9 (0.4) 5.0 (0.4) 8.4 (0) 6.5 (1) 5.7 (1.1) 6.2 (1) 5.4 (0.6)

ICE 6.8 (0.4) 4.7 (0.4) 7.0 (0.5) 7.2 (0.4) 1.6 (0.2) 6.2 (1) 7.0 (0.6) 5.7 (0.9) 5.3 (0.6)

MICE-Forest 3.9 (0.4) 2.5 (0.4) 2.9 (0.2) 3.0 (0.2) 3.6 (0.2) 3.7 (1.4) 3.2 (1) 5.5 (1.2) 4.3 (0.6)

MissForest 2.7 (0.5) 4.0 (0.4) 1.8 (0.3) 2.0 (0.3) 5.5 (0.2) 3.8 (1.4) 2.5 (0.5) 5.5 (1.5) 3.3 (0.5)

Softimpute 6.7 (0.4) 7.6 (0.4) 7.1 (0.5) 7.3 (0.5) 8.4 (0) 6.0 (0.9) 7.8 (0.4) 6.3 (0.9) 6.7 (0.4)

OT 5.9 (0.4) 6.1 (0.3) 6.0 (0.5) 6.0 (0.5) 3.7 (0.3) 6.2 (0.5) 6.8 (0.6) 5.5 (0.8) 4.8 (0.5)

GAIN 4.7 (0.4) 6.5 (0.3) 6.0 (0.3) 6.0 (0.2) 6.9 (0.1) 5.7 (0.8) 5.4 (0.8) 4.7 (1) 5.0 (0.6)

Forest-VP 5.3 (0.4) 4.0 (0.5) 5.8 (0.3) 5.1 (0.4) 3.2 (0.4) 4.5 (0.9) 4.6 (0.8) 3.3 (0.6) 5.5 (0.7)

UTrees 3.5 (0.5) 3.2 (0.5) 3.5 (0.4) 3.5 (0.5) 3.8 (0.2) 2.5 (0.6) 2.2 (0.6) 2.3 (0.9) 4.7 (0.6)

Table 2: Averaged ranks from ablation study of tabular data imputation (27 datasets, 3 experiments per
dataset, 10 imputations per experiment) with 20% missing. Shown are averaged rank over all datasets and
experiments (standard-error). Overall best is highlighted; better of Forest-VP versus ours is boldface blue.
See Table 1 for column meanings.

MinMAE ¿ AvgMAE ¿ Wtrain ¿ Wtest ¿ MAD ¿ R
2 ¿ F1 ¿ Pbias ¿ Covrate ¿

KNN 6.8 (0.6) 7.8 (0.6) 6.0 (0.4) 6.1 (0.5) 10.4 (0) 8.2 (1.3) 7.0 (1.5) 7.5 (1.5) 6.5 (0.8)

ICE 8.3 (0.5) 5.8 (0.5) 8.5 (0.6) 8.8 (0.5) 1.9 (0.4) 8.0 (1.1) 9.0 (0.6) 7.2 (1.1) 6.4 (0.8)

MICE-Forest 4.8 (0.6) 3.3 (0.6) 3.5 (0.3) 3.4 (0.3) 4.6 (0.4) 4.3 (1.8) 4.3 (1.3) 6.8 (1.6) 4.8 (0.7)

MissForest 3.3 (0.7) 5.0 (0.6) 2.2 (0.4) 2.3 (0.4) 7.2 (0.3) 4.7 (1.8) 3.3 (0.9) 6.8 (1.9) 3.8 (0.6)

Softimpute 8.3 (0.5) 9.3 (0.5) 8.8 (0.6) 8.9 (0.6) 10.4 (0) 7.5 (1.2) 9.8 (0.4) 8.3 (0.9) 7.9 (0.6)

OT 7.2 (0.5) 7.6 (0.4) 7.4 (0.6) 7.4 (0.6) 4.8 (0.4) 8.2 (0.5) 8.8 (0.6) 7.3 (0.7) 5.8 (0.7)

GAIN 5.8 (0.5) 8.3 (0.4) 7.2 (0.5) 7.5 (0.4) 8.9 (0.1) 7.5 (0.8) 7.4 (0.8) 6.7 (1) 6.1 (0.8)

Forest-VP 6.4 (0.5) 4.8 (0.6) 7.0 (0.4) 6.1 (0.5) 3.8 (0.5) 6.5 (0.9) 6.6 (0.8) 4.5 (0.8) 6.5 (0.8)

