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Abstract

Human-produced emissions are growing at
an alarming rate, causing already observable
changes in the climate and environment in gen-
eral. Each year global carbon dioxide emis-
sions hit a new record, and it is reported that
0.5% of total US greenhouse gas emissions are
attributed to data centres as of 2021 ((Siddik
et al., 2021)). The release of ChatGPT in late
2022 sparked social interest in Large Language
Models (LLMs), the new generation of Lan-
guage Models with numerous parameters and
trained on massive amounts of data. Currently,
numerous companies are releasing products fea-
turing various LLMs, with many more models
in development and awaiting release. Deep
Learning research is a competitive field, with
only models that reach top performance attract-
ing attention and being utilized. Hence, achiev-
ing better accuracy and results is often the first
priority, while the model’s efficiency and the en-
vironmental impact of the study are neglected.
However, LLMs demand substantial computa-
tional resources and are very costly to train,
both financially and environmentally. It be-
comes essential to raise awareness and promote
conscious decisions about algorithmic and hard-
ware choices. Providing information on train-
ing time, the approximate carbon dioxide emis-
sions and power consumption would assist fu-
ture studies in making necessary adjustments
and determining the compatibility of available
computational resources with model require-
ments. In this study, we infused T5 LLM with
external knowledge and fine-tuned the model
for Question-Answering task. Furthermore, we
calculated and reported the approximate envi-
ronmental impact for both steps. The findings
demonstrate that the smaller models may not
always be sustainable options, and increased
training does not always imply better perfor-
mance. The most optimal outcome is achieved
by carefully considering both performance and
efficiency factors.

Model Parameters

Estimated Equivalence
emissions in # of flights

BERT 110M 1.59 1.9
BLOOM 176B 25 30
OPT 175B 75 90

Gopher 280B 380 456

GPT-3 175B 500 600

Table 1: The first column shows state-of-the-art LLMs,
along with the corresponding number of parameters
in the second column and emissions produced during
training in metric tons C'Oseq in the third column. The
last column represents the equivalence in the number of
round flights between London and New York.

1 Introduction

With the growing problem of climate change,
LLMs can potentially accelerate that process by
contributing to greenhouse gas emissions. LLMs
with billions of parameters may require several
weeks of training time, and this duration is ex-
pected to increase further with the emergence of
new models ((Scao et al., 2022; Radford et al.,
2019; Brown et al., 2020)). Table 1 demonstrates
the most recent LLMs released by famous research
labs, the number of parameters of each model, the
estimated emissions in net metric tons C'Ozeq and
the equivalence in flights. The amount of pro-
duced emissions doubles if taken into consideration
the manufacturing of computers. Considering the
computational expenses involved, it is only essen-
tial to prevent executing identical experiments and
adopt a sustainability mindset in research endeav-
ours. This means that researchers have to report
not only performance but also training time, energy
consumption, pre-training and fine-tuning require-
ments, and any other metrics that demonstrate the
model’s efficiency. Reporting training time and
energy consumption can help to identify resource-
intensive approaches to avoid or optimize them



later. Carbon dioxide equivalence helps to assess
the environmental impact of the research holisti-
cally. Ultimately, understanding and minimizing
resource consumption and reducing carbon emis-
sions promote the development of more sustainable
practices and making informed decisions towards
effective and efficient solutions.

In this study, we focus on Commonsense Rea-
soning and Question-Answering NLP tasks. Com-
monsense is a set of implicit pre-knowledge about
the everyday world. For example, it is common
knowledge that a refrigerator can be found in the
kitchen and that summer comes after spring. Com-
monsense reasoning requires human experience,
together with social, physical, temporal and spatial
information of everyday life. Learning and using
implicit knowledge for humans is an easy everyday
task, which makes their language concise yet pre-
cise. However, machines do not possess common
sense and are not able to learn such knowledge by
interacting with the environment. That makes the
Commonsense Question Answering (CSQA) task
one of the major goals in the Artificial Intelligence
(AD) community.

