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Abstract

Graph classification aims to categorise graphs
based on their structure and node attributes. In this
work, we propose to tackle this task using tools
from graph signal processing by deriving spectral
features, which we then use to design two variants
of Gaussian process models for graph classifica-
tion. The first variant uses spectral features based
on the distribution of energy of a node feature sig-
nal over the spectrum of the graph. We show that
even such a simple approach, having no learned pa-
rameters, can yield competitive performance com-
pared to strong neural network and graph kernel
baselines. A second, more sophisticated variant
is designed to capture multi-scale and localised
patterns in the graph by learning spectral graph
wavelet filters, obtaining improved performance
on synthetic and real-world data sets. Finally, we
show that both models produce well calibrated
uncertainty estimates, enabling reliable decision
making based on the model predictions.

1 INTRODUCTION

Data that are collected in a network environment, hence
supported by a graph structure, have become pervasive in
modern data analysis and processing tasks. This poses the
new task of graph classification, which, similar to image
classification, aims at classifying graph-structured data into
different classes. For example, representing protein struc-
tures as graphs, one may wish to classify whether they are
toxic or not; modelling information propagation cascades
on social media platforms as graphs, one may wish to detect
whether the originating post of each cascade corresponds to
fake news or not; considering urban transportation networks
as graphs, one may wish to identify whether a particular
area is likely to lead to traffic congestion.

Such graph-level classification problems are non-trivial gen-
eralisation of classical classification problems: graphs are
irregular structures and traditional techniques defined in the
Euclidean domains, such as the Fourier transform, cannot
be applied directly; data collected on the nodes (or edges)
of the graph are often continuous measurements, therefore
traditional tools in graph analysis need to be adapted; fi-
nally, real-world graphs often come with extremely large
size, making scalability of the algorithms a challenge.

Recent efforts to tackle the problem of graph classification
mainly fall into two categories. First, graph kernels [Niko-
lentzos et al., 2021, Kriege et al., 2020, Borgwardt et al.,
2020], as traditional ways of comparing graphs or compute
distance between them, have been adapted for graph classi-
fication. However, it is still a challenge for these methods to
handle multi-dimensional and continuous node features as
well as graphs of different sizes. Second, graph neural net-
works [Bruna et al., 2014, Defferrard et al., 2016, Kipf and
Welling, 2017], generalisations of neural networks to deal
with graph-structured data, can also be utilised for graph
classification. In these frameworks, a read-out function is
often deployed after the neural network layers to summarise
node representations into a single graph representation, for
example using summation, averaging, or pooling [Dai et al.,
2016, Duvenaud et al., 2015, Gilmer et al., 2017, Ying et al.,
2018]. This addressed the issue of comparing graphs of dif-
ferent sizes; however, these architectures are often trained
with large amount of data, and the predictions are not easily
interpretable.

We address the above limitations in this work, and our main
contributions are as follows. First, inspired by the image
segmentation literature [Porter and Canagarajah, 1996] as
well as recent development in the field of graph signal pro-
cessing [Shuman et al., 2013, Ortega et al., 2018, Dong
et al., 2020, Ortega, 2022], we propose to consider multi-
dimensional and continuous node features as graph signals,
and compute spectral features using the graph Fourier trans-
form, i.e., energy distribution of the Fourier coefficients in
different frequency bands. We then utilise these features in a
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(a) Graph signal x consisting of
three concatenated sine-waves of
different frequency.

(b) Signal under view fully lo-
calised in space (original signal
x)

(c) Signal under view partially
localised both in space and fre-
quency (Wavelet transform of x)

(d) Signal under view fully lo-
calised in frequency (Fourier
transform of x)

Figure 1: Visualisation of the different space-frequency resolutions of the spatial view of a signal (b), its wavelet transform
(c), and its Fourier transform (d) for the example of concatenated sine-waves (a) on a path graph. A path graph forms a line
of nodes where each node, except for the two end nodes, has exactly two neighbours.

Gaussian process framework, which has the advantage of not
requiring a validation set and being more interpretable. We
show that this simple method already achieves surprisingly
competitive performance compared to baselines relying on
graph kernels and graph neural networks. Second, we fur-
ther derive a second method based on the spectral graph
wavelets [Hammond et al., 2011], which possesses the ad-
ditional benefits of capturing multi-scale and localisation
information and leads to further improvement in classifica-
tion performance. Finally, the proposed Gaussian process
based methods allow us to quantify uncertainty information
in the graph classification results, which to our knowledge
has not been considered so far in the literature.

2 PRELIMINARIES

The models proposed here will exploit spectral features
of graphs within the framework of learning with Gaussian
processes. In the following, we will therefore give a brief
introduction to the techniques from graph signal process-
ing and Gaussian process inference that we will use in our
methodology.

