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Abstract

Human-produced emissions are growing at001
an alarming rate, causing already observable002
changes in the climate and environment in gen-003
eral. Each year global carbon dioxide emis-004
sions hit a new record, and it is reported that005
0.5% of total US greenhouse gas emissions are006
attributed to data centres as of 2021 ((Siddik007
et al., 2021)). The release of ChatGPT in late008
2022 sparked social interest in Large Language009
Models (LLMs), the new generation of Lan-010
guage Models with numerous parameters and011
trained on massive amounts of data. Currently,012
numerous companies are releasing products fea-013
turing various LLMs, with many more models014
in development and awaiting release. Deep015
Learning research is a competitive field, with016
only models that reach top performance attract-017
ing attention and being utilized. Hence, achiev-018
ing better accuracy and results is often the first019
priority, while the model’s efficiency and the en-020
vironmental impact of the study are neglected.021
However, LLMs demand substantial computa-022
tional resources and are very costly to train,023
both financially and environmentally. It be-024
comes essential to raise awareness and promote025
conscious decisions about algorithmic and hard-026
ware choices. Providing information on train-027
ing time, the approximate carbon dioxide emis-028
sions and power consumption would assist fu-029
ture studies in making necessary adjustments030
and determining the compatibility of available031
computational resources with model require-032
ments. In this study, we infused T5 LLM with033
external knowledge and fine-tuned the model034
for Question-Answering task. Furthermore, we035
calculated and reported the approximate envi-036
ronmental impact for both steps. The findings037
demonstrate that the smaller models may not038
always be sustainable options, and increased039
training does not always imply better perfor-040
mance. The most optimal outcome is achieved041
by carefully considering both performance and042
efficiency factors.043

Model Parameters Estimated
emissions

Equivalence
in # of flights

BERT 110M 1.59 1.9
BLOOM 176B 25 30

OPT 175B 75 90
Gopher 280B 380 456
GPT-3 175B 500 600

Table 1: The first column shows state-of-the-art LLMs,
along with the corresponding number of parameters
in the second column and emissions produced during
training in metric tons CO2eq in the third column. The
last column represents the equivalence in the number of
round flights between London and New York.

1 Introduction 044

With the growing problem of climate change, 045

LLMs can potentially accelerate that process by 046

contributing to greenhouse gas emissions. LLMs 047

with billions of parameters may require several 048

weeks of training time, and this duration is ex- 049

pected to increase further with the emergence of 050

new models ((Scao et al., 2022; Radford et al., 051

2019; Brown et al., 2020)). Table 1 demonstrates 052

the most recent LLMs released by famous research 053

labs, the number of parameters of each model, the 054

estimated emissions in net metric tons CO2eq and 055

the equivalence in flights. The amount of pro- 056

duced emissions doubles if taken into consideration 057

the manufacturing of computers. Considering the 058

computational expenses involved, it is only essen- 059

tial to prevent executing identical experiments and 060

adopt a sustainability mindset in research endeav- 061

ours. This means that researchers have to report 062

not only performance but also training time, energy 063

consumption, pre-training and fine-tuning require- 064

ments, and any other metrics that demonstrate the 065

model’s efficiency. Reporting training time and 066

energy consumption can help to identify resource- 067

intensive approaches to avoid or optimize them 068
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later. Carbon dioxide equivalence helps to assess069