A way to teach models common sense and rea-
soning is through training them on a commonsense
data. The study conducted by (Lal et al., 2021)
introduced a new dataset for CSQA and fine-tuned
three LLMs to showcase the TellMeWhy dataset.
The authors fine-tuned and tested the performances
of T5 ((Raffel et al., 2020)), GPT 2 ((Radford et al.,
2019)) and UnifiedQA ((Khashabi et al., 2020)).
To assess the effect of data size, model parame-
ters and points mentioned above, our study simi-
larly explores the TS model and fine-tunes it on the
TellMeWhy dataset.

In this study, we focus on two aspects: 1) how
long does it take to train the T5 model and how we
can calculate and report the environmental impact;
2) how does knowledge infusion from Knowledge
Graphs (KG) influence the T5 model’s ability to
perform on CSQA task. Both goals are supposed to
be achieved by injecting the commonsense knowl-
edge from KG and fine-tuning the model on the
CSQA dataset.

2 Related Work

Many advocate making efficiency reports a routine
practice in deep learning research. Yet, when div-
ing deeper into the problem, it is clear that part
of the reason why very few researchers report effi-

ciency results is because of the absence of a stan-
dard of measurement. There are numerous metrics
available to assess the quality of the model, and
often times improved performance means a better
prediction ability. Some even argue that modern
Al does not actually learn and is just a result of
utilizing massive amounts of data and large compu-
tation power. Although sustainability in Al is still
in its infancy, there are already great studies being
held to bring awareness to the research commu-
nity. In this section, we mention works that have
been held to quantify and measure the carbon foot-
print of LLMs. By the end of the section, we will
also briefly mention studies in knowledge infusion,
which is also part of our study.

Multiple studies have already focused on en-
ergy consumption and carbon emissions account-
ing; some even propose methods for mitigating the
problem. Prioritizing the model’s efficiency over
performance is becoming more relevant as more
powerful machines are being developed. Several
factors contribute to the increase in training time di-
rectly or indirectly, the development of more robust
and powerful hardware, more complex machine
learning algorithms and approaches, data growth,
and social demand.

The study of Strubell et al. draws attention to
the potentially hazardous impacts of training large
models on our environment and proposes solutions
to mitigate the problem. As an example, they
trained a few state-of-the-art LLMs and put them
into perspective by quantifying carbon emissions
produced during training. Later they compared
the results with the emissions produced during a
flight and cloud computing prices. The work has
concluded that training BERT emits roughly the
same amount of carbon into the atmosphere as a
trans-American flight. The paper was one of the
first papers to draw attention to the environmental
impact done by LLMs. Additionally, the authors
provided standardized a reporting metrics for the
emissions produced during training by comparing
them to a more common metrics, like price and
flights. Such comparison is still being used fore
reporting in the recent papers.

The work of Wu et al. goes beyond measuring
carbon emissions during training. The study also
includes model development and inference phases.
The authors encourage not only to look at the train-
ing phase but to consider the machine learning
pipeline end-to-end, starting from data collection



until inference. They examine the ML development
cycle across the industry scale. Operational and
manufacturing carbon footprint is also taken into
account, by the end of the study the authors discuss
how hardware choices and optimization techniques
can help to reduce the carbon footprint of an Al
system.

Work conducted by Patterson et al. proved that
most of the companies and research groups try to
avoid pre-training and prefer executing fine-tuning
and inference stages. The study suggests that such
stages are as important as pre-training and should
not be neglected when it comes to carbon footprint
accounting. The study proved that the inference
can produce a significant amount of emissions as
well.

So far, we have looked into measures for energy
consumption and studies conducted on green Al
Now we will inspect KG-infusion methods, as it
is a promising approach for carbon footprint re-
duction by enabling hybrid or neuro-symbolic Al
According to Bauer et al. providing LLMs with
external knowledge enhances its ability to reason
on a downstream task, i.e. QA, summarization,
etc. Knowledge infusion enriches the model’s vo-
cabulary and allows it to "think out of the box".
Some works have already attempted to incorporate
commonsense knowledge into the BERT model to
enhance reading comprehension (Yang et al.), and
relation classification (Zhang et al.).

