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Abstract
Goodness-of-fit testing, a classical statistical tool,
has been extensively explored in the batch setting,
where the sample size is predetermined. However,
practitioners often prefer methods that adapt to
the complexity of a problem rather than fixing the
sample size beforehand. Classical batch tests are
generally unsuitable for streaming data, as valid
inference after data peeking requires multiple test-
ing corrections, resulting in reduced statistical
power. To address this issue, we delve into the de-
sign of consistent sequential goodness-of-fit tests.
Following the principle of testing by betting, we
reframe this task as selecting a sequence of payoff
functions that maximize the wealth of a fictitious
bettor, betting against the null in a repeated game.
We conduct experiments to demonstrate the adapt-
ability of our sequential test across varying diffi-
culty levels of problems while maintaining control
over type-I errors.

1. Introduction
Goodness-of-fit tests are fundamental tools in statistical
analysis, dating back to the Kolmogorov–Smirnov test (Kol-
mogorov, 1933; Smirnov, 1948). Given observations Z sam-
pled from the distribution q, we aim to test the null hypothe-
sis that q matches the reference or target distribution p. Tra-
ditional goodness-of-fit measures, such as the Kolmogorov–
Smirnov statistic (Kolmogorov, 1933; Smirnov, 1948) and
Cramér–von Mises criterion, are primarily applicable to uni-
variate random variables. Gorham and Mackey propose the
Stein discrepancy (Gorham & Mackey, 2015), a measure of
sample quality relative to a target. This measure is a maxi-
mum discrepancy between empirical sample expectations
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and target expectations over a large class of test functions.
It is constructed to have zero expectation over the target
distribution through a Stein operator, which solely depends
on the derivative of the log p. Kernel Stein Discrepancy
(KSD) has gained substantial attention in non-parametric
goodness-of-fit testing (Liu et al., 2016; Chwialkowski et al.,
2016; Jitkrittum et al., 2017; Baum et al., 2023; Liu et al.,
2023).

In the existing literature, significant attention has been de-
voted to batch testing, primarily when dealing with predeter-
mined sample sizes. When the sample distribution deviates
from the target, the necessary sample size for detecting
such discrepancies is not known a priori. In cases where
test results show promise but remain inconclusive, such as
when a p-value slightly exceeds a chosen significance level,
gathering additional data and repeating the study becomes
necessary. Traditional batch tests are not designed to deal
with these challenges. Therefore, this paper focuses on se-
quential tests that facilitate the scrutiny of observed data,
enabling the decision to stop and reject the null hypothesis
or continue with data collection.

Problem Setup. Suppose there is a continuous stream of
data denoted as {Zt}t≥1 ⊂ Z , where Zt

iid∼ q. Our objective
is to investigate whether the distribution q aligns with a
known reference or target distribution p. According to our
formulation, the target distribution p is assumed to be known
only up to a normalization constant. We also aim to design
sequential tests for the following hypotheses:

H0 : Zt
iid∼ q, t ≥ 1 and q = p, (1a)

H1 : Zt
iid∼ q, t ≥ 1 and q ̸= p. (1b)

Following the “test of power one” framework (Darling &
Robbins, 1968), we define a level-α sequential test as a
mapping Φ : ∪∞

t=1Zt → {0, 1} that satisfies the formula:

PH0(∃ t ≥ 1 : Φ(Z1, . . . , Zt) = 1) ≤ α. (2)

The output 0 stands for “do not reject the null yet and con-
tinue sampling,” while 1 means “reject the null and stop.”
Additionally, defining the stopping time τ := inf{t ≥ 1 :
Φ(Z1, . . . , Zt) = 1} as the first time the test outputs 1, a
level-α sequential test must satisfy the formula:

PH0(τ < ∞) ≤ α. (3)

1



Sequential Kernel Goodness-of-fit Testing

We highlight the primary limitations of existing tests that
our new method addresses.

Limitations of Corrected Batch Tests. Using batch tests
without corrections for multiple testing results in an in-
flated false alarm rate under continuous monitoring (see
Appendix A.1). Hence, naı̈ve Bonferroni corrections restore
type-I error control but generally result in low-power tests.
As a result, directly designing sequential tests, without batch
test correction, is necessary. Therefore, we perform valid
sequential goodness-of-fit tests for target density function
p(x) ∝ 1/(1 + x2) and Zt = βXt + (1 − β)Yt, where
Xt

i.i.d.∼ N (0, 1) and Yt
i.i.d.∼ p are independent. We con-

sider 11 β: β ∈ {0.5, 0.55, . . . , 1.0} values, and for each β
we repeat the simulation 100 times. We use Gaussian ker-
nel k(x, y) = exp(− |x− y|2 /2) for all testing procedures.
In this simulation, we compare two goodness-of-fit testing
approaches:

1. KSD-based SKGT proposed in this work (Algo-
rithm 2).

2. Batch KSD Test adapted for continuous monitoring
via Bonferroni correction. We enable monitoring after
processing every n, n ∈ {10, 100}, new points from
q. In other words, the bootstrapped p-value (computed
over 1000 wild bootstrapped samples) is compared
with the rejection thresholds: αi = α/(i(i + 1)) and
i = 1, 2, . . . , where i stands for the monitoring order.

As illustrated in Figure 1, our tests exhibit a lower average
sample requirement compared to other methods. Addition-
ally, as β approaches 1, indicating a less challenging task,
the number of samples needed to reject the null hypothesis
decreases. This property is not observed in other tests in
this example.

Sequential tests serve as complementary tools to batch tests
and are not designed to replace them. We consider two
scenarios to highlight this point. When there are 2, 000
data points, recourse is limited if batch tests fail to reject
the null hypothesis. However, if sequential tests fail to
reject, analysts can collect more data and continue testing,
retaining type-I error control. Conversely, when dealing
with 2 million data points, the KSD may be time-consuming,
due to the bootstrap procedure. Therefore, if the alternative
hypothesis is true, and the signal is strong, sequential tests
may reject the hypothesis within 200 samples and terminate.
In essence, the capacity of sequential tests to continuously
collect and analyze data proves advantageous, particularly
in challenging situations.

