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Abstract

Goal-oriented dialogue systems face a trade-001
off between fluent language generation and002
task-specific control. While supervised learn-003
ing with large language models is capable of004
producing realistic text, how to steer such re-005
sponses towards completing a specific task006
without sacrificing language quality remains007
an open question. In this work, we formulate008
goal-oriented dialogue as a partially observed009
Markov decision process, interpreting the lan-010
guage model as a representation of both the dy-011
namics and the policy. This view allows us to012
extend techniques from learning-based control,013
such as task relabeling, to derive a simple and014
effective method to finetune language models015
in a goal-aware way, leading to significantly im-016
proved task performance. We additionally intro-017
duce a number of training strategies that serve018
to better focus the model on the task at hand.019
We evaluate our method, Context-Aware Lan-020
guage Models (CALM), on a practical flight-021
booking task using AirDialogue. Empirically,022
CALM outperforms state-of-the-art method by023
7% in terms of task success, matching human-024
level task performance on this dataset.025

1 Introduction026

Dialogue systems have typically approached the027

problem of generating realistic dialogue from the028

perspective of supervised learning (Dušek and Ju-029

rcicek, 2016; Eric and Manning, 2017; Mei et al.,030

2017; Chen et al., 2019; Wu et al., 2019a; Hosseini-031

Asl et al., 2020; Peng et al., 2020; Adiwardana032

et al., 2020). However, dialogue can also be viewed033

as a sequential decision making process which is034

well-suited to planning and reinforcement learning035

(RL) algorithms. A challenge with the classical RL036

approach to dialogue is the requirement for active037

interaction with humans (Gašić et al., 2011). Train-038

ing such a system with active human-in-the-loop039

interaction quickly becomes expensive and cum-040

bersome, making it desirable to develop techniques041

for goal-directed training of dialogue systems that042

can effectively leverage offline data. 043

While many dialogue generation techniques 044

based on RL and learned control have been pro- 045

posed (Eckert et al., 1997; Levin et al., 2000; 046

Chung, 2004; Georgila et al., 2006; Schatzmann 047

et al., 2007; Heeman, 2009; Georgila and Traum, 048

2011), most such systems take a pipelined ap- 049

proach, where an abstract representation of states 050

and actions is designed by hand and then combined 051

with RL to train a “dialogue management” system, 052

rather than generating dialogue end-to-end. These 053

pipelined approaches rely on a manually designed 054

decomposition of the dialogue task, which may be 055

domain-specific and, more importantly, may not 056

enjoy all of the benefits of tightly integrating low- 057

level text generation with the overall goals of the 058

task. In this work, we instead ask: how can we 059

scalably and effectively introduce the mechanisms 060

of goal-directed decision making into end-to-end 061

language models, to directly steer language gen- 062

eration toward completing specific dialogue tasks 063

rather than simply generating probable responses? 064

To this end, rather than utilizing a pipelined ap- 065

proach, we aim to directly finetune language mod- 066

els in a task-aware manner such that they can maxi- 067

mize a given utility function. We observe that large 068

language models can already be formulated within 069

a Markov decision processes (MDP) as capturing 070

both the dynamics and policy for a decision-making 071

task, where dialogue history serves as state, and 072

the agent’s utterances serve as actions. We could 073

utilize this observation by finetuning the models 074

directly with online RL, but the need for human-in- 075

the-loop training makes this difficult. Offline RL 076

methods (Levine et al., 2020; Fujimoto et al., 2019; 077

Wu et al., 2019b; Wang et al., 2020b) provide an 078

alternative approach, but typically require value 079

function estimation, which is not straightforward 080

to perform with a language model. Instead, we 081

propose a conditional imitation learning strategy 082

coupled with a novel task relabeling approach that 083
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can finetune language models from offline data,084