A recently conducted study by Lal et al. extends
their previous work on Commonsense QA. The au-
thors utilize COMET KG as an external knowledge
source and inject the knowledge into the LLM. As
a result, they observed an increase in performance.
However, none of the studies measure and report
the environmental impact of their work.

3 Experimental Setup
3.1 Dataset

3.1.1 Knowledge infusion

As external knowledge for our LLM, we combined
ConceptNet (Speer et al.) and ATOMIC (Sap et al.),
which are both large-scale Knowledge Graphs con-
taining information about events in everyday life.
Both KGs have to be pre-processed prior to being
fed into the LLM. In the scope of this study, we pre-
processed and verbalised only ConceptNet KG and
combine it with already pre-processed ATOMIC
KG Guan et al..

ConceptNet is constructed of multiple triplets

(S.,0,R.W)
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Figure 1: Transforming KG into a natural language
sentence.

ConceptNet | MLM dogs<extra_id_0>
+ATOMIC > cats<extra_id_1>——>
pets</s>

_, dogs and cats
are pets.

v
p — T5-smallbase
e C: Sandra got a job at
the zoo because she
TellMeWhy |~ loves animals.
Q: Why did Sandra
want to work at the

'
, A:Because she

> loves animals.

Figure 2: Study workflow. First step: Infusing T5-
small/-base with knowledge from Knowledge Graphs.
Second step: Fine-tuning model with injected knowl-
edge for QA task.

(Subject, Relation, Object) with corresponding re-
lation weight. We start by iterating over subjects
and sorting them based on their relationship weight.
Then we select the top 100 triplets with respect to
relation weight and transform them into sentences
using simple verbalization templates (Levy et al.),
see Figure 1. The combined pre-processed dataset
contains 1,174,267 sentences in the train set and
66,856 in the validation set. The dataset contains
physical, spatial, social, and temporal aspects of
daily life.

3.1.2 Fine-tuning

Following Lal et al. example, models are fine-tuned
on the TellMeWhy corpus, the largest Common-
sense QA dataset. It incorporates various stories,
30K open-ended questions, and free-form answers.
The provided short narratives describe why char-
acters performed certain actions. The answers can
be explicit and found in the narrative, as well as
implicit, answers that require external knowledge,
some intuitive knowledge about the world.

3.2 Methods

As mentioned earlier, injecting commonsense
knowledge from KG beforehand should prepare
a solid base for the fine-tuning step. Fine-tuning



is performed on the TellMeWhy dataset for Com-
monsense Question-Answering task, which results
in better rationalization and reasoning abilities.

Originally, TS was pre-trained on the large unla-
belled corpus, Colossal Clean Crawled Corpus (C4)
corpus (Raffel et al.) cleaned information from the
web. The web-crawled data consists of over 300M
sentences for various topics; hence, further train-
ing the model on commonsense knowledge data
might strengthen T5’s ability to form constructive
sequences and generate better reasoning. Step 1
is the continuation of T5’s original unsupervised
pre-training on the Masked Language Modelling
task (MLM). The words in encoded sentences are
masked with a 15% probability, together with the
reversed masks as labels they are fed into the net-
work. We maintained input and output in the same
fashion as the original pre-training. Due to the size
of this dataset, the knowledge infusion step runs
only for one epoch, more extended training seems
to lead to overfitting.

Once the knowledge infusion is completed, the
model is fine-tuned for the QA task. Encoded con-
text and question serve as input to produce the
predicted answer, which is then compared to the
reference answer. This step allows the model to
only concentrate on a specific NLP task.

We maintained the same parameters for the fine-
tuning phase as Lal et al.. We set the maximum
number of epochs to 50, with a learning rate of 5-e5
and a batch size of 16. Our experiments also run
until the validation loss does not improve for three
iterations. However, we set the maximum source
length to 255.