2.1 GRAPH SIGNAL PROCESSING

Graph signal processing (see Ortega [2022] for a general in-
troduction) offers a range of tools for analysing the spectral
properties of graph signals. One of its key tools is the gener-
alisation of the Fourier transform to the graph domain, as de-
scribed by Shuman et al. [2013]. It breaks down a signal into
components of different frequency, giving rise to a comple-
mentary view of the signal on the frequency domain as op-
posed to the spatial domain. Moreover, the Fourier transform
is useful for analysing learned transforms of signals, which
form the basis for machine learning. Spectral graph theory
[Chung, 1997] has generalised the Fourier transform for sig-
nals on the Euclidean domain to signals on the more general

graph domain. In general, the Fourier transform of a signal
on any domain is defined as the decomposition of that sig-
nal into the basis functions of the Laplace operator. On the
graph domain, the Laplace operator is given by the symmet-
ric and positive-semidefinite Laplacian matrix L = D−A,
where A ∈ RN×N is the adjacency matrix of the graph with
N nodes and D ∈ RN×N is the diagonal degree matrix of
the graph such that Dii =

∑N
j=1 Aij . Using the eigende-

composition of the graph Laplacian L = UΛU⊤, we can
define the Fourier transform of a graph signal x ∈ RN as
x̂ = U⊤x.

The original signal x and its Fourier transform x̂ form the
two extremes of a trade-off relationship between resolution
in space and resolution in frequency: x is fully localised in
space but not localised in frequency, whereas x̂ is fully lo-
calised in frequency but not localised in space. The wavelet
transform is a convenient technique for analysing signals
with resolution in both space and frequency. It decomposes
a signal into a set of basis functions obtained by scaling and
shifting a so-called mother wavelet. Hammond et al. [2011]
derive a graph signal wavelet transform for signal x using
mother wavelet b(λ) as

w = Ub(βΛ)U⊤x, (1)

where β is the scale parameter. Adjusting this scale parame-
ter allows examining the signal at varying frequency ranges,
which correspond to different localisation behaviour in the
spatial node domain.

The relationship between the original spatial signal, Fourier
transform, and wavelet transform is best visualised for a
signal on a path graph, i.e. a graph that simply forms a
line of nodes, as it resembles an interval on the real line.
We plot a signal on such a graph consisting of three sine-
waves of different frequencies in Figure 1a along with the
spectrograms of the signal in the spatial domain (1b), in
the frequency domain (1d), and for the wavelet transform
(1c), which demonstrate how the wavelet transform trades



off between spatial and spectral resolution.

To analyse a signal at multiple scales simultaneously,
a low-pass filter h(αλ) with parameter α and multiple
scaled versions of the mother wavelet can be combined
into a more complex wavelet filter function gθ(λ) =

h(αλ) +
∑L

l=1 b(βlλ) with the set of scale parameters
θ = {α, β1, β2, . . .}.

2.2 GAUSSIAN PROCESSES

Gaussian processes (see Rasmussen and Williams [2005]
for a general introduction) are stochastic processes that can
be considered multivariate normal distributions extended to
infinitely many dimensions. Their properties make them a
convenient choice for prior distributions in Bayesian ma-
chine learning models. A GP prior on a latent function
f : RD → R is given by

f(x) ∼ GP (m(x), kθ(x,x
′)) , (2)

where m(x) is the mean function of the process and
often set to 0 and kθ(x,x

′) is its kernel function with
a set of kernel hyperparameters θ. Given input data
X = [x1,x2, . . . ,xN ]⊤ ∈ RN×D and labels y =
[y1, y2, . . . , yN ]⊤ ∈ R, the GP model can be used for per-
forming probabilistic inference. If the model specifies a
Gaussian likelihood, the posterior distribution p(f |y) is an-
alytically tractable and also follows a Gaussian process
distribution. Furthermore, the marginal likelihood p(y) is
tractable and can be maximised to optimise the kernel hy-
perparameters θ.

Inference in a GP model becomes prohibitive for data sets
of large size N , as computing the posterior distribution
requires inverting an N × N covariance matrix. Sparse
Gaussian processes alleviate this computational burden by
constructing a smaller pseudo-data set of M so-called induc-
ing points, where M ≪ N . The inducing points are chosen
such that the GP posterior they induce is similar to the actual
posterior using all N data points. Titsias [2009] proposes a
way of learning the inducing inputs as variational parameters
by optimising a lower bound to the marginal likelihood.