the environmental impact of the research holisti-070

cally. Ultimately, understanding and minimizing071

resource consumption and reducing carbon emis-072

sions promote the development of more sustainable073

practices and making informed decisions towards074

effective and efficient solutions.075

In this study, we focus on Commonsense Rea-076

soning and Question-Answering NLP tasks. Com-077

monsense is a set of implicit pre-knowledge about078

the everyday world. For example, it is common079

knowledge that a refrigerator can be found in the080

kitchen and that summer comes after spring. Com-081

monsense reasoning requires human experience,082

together with social, physical, temporal and spatial083

information of everyday life. Learning and using084

implicit knowledge for humans is an easy everyday085

task, which makes their language concise yet pre-086

cise. However, machines do not possess common087

sense and are not able to learn such knowledge by088

interacting with the environment. That makes the089

Commonsense Question Answering (CSQA) task090

one of the major goals in the Artificial Intelligence091

(AI) community.092

A way to teach models common sense and rea-093

soning is through training them on a commonsense094

data. The study conducted by (Lal et al., 2021)095

introduced a new dataset for CSQA and fine-tuned096

three LLMs to showcase the TellMeWhy dataset.097

The authors fine-tuned and tested the performances098

of T5 ((Raffel et al., 2020)), GPT 2 ((Radford et al.,099

2019)) and UnifiedQA ((Khashabi et al., 2020)).100

To assess the effect of data size, model parame-101

ters and points mentioned above, our study simi-102

larly explores the T5 model and fine-tunes it on the103

TellMeWhy dataset.104

In this study, we focus on two aspects: 1) how105

long does it take to train the T5 model and how we106

can calculate and report the environmental impact;107

2) how does knowledge infusion from Knowledge108

Graphs (KG) influence the T5 model’s ability to109

perform on CSQA task. Both goals are supposed to110

be achieved by injecting the commonsense knowl-111

edge from KG and fine-tuning the model on the112

CSQA dataset.113

2 Related Work114

Many advocate making efficiency reports a routine115

practice in deep learning research. Yet, when div-116

ing deeper into the problem, it is clear that part117

of the reason why very few researchers report effi-118

ciency results is because of the absence of a stan- 119

dard of measurement. There are numerous metrics 120

available to assess the quality of the model, and 121

often times improved performance means a better 122

prediction ability. Some even argue that modern 123

AI does not actually learn and is just a result of 124

utilizing massive amounts of data and large compu- 125

tation power. Although sustainability in AI is still 126

in its infancy, there are already great studies being 127

held to bring awareness to the research commu- 128

nity. In this section, we mention works that have 129

been held to quantify and measure the carbon foot- 130

print of LLMs. By the end of the section, we will 131

also briefly mention studies in knowledge infusion, 132

which is also part of our study. 133

Multiple studies have already focused on en- 134

ergy consumption and carbon emissions account- 135

ing; some even propose methods for mitigating the 136

problem. Prioritizing the model’s efficiency over 137

performance is becoming more relevant as more 138

powerful machines are being developed. Several 139

factors contribute to the increase in training time di- 140

rectly or indirectly, the development of more robust 141

and powerful hardware, more complex machine 142

learning algorithms and approaches, data growth, 143

and social demand. 144

The study of Strubell et al. draws attention to 145

the potentially hazardous impacts of training large 146

models on our environment and proposes solutions 147

to mitigate the problem. As an example, they 148

trained a few state-of-the-art LLMs and put them 149

into perspective by quantifying carbon emissions 150

produced during training. Later they compared 151

the results with the emissions produced during a 152

flight and cloud computing prices. The work has 153

concluded that training BERT emits roughly the 154

same amount of carbon into the atmosphere as a 155

trans-American flight. The paper was one of the 156

first papers to draw attention to the environmental 157

impact done by LLMs. Additionally, the authors 158

provided standardized a reporting metrics for the 159

emissions produced during training by comparing 160

them to a more common metrics, like price and 161

flights. Such comparison is still being used fore 162

reporting in the recent papers. 163

The work of Wu et al. goes beyond measuring 164

carbon emissions during training. The study also 165

includes model development and inference phases. 166

The authors encourage not only to look at the train- 167

ing phase but to consider the machine learning 168

pipeline end-to-end, starting from data collection 169
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until inference. They examine the ML development170