UTrees-kMeans 6.0 (0.6) 5.8 (0.5) 6.3 (0.6) 6.1 (0.6) 4.1 (0.3) 4.0 (0.7) 2.9 (0.6) 3.8 (1) 6.0 (0.7)

UTrees-KDI 5.1 (0.5) 5.1 (0.5) 5.4 (0.6) 5.6 (0.5) 4.8 (0.3) 4.5 (0.9) 4.0 (0.5) 3.5 (1.2) 6.4 (0.7)

UTrees 3.8 (0.5) 3.2 (0.5) 3.8 (0.4) 3.8 (0.5) 5.0 (0.3) 2.7 (0.6) 2.9 (0.8) 3.5 (0.8) 5.8 (0.7)

other methods, namely, Gaussian Copula (Joe, 2014), tabular variational autoencoding (TVAE) (Xu et al.,
2019), two conditional generative adversarial net methods (CTGAN (Xu et al., 2019) and CTAB-GAN+
(Zhao et al., 2021)), and two other tabular di�usion methods (STaSy (Kim et al., 2022a) and TabDDPM
(Kotelnikov et al., 2023)). These are evaluated with 9 metrics, in the vanilla fully-observed setting and in the
synthetically-induced 20% missing completely at random (MCAR) setting.

Results for partially-missing data are shown in Table 3. UnmaskingTrees is first place on 5/9 metrics;
head-to-head, UnmaskingTrees beats TabDDPM 5-4, and beats Forest-Flow 6-3. Results for fully-observed
data are shown in Table 4. UnmaskingTrees loses head-to-head to Forest-Flow, Forest-VP, and TabDDPM,
but wins against the other methods.

Table 3: Tabular data generation with incomplete data (27 datasets, 3 experiments per dataset, 20% missing
values), MissForest is used to impute missing data except in Forest-VP, Forest-Flow, and UnmaskingTrees;
averaged rank over all datasets and experiments (standard-error). Overall best is highlighted; better of
Forest-VP versus Forest-Flow versus ours is boldface blue.

Wtrain ¿ Wtest ¿ covtrain ¿ covtest ¿ R
2
fake ¿ F 1fake ¿ F 1disc ¿ Pbias ¿ covrate ¿

GaussianCopula 7.0 (0.3) 7.1 (0.2) 7.2 (0.3) 7.1 (0.3) 6.3 (0.4) 6.6 (0.3) 6.7 (0.4) 5.5 (1.0) 7.7 (0.6)

TVAE 5.2 (0.3) 4.9 (0.3) 5.7 (0.3) 5.8 (0.2) 6.0 (1.0) 5.8 (0.5) 5.8 (0.4) 8.0 (0.4) 6.2 (1.0)

CTGAN 8.3 (0.2) 8.4 (0.2) 8.4 (0.2) 8.3 (0.2) 8.3 (0.3) 8.4 (0.2) 6.5 (0.2) 4.8 (1.2) 7.1 (0.7)

CTABGAN 6.7 (0.4) 6.5 (0.4) 7.1 (0.3) 6.8 (0.3) 7.3 (0.6) 7.1 (0.4) 6.6 (0.3) 7.5 (1.0) 6.1 (0.6)

Stasy 5.9 (0.2) 6.1 (0.3) 5.3 (0.2) 5.1 (0.3) 5.8 (0.9) 4.4 (0.4) 5.3 (0.4) 3.7 (0.4) 4.6 (1.1)

TabDDPM 3.0 (0.7) 3.4 (0.7) 2.3 (0.5) 2.9 (0.6) 1.7 (0.3) 3.3 (0.6) 3.9 (0.6) 3.8 (1.2) 2.0 (0.5)

Forest-VP 3.7 (0.2) 3.2 (0.3) 3.9 (0.2) 3.8 (0.3) 3.2 (0.3) 2.3 (0.3) 4.2 (0.4) 4.2 (0.8) 4.5 (1.1)

Forest-Flow 3.0 (0.3) 2.6 (0.3) 2.6 (0.3) 2.7 (0.2) 3.0 (0.7) 3.7 (0.3) 5.0 (0.5) 3.8 (0.9) 3.2 (0.8)

UTrees 2.1 (0.2) 2.8 (0.3) 2.5 (0.2) 2.5 (0.2) 3.3 (0.8) 3.5 (0.5) 1.0 (0.0) 3.7 (0.9) 3.7 (1.0)

Raw scores, per-dataset results, and runtimes are provided in the Appendix.
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Table 4: Tabular data generation with complete data (27 datasets, 3 experiments per dataset); averaged rank
over all datasets and experiments (standard-error). Overall best is highlighted; better of Forest-VP versus
Forest-Flow versus ours is boldface blue.