In case the model specifies a non-Gaussian likelihood such
as a Categorical likelihood—as would be the case for classi-
fication tasks—the posterior distribution is no longer analyt-
ically tractable and needs to be approximated. This can be
achieved using a variational approximation to the posterior
distribution where the variational family is chosen to be a
Gaussian process. Hensman et al. [2015] show how a varia-
tional approximation for non-Gaussian likelihoods can be
designed for sparse GPs. The resulting model has the benefit
that the lower bound to the marginal likelihood, referred to
as the Evidence Lower Bound (ELBO), has a data term that
factorises over data points and can therefore be maximised
using stochastic gradient descent [Hensman et al., 2013].

3 SPECTRAL FEATURE LEARNING FOR
GRAPH CLASSIFICATION

In the following, we present two GP models for graph clas-
sification. The first model is focused on simplicity, while
the second model trades off simplicity against higher ex-
pressive power. The former is based on the graph Fourier
transform of the node feature signal and is therefore referred
to as FT-GP, whereas the latter employs the spectral graph
wavelet transform and is therefore referred to as WT-GP.
The key idea in common for both approaches is that alterna-
tives to the spatial view of the node feature graph signals,
as provided by the Fourier and wavelet transform, are better
starting points for designing graph kernels. Consequently,
we hypothesise that even simple transformations and repre-
sentations of the signals under these views, mainly focusing
on how the energy of these signals are distributed in dif-
ferent parts of the spectrum and/or space, are sufficiently
expressive for distinguishing attributed graphs.

Both models are used for typical graph classification tasks
where we assume to be given a set of G training set graphs
T = {G1,G2, . . . ,GG} of varying sizes N1, N2, . . . , NG,
alongside their corresponding class labels y1, y2, . . . yG. For
each graph i, we are given an adjacency matrix A(i) ∈
RNi×Ni and D-dimensional node features X(i) ∈ RNi×D.
For the following exposition, we initially assume one-
dimensional node features, i.e. D = 1, and describe how to
address the case of general D later on. The goal of graph
classification is to learn a mapping from the adjacency ma-
trix and node features of a graph to its class label such that
it generalises to graphs outside the training set.

3.1 SPECTRAL FEATURES FOR GRAPH-LEVEL
PREDICTION

For each graph G(i) with adjacency matrix A(i) ∈ RNi×Ni

we can compute the symmetrically normalised graph Lapla-
cian matrix L(i) = I − (D(i))−1/2A(i)(D(i))−1/2. Its
eigendecomposition is L(i) = U(i)Λ(i)U(i)⊤, where
U(i) ∈ RNi×Ni denotes the eigenvector matrix and Λ(i) =

diag(λ(i)
1 , . . . , λ

(i)
Ni

) ∈ RNi×Ni denotes the diagonal eigen-
value matrix. The spectrum of the symmetrically normalised
graph Laplacian is in [0, 2], i.e. 0 ≤ λ

(i)
j ≤ 2 ∀j =

1, . . . , Ni [Shuman et al., 2013]. Notably, this holds regard-
less of the size Ni of the graph.

Using the definition of the graph Fourier transform as
presented in Section 2.1, we can compute the Fourier
coefficients of the node feature signal for graph G(i) as
x̂(i) = U(i)⊤x(i). Based on the eigenvalues of the graph
and the Fourier coefficients of the node feature signal, we



(a) Signal plotted for graph A (b) Cumulative energy function
for graph A

(c) Signal plotted for graph B (d) Cumulative energy function
for graph B

Figure 2: Comparison of two graphs from the ENZYME
data set Borgwardt et al. [2005] in terms of cumulative en-
ergy function. The same node feature is plotted for both
graphs in (a) and (c) where the node colour indicates the
node feature value. Figures (b) and (d) show the correspond-
ing cumulative energy functions, revealing the distinct en-
ergy profiles of both graphs: in particular, graph A has a
larger low-frequency component compared to graph B.

can define a cumulative energy function for graph i as

e(i)(z) =

N(i)∑
j=1

x̂
(i)2
j 1{λ(i)

j ≤z}. (3)

This function e(i)(z) represents the energy of the node fea-
ture signal that is contained in the spectrum up to a frequency
z and it thereby encodes both graph structure and node fea-
ture information. We hypothesise that the energy profile
formulated in this way is expressive enough to distinguish
attributed graphs of different classes. Figure 2 visualises the
cumulative energy function for two sample graphs from the
ENZYMES data set Borgwardt et al. [2005]. We find that
the two cumulative energy functions differ clearly, both as a
result of different eigenvalue locations and distinct Fourier
coefficients.