cycle across the industry scale. Operational and171

manufacturing carbon footprint is also taken into172

account, by the end of the study the authors discuss173

how hardware choices and optimization techniques174

can help to reduce the carbon footprint of an AI175

system.176

Work conducted by Patterson et al. proved that177

most of the companies and research groups try to178

avoid pre-training and prefer executing fine-tuning179

and inference stages. The study suggests that such180

stages are as important as pre-training and should181

not be neglected when it comes to carbon footprint182

accounting. The study proved that the inference183

can produce a significant amount of emissions as184

well.185

So far, we have looked into measures for energy186

consumption and studies conducted on green AI.187

Now we will inspect KG-infusion methods, as it188

is a promising approach for carbon footprint re-189

duction by enabling hybrid or neuro-symbolic AI.190

According to Bauer et al. providing LLMs with191

external knowledge enhances its ability to reason192

on a downstream task, i.e. QA, summarization,193

etc. Knowledge infusion enriches the model’s vo-194

cabulary and allows it to "think out of the box".195

Some works have already attempted to incorporate196

commonsense knowledge into the BERT model to197

enhance reading comprehension (Yang et al.), and198

relation classification (Zhang et al.).199

A recently conducted study by Lal et al. extends200

their previous work on Commonsense QA. The au-201

thors utilize COMET KG as an external knowledge202

source and inject the knowledge into the LLM. As203

a result, they observed an increase in performance.204

However, none of the studies measure and report205

the environmental impact of their work.206

3 Experimental Setup207

3.1 Dataset208

3.1.1 Knowledge infusion209

As external knowledge for our LLM, we combined210

ConceptNet (Speer et al.) and ATOMIC (Sap et al.),211

which are both large-scale Knowledge Graphs con-212

taining information about events in everyday life.213

Both KGs have to be pre-processed prior to being214

fed into the LLM. In the scope of this study, we pre-215

processed and verbalised only ConceptNet KG and216

combine it with already pre-processed ATOMIC217

KG Guan et al..218

ConceptNet is constructed of multiple triplets219

Figure 1: Transforming KG into a natural language
sentence.

Figure 2: Study workflow. First step: Infusing T5-
small/-base with knowledge from Knowledge Graphs.
Second step: Fine-tuning model with injected knowl-
edge for QA task.