1.1. Related Work

The principle of testing by betting can be traced back to
Ville’s 1939 doctoral thesis (Ville, 1939), which has recently

Figure 1. Average stopping time of different tests for continuous
monitoring. Batch + n-step represents the batch KSD tests with
Bonferroni correction applied every n steps.

been popularized by Shafer (2021). Shafer (2021) primar-
ily focuses on parametric and simple hypotheses, which is
distinct from our setting. The studies most closely related
to the current paper include (Shekhar & Ramdas, 2023;
Shaer et al., 2023; Podkopaev et al., 2023; Grünwald et al.,
2023; Podkopaev & Ramdas, 2023), which also address
non-parametric hypotheses. Notably, Shekhar and Ramdas
utilize testing by betting to design sequential non-parametric
two-sample tests (Shekhar & Ramdas, 2023), incorporating
a state-of-the-art sequential kernel maximum mean discrep-
ancy test. To the best of our knowledge, this paper is the
first attempt to apply the principle of testing by betting to
goodness-of-fit testing.

2. Sequential Kernel Goodness-of-fit Testing
This section summarizes the principle of testing by betting
(Shafer, 2021; Shafer & Vovk, 2019). Given that a sequence
of random variables {Zt}t≥1, where Zt ∈ Z , a player
begins with initial wealth K0 = 1. At round t of the game,
the player can select a payoff function ft : Z → [−1, 1]
that satisfies EZ∼PZ

[ft(Z)|Ft−1] = 0 for all PZ ∈ H0,
where Ft−1 = σ(Z1, . . . , Zt−1) is the σ-algebra generated
by {Zs : 1 ≤ s ≤ t − 1}. Additionally, the player bets
a fraction of the wealth λtKt−1 for an Ft−1-measurable
λt ∈ [−1, 1]. Once Zt is revealed, the player’s wealth is
updated as:

Kt = Kt−1(1 + λtft(Zt)). (4)

After that, a level-α sequential test is obtained using the
following stopping rule: Φ(Z1, . . . , Zt) = 1{Kt ≥ 1/α},
i.e., the null hypothesis is rejected once the player’s wealth
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exceeds 1/α. Under the null hypothesis, the imposed con-
straints on the payoff sequences {ft}t≥1 and betting frac-
tion {λt}t≥1 prevent the player from making a profit. For-
mally, the wealth process {Kt}t≥0 is a non-negative martin-
gale. The validity of the resulting test is established through
Ville’s inequality (Ville, 1939).

To ensure that the resulting test has power under the alter-
native hypothesis, payoffs and betting fractions have to be
selected carefully. Inspired by sequential two-sample tests
proposed by Shekhar & Ramdas (2023), our approach relies
on the KSD (Chwialkowski et al., 2016; Liu et al., 2016),
which has a variational representation.

Kernel Stein Discrepancy. Let G be the reproducing ker-
nel Hilbert space (RKHS) of real-valued functions on Rd

with the reproducing kernel k(·, ·) and inner product ⟨·, ·⟩G .
Similarly, let Gd denote the product RKHS consisting of
elements f := (f1, . . . , fd) and fi ∈ G, with the standard
inner product ⟨f, g⟩Gd =

∑d
i=1⟨fi, gi⟩G . Therefore, we

define a Stein operator Tp acting on f ∈ Gd as:

(Tpf)(x) :=

d∑
i=1

(
∂ log p(x)

∂xi
fi(x) +

∂fi(x)

∂xi

)
.

We observe that the operator can be expressed by defin-
ing a function that depends on the kernel and log-density’s
gradient, as shown below:

ξp(x, ·) := [∇ log p(x)k(x, ·) +∇k(x, ·)], (5)

where the gradient is taken with respect to variable x. Thus,
the expected inner product of ξp(x, ·) with f corresponds to
the expected value of the Stein operator,

EZ∼qTpf(Z) = ⟨f,EZ∼qξp(Z, ·)⟩Gd

=

d∑
i=1

⟨fi,EZ∼qξp,i(Z, ·)⟩G ,

where ξp,i(x, ·) is the i-th component of ξp(x, ·). Fur-
thermore, for samples from the target distribution,
EX∼p(Tpf)(X) = 0, which can be verified using inte-
gration by parts. We define the KSD as:

Sp(q) := sup
∥f∥Gd≤1

EZ∼qTpf(Z)− EX∼p(Tpf)(X)

= sup
∥f∥Gd≤1

EZ∼qTpf(Z)

= sup
∥f∥Gd≤1

⟨f,EZ∼qξp(Z, ·)⟩Gd

= ∥Eqξp(Z, ·)∥Gd

(6)

To develop powerful goodness-of-fit tests, it is imperative
that the function class Gd is sufficiently expressive to guar-
antee Sp(q) > 0 when p ̸= q. The following theorem

established by Chwialkowski et al. (2016) affirms that the
KSD can be used to distinguish between two distributions.
Before presenting the theorem, it is necessary to define the
following:

hp(x, y) := ∇ log p(x)⊤∇ log p(y)k(x, y)

+∇ log p(y)⊤∇xk(x, y)

+∇ log p(x)⊤∇yk(x, y)

+ ⟨∇xk(x, ·),∇yk(·, y)⟩Gd ,

(7)

where the last term can be written as
∑d

i=1
∂2k(x,y)
∂xi∂yi

.

Theorem 2.1. (Chwialkowski et al., 2016, Theorem 2.2)
Let p, q be probability measures that Z ∼ q. If the kernel
k is C0-universal (Carmeli et al., 2010, Definition 4.1),

EZ∼qhp(Z,Z) < ∞, and EZ∼q

∥∥∥∇(log p(Z)
q(Z)

)∥∥∥2 < ∞,

then Sp(q) = 0 if and only if q = p.

Examples of C0-universal kernels on Rd include the Gaus-
sian, Laplacian, inverse multiquadrics, and Matérn class,
among others.