We can derive a feature vector e(i) ∈ RM for graph i from
e(i)(z) by evaluating e(i)(z) at a sequence of M evaluation
points [h1, . . . , hM ], therefore

e(i)m = e(i)(hm) =

N(i)∑
j=1

x̂
(i)2
j 1{λ(i)

j ≤hm}. (4)

In practice, we will often choose [h1, . . . , hM ] to be linearly
spaced on the [0, 2] interval of the spectrum. Crucially, this

guarantees that all graph representations e(1), . . . , e(G) are
of size M regardless of individual graph sizes.

The above derivation assumes one-dimensional node fea-
tures (D = 1). The graph representations can be generalised
to multi-dimensional node features (D > 1) by defining
a cumulative energy function for each feature dimension
and concatenating their discretisations, resulting in graph
representations e(i) of size M ×D.

The resulting graph representations can now serve as input
into a base kernel of choice and we use the radial basis
function (RBF) kernel k(x,x′) = exp(− l

2∥x− x′∥2) with
lengthscale l.

3.2 SPECTRAL WAVELET FEATURES FOR
GRAPH-LEVEL PREDICTION

A key limitation of the FT-GP approach stems from the
Fourier transform providing full resolution in frequency but
no resolution in space. As a result, we expect the model to
under-perform in correctly classifying graphs whose class
is determined by localised patterns (cf. Figure 1). This is
evaluated in more detail in experiments with synthetic data
in Section 5.1. We can partially alleviate this limitation by
employing the wavelet transform to derive kernels, allow-
ing us to better trade off between localisation in space and
frequency in a flexible manner.

We design wavelet filters consisting of a single low-pass
filter and multiple band-pass filters to obtain filtered sig-
nals. A particular wavelet filter offers a distinct view of the
attributed graph at hand, hence using K of those wavelet
filters allows us to obtain a more diverse view of the graph.
Moreover, we can seize the capability of GPs to optimise
hyper-parameters to find wavelet scales that better distin-
guish the classes of graphs of the particular data set at hand.
Figure 3 plots the wavelet transformed signal for a particular
graph and two filters of different scales, to showcase the
distinct view of the attributed graph each filter offers.

We define each of the K wavelet filter functions as a sum
of atomic filters including a single low-pass filter and L
band-pass filters

gθ(λ) = h(αλ) +

L∑
l=1

b(βlλ), (5)

where h(αλ) refers to the low-pass filter function with scale
α, b(βlλ) refers to the l-th band-pass filter with scale βl,
and θ = {α, β1, β2, . . .} is the set of scale parameters. Rem-
iniscent of the signal energy computed for the FT-GP model
proposed earlier, we compute the magnitude of signal fil-
tered with filter k

w
(i)
k = ∥U(i)gθk(Λ

(i))U(i)⊤x(i)∥2 (6)

to express how much energy of the signal is captured by the
kth filter. The final feature vector w(i) ∈ RK·D for graph



(a) Wavelet filter A (b) Wavelet filter B

(c) Wavelet atom localised at red
node (filter A)

(d) Wavelet atom localised at red
node (filter B)

(e) Signal filtered with filter A (f) Signal filtered with filter B

Figure 3: Comparison of two different filters for the same
graph and node feature (as a graph signal) from the EN-
ZYME data set. The band-pass filter of large wavelet scale
(a) highlights low frequencies, captures a larger node neigh-
bourhood (c), and produces a smooth signal (e). The band-
pass filter of small wavelet scale (b) highlights high fre-
quencies, captures a smaller node neighbourhood (d), and
produces a less smooth signal (f).

i stacks the filter coefficients for each of the K wavelet
filters and each of the D node feature signals. As before, the
resulting signal representations are fed into a radial basis
function kernel to obtain the covariance between graphs.
The kernel hyper-parameters are optimised alongside the
wavelet scale parameters θ in a data-driven way employing
type II maximum likelihood estimation.

3.3 RELATIONSHIP TO GRAPH NEURAL
NETWORKS

The GP models presented here operate in two stages, one
focused on transformations of the node feature signal and
the second on deriving a graph-level summary. In this regard,
they share similarities with graph neural networks for graph
classification, making it worthwhile to compare the two
approaches more thoroughly.

Both GP methods, in the first step, translate the node feature
signal from the spatial domain to a domain that is either fully
localised in frequency or partially localised in both space
and frequency. The resulting coefficients thereby combine
information from all nodes across the graph, overcoming

the spatial locality of each node. In case of WT-GP, the
wavelet transform can be considered an aggregation opera-
tion of node features in a neighbourhood around each node
whose shape is determined by the particular wavelet filter in
use [Opolka et al., 2022]. This aggregation of information
across graphs is reminiscent of the aggregation operation
inherent to graph convolutional networks (GCN) [Kipf and
Welling, 2017]. In fact, Wu et al. [2019] describe how the
GCN aggregation operation acts as a low-pass filter on the
node feature graph signal.