3.3 Models

In the scope of this study, we utilized T5-small and
T5-base models (Raffel et al.). TS5 is a transformer-
based model that can be used for multiple NLP
tasks without making any architectural changes in
contrast to other language models, due to the uni-
fied text-to-text format. Such architecture enables
the application of transfer learning techniques to
reduce the training cost. Both, the input and the
output, are string types. Task specifications are
added in the beginning and separated by the colon
from the input.

The T5-small version has 60 million, and T5-
base has 220 million parameters. T5-large with
11B parameters was computationally too expensive
for our servers; hence, it was not utilized in this

study.

4 Results

In the scope of our study, we conducted 6 experi-
ments, which will be further referred to as follows:

1. T5s IK: T5-small with injected knowledge
from KG

2. T5b IK: T5-base with injected knowledge
from KG

3. T5s FT: T5-small fine-tuned for QA task
4. T5b FT: T5-base fine-tuned for QA task

5. T5s IK+FT: T5-small with injected knowl-
edge from KG and fine-tuned for QA task

6. T5b IK+FT: T5-base with injected knowledge
from KG and fine-tuned for QA task

4.1 Performance Analysis

To evaluate the model’s performance, we utilized
the same metrics as Lal et al.. BLEURT (Sellam
et al.) and BLEU (Papineni et al.) scores are both
learned evaluation metrics for natural text genera-
tion based on BERT. Being trained on WMT human
annotations for the machine translation task, they
correlate well with human judgments. The scores
are generated based on the precision of tokens
of a candidate sentence to the reference. While
BertScore (Zhang et al.) uses only pre-trained con-
textual embeddings from BERT and matches words
between two sentences by cosine similarity.

We also measured cosine similarity between the
generated and the target answers and analysed the
number of unique words presented in answer vo-
cabulary that does not exist in context vocabulary.

Table 2 presents the model performance in var-
ious setups, the automatic evaluation provided on
the official TellMeWhy GitHub repository'. Based
on the results, we cannot prove that infusing T5
with commonsense knowledge from ConceptNet
and ATOMIC influences the model’s ability to rea-
son. This could be due to the large size of the C4
corpus, and, thus, KGs ConceptNet, and ATOMIC
failing to provide enough knowledge to teach the
network. However, we can conclude that the T5
model is inherently bad at commonsense reasoning,
due to the type of data it has been pre-trained on.

1https: //github.com/StonyBrookNLP/tellmewhy
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Experiment Convergence epoch BLEU RG-LF1 BLEURT BERTscore
Full Test Set
T5s FT 12 21.93 0.25 -0.412 0.501
T5s IK+FT 13 22.94 0.25 -0.374 0.513
T5b FT 6 24.43 0.26 -0.359 0.535
T5b IK+FT 6 24.57 0.26 -0.3514 0.5338
Lal et al. TS-base 30-50 24.53 0.24 -0.28 0.48
Implicit-Answer Questions
T5s FT 12 15.2 0.19 -0.618 0.429
TS5s IK+FT 13 15.32 0.19 -0.589 0.431
T5b FT 6 16.92 0.2 -0.58 0.452
T5b IK+FT 6 16.53 0.2 -0.577 0.4457
Lal et al. T5-base 30-50 16.31 0.17 -0.51 0.34

Table 2: Performance of models on the full test set and implicit answer questions in the test set using automatic

evaluation provided by Lal et al..

Yet, there is an observable difference in results
between T5s FT and T5s IK+FT across most of
the metrics. 75s IK+FT performed slightly better
than T5s FT. The difference in the BLEU score
is 1.01 and in BertScore is 2.4%, both are notice-
able differences, considering the evaluation is for
similar models and on the same dataset. We as-
sume that due to the smaller size of the T5-small
model, the significance of commonsense knowl-
edge from ConcentNet and ATOMIC was more
prominent. Compared to T5-base, T5-small seems
to gain more from the knowledge infusion step.
While for T5-base, ConceptNet and ATOMIC KGs
are too small to make a visible difference.