KSD-based Sequential Kernel Goodness-of-fit Testing.
An element g∗ ∈ Gd that achieves the supremum in (6),
often referred to as the “witness function”, can be regarded
as the test function in Gd that best distinguishes q from p.
Thus, we consider the payoffs f(Zt) of the following form:

s · ⟨g, ξp(Zt, ·)⟩Gd = s ·(⟨g(Zt),∇ log p(Zt)⟩+∇·g(Zt)),
(8)

where ∇ · g =
∑d

i=1
∂g
∂xi

denotes the divergence of g, and
the scaling factor s > 0 ensures that f(z) ∈ [−1, 1], for any
z ∈ Rd. Substituting g in (8) with the witness function g∗,
we denote the resulting function as the “oracle payoff” f∗.
Let the oracle wealth process {K∗

t }t≥0 be defined using f∗

and the betting fraction, as shown below:

λ∗ =
EZ∼q[f

∗(Z)]

EZ∼q[f∗(Z)] + EZ∼q[(f∗(Z))2]
. (9)

We have the following result regarding the oracle payoff
function and betting fraction in (9).

Theorem 2.2. Let G be the RKHS constructed from a
C0-universal kernel and Gd be the corresponding product
RKHS:

1. Under H0 in (1a), any payoff function of the form (8)
satisfies EH0

[f(Z)] = 0.

2. Under H1 in (1b), the oracle payoff function f∗ based
on the witness function g∗ satisfies EH1 [f

∗(Z)] > 0.
Further, for λ∗ defined in (9), it holds that EH1

[log(1+

λ∗f∗(Z))] > 0. Hence, K∗
t

a.s.→ +∞, which implies
that the oracle test is consistent: PH1(τ

∗ < ∞) = 1,
where τ∗ = inf{t ≥ 1 : K∗

t ≥ 1/α}.
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Remark 2.1. While the betting fraction (9) suffices to guar-
antee the consistency of the corresponding test, the fastest
growth rate of the wealth process is ensured by considering

λ∗
best ∈ argmax

λ∈[−1,1]

EZ∼q[log(1 + λf∗(Z))].

However, casually selecting the betting fraction may result
in the wealth tending to zero almost surely, as exemplified
in (Podkopaev et al., 2023, Example 2).

Therefore, to construct a practical test, we must replace
the oracle f∗ and λ∗ with predictable estimates {ft}t≥1

and {λt}. This indicates that they are computed using data
observed prior to a given round of the game.

Assumption 2.3. Suppose the kernel k is C0-universal,
non-negative and satisfies: supx∈Rd k(x, x) ≤ 1 and

supx∈Rd

∑d
i=1

∂2k(x,y)
∂xi∂yi

∣∣∣
y=x

≤ 1.

Assumption 2.4. Suppose that the target distribution p
satisfies: supz∈Rd ∥∇ log p(z)∥2 ≤ 1, where ∥v∥2 :=

(
∑d

i=1 v
2
i )

1/2 denotes the ℓ2-norm.

The C0-universality of kernel k in Assumption 2.3 ensures
that Sp(q) > 0, when p ̸= q. The boundedness requirement
in Assumption 2.3 is fulfilled by several commonly used
kernels, including the Gaussian and inverse multiquadrics
with appropriate scaling. Assumption 2.3 together with
Assumption 2.4 guarantees the boundedness of the payoff
function.

Payoff Function ft. Considering the KSD’s variational
formulation, the witness function adopts a closed form:

g∗ =
EZ∼qξp(Z, ·)

∥EZ∼qξp(Z, ·)∥Gd

. (10)

The oracle payoff f∗(Zt) based on KSD is given by:

1

2
⟨g∗,ξp(Zt, ·)⟩Gd =

1

2
(⟨g∗(Zt),∇ log p(Zt)⟩+∇·g∗(Zt)),

(11)
with the form (8) and s = 1/2. Therefore, to construct
the test, we use estimators {ft}t≥1 of the oracle payoff
function f∗ obtained by replacing g∗ in (11) with the plug-
in estimator:

ĝt =
EZ∼q̂t−1

ξp(Z, ·)
∥EZ∼q̂t−1

ξp(Z, ·)∥Gd

, (12)

where q̂t−1 is the empirical distribution of {Zs}t−1
s=1 and

EZ∼q̂t−1ξp(Z, ·)

=
1

t− 1

(
t−1∑
i=1

∇ log p(Zi)k(Zi, ·) +∇k(Zi, ·)

)
.

(13)

Algorithm 1 Online Newton Step (ONS) strategy for select-
ing betting fractions

Input: sequence of payoffs {ft(Zt)}t≥1, λONS
1 = 0,

a0 = 1.
for t = 1, 2, . . . do

Observe ft(Zt);
Set zt = ft(Zt)/(1− λONS

t ft(Zt));
Set at = at−1 + z2t ;
Set λONS

t+1 := 1
2 ∧

(
− 1

2 ∨
(

2
2−log 3 · zt

at
− λONS

t

))
;

end for

Algorithm 2 KSD-based SKGT
Input: significance level α ∈ (0, 1), data stream
{Zt}t≥1, where Zt ∼ q, λONS

1 = 0.
for t=1,2,. . . do

Use Z1, . . . , Zt−1 to compute ĝt as in (12);
Compute KSD payoff ft(Zt);
Update the wealth process Kt as in (4);
if Kt ≥ 1/α then

Reject H0 and stop;
else

compute λONS
t+1 (Algorithm 1);

end if
end for

Notably, in (12), the witness function’s plug-in estimate is
defined as an operator.

Betting Fraction λt. To select betting fractions in an online
fashion, we employ the approach proposed by Cutkosky &
Orabona (2018). They expressed the problem of choosing
the optimal betting fraction for coin betting as an online
optimization problem with exp-concave losses and proposed
a strategy based on the Online Newton Step (ONS) (Hazan
et al., 2007), which is summarized in Algorithm 1.

We conclude this section with formal guarantees regarding
the time-uniform type-I error control and consistency of
KSD-based SKGT. In addition, we show that the wealth
process grows exponentially and characterize the wealth
growth rate in terms of the true KSD. The proof is detailed
in Appendix B.1.