In a second step, the GP methods aggregate coefficients
across the whole graph via binning in case of FT-GP and
summation in case of WT-GP. Neural network methods ap-
ply similar so-called “read out” operations to summarise
node representations into a single graph representation via
simple summation or averaging [Dai et al., 2016, Duve-
naud et al., 2015, Gilmer et al., 2017], as well as more
complicated pooling operations [Ying et al., 2018]. In con-
trast to GCN-based approaches however, the aggregation
approach presented here has a straightforward spectral inter-
pretation and allows aggregating information in a way that
goes beyond averaging low-pass filtered values, making it
possible to capture multi-scale information in the graphs.
Furthermore, the GP framework provides the flexibility of a
non-parametric approach and outputs uncertainty estimates
for predictions, which are examined in more detail in Sec-
tion 5.4.

3.4 SCALABILITY

In terms of scalability of the GP models, the quantities of
concern are the number of graphs in a data set and the size
of those graphs. Within the computation of the kernel of
either proposed approach, the computational complexity
is dominated by the necessary eigendecomposition of the
graph Laplacian, which is in O(N3

i ), where Ni is the size of
a graph i. Graphs in graph classification tasks are typically
small (cf. Table 2), therefore the number of nodes is not usu-
ally an obstacle for scalability. For larger graphs, one can
reduce the computational complexity by resorting to the ap-
proximate Fourier transform of a graph signal [Le Magoarou
et al., 2018].

The total number of graphs in the data set may pose an-
other limit to the scalability of the method when computing
the GP posterior. Sparse GPs as discussed in Section 2.2
alleviate this issue by enabling stochastic optimisation in
mini-batches when the data set size requires it.

4 RELATED WORK

Applications of Spectral and Wavelet Energy: Our work
is related to building classifiers in the graph spectral domain,
and wavelets are an extension to such approaches with the



benefits of multi-scale properties and better localisation.
Solving problems on graphs by making use of the energy
distribution in the spectral domain has been demonstrated
effectively for the task of image segmentation in classical
signal processing [Porter and Canagarajah, 1996], and for
geographical mobility prediction in graph signal process-
ing [Dong et al., 2013]. Both suggest that the energy dis-
tribution clearly contains a significant level of information
which we aim to utilise in this work for graph classification.

Graph Kernels: One of the first studies into kernel func-
tions acting on the graph level is the graph kernels sum-
marised in the surveys of Nikolentzos et al. [2021], Kriege
et al. [2020], Borgwardt et al. [2020]. Graph kernels gener-
ally have multiple definitions, of which a number of choices
have in common the existence of a double sum of a base
kernel. To compute the kernel between two graphs, a stan-
dard base kernel is chosen and takes as inputs a node feature
from each graph, and the double summation then covers
all possible pairs of nodes between the two graphs. Similar
definition can be applied to graphs that contain edge fea-
tures. Such designs are limited as any edge connections are
ignored in the double sum, and the kernel therefore boils
down to a comparison of cross-products of the node features.
Another common design is the computation of a product
graph, where a new graph is constructed based on the two
input graphs. When we simulate a random walk on the prod-
uct graph, we compute the number of matching walks on
the two individual graphs. Random walk kernels do take
into account the graph structure, but is limited by scalability
as the computation of the kernel over a product graph leads
to a O(N3

i N
3
j ) complexity.

Graph kernels has also been developed from the Weisfeiler-
Lehman (WL) test for graph isomorphism [Huang and Villar,
2021], which also acts as a graph similarity. The WL test
produces a series of node “colouring” from a neighbourhood
gathering and relabelling procedure. In the WL kernel [Sher-
vashidze et al., 2011], the “colourings” are passed through
a hashing function (or histogram mapping) to form inputs
to a base kernel. As an alternative, the Wasserstein distance
between two sets of labels can be used instead of the hashing
function as shown in Togninalli et al. [2019]. Compared to
our kernel design, WL-based kernels generally work with
the neighbourhoods in the spatial domain, and so they ig-
nore any information in the spectral domain. Additionally,
if the graph contains high dimensional node features, the
WL does not have an efficient way to encode them into the
embeddings for the WL algorithm.

The use of Fourier and wavelets basis are Laplacian-based
models. Wavelets in particular, allow for aggregation over
a continuous neighbourhood, giving the model the ability
to operate on a multi-scale level. Though multi-scale Lapla-
cian kernels exist such as Kondor and Pan [2016], they
only operate in the spatial domain by computing kernels
between sub-graphs of various neighbourhood sizes. On the

other hand, the work of Pineau [2019] does make use of
the Laplacian spectral information, but like the previous
kernel, it ignores the node features that may come with the
graphs, while we focus on the spectral information of the
node features.