Wtrain ¿ Wtest ¿ covtrain ¿ covtest ¿ R
2
fake ¿ F 1fake ¿ F 1disc ¿ Pbias ¿ Covrate ¿

GaussianCopula 7.1 (0.3) 7.2 (0.3) 7.3 (0.3) 7.4 (0.3) 6.2 (0.2) 6.4 (0.3) 7.0 (0.4) 6.5 (1.1) 7.5 (0.7)

TVAE 5.3 (0.2) 5.1 (0.2) 5.7 (0.2) 5.7 (0.2) 6.5 (0.7) 6.0 (0.5) 5.5 (0.3) 7.3 (0.6) 6.7 (0.6)

CTGAN 8.4 (0.1) 8.4 (0.2) 8.3 (0.2) 8.1 (0.2) 8.5 (0.2) 8.3 (0.2) 6.7 (0.3) 5.3 (1.1) 7.2 (0.5)

CTAB-GAN+ 6.8 (0.3) 6.7 (0.3) 7.2 (0.3) 7.1 (0.3) 6.8 (0.4) 6.9 (0.4) 6.9 (0.3) 7.7 (0.8) 6.7 (0.8)

STaSy 6.1 (0.2) 6.3 (0.2) 5.3 (0.2) 5.4 (0.2) 6.0 (1.2) 5.1 (0.3) 6.1 (0.3) 4.5 (0.8) 4.2 (1.1)

TabDDPM 3.0 (0.7) 3.9 (0.6) 2.8 (0.5) 3.4 (0.5) 1.2 (0.2) 3.8 (0.6) 3.2 (0.4) 3.0 (0.9) 1.4 (0.2)

Forest-VP 3.2 (0.2) 2.8 (0.2) 3.6 (0.3) 3.3 (0.3) 2.8 (0.3) 2.2 (0.3) 4.3 (0.4) 3.2 (0.9) 3.5 (0.8)

Forest-Flow 1.9 (0.2) 1.5 (0.2) 1.7 (0.2) 1.8 (0.2) 2.3 (0.4) 2.4 (0.3) 4.3 (0.4) 2.8 (0.5) 2.7 (0.4)

UTrees 3.1 (0.1) 3.1 (0.2) 3.1 (0.2) 2.8 (0.2) 4.7 (0.3) 3.9 (0.3) 1.0 (0.0) 4.7 (0.7) 5.2 (0.9)

Figure 3: Comparison of Tree�user and our approach on wave synthetic data with 5000 samples. (A)
Probabilistic predictions for Tree�user (top), BaltoBot (center), and BaltoBoTabPFN (bottom). (B) Runtime
comparison for the di�erent methods. (C) Estimated pdf from our methods at X = 2, depicted as the vertical
dotted line in (A).

3.3 Evaluating BaltoBot on synthetic probabilistic prediction case studies

Wave dataset We compare our approach with Tree�user (Beltran-Velez et al., 2024) on the “wave”
synthetic dataset from Tree�user (Beltran-Velez et al., 2024), which as shown in Figure 3 is nonlinear,
multimodal, and heteroskedastic. On the raw probabilistic predictions in Figure 3(A), we see that BaltoBot
and BaltoBoTabPFN are (by visual inspection) able to model the conditional distribution as well as Tree�user.
Yet this case study illustrates the two advantages of BaltoBot. First, in Figure 3(B) we show the runtime
of the di�erent methods: training, sampling, and total. To train on 5000 samples, Tree�user took 1.1s and
BaltoBot took 2.6s. But to generate 5000 samples, Tree�user took 5.0s while BaltoBot took 0.72s, for ≥ 7◊
speedup. Second, BaltoBot o�ers the ability to estimate a closed-form probability density function (pdf)
of the predictive distribution as shown in Figure 3(C); in contrast, Tree�user can only sample from the
predictive distribution.

Poisson-distributed count data We generate 500 samples of Xi ≥ Unif[0, 3], Yi ≥ Poisson(⁄ =
Ô

Xi),
and show probabilistic predictions for Y in Figure 4. Whereas Tree�user generates a spurious negative-valued
outlier and many non-integer Y samples, our approach automatically models the count-type distribution of
the data.
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Figure 4: Comparison of Tree�user, BaltoBot, and BaltoBoTabPFN on Poisson-distributed data. The input
variable is on the x-axis, while probabilistic predictions are shown on the y-axis.