Theorem 2.5. Under Assumptions 2.3 and 2.4, the follow-
ing claims hold for KSD-based SKGT (Algorithm 2):

1. Under H0 in (1a), SKGT stops with probability at most
α: PH0(τ < ∞) ≤ α.

2. Under H1 in (1b), then it holds that K a.s.−→ +∞ and
thus the SKGT is consistent: PH1(τ < ∞) = 1. Fur-
thermore, the wealth grows exponentially, and the cor-
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responding growth rate satisfies the following formula:

lim inf
t→∞

logKt

t
≥ EH1 [f

∗(Z)]

4

(
EH1 [f

∗(Z)]

EH1
[(f∗(Z))2]

∧ 1

)
(14)

almost surely, where f∗ is the oracle payoff defined in
(11).

Proof sketch. Time-uniform type-I error control directly
follows from Ville’s inequality. To establish the consistency
of KSD-based SKGT, we leverage (Cutkosky & Orabona,
2018, Theorem 1), showing that

logKt

t
≥ logK(λ0)

t
− C · log t

t
,

for any betting fraction λ0. Hence, after selecting a specific
betting fraction and employing fundamental inequalities, we
further obtain

logKt

t
≥

(
1
t

∑t
i=1 fi

4
∨0

)
·

(
1
t

∑t
i=1 fi

1
t

∑t
i=1 f

2
i

∧1

)
− C log t

t
.

Then, the asymptotic properties of the right-hand side are
investigated in Lemma B.5. The proof’s core lies in the con-
vergence of V-statistics, analyzed using the non-asymptotic
convergence based on Hoeffding’s study (Hoeffding, 1963).
Asymptotic convergence follows from combining the non-
asymptotic results with the Borel–Cantelli lemma. □

Since EH1
[f∗(Z)] = 1

2Sp(q) and f∗(z) ∈ [−1, 1], as es-
tablished in the proof of Theorem 2.5, Theorem 2.5 implies
that:

lim inf
t→∞

logKt

t

a.s.
≥ 1

8
Sp(q).

Amongst the betting fractions that are constrained to lie in
[−1/2, 1/2], such as the ONS betting strategy, the optimal
growth rate is ensured by using:

λ∗ = argmax
λ∈[−1/2,1/2]

E[log(1 + λf∗(Z)]. (15)

Consequently, we obtain the following results regarding the
oracle test’s growth rate:

Proposition 2.6. The optimal log-wealth S∗ := E[log(1 +
λ∗f∗(Z))] that can be achieved by an oracle betting scheme
(15), which knows f∗ from (11) and the underlying distribu-
tion, satisfies the formula:

S∗ ≤ E[f∗(Z)]

2

(
8E[f∗(Z)]

3E[(f∗(Z))
2
]
∧ 1

)
. (16)

Proof. The fact that S∗ ≤ E[f∗(Z)/2] trivially follows
from E[log(1 + λf∗(Z))] ≤ λE[f∗(Z)] ≤ E[f∗(Z)]/2.

Since for any x ∈ [−1/2, 1/2], it holds that: log(1 + x) ≤
x− 3x2/8, we know that:

S∗ ≤ max
λ∈[−1/2,1/2]

(
λE[f∗(Z)]− 3

8
λ2E[(f∗(Z))

2
]

)
,

(17)
and by assuming the maximization problem, we obtains the
upper bound:

S∗ ≤ 2 (E[f∗(Z)])
2

3E[(f∗(Z))
2
]

(18)

assuming E[f∗(Z)]

E[(f∗(Z))2]
≤ 3/8. On the other hand, it always

holds that: S∗ ≤ E[f∗(Z)/2]. To obtain the claimed bound,
we multiply the RHS of (18) by two, which completes the
proof of (16).

3. Alternative Stein Discrepancies
Practically, data is sometimes encountered in discrete spaces
or bounded domains. However, the KSD is specifically
designed for smooth density functions on Rd. This section
introduces sequential goodness-of-fit tests based on Kernel
Discrete Stein Discrepancy (KDSD) (Yang et al., 2018) and
Bound-domain Kernel Stein Discrepancy (bd-KSD) (Xu,
2022).

3.1. KDSD-based Sequential Kernel Goodness-of-fit
Testing

We recall the KDSD defined on X = {0, . . . , L − 1}d
with L > 1. In place of derivative, we specify ∆k as the
cyclic forward difference with respect to k-th coordinate as
follows:

∆kf(x)=f(x1, . . . , x̃k, . . . , xd)−f(x1, . . . , xk, . . . , xd),

where x̃k = xk + 1 mod L, with the corresponding vector-
valued operator ∆ = (∆1, . . . ,∆d)

⊤. The inverse operator
∆−1

k is given by the backward difference:

∆−1
k f(x)=f(x1, . . . , xk, . . . , xd)−f(x1, . . . , x̄k, . . . , xd),

where x̄k = xk−1 mod L, and ∆−1 = (∆−1
1 , . . . ,∆−1

d )⊤.
Then, the score is sp(x) := p(x)−1∆p(x), where it is as-
sumed that the probability mass function is strictly positive.
For a vector-valued function g : X → Rd, the difference
Stein operator is then defined as:

Apg(x) := tr[g(x)s⊤p (x) + ∆−1g(x)]

=

d∑
i=1

∆ip(x)

p(x)
gi(x) + ∆−1

i gi(x).