Graph Neural Network Models: Lastly, graph neural net-
works (GNNs) have also been applied as a test for graph
isomorphism, and as a result can be applied to graph classifi-
cation. The message passing step of a GNN layer (examples
including Duvenaud et al. [2015], Li et al. [2012], Murphy
et al. [2019]) is comparable to the neighbourhood gathering
step in the WL algorithm. Analysis of certain GNN models
showed that they are at best as powerful as the WL test,
and the graph isomophism network (GIN) proposed in Xu
et al. [2019] achieves the theoretical guarantee of the WL.
Meanwhile, simpler models such as GCN [Kipf and Welling,
2017] and GraphSAGE [Hamilton et al., 2017] have been
shown to be unable to distinguish certain types of graphs
that GIN can handle.

5 EXPERIMENTS

Our work aims to investigate two core empirical questions
with regards to the models presented. Firstly, whether the
energy profile as captured by either of the presented kernels
is sufficiently expressive to classify real-world graphs. Sec-
ondly, whether the wavelet transform approach of WT-GP
improves upon the FT-GP model based on the Fourier trans-
form. We begin with the latter question by comparing the
two proposed models on synthetic data sets.

In all our experiments, we use the same experimental setup,
unless explicitly stated otherwise. The FT-GP discretises
the cumulative energy function by evaluating it at 30 eval-
uation points. The WT-GP uses 10 filters consisting of a
single low-pass and three band-pass filters. Each low-pass
scale of each filter is uniformly randomly initialised to a
value between 4.0 and 6.0. The band-pass scales of each
filter are uniformly randomly initialised to a value between
0.1 and 5.0. A non-sparse variational Gaussian process as
described in Section 2.2 is trained using the L-BFGS-B
optimiser [Liu and Nocedal, 1989, Byrd et al., 1995] un-
til the ELBO convergences. All results are cross-validated
using 10-folds under a stratified split where in each fold
80% of the data is used for training and 10% for testing.
The remaining 10% are set aside for validation to make the
evaluation comparable to results in related work, although
neither of the two GP models make use of the validation
set. This validation procedure is suggested by Errica et al.
[2020] to overcome weaknesses in the evaluation of graph
classification methods in previous work.



(a) Class 0 (b) Class 1

Figure 4: Visualisation of example graphs of the two dif-
ferent classes in the synthetic ring-vs-clique data set. All
graphs consist of a graph component sampled from an Erdős-
Rényi (ER) model, which is connected to either a ring graph
component in case of class 0 or a fully connected graph
component in case of class 1 (highlighted in blue). Both
components of each graph can vary in the number of nodes.

5.1 SYNTHETIC EXPERIMENTS

We design two synthetic data sets to highlight the differences
between the two GP models presented here. The first data
set, referred to as ring-vs-clique, contains two classes. The
classes differ in that graphs in class 0 are guaranteed to
contain a subgraph that forms a ring of at least size 5, while
graphs in class 1 are guaranteed to contain a subgraph that
forms a complete graph (or clique) of at least size 5. We
generate the class-balanced data set by sampling 200 graphs
using the following procedure. In a first step, a graph of
uniformly random size between 10 and 30 nodes is sampled
from an Erdős-Rényi model [Erdös and Rényi, 1959]. In
the second step, depending on the class label, a ring or
clique of uniformly random size between 5 and 10 nodes is
constructed and connected to a randomly chosen node in the
graph sampled in the first step through a single edge. The
two different classes are sketched in Figure 4. The data set
is designed to test how well a model can distinguish graphs
when class labels are determined only by a relatively small,
localised subgraph.

The second data set, referred to as sbm, contains graphs
drawn from a stochastic block model [Holland et al., 1983],
where nodes of the same block are connected with a proba-
bility of 80% and nodes of different blocks are connected
with 10% probability. Graphs of class 0 are drawn from a
model with 2 blocks and graphs of class 1 are drawn from
a model with 3 blocks. All graphs have a uniform random
size between 10 and 30 nodes.

The results for the binary classification tasks on these data
sets for the two GP models are shown in Table 1. We find
that on both tasks, the wavelet-based GP model strongly
outperforms the baseline FT-GP model. In fact, FT-GP per-
forms only slightly better than random guessing on both
data sets whereas WT-GP achieves a near perfect accuracy
on ring-vs-clique and a high accuracy on the sbm data set.
The results confirm that designing graph kernels based on
wavelet filtered node feature signals leads to more expressive

ring-vs-clique sbm

FT-GP 62.5 ±7.5 58.5 ±15.2

WT-GP 99.5 ±1.5 91.0 ±5.4

Table 1: Classification accuracy of the FT-GP model com-
pared to the WT-GP model on the two synthetic binary
classification data sets.