3.4 Sales forecasting with uncertainty

We employ the M5 sales forecasting Kaggle dataset (Makridakis and Howard, 2020) to compare BaltoBot
with other probabilistic prediction methods. The dataset has five years of sales data from ten Walmart
stores, and the task requires predicting the (heavy-tailed) number of units sold given a product’s attributes
and previous sales. We use the exact same data preparation used for Tree�user (Beltran-Velez et al., 2024)
experiments, which yields 1k products, 120k training samples, and 10k test samples. As in the Tree�user
evaluation (Beltran-Velez et al., 2024), we evaluate probabilistic predictions with the continuous ranked
probability score (CRPS), and evaluate the conditional mean predictions with the mean absolute error (MAE)
and root mean-squared error (RMSE).

For full comparability, we follow the Tree�user evaluation setup (Beltran-Velez et al., 2024) and evaluate
CRPS by generating 100 samples from our estimators’ p(y|X) for each X in the testset; and for MAE and
RMSE, we estimate the conditional means E[y|X] using 50 samples. For comparability, for this (and only
this) dataset, we also evaluate BaltoBot with hyperparameter tuning, using the same setup used for all other
methods (10 folds, each with 80%-20% train-validation split, and 25 Bayesian optimization iterations). 2 We
also compare Tree�user, BaltoBot, and BaltoBoTabPFN when run without hyperparameter tuning.

We report results in Table 5. In addition to ours’ and Tree�user, we report results for Deep Ensembles
(Lakshminarayanan et al., 2017), IBUG (Brophy and Lowd, 2022), NGBoost Poisson (Duan et al., 2020),
and Quantile Regression Forests (Meinshausen and Ridgeway, 2006). For methods other than our own,
we report the metrics provided in Table 2 of (Beltran-Velez et al., 2024). Overall, our proposed methods
outperform previous methods at combining excellent performance on both conditional distribution prediction
and conditional mean prediction. Tree�user and BaltoBot (both with tuning) tie for first-place according to
CRPS, yet BaltoBot outperforms Tree�user on RMSE and MAE. The winners on conditional mean metrics
(RMSE and MAE) are Deep Ensembles and BaltoBoTabPFN, yet BaltoBoTabPFN (no tuning) strongly
outperforms Deep Ensembles on CRPS.

4 Limitations

While UnmaskingTrees is overall state-of-the-art on the tabular imputation benchmark, MissForest still
outperformed on the metrics based on Wasserstein distance to train and test dataset distributions. And
Forest-Flow still won on vanilla (i.e. no missingness) generation benchmark. It remains to be seen whether a
single method can be developed which wins on all scenarios and metrics.

2We optimize over the following XGBoost hyperparameter spaces: learning_rate œ log-uniform(0.05, 0.5), max_leaves
œ {0, 25, 50}, and subsample œ log-uniform(0.3, 1).
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Table 5: Sales forecasting evaluation on M5 dataset. We highlight the best 2 methods for each metric. The
best of Tree�user versus ours (with tuning) is boldface blue; the best of Tree�user versus ours (without
tuning) is boldface brown.

Method CRPS ◊10≠1(¿) RMSE ◊100(¿) MAE ◊100(¿)

Deep Ensembles 7.05 2.03 0.97
IBUG 8.90 2.12 1.00
NGBoost Poisson 6.86 2.33 0.99
Quantile Regression Forests 7.11 2.88 1.01
Tree�user 6.44 2.09 0.99
BaltoBot 6.44 2.07 0.98
Tree�user (no tuning) 6.62 2.09 0.99
BaltoBot (no tuning) 6.69 2.19 0.98
BaltoBoTabPFN (no tuning) 6.66 2.06 0.97

While BaltoBoTabPFN performed well on probabilistic prediction tasks, when used as a subroutine in
UnmaskingTabPFN, it is very slow and experienced out-of-memory errors on the (Jolicoeur-Martineau et al.,
2024b) benchmark on our machine. Further improvements either to it, or to how it is employed, are needed
to make it practical for all but the smallest datasets.

With regards to scalability, the runtime complexity of UnmaskingTrees is cubic in terms of feature dimension-
ality D. This compares to quadratic complexity for ForestDi�usion; this would also be the complexity for
single-order autoregressive modeling, which would support only generation rather than arbitrary imputation.
This means that our approach is primarily applicable for small-sized tabular datasets, or for scenarios where
inference time is more important than training time. As future work, this gap could potentially be reduced
through optimized, rather than random, selection of orderings at training time (Shih et al., 2022).