(Subject, Relation, Object) with corresponding re- 220

lation weight. We start by iterating over subjects 221

and sorting them based on their relationship weight. 222

Then we select the top 100 triplets with respect to 223

relation weight and transform them into sentences 224

using simple verbalization templates (Levy et al.), 225

see Figure 1. The combined pre-processed dataset 226

contains 1,174,267 sentences in the train set and 227

66,856 in the validation set. The dataset contains 228

physical, spatial, social, and temporal aspects of 229

daily life. 230

3.1.2 Fine-tuning 231

Following Lal et al. example, models are fine-tuned 232

on the TellMeWhy corpus, the largest Common- 233

sense QA dataset. It incorporates various stories, 234

30K open-ended questions, and free-form answers. 235

The provided short narratives describe why char- 236

acters performed certain actions. The answers can 237

be explicit and found in the narrative, as well as 238

implicit, answers that require external knowledge, 239

some intuitive knowledge about the world. 240

3.2 Methods 241

As mentioned earlier, injecting commonsense 242

knowledge from KG beforehand should prepare 243

a solid base for the fine-tuning step. Fine-tuning 244

3



is performed on the TellMeWhy dataset for Com-245

monsense Question-Answering task, which results246

in better rationalization and reasoning abilities.247

Originally, T5 was pre-trained on the large unla-248

belled corpus, Colossal Clean Crawled Corpus (C4)249

corpus (Raffel et al.) cleaned information from the250

web. The web-crawled data consists of over 300M251

sentences for various topics; hence, further train-252

ing the model on commonsense knowledge data253

might strengthen T5’s ability to form constructive254

sequences and generate better reasoning. Step 1255

is the continuation of T5’s original unsupervised256

pre-training on the Masked Language Modelling257

task (MLM). The words in encoded sentences are258

masked with a 15% probability, together with the259

reversed masks as labels they are fed into the net-260

work. We maintained input and output in the same261

fashion as the original pre-training. Due to the size262

of this dataset, the knowledge infusion step runs263

only for one epoch, more extended training seems264

to lead to overfitting.265

Once the knowledge infusion is completed, the266

model is fine-tuned for the QA task. Encoded con-267

text and question serve as input to produce the268

predicted answer, which is then compared to the269

reference answer. This step allows the model to270

only concentrate on a specific NLP task.271

We maintained the same parameters for the fine-272

tuning phase as Lal et al.. We set the maximum273

number of epochs to 50, with a learning rate of 5-e5274

and a batch size of 16. Our experiments also run275

until the validation loss does not improve for three276

iterations. However, we set the maximum source277

length to 255.278

3.3 Models279

In the scope of this study, we utilized T5-small and280

T5-base models (Raffel et al.). T5 is a transformer-281

based model that can be used for multiple NLP282

tasks without making any architectural changes in283

contrast to other language models, due to the uni-284

fied text-to-text format. Such architecture enables285

the application of transfer learning techniques to286

reduce the training cost. Both, the input and the287

output, are string types. Task specifications are288

added in the beginning and separated by the colon289

from the input.290

The T5-small version has 60 million, and T5-291

base has 220 million parameters. T5-large with292

11B parameters was computationally too expensive293

for our servers; hence, it was not utilized in this294

study. 295

4 Results 296

In the scope of our study, we conducted 6 experi- 297

ments, which will be further referred to as follows: 298

1. T5s IK: T5-small with injected knowledge 299

from KG 300

2. T5b IK: T5-base with injected knowledge 301

from KG 302

3. T5s FT: T5-small fine-tuned for QA task 303

4. T5b FT: T5-base fine-tuned for QA task 304

5. T5s IK+FT: T5-small with injected knowl- 305

edge from KG and fine-tuned for QA task 306

6. T5b IK+FT: T5-base with injected knowledge 307

from KG and fine-tuned for QA task 308

4.1 Performance Analysis 309

To evaluate the model’s performance, we utilized 310

the same metrics as Lal et al.. BLEURT (Sellam 311

et al.) and BLEU (Papineni et al.) scores are both 312

learned evaluation metrics for natural text genera- 313

tion based on BERT. Being trained on WMT human 314

annotations for the machine translation task, they 315

correlate well with human judgments. The scores 316

are generated based on the precision of tokens 317

of a candidate sentence to the reference. While 318

BertScore (Zhang et al.) uses only pre-trained con- 319

textual embeddings from BERT and matches words 320

between two sentences by cosine similarity. 321

We also measured cosine similarity between the 322

generated and the target answers and analysed the 323

number of unique words presented in answer vo- 324

cabulary that does not exist in context vocabulary. 325

Table 2 presents the model performance in var- 326

ious setups, the automatic evaluation provided on 327

the official TellMeWhy GitHub repository1. Based 328

on the results, we cannot prove that infusing T5 329

with commonsense knowledge from ConceptNet 330

and ATOMIC influences the model’s ability to rea- 331

son. This could be due to the large size of the C4 332

corpus, and, thus, KGs ConceptNet, and ATOMIC 333

failing to provide enough knowledge to teach the 334

network. However, we can conclude that the T5 335

model is inherently bad at commonsense reasoning, 336

due to the type of data it has been pre-trained on. 337

1https://github.com/StonyBrookNLP/tellmewhy
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Experiment Convergence epoch BLEU RG-L F1 BLEURT BERTscore
Full Test Set

T5s FT 12 21.93 0.25 -0.412 0.501
T5s IK+FT 13 22.94 0.25 -0.374 0.513

T5b FT 6 24.43 0.26 -0.359 0.535
T5b IK+FT 6 24.57 0.26 -0.3514 0.5338

Lal et al. T5-base 30-50 24.53 0.24 -0.28 0.48
Implicit-Answer Questions

T5s FT 12 15.2 0.19 -0.618 0.429
T5s IK+FT 13 15.32 0.19 -0.589 0.431

T5b FT 6 16.92 0.2 -0.58 0.452
T5b IK+FT 6 16.53 0.2 -0.577 0.4457

Lal et al. T5-base 30-50 16.31 0.17 -0.51 0.34

Table 2: Performance of models on the full test set and implicit answer questions in the test set using automatic
evaluation provided by Lal et al..