It can be shown that Ex∼p[Apg(x)] = 0 (Yang et al., 2018,
Theorem 2). Given an RKHS Hd of vector-valued functions
g : X → Rd, we obtain the KDSD as:

KDSD(q∥p) := sup
g∈Hd,∥g∥Hd≤1

Ex∼q[Apg(x)]. (19)
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Algorithm 3 KDSD-based SKGT
Input: significance level α ∈ (0, 1), data stream
{xt}t≥1, where xt ∼ q, λONS

1 = 0.
for t=1,2,. . . do

Use x1, . . . ,xt−1 to compute ĝt as in (23);
Compute KDSD payoff ft(xt) = s ⟨ĝt, ηp(xt, ·)⟩Hd ;
Update the wealth process Kt as in (4);
if Kt ≥ 1/α then

Reject H0 and stop;
else

compute λONS
t+1 (Algorithm 1);

end if
end for

Witness Function for KDSD. Suppose that k is the repro-
ducing kernel of H, we define the kernel embedding as
ηp(x, ·) := sp(x)k(x, ·) + ∆−1

x k(x, ·), where ∆−1
x indi-

cates that the operator ∆−1 is applied with respect to x.
Based on the kernel embedding, we can express KDSD as:

KDSD(q∥p) = sup
g∈Hd,∥g∥Hd≤1

⟨g,Ex∼qηp(x, ·)⟩Hd . (20)

Based on the variational formulation, the witness function
of KDSD has the closed form:

g∗ =
Ex∼qηp(x, ·)

∥Ex∼qηp(x, ·)∥Hd

. (21)

The oracle payoff function f∗ based on KDSD is given by
the equation:

f∗(x) = s ⟨g∗, ηp(x, ·)⟩Hd , (22)

where the scaling factor s > 0 ensures f∗(xt) ∈ [−1, 1].
Given a sequence of samples {xt}t≥1 from q, we use es-
timates {ft}t≥1 of the oracle payoff function obtained by
replacing g∗ in (22) with the plug-in estimator:

ĝt =
Ex∼q̂t−1ηp(x, ·)∥∥Ex∼q̂t−1

ηp(x, ·)
∥∥
Hd

, (23)

where q̂t−1 is the empirical distribution of {x1, . . . ,xt−1}.

Assumption 3.1. Suppose that a constant Bp for the target
distribution p exists, such that supx∈X ∥∆p(x)/p(x)∥2 ≤
Bp.

Assumption 3.2. Suppose that the kernel k satisfies:
supx∈X k(x,x) ≤ Bk,0, supx∈X

∥∥∆−1
x k(x,x)

∥∥
2
≤ Bk,1,

and supx∈X tr[∆−1
x′ ∆−1

x k(x,x′)]
∣∣
x′=x

≤ Bk,2.

Considering that we are working with distributions in a dis-
crete space, the aforementioned assumption is not too restric-
tive. A common choice for the kernel in discrete space is the
exponential Hamming kernel: k(x,x′) = exp(−H(x,x′)),

where H(x,x′) := 1
d

∑d
i=1 1{xi ̸= x′

i} is the normalized
Hamming distance. We have the following guarantees re-
garding our KDSD-based SKGT’s time-uniform type-I error
control, as detailed in Appendix B.2.

Theorem 3.3. Assuming that Assumptions 3.1 and 3.2 are
satisfied, and setting s = 1√

Bk,0B2
p+2Bk,1Bp+Bk,2

, then, un-

der the null hypothesis H0 in (1a), the KDSD-based SKGT
(Algorithm 3) ensures: PH0

(τ < ∞) ≤ α.

3.2. bd-KSD-based Sequential Kernel Goodness-of-fit
Testing

Unlike densities on unbounded domains commonly assumed
to vanish at infinity, densities on compact domains may not
necessarily vanish at the boundary. Hence, a direct applica-
tion of a Stein operator on Rd may require the knowledge
of normalized density at the boundary, which defeats the
purpose of KSD testing for unnormalized models.

We recall the bd-KSD defined on a bounded domain V ⊂
Rd. We consider a bounded smooth function h : Rd → Rd

such that hi(∂V ) = 0,∀i = 1, . . . , d. For the unnormalized
p on V , the bounded-domain Stein operator is defined as:
Tp,hg(x) = 1

p(x)

∑d
i=1

∂
∂xi

(p(x)gi(x)hi(x)). Given an
RKHS Hd of vector-valued functions g : Rd → Rd, the
bd-KSD is defined as:

bd-KSD(q∥p) := sup
g∈Hd,∥g∥Hd≤1

Ex∼q[Tp,hg(x)]. (24)

Witness Function for bd-KSD. Assuming that k is
the reproducing kernel of H, we define the kernel
embedding ζp,h(x, ·) := (∇ log p(x) ⊙ h(x) + ∇ ⊙
h(x))k(x, ·) + h(x) ⊙ ∇k(x, ·), where we denote u ⊙
v := (u1v1, · · · , udvd)

⊤ as the element-wise multiplica-
tion. Leveraging the kernel embedding, we can express
bd-KSD as:

bd-KSD(q∥p) = sup
g∈Hd,∥g∥Hd≤1

⟨g,Ex∼qζp,h(x, ·)⟩Hd .

(25)

Moreover, building upon the variational formulation, the
witness function of bd-KSD adopts the closed form:

g∗ =
Ex∼qζp,h(x, ·)

∥Ex∼qζp,h(x, ·)∥Hd

. (26)

Similar to the payoff function defined in the previous section,
we use the plug-in estimator:

ĝt =
Ex∼q̂t−1ζp,h(x, ·)∥∥Ex∼q̂t−1

ζp,h(x, ·)
∥∥
Hd

, (27)

where q̂t−1 is the empirical distribution of a sequence of
samples {x1, . . . ,xt−1}. Finally, leveraging the plug-in

6
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Algorithm 4 bd-KSD-based SKGT
Input: significance level α ∈ (0, 1), data stream
{xt}t≥1, where xt ∼ q, λONS

1 = 0.
for t=1,2,. . . do

Use x1, . . . ,xt−1 to compute ĝt as in (27);
Compute bd-KSD payoff ft(xt) = s ⟨ĝt, ζp(xt, ·)⟩Hd ;
Update the wealth process Kt as in (4);
if Kt ≥ 1/α then

Reject H0 and stop;
else

compute λONS
t+1 (Algorithm 1);

end if
end for

estimator, we construct the payoff function as

ft(xt) = s ⟨ĝt, ζp,h(xt, ·)⟩Hd . (28)

Assumption 3.4. Suppose that a constant Cp for the target
distribution p exists, such that supx∈V ∥∇ log p(x)∥2 ≤
Cp.
Assumption 3.5. Suppose that the kernel k satisfies:
supx∈V k(x,x) ≤ Ck,0, supx∈V ∥∇k(x,x)∥2 ≤ Ck,1,
and supx∈V tr[∇x′∇xk(x,x

′)]
∣∣
x′=x

≤ Ck,2.
Assumption 3.6. Suppose that constants Ch,0 and Ch,1 for
the function h exist, such that supx∈V ∥h(x)∥2 ≤ Ch,0 and
supx∈V ∥∇ ⊙ h(x)∥2 ≤ Ch,1.