5 Discussion and Related Work

Di�usion modeling has recently gained popularity in tabular ML (Zheng and Charoenphakdee, 2022; Jolicoeur-
Martineau et al., 2024b; Beltran-Velez et al., 2024; Kotelnikov et al., 2023). Our proposed approach is an
instance of the autoregressive discrete di�usion framework (Hoogeboom et al., 2021), instances of which have
shown success in a variety of tasks (Yang, 2019; Austin et al., 2021; Kitouni et al., 2024; Jolicoeur-Martineau
et al., 2024a). Yet our results call into question whether di�usion is beneficial for tabular conditional
generation, or whether autoregression is su�cient for our setting. It has been observed that di�usion is
autoregression in frequency space, progressing from low frequencies to high frequencies, which makes it a
good match for image data with its power law spectra (Rissanen et al., 2022; Dieleman, 2024; Stewart, 2024).
In tabular datasets without this phenomena, we would expect di�usion modeling to be less advantageous.

Why is ForestDi�usion better at vanilla generative modeling, while UnmaskingTrees is better on missing data
problems? We o�er two speculative explanations. First, imputation is a conditional modeling scenario, except
that you do not know the partition of the features into input features and output features a priori. One could
address imputation by learning all possible 2D conditional distributions, but this is impractical for large D,
so one would prefer to learn a single joint distribution. Both autoregression and di�usion are ways of learning
a joint distribution; because autoregression does so by learning conditional distributions, it is more suited to
the conditional modeling imputation setting. Second, for missing data, di�usion has a train-inference gap:
during training, observed features begin the reverse process from N (0, 1); during inference for imputation,
observed features begin the reverse process at their actual values. On the other hand, the advantages of
di�usion modeling give it superiority when these problems can be avoided.

Despite their strong outperformance on other modalities, deep learning approaches have laboured against
gradient-boosted decision trees on tabular data (Shwartz-Ziv and Armon, 2022; Jolicoeur-Martineau et al.,
2024b). Previous work (Breejen et al., 2024) suggests that tabular data requires an inductive prior that favors
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sharpness rather than smoothness, showing that TabPFN (Hollmann et al., 2022) (the leading deep learning
tabular classification method) can be further improved with synthetic data generated from random forests.
We anticipate that our XGBoost classifiers may be swapped out for a future variant of TabPFN that learns
sharper boundaries and handles missingness.

We also note that MissForest (Stekhoven and Bühlmann, 2012), hailing from statistical literature on multiple
imputation, has yet to be completely dethroned. Future progress in tabular conditional generation may
require going back to the well of this traditional literature. As one example, we observe that MissForest
exploits feature missingness fraction information, but we are not aware of any “machine learning” approaches
which do so. The statistical literature has also previously explored the value of conditional modeling for joint
modeling (Gelman and Raghunathan, 2001; Liu et al., 2014; Kropko et al., 2014). Indeed, our UnmaskingTrees
approach, and all autoregressive modeling, is presaged by the full-mechanism bootstrap (Efron, 1994).

Finally, we observe where randomness enters into our generation process compared to previous work. Flow-
matching (Liu et al., 2022; Albergo and Vanden-Eijnden, 2022; Lipman et al., 2022) (used in Forest-Flow)
injects randomness solely at the beginning of the reverse process via Gaussian sampling, whereas di�usion
modeling (Sohl-Dickstein et al., 2015; Song and Ermon, 2019) (used in Forest-VP) injects randomness both
at the beginning and during the reverse process. In contrast, because our method starts with a fully-masked
sample, it injects randomness gradually during the generation process. First, we randomly generate the order
over features for unmasking. Second, we do not “greedily decode” to the most likely leaf in the meta-tree,
but instead sample according to predicted probabilities. Third, for continuous features, having sampled a
particular meta-tree leaf bin, we sample from within the bin, treating it as a uniform distribution.

6 Conclusions

We proposed tree-based autoregressive modeling of tabular data, especially for data with missingness. For
the subproblem of conditional probabilistic prediction of individual variables, we presented a hierarchical
partitioning method with benefits over vanilla quantization and di�usion-based probabilistic prediction. We
then considered each of these as meta-algorithms that enable pure in-context learning-based modeling using
TabPFN as base classifier. We showed SotA results for imputation and for generation given data with
missingness, and on probabilistic prediction for sales forecasting.
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