such that the model still represents the joint dis-085

tribution over dialogues, but tilts this distribution086

toward dialogues with a high reward. This amounts087

to a task-aware finetuning strategy that integrates088

task information into the model.089

The main contribution of our work is CALM090

(Context-Aware Language Modeling), a framework091

for end-to-end goal-directed dialogue generation.092

CALM unifies the traditional language modeling093

objective with task-specific supervision, where a094

language model is interpreted as a joint represen-095

tation of dynamics and policies in an MDP, and096

the finetuning process utilizes a conditional imita-097

tion learning objective with a novel task relabeling098

strategy that teaches the model how to generate099

high-utility dialogues. Because CALM interprets100

the language model as both a dynamics model and a101

policy, it can be used as either a model-free method,102

where the dynamics are discarded and the policy103

component is used to greedily generate responses,104

or as a model-based method, where the dynamics105

component can be used to plan at test-time. We106

empirically evaluate CALM on AirDialogue (Wei107

et al., 2018), the largest dataset for goal-oriented108

dialogue based-on a flight-booking task. CALM109

improves the task success by 10% over the pre-110

vious state-of-the-art method (Chen et al., 2020)111

following the evaluation protocol proposed by Wei112

et al. (2018), achieving the first-ever human-level113

performance on this dataset.114

2 Related Work115

Our goal is to enable end-to-end training of goal-116

directed dialogue agents. In these settings, an117

agent aims to complete a particular task with its ut-118

terances (Smith and Hipp, 1994). Goal-directed119

agents have been explored in contexts such as120

personal assistants (McTear, 2002; Budzianowski121

et al., 2018; Williams et al., 2014), recommenda-122

tion systems (Liu et al., 2010; Kang et al., 2019),123

education (Yuan et al., 2008), and negotiation (He124

et al., 2018; Lewis et al., 2017). While there125

are multiple approaches to constructing dialogue126

agents, in this work we frame the problem of gen-127

erating dialogue as a sequential decision making128

problem within a (partially observed) Markov De-129

cision Process (MDP) (Singh et al., 1999; Young130

et al., 2013). Prior works that utilize such an MDP131

formulation typically aim to train a dialogue man-132

agement system (Singh et al., 2002), in which the133

agent reasons about higher-level abstractions of the134

state of the conversation, and language generation 135

is performed using a downstream procedure. Dia- 136

logue management systems have been trained using 137

techniques such as online reinforcement learning 138

via policy gradients (Gašić et al., 2011; He et al., 139

2018), off-policy reinforcement learning (Pietquin 140

et al., 2011; Yu et al., 2016) or actor-critic meth- 141

ods (Su et al., 2017). Our method differs from 142

dialogue management systems in that CALM is an 143

end-to-end system optimized for successful task 144

completion, and performs both high-level decision 145

making and language generation. 146

Recent advancements in language models, such 147

as recurrent neural networks (Sundermeyer et al., 148

2012; Asri et al., 2016; Su et al., 2016; Zhao et al., 149

2019; Wang et al., 2020a; Zhang et al., 2020) and 150

attention-based architectures (Vaswani et al., 2017; 151

Liu et al., 2019; Devlin et al., 2018; Brown et al., 152

2020), have spurred increasing interest in such end- 153

to-end dialogue systems (Hosseini-Asl et al., 2020; 154

Peng et al., 2020; Adiwardana et al., 2020). Model- 155

based approaches, in which a learned agent is sub- 156

stituted for a human, allow learning to be done 157

entirely within simulation without human interven- 158

tion (Li et al., 2016; He et al., 2018; Kang et al., 159

2019; Lewis et al., 2017; Liu et al., 2018). In con- 160

trast to these approaches, CALM augments the 161

traditional language modeling objective with task- 162

specific rewards in order to finetune a model that is 163

more aware of task goals, which significantly im- 164

proves performance over a naïve language model 165

without the need for simulating human responses 166

in an interactive training loop. Jaques et al. (2019) 167

recently proposed a model-free, offline approach to 168

undirected dialogue, or dialogue without a specific 169

task goal. Our method differs in that we aim to 170

solve goal-oriented dialogue which allows us to 171

optimize task-specific objectives, and that we take 172

a model-based RL approach which enables us to 173

leverage fine-tuned language models. 174

3 Preliminaries 175

In this section, we review our notation and prob- 176

lem formulation for casting dialogue within a se- 177

quential decision making framework. 178

POMDP formulation. We formulate dialogue 179

generation as a partially observable Markov de- 180

cision process (POMDP) (Kaelbling et al., 1998), 181

with a state that consists of known and unknown 182

context information about the task. Let ch ∈ C(h) 183

denote the hidden context for the task, and let 184

co ∈ C(o) denote the observed context. For in- 185
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booking a flight ticket from 
AUS to EWR?

Sure, flight 1001 meets 
your needs, shall I book it?
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Figure 1: A visual outline of CALM. We apply Task Relabeling to our static offline dataset, by swapping out the
task context – in this case a flight table – such that the attached dialogue becomes an optimal example of task
completion. When fine-tuning on this relabeled dataset, we then apply a Task Specific Auxilary Loss on top of the
standard language modeling objective; this helps the model learn to use the task context. Once trained, CALM can
consistently solve complex tasks in dialogue.

stance, in a flight booking task, a table of available186

flights might correspond to co, while the particular187

flight that the human wants to book, which is un-188

known to the agent, corresponds to ch. Note that189

the reward, which requires booking the right flight,190

depends on both hidden and observed contexts. We191

can define such an environment as a POMDP M =192

(S,A,O, T ,Z, µ0,R, γ). We denote a conversa-193

tion τ as τ := {a0, e0, ..., aT }, where T denotes194

the number of turns in a conversation and at and et195

represent utterances (strings of tokens) from the dia-196

logue agent (at) and the human (et) at the t-th turn,197

respectively. We additionally use τ<t to denote198

conversation history up to the t-th turn. We can rep-199

resent the underlying POMDP state st ∈ S as the200

concatenation of both of the contexts and the pre-201

vious conversation history st := {ch, co, τ<t} =202

{ch, co, a0, e0, ..., at−1, et−1}. However, we only203

observe the last two elements of the state tuple,204

such that our observation ot ∈ O at the t-th conver-205

sation turn is ot = {co, τ<t}. An action at ∈ A is206

the agent’s response to the current state st. Given207

our definition of the state, the full conversation in208

a dialogue can be conveniently represented by the209

last observation and action, {oT , aT }. An agent210

π : O → P(A) maps observations to sets of proba-211

bility measures over the action space P(·). A tran-212

sition function T (·|st, at), represents a distribution213

over the human’s utterances, returning st+1 as the214

state at turn t + 1. We only consider the sparse215

reward setting with rT = R(sT , aT ) ∈ {0, 1} de-216

noting task completion, and rt = 0, ∀t < T . Our217

final reward is therefore dependent on both the con-218

text and the dialogue: R(sT , aT ) = R(τ, ch, co),219

where the context {co, ch} is randomly sampled for220

each dialogue from some initial distribution µ0.221

Goal-oriented dialogue. Goal-oriented dialogue222

systems aim to maximize the expected reward of223

the above POMDP 224

E{co,ch}∼µ0,π,T [
∑T

t=0 γ
tR(st, at)], (1) 225

where {ch, co} is sampled from distribution µ0. On- 226

policy RL algorithms optimize this objective via 227

environment interaction, which is represented by a 228

real human. However, because human-in-the-loop 229

training is expensive, we pursue an offline learning 230

approach where we are given a fixed dataset and 231

there is no further interaction with the human in 232

the learning process. This dataset is composed of 233

n trajectories with Doff = {c(i)h , c
(i)
o , τ (i), r(i)}ni=1 234

with each τ (i) = {a(i)0 , e
(i)
0 , , ..., a

(i)
T } and its corre- 235

sponding final reward for task completion r(i). Our 236

goal is to learn the policy π(a|o) which improves 237

the dialog agent’s ability in achieving the highest 238

task reward defined in Equation 1. 239

Language models. While conventionally a lan- 240

guage model is seen simply as a sequence model 241

over tokens of the form
∏T

t=1 p(xt+1|x1:t), when 242

the sequence x1:T corresponds to a dialogue tra- 243

jectory τ , we can also interpret a language model 244

as learning the distribution over τ . This distribu- 245

tion can be factored into the product of the policy 246

π(at|τ<t) and the dynamics T (τ<t+1|τ<t, at), and 247

so we can say that a language model also repre- 248

sents the policy and the dynamics. Therefore, the 249

maximum likelihood objective for training or fine- 250

tuning a language model on a dialogue dataset Doff 251

consisting of dialogue trajectories τ can be written 252

as 253

LLM (θ) =max
θ

E
τ∼Doff

T∑
t=1

(
log πθ(at|τ<t) 254

+ log Tθ(τ<t+1|τ<t, at)