Notably, as we are currently dealing with a bounded do-
main, the above assumption is not overly restrictive. The
following result guarantees the time-uniform type-I error
control of our bd-KSD-based SKGT. The proof is deferred
to Appendix B.2.
Theorem 3.7. Assuming that Assumptions
3.4, 3.5, and 3.6 hold, and setting s =

1√
2(C2

pC
2
h,0+C2

h,1)Ck,0+2(CpCh,0+Ch,1)Ck,1+C2
h,0Ck,2

, then,

under the null hypothesis H0 in (1a), the bd-KSD-based
SKGT (Algorithm 4) satisfies: PH0

(τ < ∞) ≤ α.

4. Numerical Simulations
This section describes the experiments that demonstrate our
tests’ capacity to adapt to a problem’s unknown difficulty
while maintaining type-I error control.

4.1. Student’s t versus Normal

In our first experiment, we consider testing the null hy-
pothesis that the observed samples come from a Student’s
t distribution with 1 degree of freedom. Student’s t dis-
tribution has the probability density function given by the
formula:

f(t) ∝
(
1 +

t2

ν

)−(ν+1)/2

,

Figure 2. Ability of our sequential test to adapt to the problem’s
unknown difficulty while controlling the type-I error. Each solid
curve is obtained by running 500 trials of the KSD-based SKGT
(Algorithm 2) using samples from the Student’s t distribution with
the degrees of freedom at 1, 5, 10, and ∞. The dashed vertical line
shows our SKGT’s average stopping time. “df” denotes “degree of
freedom.”

where ν is the number of degrees of freedom. We consider
samples from distributions with 1, 5, 10, and ∞, where ∞ is
equivalent to sampling from a standard normal distribution.
We employ our KSD-based SKGT (Algorithm 2) to test
against the null hypothesis, utilizing the Gaussian kernel
k(x, y) = exp(− |x− y|2 /2).

As displayed in Figure 2, we observed that under the null
hypothesis, the type-I error is rigorously controlled. Fur-
thermore, as the degrees of freedom approach 1, indicating
a more challenging problem, the expected stopping time
increases, thereby corroborating our theoretical result pre-
sented in Theorem 2.5.

4.2. Ising Model

In the second experiment, we consider testing the null hy-
pothesis that the observed samples come from an Ising
model. The Ising model (Ising, 1924) is a canonical ex-
ample of a Markov random field. Consider an undirected
graph G = (V,E), where each vertex i ∈ V is associated
with a binary spin. The collection of spins form a random
vector x = (x1, . . . , xd) ∈ {−1,+1}d, whose components
xi and xj directly interacts only if (i, j) ∈ E. The probabil-
ity mass function is defined as:

pΘ(x) =
1

Z(Θ)
exp

 ∑
(i,j)∈E

θijxixj

 ,

7
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Figure 3. Our sequential test’s capacity to adapt to a problem’s
unknown complexity while controlling the type-I error. Each
solid curve is obtained by running 500 trials of the KDSD-based
SKGT (Algorithm 3) using samples from the Ising models under
temperatures 1, 2, 3, and 5. The dashed vertical lines show our
SKGT’s corresponding average stopping time.

where θij are the edge potentials and Z(Θ) is the partition
function which is prohibitive to compute when d is high.

We consider a periodic 10-by-10 lattice, with d = 100
random variables. We focus on the ferromagnetic setting
and set θij = 1/T , where T is the temperature of the system.
For T0 = 5 and various values of T , we test the hypotheses
H0 : T = T0 vs. H1 : T ̸= T0 using data samples drawn
from the model under temperature T . To draw samples
from the Ising model, we apply the Metropolis algorithm.
We employ our KDSD-based SKGT (Algorithm 3) to test
against the null hypothesis, using the exponential hamming
kernel k(x,x′) = exp(−H(x,x′)), where H(x,x′) :=
1
d

∑d
i=1 1{xi ̸= x′

i} is the normalized Hamming distance.

As illustrated in Figure 3, under the null hypothesis, our
KDSD-based SKGT does not reject the null within 1000
samples. Conversely, under the alternative hypotheses, as
the temperature approaches T0, indicative of a more chal-
lenging task, the average stopping time increases.

4.3. Truncated Gaussians in Unit Ball

In the third experiment, we consider testing the null hy-
pothesis that samples come from the standard Gaussian
truncated in B1(R3) = {x ∈ R3 : ∥x∥2 ≤ 1}. Specifically,
our testing procedure is applied to samples generated from
truncated Gaussians with various mean shifts, formulated as

q(x) ∝ N (µ, I3) ,x ∈ B1(R3),

Figure 4. Our sequential test’s ability to adapt to a problem’s un-
known difficulty while controlling the type-I error. Each solid
curve is obtained by running 500 trials of the bd-KSD-based SKGT
(Algorithm 4) using samples from the truncated Gaussians with
shifts 0, 0.3, 0.6, and 0.9. The dashed vertical lines show our
SKGT’s corresponding average stopping time.

where µ = (v, v, v)⊤ and I3 is the identity matrix in R3×3.
We consider different values of v ∈ {0, 0.3, 0.6, 0.9}.
We employ our bd-KSD-based KDSD, equipped with the
Gaussian kernel k(x,y) = exp

(
−∥x− y∥22 /2

)
. To sat-

isfy boundary conditions and consider the rotational in-
variance of the unit ball, we set the auxiliary functions as
hi(x) = 1− ∥x∥22 , i = 1, 2, 3.

As depicted in Figure 4, under the null hypothesis, our
bd-KSDs-based SKGT does not reject the null within 104

samples. Conversely, under the alternative hypothesis, as
the mean shift decreases, indicating a more challenging task,
the average stopping time increases.