The BLEURT score demonstrates that for all
experiments, there exists a negative correlation
between predicted and reference answers. The
BLEURT and BLEU scores were specifically de-
signed to assess the quality of the machine trans-
lation; this could explain the insignificance of the
results. However, since BertScore only uses BERT
embeddings and calculates the cosine similarity
between two sentences, we observe a higher corre-
lation between the predicted and goal answers.

Similarly to Lal et al., models perform best when
the answer is explicitly given in the context. We
observed a slight performance increase for 75b
IK+FT compared to the 75 base results of Lal et al..
We anticipate that the ROUGE F-1 and BertScores
scores are higher in our experiments, compared to
that of Lal et al., because we set max_len_seq to
200, as this was the size of the longest token in our
case. However, we still came to the conclusion that
the most influence comes from fine-tuning step,

but it seems like knowledge infusion makes some
difference for smaller models.

It is worth noting that the comparable results in
our experiments were achieved with fewer epochs.
Lal et al. suggests that T5-base reaches the best per-
formance between epochs 30 and 50. However, we
could see that longer training does not add much to
the performance and incorporating EarlyStopping
is necessary to prevent not only overfitting but also
resource over usage.

The semantic similarity between the answers
increases as the training time and size of a model
also increase, but the difference is not significant.
Surprisingly, infusing models with commonsense
knowledge and fine-tuning on QA resulted in the
model using more TellMeWhy context vocabulary
rather than the model that was just fine-tuned on

QA.

4.2 Efficiency analysis

Some studies provide great solutions to facilitate
carbon emissions and energy consumption calcu-
lation. Anthony et al. developed a library that
accesses information about hardware and calcu-
lates the estimates after the first epoch. Their
Carbontracker gives information about approxi-
mate carbon emissions in grams, energy consump-
tion (KW/h), and an equivalent number of kilo-
metres the car would have driven producing the
same amount of emissions. Alternatively, Lacoste
et al. developed a tool that can be used after ex-
ecuting experiments. By providing training time,
location, and hardware type, you can estimate pro-
duced C'O9 emissions and also how much would



Experiment Overall time (hr) Energy use (KWh) COseq. (kg) Travel by car (km)
Step 1 (Knowledge Infusion)
T5s IK 4.438 3.53 1.04 8.62
T5b IK 13.969 10.72 3.15 26.18
Step 2 (Fine-tuning)
T5s FT 1.981 1.52 0.45 3.72
T5s IK+FT 6.612 5.19 1.53 12.68
T5b FT 3.793 2.74 0.81 6.7
T5b IK+FT 17.718 13.42 3.95 32.80

Table 3: Energy and emissions calculated by Carbontracker (Anthony et al.).

have been emitted if the experiment was held in a
different datacenter.

In our study, we embedded Carbontracker (An-
thony et al.) into the training loop, which approx-
imates carbon emissions and power usage for the
whole training after 1 epoch. Eq. (1) is used to
calculate the power usage of an experiment p;. The
average GPU power draw p, is usually obtained
by querying the NVIDIA System Management In-
terface throughout the run. The value is then mul-
tiplied by the number of GPUs g and the Power
Usage Effectiveness Coefficient (PUE) (1.55 for
Germany?).

. 1.55 *1égog*pg 0

The number of emissions and power consump-
tion depends on the data centre location and the
local power grid it is connected to. The same ex-
periments executed in two different locations may
have different environmental impacts. As of 2022,
the power sector emissions in Germany were ap-
proximately 380 grams of carbon dioxide produced
per kilowatt-hours (¢COz/ KW h) for generated
electricity®. To get the carbon emissions equiva-
lence estimation (in kg per kilowatt-hour), emis-
sions per hour are multiplied by the experiment’s
power usage, as shown in Eq. (2).