Yet, there is an observable difference in results338

between T5s FT and T5s IK+FT across most of339

the metrics. T5s IK+FT performed slightly better340

than T5s FT. The difference in the BLEU score341

is 1.01 and in BertScore is 2.4%, both are notice-342

able differences, considering the evaluation is for343

similar models and on the same dataset. We as-344

sume that due to the smaller size of the T5-small345

model, the significance of commonsense knowl-346

edge from ConcentNet and ATOMIC was more347

prominent. Compared to T5-base, T5-small seems348

to gain more from the knowledge infusion step.349

While for T5-base, ConceptNet and ATOMIC KGs350

are too small to make a visible difference.351

The BLEURT score demonstrates that for all352

experiments, there exists a negative correlation353

between predicted and reference answers. The354

BLEURT and BLEU scores were specifically de-355

signed to assess the quality of the machine trans-356

lation; this could explain the insignificance of the357

results. However, since BertScore only uses BERT358

embeddings and calculates the cosine similarity359

between two sentences, we observe a higher corre-360

lation between the predicted and goal answers.361

Similarly to Lal et al., models perform best when362

the answer is explicitly given in the context. We363

observed a slight performance increase for T5b364

IK+FT compared to the T5 base results of Lal et al..365

We anticipate that the ROUGE F-1 and BertScores366

scores are higher in our experiments, compared to367

that of Lal et al., because we set max_len_seq to368

200, as this was the size of the longest token in our369

case. However, we still came to the conclusion that370

the most influence comes from fine-tuning step,371

but it seems like knowledge infusion makes some 372

difference for smaller models. 373

It is worth noting that the comparable results in 374

our experiments were achieved with fewer epochs. 375

Lal et al. suggests that T5-base reaches the best per- 376

formance between epochs 30 and 50. However, we 377

could see that longer training does not add much to 378

the performance and incorporating EarlyStopping 379

is necessary to prevent not only overfitting but also 380

resource over usage. 381

The semantic similarity between the answers 382

increases as the training time and size of a model 383

also increase, but the difference is not significant. 384

Surprisingly, infusing models with commonsense 385

knowledge and fine-tuning on QA resulted in the 386

model using more TellMeWhy context vocabulary 387

rather than the model that was just fine-tuned on 388

QA. 389

4.2 Efficiency analysis 390

Some studies provide great solutions to facilitate 391

carbon emissions and energy consumption calcu- 392

lation. Anthony et al. developed a library that 393

accesses information about hardware and calcu- 394

lates the estimates after the first epoch. Their 395

Carbontracker gives information about approxi- 396

mate carbon emissions in grams, energy consump- 397

tion (KW/h), and an equivalent number of kilo- 398

metres the car would have driven producing the 399

same amount of emissions. Alternatively, Lacoste 400

et al. developed a tool that can be used after ex- 401

ecuting experiments. By providing training time, 402

location, and hardware type, you can estimate pro- 403

duced CO2 emissions and also how much would 404
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Experiment Overall time (hr) Energy use (KWh) CO2eq. (kg) Travel by car (km)
Step 1 (Knowledge Infusion)

T5s IK 4.438 3.53 1.04 8.62
T5b IK 13.969 10.72 3.15 26.18

Step 2 (Fine-tuning)
T5s FT 1.981 1.52 0.45 3.72

T5s IK+FT 6.612 5.19 1.53 12.68
T5b FT 3.793 2.74 0.81 6.7

T5b IK+FT 17.718 13.42 3.95 32.80

Table 3: Energy and emissions calculated by Carbontracker (Anthony et al.).

have been emitted if the experiment was held in a405

different datacenter.406

In our study, we embedded Carbontracker (An-407

thony et al.) into the training loop, which approx-408

imates carbon emissions and power usage for the409

whole training after 1 epoch. Eq. (1) is used to410

calculate the power usage of an experiment pt. The411

average GPU power draw pg is usually obtained412

by querying the NVIDIA System Management In-413

terface throughout the run. The value is then mul-414

tiplied by the number of GPUs g and the Power415

Usage Effectiveness Coefficient (PUE) (1.55 for416

Germany2).417

pt =
1.55 ∗ t ∗ g ∗ pg

1000
(1)418

The number of emissions and power consump-419

tion depends on the data centre location and the420

local power grid it is connected to. The same ex-421

periments executed in two different locations may422

have different environmental impacts. As of 2022,423

the power sector emissions in Germany were ap-424

proximately 380 grams of carbon dioxide produced425

per kilowatt-hours (gCO2/KWh) for generated426

electricity3. To get the carbon emissions equiva-427

lence estimation (in kg per kilowatt-hour), emis-428

sions per hour are multiplied by the experiment’s429

power usage, as shown in Eq. (2).430

CO2e = 0.380 ∗ pt (2)431

We report the overall time it took to execute one432

experiment, the energy use, carbon dioxide emis-433

sions equivalence, and the equivalence in travel by434

car. All experiments in this study were performed435

on 2 NVIDIA RTX A5000 GPU blocks with 24GB436

memory each.437

2https://www.statista.com/statistics/1229367/
data-center-average-annual-pue-worldwide/