5. Conclusion
In this paper, we introduce the SKGT based on the princi-
ple of testing by betting. The SKGT allows for continuous
monitoring of data and adaptation to a problem’s unknown
complexity. After that, we provide formal guarantees regard-
ing time-uniform type-I error control and the consistency of
the KSD-based SKGT. Specifically, we demonstrate that the
wealth process exhibits exponential growth and character-
ize the rate of wealth growth in terms of the true KSD. To
handle data in discrete spaces and bounded domains, we pro-
pose SKGTs based on KDSD and bd-KSD. Our experiments
demonstrate the adaptability of our tests to a problem’s un-
known complexity while maintaining type-I error control.
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A. Goodness-of-fit Testing for Streaming Data
A.1. Failure of Batch KSD under Continuous Monitoring

It is straightforward to estimate the squared Stein discrepancy from samples {Zi}ni=1: a quadratic time estimator is a
V-statistic, and takes the form:

Vn =
1

n2

n∑
i=1

n∑
j=1

hp(Zi, Zj).

For kernel k, we choose the Gaussian kernel k(x, x′) = exp(∥x− x′∥22/2). To conduct goodness-of-fit testing using batch
KSD, we use the Wild Bootstrap Testing (Chwialkowski et al., 2016). A simple Markov chain taking values in {−1, 1},
starting from W1,n = 1,

Wt,n = 1{Ut > an}Wt−1,n − 1{Ut < an}Wt−1,n,

where the Ut are uniform (0, 1) i.i.d. random variables and an is the probability of Wt,n changing sign. For i.i.d. data, we
set an = 0.5. This leads to a bootstrapped V-statistic

Bn =
1

n2

n∑
i=1

n∑
j=1

Wi,nWj,nhp(Zi, Zj).

Having obtained wild bootstrap samples {Bn,i}Di=1, we use the p-value: P = 1
D

∑D
i=1 1{Bn,i > Vn}, with D = 1000 wild

bootstrap samples. Next, we study batch KSD under (a) fixed-time and (b) continuous monitoring. We consider a simple
case when Z is from the student-t distribution with degree of freedom 1 and the target distribution is also the student-t
distribution with density 1

π

(
1 + t2

)−1
. We conduct a test at 12 different samples sizes: t ∈ {50, 100, . . . , 600}:

(a) Under fixed-time monitoring, for each value of t, we sample a sequence Z1, . . . , Zt (150 times for each t) and conduct
batch-KSD test. The goal is to confirm that batch-KSD controls type I error by tracking the standard miscoverage rate.

(b) Under continuous monitoring, we sample new datapoints and re-conduct the test. We illustrate inflated type I error by
tracking the cumulative miscoverage rate, that is, the fraction of times, the test falsely rejects the null.

Figure 5. Inflated false discovery rate of batch KSD under continuous monitoring (CM, red line with squares) for the case when p = q.
Bonferroni correction (CM, green line with triangles) restore type I error control. Type I error is controlled at a specified level under
fixed-time monitoring (FTM, blue line with circles).

The results are presented in Figure 5. For Bonferroni correction, we compute p-values every 50 samples and decompose the
error budget as: α =

∑∞
i=1

α
i(i+1) , that is, for i-th test we use threshold αi =

α
i(i+1) .
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B. Proofs
B.1. Proofs for Section 2

Theorem 2.2. Let G be the RKHS constructed from a C0-universal kernel and Gd be the corresponding product RKHS:

1. Under H0 in (1a), any payoff function of the form (8) satisfies EH0
[f(Z)] = 0.

2. Under H1 in (1b), the oracle payoff function f∗ based on the witness function g∗ satisfies EH1
[f∗(Z)] > 0. Further,

for λ∗ defined in (9), it holds that EH1 [log(1 + λ∗f∗(Z))] > 0. Hence, K∗
t

a.s.→ +∞, which implies that the oracle test
is consistent: PH1

(τ∗ < ∞) = 1, where τ∗ = inf{t ≥ 1 : K∗
t ≥ 1/α}.

Proof. 1. Under H0 in (1a), we have that:

EZ∼p[f
∗(Z)] = EZ∼p[s · (⟨g∗(Zt),∇ log p(Zt)⟩+∇ · g∗(Zt))]

= s

∫
Rd

(⟨g∗(x),∇ log p(x)⟩+∇ · g∗(x)) p(x)dx

= s

∫
Rd

d∑
i=1

g∗i (x)
∂p(x)

∂xi
dx+ s

∫
Rd

(∇ · g∗(x))p(x)dx

(i)
= −s

∫
Rd

d∑
i=1

p(x)
∂g∗i (x)

∂xi
dx+ s

∫
Rd

(∇ · g∗(x))p(x)dx

= 0,

(29)

where equality (i) follows from integration by parts.

2. Under H1 in (1b) and the i.i.d. setting, we have

E[f∗(Zt)|Ft−1] = E[f∗(Z)] = s · Sp(q) > 0.

Let W := f∗(Z), and consider the quantity EH1
[log(1 + λW )]. We use the following inequality (Fan et al., 2015, Equation

(4.12)): for any y ≥ −1 and λ ∈ [0, 1), we have

log(1 + λy) ≥ λy + y2(log(1− λ) + λ).

Hence, we get the following:

EH1
[log(1 + λW )]λ ≥ λEH1

[W ] + EH1
[W 2](log(1− λ) + λ).

Finally, by choosing λ∗ = EH1 [W ]/(EH1 [W ] + EH1 [W
2]) ∈ (0, 1) and the fact that log(1 − x) + x ≥ − x2

2(1−x) for
x ∈ [0, 1), we arrive at

EH1 [log(1 + λ∗W )] ≥ 1

2
· (EH1 [W ])2

EH1
[W ] + EH1

[W 2]
> 0.

The wealth process corresponding to the oracle test satisfies:

K∗
t =

t∏
i=1

(1 + λ∗f∗(Zt)) = exp

(
t · 1

t

t∑
i=1

log(1 + λ∗f∗(Zi))

)

By the Strong Law of Large Numbers (SLLN), we have:

1

t

t∑
i=1

log(1 + λ∗f∗(Zi))
a.s.−→ EH1

[log(1 + λ∗f∗(Z))] > 0.