)
, (2) 255

where πθ(at|ot) represents a policy that generates 256

new dialogue based on the observed context and 257

dialogue history, and Tθ(τ<t+1|τ<t, at) represents 258
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the observed dynamics characterizing human re-259

sponses, and θ denotes parameters in π and T .260

Note that τ<t consists only of the conversation his-261

tory, and does not contain any task-specific context.262

A naïve approach to train dialogue systems is to263

jointly parameterize both π and T as one language264

model, and optimize Equation 2 on pre-collected265

conversations Doff . This method corresponds to266

behavioral cloning (BC) (Pomerleau, 1989).267

Context conditioning. While an agent trained us-268

ing Equation 2 can learn policies and dynamics269

that imitate human conversations, this objective270

does not incorporate the task goal, and may not271

produce a policy that is more performant than the272

dataset Doff . While it is possible to input co into273

the language model to maximize the conditional274

probability of P (τ |co) using a conditional version275

of the language modeling objective,276

LCTX(θ) =max
θ

E
(τ,co)∼Doff

T∑
t=1

(
log πθ(at|τ<t, co)277

+ log Tθ(ot+1|τ<t, at, co)
)
, (3)278

contexts with particular task structures (e.g., a set279

of entries in a table) may not be simply processed280

as a sequence similarly to τ . Additionally, the lan-281

guage model is not pretrained to read structured282

context, and oftentimes the recent dialogue history283

is much more predictive of the next utterance than284

the task context is. As a result, language models285

can ignore the task context and only learn P (τ) de-286

spite being conditioned on co. Our approach builds287

on this conditional modeling approach, but makes288

a number of improvements that allow it to be more289

aware of the context information, which attains290

significantly better results in our experiments.291

4 Context-Aware Language Modeling292

In this section, we present our method for goal-293

oriented dialogue systems, Context-Aware Lan-294

guage Modeling (CALM). CALM interprets a lan-295

guage model as a combination of a policy and a296

dynamics model in the POMDP formulation of a297

dialogue task, as described in Section 3. Under298

this interpretation, naïve supervised finetuning on299

the dialogue dataset can be viewed as behavioral300

cloning (BC) (Pomerleau, 1989). However, BC301

only imitates data and does not necessarily produce302

a good policy in terms of completing tasks. We303

propose to improve the policy by utilizing a task re-304

labeling strategy (described in Section 4.1), analo-305

gous to prior task relabeling approaches (Kaelbling,306

1993; Andrychowicz et al., 2017; Pong et al., 2018;307

Savinov et al., 2018; Ghosh et al., 2019; Lynch 308

et al., 2020; Eysenbach et al., 2020). This relabel- 309

ing procedure augments the data with examples 310

of near-optimal utterances, making the language 311

model more task-aware. However, we find several 312

shortcomings with this approach alone and propose 313

the following improvements. First, an expressive 314

language model is liable to ignore the task context, 315

which we address by proposing an auxiliary loss 316

(Section 4.2) that forces the model to utilize this 317

information. Second, learning from structured task 318

information is difficult and can result in models 319

that fail to capture complex task structure, so we 320

propose a task pre-training procedure to improve 321

the learnability (Section 4.3). Finally, to further 322

improve performance we use a model-based plan- 323

ning procedure (Section 4.4) on top of the proposed 324

method that samples multiple dialogues in parallel 325

and selects the most promising candidates. 326

4.1 Dialogue Task Relabeling 327

LCTX(θ) defines a context-conditional maxi- 328

mum likelihood objective for training an expert 329

imitation policy in conjunction with a dynamics 330

model. However, simply imitating all the dialogue 331

data does not necessarily produce the best possible 332

policy. We would like to learn a policy that pro- 333

duces dialogue that is more optimal, in the sense of 334

better maximizing the task utility, than the average 335

dialogue in the dataset. Task relabeling enables 336

us to learn from optimal trajectories without sim- 337

ply filtering the dataset for high-reward trajectories, 338

which would unnecessarily discard potentially in- 339

formative data. In the case of dialogue, we can 340

perform task relabeling by considering the con- 341

text {co, ch} as defining the task. While a given 342

dialogue may be unsuccessful for the context for 343

which it was collected, it could be considered suc- 344

cessful under a different context. In this case, we 345

can simply swap out {co, ch} to create optimal task 346

examples from the many sub-optimal examples pro- 347

vided by Doff . Since our reward R(ch, co, τ) is a 348

function of the dialogue and context, we can mod- 349

ify the reward for a given dialogue just by changing 350

the given observed context co. Using this observa- 351

tion, we can relabel unsuccessful dialogues with 352

successful ones, and even for already successful 353

dialogues there may be multiple co corresponding 354

to task success, allowing us to augment the number 355

of successful (ch, co, τ) tuples. 356

Formally, since our POMDP includes a prior 357

distribution over contexts {ch, co} ∼ µ0, there ex- 358
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ists a posterior q(co|τ, ch) over observed contexts359