Data set # Graphs # Classes Avg # Nodes Avg # Edges # Node Attr

ENZYMES 600 6 32.63 62.14 21
MUTAG 188 2 17.93 19.79 7
NCI1 4,110 2 29.87 32.30 37
IMDB-BIN 1,000 2 19.77 96.53 −
IMDB-MUL 1,500 3 13.00 65.94 −

Table 2: Statistics of the data sets used in the empirical
evaluation of the proposed models. We use three data sets
with and two data sets without node features.

kernels compared to a kernel based on Fourier transformed
node features.

5.2 REAL-WORLD EXPERIMENTS

To examine whether the proposed GP models based on the
energy profiles of attributed graphs are sufficiently expres-
sive for classifying real-world graphs, we conduct a number
of experiments on benchmark data sets and compare the
model performance to popular baseline methods for graph
classification.

The data sets in our empirical evaluation are shown in Ta-
ble 2 along with an overview of their statistics. The EN-
ZYMES data set [Borgwardt et al., 2005] contains protein
graphs of enzymes that require classification into the En-
zyme Commission top level enzyme classes. The MUTAG
data set [Debnath et al., 1991] consists of molecular graphs
and the task is to detect an effect on the Salmonella ty-
phimurium bacterium. Similarly, the NCI1 data set [Wale
and Karypis, 2006] holds molecular graphs that need to be
classified based on whether they are active against certain
types of cancer. Finally, the IMDB-BINARY and IMDB-
MULTI data sets [Yanardag and Vishwanathan, 2015] are
derived from the Internet Movie Database (imdb.com) and
consist of graphs of actors and actresses who have co-starred
together in a film. A classifier has to predict the genre of
each graph belonging to a particular actor or actress. The
graphs in the first three data sets come with node attributes
while the IMDB data sets are unattributed. We add one-hot
encoded node degrees as features to ensure all graphs have
node attributes.

We compare the proposed GP models to a number of neural
network and graph kernel baselines. The neural network
baselines include DGCNN [Zhang et al., 2018], Graph-
SAGE [Hamilton et al., 2017], DiffPool [Ying et al., 2018],



and GIN [Xu et al., 2019]. Among graph kernels we com-
pare to the Shortest Path (SP) kernel [Borgwardt and Kriegel,
2005], the Weisfeiler-Lehman (WL) kernel [Shervashidze
et al., 2011], and the Multiscale Laplacian (ML) kernel [Kon-
dor and Pan, 2016].

The classification accuracy of each model on all data sets
is shown in Table 3 where the results for baseline methods
are obtained from the empirical evaluation by Nikolentzos
et al. [2021]. Mirroring the results on the synthetic data
set, we find that WT-GP performs at least as well as FT-
GP on all data sets except on IMDB-MULTI where both
perform roughly similarly. Moreover, both models yield
competitive performance compared to the baselines, with
WT-GP achieving the highest accuracy on three of the five
data sets and FT-GP being among the best two models also
on three out of five data sets. We highlight the surprising
effectiveness of the Fourier features of FT-GP in comparison
to the baselines, especially since no learning is involved in
the feature construction.

While overall outperforming the neural network baselines,
the trend across data sets is comparable between the GP
models and the neural networks. In fact, where the kernel
methods outperform the GNNs, they also tend to be more
comparable to the GP models. This appears to provide evi-
dence for the similarity between the methods proposed here
and GNNs, as outlined in Section 3.3.

5.3 ROBUSTNESS ANALYSIS

While the proposed GP models have fewer hyper-parameters
than comparable neural network models, a small number of
values needs to be selected prior to model fitting. For the
FT-GP this is primarily the number of evaluation points M
and for WT-GP this is mainly the number of filters K.

We evaluate FT-GP for a range of different numbers of eval-
uation points M on two data sets, one with and one without
node features. The results are shown in Table 4. We find
that FT-GP is overall robust to varying the number of evalu-
ation points. We note that larger M linearly increase time
and memory complexity for training and inference. Notably,
however, larger M do not increase the number of learned pa-
rameters of FT-GP (which does not have learned parameters)
but merely increase the “resolution” of the approximation
of the cumulative energy function and we therefore do not
expect FT-GP to begin to over-fit for larger M .