3https://www.nowtricity.com/country/germany/

Table 3 presents the training time of each ex- 438

periment and the corresponding efficiency metrics 439

calculated by Carbontracker. Since we set an early 440

stopping during the fine-tuning step, none of the ex- 441

periments reached the maximum number of epochs. 442

T5s FT ran until 12, while T5s IK+FT until 13, both 443

T5b FT and T5b IK+FT stopped after 6 epochs. 444

This fact demonstrates the importance of early stop- 445

ping in research to prevent unnecessary resource 446

waste and energy consumption when the models 447

do not need long training. 448

Clearly, the knowledge infusion phase required a 449

much longer training time, the difference between 450

minor and base variants is also significant, with 451

T5-base requiring 3 times more hours to complete 452

1 epoch. Having a look at the fine-tuning stage, 453

we can see that the difference between T5s FT and 454

T5b FT is around 2 hours, but T5b FT outperforms 455

the former. In our case, infusing knowledge and 456

fine-tuning T5-small did not give a desirable per- 457

formance, hence T5-base is preferred even with a 458

longer training time. 459

Looking at T5b FT and T5b IK+FT, we noticed 460

that the latter outperforms the first one only by a 461

mere percentage based on BLEU, F1 and BLEURT 462

scores. On the contrary, BERTscore for T5b FT has 463

been consistently higher than that for T5b IK+FT. 464

5 Conclusion 465

Numerous factors could have influenced the out- 466

come of our study. We assume that among these 467

factors, the nature of the data that we infused into 468

our model influenced the most. While sorting the 469

KG based on relation weight and extracting top 470

N triples seems like a straightforward approach, 471

it yields suboptimal results. The main limitation 472

lies in the lack of diversity within the dataset, with 473

many sentences being semantically close and hav- 474

ing limited number of relationship types. The two 475
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main conclusions from our study include:476

• More sophisticated approaches to linearize477

KGs in a meaningful way are required. The478

resulting dataset should be rich in terms of479

semantics and relationship types.480

• When looking for a balance between perfor-481

mance and efficiency, T5b FT seems like a482

more reasonable choice.483

Our study showed that it is important to con-484

sider a model not solely based on one parameter.485

Focusing only on performance could lead to un-486

controllable energy waste, while trying to reduce487

energy consumption too much can lead to a weak488

model that is less sustainable in the long run. The489

balance between the two is the key to the most490

optimal solution.491

Tracking carbon footprint at every stage of the492

study is an extremely challenging task and has493

much more room for improvement regarding the494

report standards. To get the full picture, one might495

also need to know how much it takes to build hard-496

ware, transport them to the data centre, as well as497

consider the lighting in the room, etc. Nevertheless,498

it is important to be aware of the factors that im-499

pact the quantity of carbon emissions produced by500

research. As we have seen, stages like fine-tuning501

can also produce an observable amount of emis-502

sions. Such a step towards a positive change can503

also greatly help follow-up studies in the field.504

Limitations505

Our study includes several limitations that couldn’t506

been addressed in this study and could be an idea507

for future work. Firstly, the Knowledge Infusion508

part of our study did not yield desirable results due509

to the poor KG linearization strategy. This stage510

also took the most time to be executed and con-511

sumed the most computational power. Secondly,512

Due to server limitations, we couldn’t perform any513

experiments on T5-large model, which restricts us514

from making bolder statements on LLM perfor-515

mance on the CSQA task. In this work, we wanted516

to draw attention to the importance of considering517

efficiency results together with the performance518

results of the study.519

Ethics Statement520

Our research focuses on accounting and reporting521

the environmental impact of LLMs. Such studies522

raise concerns about transparency and accountabil- 523

ity of Deep Learning approaches. It is crucial that 524

the processes and algorithms used in any study are 525

transparent and open to scrutiny. We commit to 526

making our methods and data publicly available for 527

review and validation by the broader community. 528

While the benefits of this research field are clear, 529

it is essential to acknowledge and address poten- 530

tial ethical considerations. Calculating the exact 531

amount of emitted carbon into the atmosphere 532

presents a challenging task that requires acquiring 533

server production and transportation information, 534

as well as considering local energy grid and its fuel 535

type. Furthermore, we should also scrutinise the 536

Deep Learning model exploitation and life-cycle 537

periods to get a clearer picture of its environmental 538

impact. Hence, this field of study still requires ex- 539

tensive research with its potential positive impact 540

on the research community. 541
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