that correspond to optimal task completion under a360

given τ . We can then re-label τ to be optimal under361

its context by sampling a new co from q(co|τ, ch).362

In practice, this sampling is performed by rejection363

sampling from either µ0 or some P (co|ch); the lat-364

ter, lower entropy distribution, can be preferred if365

there is a low probability of sampling valid, high-366

reward contexts under µ0. Now, given any τ from367

an offline dataset of dialogues, we can learn from368

the full distribution of contexts corresponding to369

optimal task completion under this dialogue.370

In order for this relabeling procedure not to371

bias our policy towards behavior that is overly-372

optimistic about the user’s responses, it is neces-373

sary that the distribution of these responses in our374

dataset does not depend on the portion of the con-375

text that is relabeled. For example, relabeling the376

table of available flights for a flight booking task377

should generally be reasonable, because the user378

is usually unaware of the flight table. On the other379

hand, relabeling the desired flight would not make380

sense, since the user’s utterances are strongly de-381

pend on this. To provide another example, in a bar-382

gaining task (Lewis et al., 2017), the agent might383

fail to obtain the desired item and instead get an384

item of lesser value. But relabeling with a con-385

text that assigns a higher value to the item received386

would not lead to a reasonable example, since the387

agent mainly received this item as a result of the388

user’s responses rather than as a result of their own389

bargaining skill.390

Methods based on similar principles have pre-391

viously been proposed in the deep RL community392

for simple parametric tasks, such as goal-reaching393

or linearly-parameterized reward functions (Kael-394

bling, 1993; Andrychowicz et al., 2017; Eysenbach395

et al., 2020). However, the dialogue task relabel-396

ing that we employ is particularly effective in our397

setting, since there may be exponentially many398

contexts that are optimal for a given dialogue (e.g.,399

many different flight tables for a flight booking400

task), in contrast to the simpler task parameteriza-401

tions used in prior work, where for example only402

one goal might be optimal for a given trajectory403

(the one that is reached). Additionally, the struc-404

ture of our specific task allows us to sample from405

the true posterior q(co|τ, ch), by using the rejection406

sampling procedure described above, rather than407

using approximations as in prior work (Eysenbach408

et al., 2020). As a result, this technique not only409

allows us to turn sub-optimal task data into opti- 410

mal data, but it also allows us to greatly increase 411

the number of optimal task examples from which 412

we can learn, which we will show leads to a large 413

performance improvement. 414

4.2 Task-Specific Auxiliary Loss 415

Goal-oriented dialogue generation can be viewed 416

as learning the conditional distribution P (τ |co), 417

where τ represents the generated dialogue given a 418

specific context co. However when trained naïvely, 419

language models are liable to ignore this condition- 420

ing context, instead focusing purely on the previous 421

utterances in the dialogue. In this case, the model 422

is effectively only learning P (τ) despite having 423

both the capacity and the context to learn the lower- 424

entropy conditional distribution P (τ |co). 425

While dialogue tasks are by definition carried 426

out through natural language, there is often an ab- 427

stract high-level action αh ∈ A that essentially 428

determines the success of the task. In the case of 429

the information retrieval task that we consider in 430

this paper, these high-level actions correspond to 431

deciding which database entity to retrieve for the 432

user (e.g. suggesting a flight to the customer that 433

meets all of their needs). While these high-level ac- 434

tions are theoretically learn-able from correlations 435

between the dialogue and the given context, in gen- 436

eral, we find that learning these correlations corre- 437

sponds to a relatively small decrease in dialogue 438

entropy under the model. As a result, the model 439

is less incentivized to learn these correlations rele- 440

vant to the task than the form of the dialogue. To 441

address this issue, we incorporate an auxiliary ob- 442

jective into our training, which trains the model 443

directly to predict the abstract high-level actions 444

taken in the present dialogue. This objective effec- 445

tively up-weights gradients relevant for learning the 446

high-level actions, which further helps the model 447

to utilize the context to solve the high-level task 448

through dialogue. 449

For a given dialogue-context pair (τ, {ch, co}) 450

and high-level action, αh, our auxiliary objective 451

is then simply to maximize the likelihood of the 452

high-level actions taken in the dialogue: 453

C(ϕ) = max
ϕ

E
(ch,co,τ,αh)∼Doff

logPϕ(αh|τ, co).

(4) 454

Just like the language modeling objective, this clas- 455

sification objective is averaged over each token in 456

the dialogue sequence. Our full training objective 457
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then becomes:458