COze = 0.380 * p; 2)

We report the overall time it took to execute one
experiment, the energy use, carbon dioxide emis-
sions equivalence, and the equivalence in travel by
car. All experiments in this study were performed
on 2 NVIDIA RTX A5000 GPU blocks with 24GB
memory each.

thtps://www.statista.com/statistics/1229367/

data-center-average-annual-pue-worldwide/
3https://www.nowtricity.com/country/germany/

Table 3 presents the training time of each ex-
periment and the corresponding efficiency metrics
calculated by Carbontracker. Since we set an early
stopping during the fine-tuning step, none of the ex-
periments reached the maximum number of epochs.
T5s FT ran until 12, while T5s IK+FT until 13, both
T5b FT and T5b IK+FT stopped after 6 epochs.
This fact demonstrates the importance of early stop-
ping in research to prevent unnecessary resource
waste and energy consumption when the models
do not need long training.

Clearly, the knowledge infusion phase required a
much longer training time, the difference between
minor and base variants is also significant, with
T5-base requiring 3 times more hours to complete
1 epoch. Having a look at the fine-tuning stage,
we can see that the difference between 75s FT and
T5b FT is around 2 hours, but 75b FT outperforms
the former. In our case, infusing knowledge and
fine-tuning T5-small did not give a desirable per-
formance, hence T5-base is preferred even with a
longer training time.

Looking at 75b FT and T5b IK+FT, we noticed
that the latter outperforms the first one only by a
mere percentage based on BLEU, F1 and BLEURT
scores. On the contrary, BERTscore for 75b FT has
been consistently higher than that for 756 IK+FT.

5 Conclusion

Numerous factors could have influenced the out-
come of our study. We assume that among these
factors, the nature of the data that we infused into
our model influenced the most. While sorting the
KG based on relation weight and extracting top
N triples seems like a straightforward approach,
it yields suboptimal results. The main limitation
lies in the lack of diversity within the dataset, with
many sentences being semantically close and hav-
ing limited number of relationship types. The two
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main conclusions from our study include:

* More sophisticated approaches to linearize
KGs in a meaningful way are required. The
resulting dataset should be rich in terms of
semantics and relationship types.

* When looking for a balance between perfor-
mance and efficiency, 75b FT seems like a
more reasonable choice.

Our study showed that it is important to con-
sider a model not solely based on one parameter.
Focusing only on performance could lead to un-
controllable energy waste, while trying to reduce
energy consumption too much can lead to a weak
model that is less sustainable in the long run. The
balance between the two is the key to the most
optimal solution.

Tracking carbon footprint at every stage of the
study is an extremely challenging task and has
much more room for improvement regarding the
report standards. To get the full picture, one might
also need to know how much it takes to build hard-
ware, transport them to the data centre, as well as
consider the lighting in the room, etc. Nevertheless,
it is important to be aware of the factors that im-
pact the quantity of carbon emissions produced by
research. As we have seen, stages like fine-tuning
can also produce an observable amount of emis-
sions. Such a step towards a positive change can
also greatly help follow-up studies in the field.

Limitations

Our study includes several limitations that couldn’t
been addressed in this study and could be an idea
for future work. Firstly, the Knowledge Infusion
part of our study did not yield desirable results due
to the poor KG linearization strategy. This stage
also took the most time to be executed and con-
sumed the most computational power. Secondly,
Due to server limitations, we couldn’t perform any
experiments on T5-large model, which restricts us
from making bolder statements on LLM perfor-
mance on the CSQA task. In this work, we wanted
to draw attention to the importance of considering
efficiency results together with the performance
results of the study.

Ethics Statement

Our research focuses on accounting and reporting
the environmental impact of LLMs. Such studies

raise concerns about transparency and accountabil-
ity of Deep Learning approaches. It is crucial that
the processes and algorithms used in any study are
transparent and open to scrutiny. We commit to
making our methods and data publicly available for
review and validation by the broader community.

While the benefits of this research field are clear,
it is essential to acknowledge and address poten-
tial ethical considerations. Calculating the exact
amount of emitted carbon into the atmosphere
presents a challenging task that requires acquiring
server production and transportation information,
as well as considering local energy grid and its fuel
type. Furthermore, we should also scrutinise the
Deep Learning model exploitation and life-cycle
periods to get a clearer picture of its environmental
impact. Hence, this field of study still requires ex-
tensive research with its potential positive impact
on the research community.
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