In a similar vein, the performance of WT-GP for varying
numbers of filters K is presented in Table 5. The results
indicate that WT-GP is robust to different numbers of fil-
ters. Similar to M , increasing K linearly increases the time
and memory complexity for training and inference. Unlike
M , however, increasing K means a larger number of scale
parameters need to be estimated using MLE and therefore
we do expect the model to over-fit for very large values of

FT-GP

(a) MUTAG (b) IMDB-BINARY

WT-GP

(c) MUTAG (d) IMDB-BINARY

Figure 5: Accuracy of predictions when rejecting predic-
tions that have a variance above a certain threshold. As the
threshold becomes lower, i.e. more and more strict (from
right to left on x-axis), the prediction accuracy increases.

K. For the values that are computationally feasible for the
given data sets, we have not yet observed over-fitting.

5.4 QUALITY OF UNCERTAINTY ESTIMATES

One of the core advantages of a Bayesian treatment of graph
classification is the availability of uncertainty estimates that
can be a crucial part of the real-world application of a model.
Uncertainty estimates allow downstream users of the model
to weigh the reliability of its predictions and thus more con-
fidently make decisions based on those predictions. The GP
models proposed here make uncertainty predictions in the
form of the variance of the variational posterior predictive
distribution. We can assess the quality of those uncertainty
estimates by simulating an experiment where downstream
users are allowed to “reject” predictions if their variance
is above a certain threshold. We can then plot the accuracy
of the predictions that are not rejected. If the uncertainty
estimates are well calibrated, we expect the accuracy of the
remaining, low-variance (i.e. high certainty) predictions to
increase. We plot the results for both our models and two
of the data sets in Figure 5. We find that, as expected, the
accuracy increases for stricter variance thresholds. As the
variance threshold increases, the accuracy rises from the re-
sults reported in Table 3 for the complete set of predictions,
to 1.0 for only the most confident predictions.

6 CONCLUSIONS

We have proposed two GP models using spectral features
to classify graphs. The first approach constructs the energy
profile of an attributed graph and compares across features.



ENZYMES MUTAG NCI1 IMDB-BINARY IMDB-MULTI

DGCNN 38.9 ±5.7 84.0 ±7.1 76.4 ±1.7 69.2 ±3.0 45.6 ±3.4

GraphSAGE 58.2 ±6.0 83.6 ±9.6 76.0 ±1.8 68.8 ±4.5 47.6 ±3.5

DiffPool 59.5 ±5.6 79.8 ±6.7 76.9 ±1.9 68.4 ±3.3 45.6 ±3.4

GIN 59.6 ±4.5 84.7 ±6.7 80.0 ±1.4 71.2 ±3.9 48.5 ±3.3

SP timeout 82.4 ±5.5 72.5 ±2.0 58.2 ±4.7 39.2 ±2.3

WL 50.7 ±7.3 86.7 ±7.3 85.2 ±2.2 70.7 ±6.8 51.3 ±4.4

ML 33.2 ±5.8 87.2 ±7.5 79.7 ±1.8 69.9 ±4.8 47.7 ±3.2

FT-GP 60.7 ±4.3 85.7 ±6.2 77.7 ±1.6 72.7 ±3.9 48.8 ±2.8

WT-GP 63.8 ±5.3 87.3 ±4.8 78.1 ±2.1 74.6 ±4.1 48.4 ±2.9

Table 3: Comparison of the proposed GP models with common neural network and graph kernel baselines in terms of
classification accuracy. Colours indicate the best, second-, and third-best result.

M ENZYMES IMDB-BINARY

20 61.2 ±5.1 73.1 ±4.0

25 60.5 ±4.5 73.5 ±3.7

30 60.7 ±4.3 72.7 ±3.9

35 60.3 ±4.9 73.6 ±3.5

40 61.0 ±4.9 73.0 ±3.6

45 61.0 ±4.9 73.0 ±4.0

50 61.0 ±4.7 72.9 ±4.2

Table 4: Performance of FT-GP on a data set with node
features (ENZYMES) and a data set without node features
(IMDB-BINARY) for varying number of evaluation points
M .

K ENZYMES IMDB-BINARY

5 64.3 ±5.0 74.6 ±3.8

10 63.8 ±5.3 74.6 ±4.1

15 64.8 ±5.4 74.3 ±3.0

20 65.5 ±5.5 74.2 ±4.1

Table 5: Performance of WT-GP on a data set with node
features (ENZYMES) and a data set without node features
(IMDB-BINARY) for varying number of filters K.

We find that even though the model requires no learning
to obtain these spectral features, it performs competitively
to graph neural network and kernel baselines. The second
approach learns more complex wavelet filters and compares
graphs based on the corresponding filtered node features.
It outperforms the first approach both on real-world and
synthetic data sets. Our work indicates that spectral features
constitute a powerful basis for graph classification both
on their own and even more so when combined with the
learning capabilities of GPs.
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