max
θ,ϕ

LCTX(θ) + β ∗ C(ϕ), (5)459

where β is a hyper-parameter and LCTX(θ) is the460

standard context-conditional language modeling461

objective as defined in Section 3.462

4.3 Task Pretraining463

As observed by Liu et al. (2021), for some struc-464

tured tasks, such as table question answering, pre-465

training on a simplified version of the given task466

with a synthetic context can help the model to focus467

learning on the “skills” that are most relevant to468

utilize the task context, which leads to improved469

downstream task performance. We instantiate this470

idea in our method by pre-training our model on a471

simplified (dialogue-free) version of the task. In-472

stead of simultaneously modeling all the details of473

the raw dialogue, as is required to learn P (τ |co),474

the key observation here is that in our case the475

task reward only depends on the tuple {ch, co, aT }.476

This enables us to effectively learn to execute the477

task by only modeling P (ch, aT |co), without any478

dialogue at all. By pre-training our model to first479

learn this simplified distribution, we effectively fo-480

cus on learning the necessary skills for completing481

the task. It is expected that the skills learned dur-482

ing this pre-training phase should also generalize483

and transfer when we later perform training on the484

real dialogue. The particular instantiation of this485

principle in the case of AirDialogue is described in486

Section A.5.487

4.4 Model-Based Dialogue Rollouts488

While the methodology discussed so far can pro-489

duce effective policies, language models also rep-490

resent task dynamics, as discussed in Section 3.491

We can leverage this fact to further improve the492

performance of our fine-tuned models by perform-493

ing model-based planning at test-time, using both494

the policy and dynamics components in concert495

to further maximize task reward. A full dialogue496

trajectory can then be formed by concatenating this497

sampled future trajectory τ≥t with the current state498

of the dialogue τ<t i.e., τ = {τ<t, τ≥t}. We per-499

form the model-based planning by sampling k such500

future trajectories from the final fine-tuned model,501

and ranking them according to an estimated reward502

function R̂(τ, co) (see Appendix A.7). Then, we503

improve upon the policy π from which we took504

the samples by taking the action (i.e., the next ut-505

terance) at which receives the highest estimated506

reward among the sampled trajectories. This roll-507

out sampling procedure is identical to the one used 508

by Lewis et al. (2017). 509

5 CALM for AirDialogue 510

In this section, we instantiate our proposed 511

method, CALM, for the AirDialogue flight booking 512

task (Wei et al., 2018). We first give an overview 513

of the task, and then describe how to do relabeling 514

and context conditioning on this specific task. 515

5.1 AirDialogue Dataset 516

Dataset overview. The AirDialogue dataset (Wei 517

et al., 2018) is a recently published large-scale 518

airline reservation dataset based on the aforemen- 519

tioned task. The dataset includes 402,038 conver- 520

sations. The dataset involves three distinct tasks: 521

booking, canceling, and changing flights. We de- 522

scribe the booking task in detail below. 523

Flight booking task. The (human) customer is 524

given a set of 12 trip requirements, and the flight 525

agent (bot) is provided with a table of 30 flights. 526

The goal of the flight agent is to book a flight from 527

the table for the customer which meets all their 528

requirements, or to correctly inform them that no 529

such flight is available. To determine task success, 530

the flight agent must predict an explicit action at the 531

end of the dialogue indicating the flight that was 532

booked or inform no flight available. See Figure 6 533

for an example conversation from the dataset. 534

5.2 Processing Tables 535

The AirDialogue booking tasks require effi- 536

ciently querying a flight table containing flight in- 537

formation (e.g., departing location, ticket price) 538

given to the agent prior to the conversation. In 539

order to successfully complete the booking task, 540

the agent needs to be able to filter, select, and inte- 541

grate information from the flight table based on the 542

customer’s preferences inferred from the dialogue. 543

Instead of treating the tables as unstructured se- 544

quences (Wei et al., 2018; Jiang et al., 2021) or as 545

SQL databases (Chen et al., 2020), CALM models 546

tables as an observable context consisting of a set 547

co = {f1, f2, f3, ..., fN} of table rows. These rows 548

are then input to our model as a set of embeddings 549

(see appendix A.4 and A.9 for more details). 550

5.3 Relabeling AirDialogue with CALM 551

While the AirDialogue dataset only includes one 552

flight table for each dialogue, there are potentially 553

many flight tables compatible with each dialogue 554

as each flight can appear in many tables. We hence 555

implement our relabeling procedure as described in 556

Section 4.1 as follows. We perform rejection sam- 557
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pling on the observable context (i.e., the table of558

flights) co ∼ q(co|τ, ch), sampling until we obtain559

a new context (ch, co, τ), which gives maximum560

reward possible R(τ, ch, co) = maxcoR(τ, ch, co).561

The prior distributions p(co) and p(co|ch), from562

which the tables in the AirDialogue dataset were563

sampled, are provided with the dataset. By rejec-564

tion sampling from p(co|ch), we can effectively565

sample from the posterior q(co|τ, ch) within a cer-566

tain computational budget. In this setting, co de-567

notes tables and there are exponentially many ta-568

bles which correspond to a task success under a569

given dialogue. Therefore, with our relabeling ap-570

proach, we increase the number of near-optimal571

task examples exponentially, which makes it much572

easier for the language model to learn to query the573

flight table.574

Our relabeling is approximately valid according575

to the condition specified in Section 4.1. While576

the customer does not have access to the flight ta-577

ble and therefore is not directly affected by our578

relabeling, there are still some minor edge-cases579

in which over-optimism about the dynamics could580

be learned by our policy. If for example, in the581

dataset the customer were to occasionally reject the582

first flight that we suggest, our policy may learn to583

assign a small probability to the action of initially584

offering the wrong flight, relying on them subse-585

quently rejecting it such that we can later recover586

and offer the correct one. However, in practice we587

observe that these cases are rare in AirDialogue.588

5.4 Table Selection as Auxiliary Loss589

The primary high-level action involved in Air-590

Dialogue is the decision of which flight table entry,591

if any, to recommend to the user. We therefore im-592

plement our auxiliary objective as a classification593

head on top of the language model, trained to pre-594

dict the flight table entry that meets the customer’s595

requests. Specifically, our set of high-level actions596

A is the set of flight table rows {f1, f2, f3, ..., fN}597

plus an additional item f0, corresponding to the598

case in which no flights meet the customer’s re-599

quirements. If f∗ is the flight recommended in the600

dialogue, then our auxiliary objective is:601

C(ϕ) = max
ϕ

E
(co,τ)∼Doff

logPϕ(f
∗|τ, co). (6)602

6 Experiments603

In this section, we empirically evaluate the per-604

formance of CALM on AirDialogue (Wei et al.,605

2018). We first show that CALM outperforms the606

success rate
CALM (greedy) 0.88 ± 2e-3
LM(GPT2-small) (greedy) 0.38 ± 5e-3
AirConcierge (greedy) 0.81 ± 7e-3
CALM (planning) 0.90 ± 2e-3
LM(GPT2-small) (planning) 0.74 ± 7e-3
Human 0.88

Table 1: Comparison of our method and baselines across
all tasks, as well as just the booking task on AirDialogue.
Using greedy decoding, our method matches human
performance, greatly improving over baselines. Adding
roll-outs (32 samples) further improves task completion.

SOTA on the AirDialogue dataset by around 7% 607

in the standard simulated evaluation protocol pro- 608

posed by Chen et al. (2020), which prior work 609

denotes as “self-play" (see Appendix A.6), and this 610

matches human-level performance as reported by 611

Wei et al. (2018). Beyond this, we also perform a 612

comprehensive set of ablation studies to validate 613

the necessity of each component of CALM. 614

Experiment Setup and Baselines. We compare 615

CALM on AirDialogue with two baselines. The 616

first is AirConcierge, the previous SOTA on Air- 617

Dialogue, which explicitly parses and executes 618

SQL queries from the dialogue (Chen et al., 2020). 619

The other is a standard language model (denoted 620

as LM(GPT2-small)) trained on a dataset filtered 621

for successful task examples, without any of our 622

context-aware language modeling techniques (see 623

Appendix Section A.1 for more details on dataset 624

filtering). CALM uses the fine-tuned GPT2-small 625

model (Radford et al., 2018) as the backbone of 626

the policy and dynamics model. After learning the 627

dynamics model, both CALM and the LM(GPT2- 628

small) can employ two different planning strate- 629

gies: (1) a simple greedy decoding of the next utter- 630

ance (equivalent to beam search with beam-width 631

one) and (2) the rollout planning as described in 632

Section 4.4. For AirConcierge, we only evaluate 633

greedy decoding, as this method cannot be easily 634

adapted for producing full rollouts as rollout plan- 635

ning requires a method for predicting the reward of 636

a given dialogue. We describe our specific reward 637

predictor for AirDialogue in Appendix Section A.7. 638

Results for Task Success. In terms of task success, 639

CALM outperforms the prior SOTA (AirConcierge) 640

by approximately 7%, achieving 88% task success 641

when using greedy decoding from the language 642

model. Compared with AirConcierge, where all 643

reasoning about the task context is done outside of 644

the language model, CALM does all of the filtering, 645

selecting, and responding with relevant flight table 646
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Agent: Hello, how may I assist you?
Customer: I would like to fly on 08/30 at 08/01, 
can you help me with that?
Agent: Sure, I will help you.
Customer: Thank you.
Agent: May I know your airport codes?
Customer: My airport codes are from MCO to 
BOS.
Agent: Do you have any specifications?
Customer: Yes, I need a connection in between.
Agent: There is a connecting flight with price of 
100 and 1010 flight number. Shall I proceed?
Customer: Ok, proceed with the booking.
Agent: Your seat has been reserved with 
Hawaiian airline.
Customer: Thanks for your help.    
Agent: Thank you for choosing us.
Submit: book , Melissa Clark , 1010

Agent: Hello, how can I help you?                                                                                                                                                                           
Customer: My name is Betty Lee. I want to book 
a flight ticket to attend my cousin's wedding.                                                                                                               
Agent: Sure, please provide me your travelling 
details?                                                                                                                                                     
Customer: I will start my journey from Las Vegas, 
NV - LAS to Oakland, CA - OAK.                                                                                                                            
Agent: OK, please provide me your travelling 
dates?                                                                                                                                                         
Customer: The departure is 04/19 and arrival is 
04/21.                                                                                                                                                      
Agent: OK, please wait for few minutes.                                                                                                                                                                     
Customer: Sure.                                                                                                                                                                                             
Agent: Thank you for waiting, we found a flight 
with your requirement. Flight details are as 
follows, flight number: 1008 , airline: Spirit, price: 
200 with one connection. Shall I proceed with 
booking?  
Customer: OK,  you can proceed with the 
booking.                                                                                                                                                            
Agent: OK, your ticket has been confirmed.                                                                                                                                                                  
Customer: OK, Thank you.                                                                                                                                                                                    
Agent: Thank you, for choosing us.                                                                                                                                                                          
Submit: book , Betty Lee , 1008

Agent: Hello. How can I assist you?                                                                                                                                                                         
Customer: I am Ryan Wilson. I need to meet my 
cousin at Charlotte, can you please help me to 
book a flight ticket from LAX to CLT?                                                                          
Agent: Sure, can I know the travel dates please?                                                                                                                                                            
Customer: Sure, my journey dates are May 29 
and May 31.                                                                                                                                                     
Agent: Do you have any requirements?                                                                                                                                                                        
Customer: My departing time is evening.                                                                                                                                                                     
Agent: Sorry, there are no flights available as per 
your request.                                                                                                                                           
Customer: No problem, thank you for your 
information.                                                                                                                                                       
Agent: Thank you for approaching us.                                                                                                                                                                        
Submit: no_flight , Ryan Wilson , 0  

Book Book No Flight Found

Agent: Hello. How can I assist you?                                                                                                                                                                         
Customer: I am planning to visit Disney world at 
Washington, IAD, can you help me with booking?                                                                                                             
Agent: Sure, I will help you. Can I have your 
name please?                                                                                                                                                  
Customer: My name is Angela Perez.                                                                                                                                                                          
Agent: May I know your source airport code?                                                                                                                                                                 
Customer: My source airport code is JFK.                                                                                                                                                                    
Agent: Please share your planned journey dates.                                                                                                                                                             
Customer: My journey dates are June 08 and 
June 10.                                                                                                                                                         
Agent: Let me know your connection limit.                                                                                                                                                                   
Customer: I need a break in between my journey.                                                                                                                                                             
Agent: Do you have any other specifications?                                                                                                                                                                
Customer: I prefer business class flight ticket.                                                                                                                                                            
Agent: Thank you for sharing the details, there 
are no flights available with your given details.                                                                                                           
Customer: Ok, I will find another alternate for this 
trip. Thank you.                                                                                                                                       
Agent: Thank you for approaching us.                                                                                                                                                                        
Submit: no_flight , Angela Perez , 0

Agent: Hello. How can I assist you?                                                                                                                                                                         
Customer: I want to cancel my recent reservation, 
due to some health issue. Can you help me?                                                                                                                
Agent: Sure, I will help you. May I know your 
name?                                                                                                                                                         
Customer: Thank you. I am Linda Smith.                                                                                                                                                                      
Agent: Please wait a minute.                                                                                                                                                                                
Customer: Sure.                                                                                                                                                                                             
Agent: Thanks for waiting, We found a 
reservation on your name and it has been 
cancelled successfully.                                                                                                      
Customer: Thank you for your help.                                                                                                                                                                          
Agent: Thank you for reaching us.                                                                                                                                                                           
Submit: cancel , Linda Smith , 0

No Flight Found Cancel No Reservation Found

Agent: Hello. How can I assist you?                                                                                                                                                                         
Customer: Due to a sudden illness of my mother, 
I would like to change my existing reservation. 
Can you help me with this?                                                                                  
Agent: Sure, I will help you. May I know your 
name?                                                                                                                                                         
Customer: My name is Mary Perez.                                                                                                                                                                            
Agent: Sorry, there is no reservation found on 
your name.                                                                                                                                                   
Customer: Ok, not an issue. May be something 
went wrong while making the reservation. Thank 
you for providing information.                                                                                  
Agent: Thank you for choosing us. 
Submit: no_reservation , Mary Perez , 0 

Figure 2: Example dialogues generated by CALM (in green) in the simulated evaluation.

Figure 3: Task success as a function of the number of
rollout samples. Note that successful task completion
improves with more rollout samples.

entries within the language model, in a fully end-647

to-end manner. Meanwhile, CALM also improves648

over LM(GPT2-small) by 50% in terms of task649

success, indicating the necessity of our context-650

aware approach for goal-oriented tasks.651

We further evaluate the the performance of var-652

ious methods, when utilizing the rollout planning653

technique. As shown in Figure 3, as the number654

of rollout samples increases, the performance im-655

proves for all methods. Remarkably, applying the656

rollout planning to CALM further increases total657

task success by 2%, raising it to 90% and match-658

ing human performance on the AirDialogue task.659

The baseline LM(GPT2-small) benefits much more660

from rollout planning than CALM, and we suspect661

that at around 90% task completion, the perfor-662

mance becomes bottlenecked by the customer bot’s663

mistakes, therefore we only observe less gain from664

rollout planning with CALM.665

Results for Language Quality. To quantitatively666

measure the generated language quality, we present667

perplexity and BLEU for all methods in Table 2.668

CALM performs similarly to LM(GPT2-small) and669

outperforms AirConcierge significantly.670

Ablation Study. To examine the effectiveness of671

each single component in our method, we train and672

evaluate four ablations of CALM. Each of these673

CALM LM(GPT2-small) AirConcierge
Perplexity 1.63 1.59 -

BLEU 32.88 35.75 27.75

Table 2: BLEU score and perplexity results.

Success Rate
CALM 0.88 ± 2e-3
LM(GPT2-small) 0.38 ± 5e-3
CALM w/o relabel, pre-train 0.42 ± 4e-3
CALM w/o relabel 0.66 ± 1e-2
CALM w/o pre-train 0.39 ± 3e-3
CALM w/o auxiliary loss 0.78 ± 4e-3

Table 3: Success task completion rate for various ab-
lations of CALM on AirDialogue (all using greedy de-
coding). Removing any single component from CALM
drops performance by at least 10%.

ablations remove one of the components in our ap- 674

proach: task relabeling (Section 4.1), auxiliary loss 675

(Section 4.2), and table pre-training (Section 4.3). 676

Beyond this, we also examine CALM without both 677

task relabeling and pre-training. As shown in Ta- 678

ble 3, removing any one of these components drops 679

task success by at least 10%, and in most cases 680

much more than that. This shows that each piece of 681

our method plays a critical role in helping CALM 682

to effectively learn the goal-oriented task. 683

7 Conclusion 684

We proposed an end-to-end framework, CALM, 685

for goal-oriented dialogue systems. Formulating 686

end-to-end dialogue generation as a Markov de- 687

cision process, CALM employs task relabeling 688

and context-aware finetuning to steer supervised 689

learning of language models towards specific goals, 690

improving task performance drastically while pre- 691

serving language quality. We show that this im- 692

proves performance on AirDialogue over the previ- 693

ous state of the art, and matches previously reported 694

human performance under the standard simulated 695

evaluation protocol. 696

8



8 Ethical Statement697

We note that CALM is imperfect and in gener-698

ating free-form dialogue can potentially produce699

harmful outputs. We therefore do not recommend700

applying this method in particularly sensitive or701

sufficiently wide-reaching domains without addi-702

tional measures to mitigate harmful generations.703

References704
Daniel Adiwardana, Minh-Thang Luong, David R So,705

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,706
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,707
et al. 2020. Towards a human-like open-domain chat-708
bot. arXiv preprint arXiv:2001.09977.709

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas710
Schneider, Rachel Fong, Peter Welinder, Bob Mc-711
Grew, Josh Tobin, Pieter Abbeel, and Wojciech712
Zaremba. 2017. Hindsight experience replay. In713
Advances in Neural Information Processing Systems,714
pages 5055–5065.715

Layla El Asri, Jing He, and Kaheer Suleman. 2016.716
A sequence-to-sequence model for user simula-717
tion in spoken dialogue systems. arXiv preprint718
arXiv:1607.00070.719

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie720
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind721
Neelakantan, Pranav Shyam, Girish Sastry, Amanda722
Askell, et al. 2020. Language models are few-shot723
learners. arXiv preprint arXiv:2005.14165.724

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang725
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-726
madan, and Milica Gasic. 2018. Multiwoz-a large-727
scale multi-domain wizard-of-oz dataset for task-728
oriented dialogue modelling. In Proceedings of the729
2018 Conference on Empirical Methods in Natural730
Language Processing, pages 5016–5026.731

Chieh-Yang Chen, Pei-Hsin Wang, Shih-Chieh Chang,732
Da-Cheng Juan, Wei Wei, and Jia-Yu Pan. 2020. Air-733
concierge: Generating task-oriented dialogue via ef-734
ficient large-scale knowledge retrieval. In Proceed-735
ings of the 2020 Conference on Empirical Methods736
in Natural Language Processing: Findings, pages737
884–897.738

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan,739
and William Yang Wang. 2019. Semantically con-740
ditioned dialog response generation via hierarchical741
disentangled self-attention. In Proceedings of the742
57th Annual Meeting of the Association for Compu-743
tational Linguistics, pages 3696–3709.744

Grace Chung. 2004. Developing a flexible spoken dia-745
log system using simulation. In Proceedings of the746
42nd Annual Meeting of the Association for Compu-747
tational Linguistics (ACL-04), pages 63–70.748

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and749
Kristina Toutanova. 2018. Bert: Pre-training of deep750

bidirectional transformers for language understand- 751
ing. arXiv preprint arXiv:1810.04805. 752
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A Appendix1006

In this appendix, we provide all the details in our1007

implementation for CALM.1008

A.1 AirDialogue Dataset Filtering1009

When training the LM(GPT2-small) and Cus-1010

tomer Bot, we filter the dataset by only keeping the1011

successful task examples. This is be achieved by1012

simultaneously checking for successful task com-1013

pletion and whether a set of simple string matching1014

heuristics are satisfied in the dialogue. Our heuris-1015

tics aim to ensure that strings corresponding to1016

each of the customer’s flight requirements and the1017

customer’s goal are explicitly present in the dia-1018

logue. This combination of filtering steps reduces1019

the size of the training set by 26%. Despite this,1020

we find that this is still more than enough data for1021

the model to successfully learn the task.1022

A.2 Rollout Planning1023

In Figure 4, we show the rollout planning proce-1024

dure, which described in Section 4.4.

Figure 4: Our dialogue rollout planning procedure.
1025

A.3 Training Our Customer Bot1026

Our customer bot is fine-tuned from GPT2-small1027

(124M parameters), using the standard language1028

modeling objective. We used the Huggingface1029

Transformers library’s implementation of GPT21030

(Wolf et al., 2020). The customer’s flight require-1031

ments are provided to the model as a prefix to the1032

dialogue, which formatted as a comma separated1033

list consisting of the customer’s goal and flight re-1034

quirements. We trained the customer bot for maxi-1035

mum 10 epochs with early stopping on the filtered1036

dataset. For training, it takes around 1 day on 41037

GPUs. Specifically, we trained using Adam with1038

learning rate 1e-4 and batch size 8. Our customer1039

bot achieves a perplexity of 1.47 on the develop-1040

ment set and a BLEU score of 38.5.1041

A.4 Fight Agent Bot Details1042

All our flight agent bots are fine-tuned from1043

GPT2-small (124M parameters) using the stan-1044

dard language modeling objective. We used the1045

Huggingface Transformers library’s implementa- 1046

tion of GPT2 (Wolf et al., 2020). Similar as the 1047

customer bot, we trained for maximum 10 epochs 1048

with early stopping on the filtered dataset, which 1049

takes roughly 1 day on 4 GPUs. Specifically, we 1050

trained using Adam with learning rate 1e-4 and 1051

batch size 8. We implement the final action predic- 1052

tion as a sequence of tokens generated at the end 1053

of each dialogue. The flight table is passed to the 1054

model as a prefix of flight embeddings, where each 1055

embedding is produced by summing embeddings 1056

corresponding to each attribute of a given flight 1057

(e.g., flight arrival/departure day/location, flight 1058

price, etc.). 1059

A.5 AirDialogue Task Pretraining 1060

Initialized using GPT2-small (124M parame- 1061

ters), we further pre-train our flight-agent bots by 1062

training on simplified task sequences. Specifically, 1063

these sequences consist of our flight table followed 1064

by a comma separated list of the customer’s flight 1065

requirements and a string representing the final ac- 1066

tion taken. We also apply our auxiliary loss and 1067

task-relabeling techniques during this pre-training. 1068

We pre-train on 4 million unique samples, using 1069

batch size 64 and Adam with learning rate 1e-4, 1070

which takes around 2 days on 4 GPUs. During 1071

pre-training, we found that it took around 2 mil- 1072

lion unique samples before the model suddenly 1073

started to learn the task of querying the flight ta- 1074

ble, and it took roughly 2 million more samples 1075

before it became proficient at querying the table. 1076

Both the unusual progression of learning during 1077

this pre-training phase and the high sample com- 1078

plexity needed to learn the task, indicates the dif- 1079

ficulty in learning to query the flight table. This 1080

calls for future work about further investigate the 1081

challenges in learning complex logical functions 1082

using neural networks. 1083

A.6 Self-Play Evaluation 1084

Prior works primarily evaluate bots for the flight 1085

agent through “self-play" (Chen et al., 2020; Wei 1086

et al., 2018). We follow the same evaluation proto- 1087

col in our work. Basically, we train a bot to play the 1088

role of the customer during evaluation and compute 1089

task success by simulating conversations against 1090

this bot. We run all self-play evaluations on the 1091

same subset of 1,000 dialogue scenarios, randomly 1092

selected from the validation set. 1093

All models are evaluated against the same cus- 1094

tomer bot. including models for the baselines. We 1095

find that when running against our self-play bot, 1096
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Figure 5: Our reward prediction method

task completion success for prior methods is in-1097

creased, sometimes by more than 8% (from what1098

was reported by such prior works under the same1099

evaluation setting). The only difference is the spe-1100

cific model used for customer’s side of the con-1101

versation, and we conjecture that this difference1102

is likely due to the architecture difference and the1103

details of our dataset filtering. This significant1104

change in evaluation performance compared with1105

prior works, not only indicates the quality of our1106

customer bot, but also suggests the importance of1107

accounting for these factors in evaluating and com-1108

paring dialogue systems. To promote fair eval-1109

uations in future works that use the AirDialogue1110

dataset, we will release the code and model weights1111

for our customer bot upon acceptance.1112

A.7 AirDialogue Reward Predictor for1113

Rollout Planning1114

To execute rollout planning, we need a reward1115

predictor which can estimate whether a given dia-1116

logue is a successful example of task completion or1117

not. In the case of AirDialogue, we found that1118

the most robust way to estimate this reward is1119

the following: we first fine-tune a RoBERTa-base1120

model (123M parameters) to predict the customer’s1121

ground-truth goal and flight requirements from the1122

set of dialogues in the training set. We used the1123

Huggingface Transformers library’s implementa-1124

tion of RoBERTa (Wolf et al., 2020). We do not fil-1125

ter the training-set when training this model. Once1126

this model is trained, our procedure for predicting1127

dialogue success is the following:1128

1. Given a dialogue, use our RoBERTa model to1129

predict the customer’s goal and flight require-1130

ments.1131

2. We then execute this predicted information1132

against the agent’s flight table and reservation1133

flag, to produce a set of valid final actions.1134

3. If the final action taken in the dialogue is1135

within the set of predicted final actions, then1136

dep. city ret. city dep. month ret. month
0.76 0.76 0.77 0.77

dep. day ret. day dep. time ret. time
0.76 0.76 0.94 0.94
class price connections airline
0.92 0.37 0.95 0.97

Table 4: Our RoBERTa model’s accuracy in predicting
each of the customer’s flight requirements.

predict that the current dialogue is successful, 1137

otherwise predict that it is unsuccessful. 1138

See Figure 5 for a visual illustration of this proce- 1139

dure. Our model obtains 94% accuracy in predict- 1140

ing the reward of the dialogues in the validation set 1141

(see Table 4 for a more extensive breakdown of the 1142

model’s accuracy). 1143

A.8 Example Conversation in AirDialogue 1144

In Figure 6, we showcase a specific example for 1145

the conversation in AirDialogue.

Figure 6: An example conversation in AirDialogue.

1146

A.9 Previous Approaches to Flight Table 1147

Processing 1148

Prior works (Wei et al., 2018; Jiang et al., 2021) 1149

typically input the table directly into a language 1150

model, expecting that the skill of querying the table 1151

will be naturally learned via the standard language 1152

modeling objective. We found this approach to 1153

under-perform in our experiments. These findings 1154

are also consistent with recent works which show 1155

that pre-training transformers for querying tables 1156

can significantly improve the transformer’s perfor- 1157

mance on downstream tasks which use tables (Liu 1158

et al., 2021). AirConcierge (Chen et al., 2020) 1159

takes a different approach, and explicitly predicts 1160

and executes SQL queries based on the dialogue. 1161

This approach obtains the SOTA task success on 1162

AirDialogue, but it involves several complex com- 1163

ponents, requires the ability to preform semantic 1164
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parsing on the dialogue, and of course requires ad-1165

ditional domain knowledge about the format and1166

structure of the flight table, which reprsents the1167

task context. In our work, we show that applying1168

CALM for AirDialogue can close this gap by in-1169

ducing task learning from language models and1170

achieve end-to-end learning from the flight table,1171

without sacrificing the generated language quality.1172
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