The above result implies that K∗
t

a.s.−→ +∞, thereby ensuring the consistency of the oracle test.
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Theorem 2.5. Under Assumptions 2.3 and 2.4, the following claims hold for KSD-based SKGT (Algorithm 2):

1. Under H0 in (1a), SKGT stops with probability at most α: PH0
(τ < ∞) ≤ α.

2. Under H1 in (1b), then it holds that K a.s.−→ +∞ and thus the SKGT is consistent: PH1(τ < ∞) = 1. Furthermore, the
wealth grows exponentially, and the corresponding growth rate satisfies the following formula:

lim inf
t→∞

logKt

t
≥ EH1

[f∗(Z)]

4

(
EH1

[f∗(Z)]

EH1 [(f
∗(Z))2]

∧ 1

)
(14)

almost surely, where f∗ is the oracle payoff defined in (11).

Proof. 1. First, let us show that the predictable estimates of the oracle payoff function are bounded when the scaling
factors s = 1/2 is used. Recall that:

ft(x) =
1

2
⟨ĝt,∇ log p(x)k(x, ·) +∇k(x, ·)⟩Gd (30)

The Cauchy-Schwartz inequality implies that

|ft(x)| ≤
1

2
∥ĝt∥Gd ∥∇ log p(x)k(x, ·)∥Gd +

1

2
∥ĝt∥Gd ∥∇k(x, ·)∥Gd

=
1

2
∥∇ log p(x)k(x, ·)∥Gd +

1

2
∥∇k(x, ·)∥Gd ,

where the second equality follows from the constraint that ∥ĝt∥Gd = 1. The first term ∥∇ log p(x)k(x, ·)∥Gd can be
computed as:

∥∇ log p(x)k(x, ·)∥Gd =

√√√√ d∑
i=1

⟨∂xi
log p(x)k(x, ·), ∂xi

log p(x)k(x, ·)⟩

= ∥∇ log p(x)∥2
√

k(x, x) ≤ 1,

where the last inequality follows from Assumption 2.3 and 2.4. The second term ∥∇k(x, ·)∥Gd is calculated as follows:

∥∇k(x, ·)∥Gd =

√√√√ d∑
i=1

⟨∂xi
k(x, ·), ∂xi

k(x, ·)⟩G

=

√√√√ d∑
i=1

∂xi
⟨∂xi

k(x, ·), k(x, ·)⟩G

=

√√√√ d∑
i=1

∂2k(x, y)

∂xi∂yi

∣∣∣
y=x

≤ 1,

where the last inequality follows from Assumption 2.3. Hence ft(x) ∈ [−1, 1]. Next, we show that the constructed
payoff function yields a fair bet. Note that ft is constructed from {Zs}t−1

s=1; thus ft is Ft−1-measurable. Based on this
fact, we have:

E[ft(Zt)|Ft−1] =
1

2
EZt∼q[⟨ĝt(Zt),∇ log p(Zt)⟩+∇ · ĝt(Zt)],

and in particular, the above implies that EH0
[ft(Zt)|Ft−1] = 0 for H0 in (1a). In the following, we show that the

resulting wealth process is a non-negative martingale for all strategies for selecting betting fractions that are considered
in this work. Since the betting fractions are predictable, i.e. λt is Ft−1-measurable, we have:

EH0
[Kt|Ft−1] = EH0

[Kt−1(1 + λtft(Zt))|Ft−1]

= Kt−1 + λtEH0
[ft(Zt)|Ft−1]

= Kt−1.

The assertion of the theorem then follows directly from Ville’s inequality (Theorem B.6) when a = 1/α.
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2. In the following, we establish the consistency of KSD-based SKGT with the ONS betting strategy. Under the ONS
betting strategy, for any sequence of outcomes {ft}t≥1, ft ∈ [−, 1, 1], i ≥ 1, it holds that (Cutkosky & Orabona, 2018,
Proof of Theorem 1):

logKt(λ0)− logKt = O

(
log

(
t∑

i=1

f2
i

))
, (31)

where Kt(λ0) is the wealth process of any constant betting strategy λ0 ∈ [−1/2, 1/2] and Kt is the wealth process
corresponding to the ONS strategy. It follows that the wealth process corresponding to the ONS strategy satisfies

logKt

t
≥ logKt(λ0)

t
− C · log t

t
, (32)

for some absolute constant C > 0. Next, let us consider:

λ0 =
1

2

((∑t
i=1 fi∑t
i=1 f

2
i

∧ 1

)
∨ 0

)
.

We obtain:
logKt(λ0)

t
=

1

t

t∑
i=1

log(1 + λ0fi)

(a)

≥ 1

t

t∑
i=1

(
λ0fi − λ2

0f
2
i

)
=

(
1
t

∑t
i=1 fi

4
∨ 0

)
·

(
1
t

∑t
i=1 fi

1
t

∑t
i=1 f

2
i

∧ 1

)
,

(33)

where in (a) we use the inequality: log(1 + x) ≥ x − x2 for x ∈ [−1/2, 1/2]. From Lemma B.5, it follows for
fi = fi(Zi) that:

1
t

∑t
i=1 fi(Zi)

4
·

(
1
t

∑t
i=1 fi(Zi)

1
t

∑t
i=1 (fi(Zi))

2 ∧ 1

)
a.s.−→ E[f∗(Z)]

4
·

(
E[f∗(Z)]

E[(f∗(Z))
2
]
∧ 1

)
. (34)

Using (32), we conclude that the growth rate of the ONS wealth process satisfies

lim inf
t→∞

logKt

t
≥ E[f∗(Z)]

4
·

(
E[f∗(Z)]

E[(f∗(Z))
2
]
∧ 1

)
. (35)

We conclude that the test is consistent, that is, if H1 is true, then P(τ < ∞) = 1.

B.2. Proofs for Section 3

Theorem 3.3. Assuming that Assumptions 3.1 and 3.2 are satisfied, and setting s = 1√
Bk,0B2

p+2Bk,1Bp+Bk,2
, then, under

the null hypothesis H0 in (1a), the KDSD-based SKGT (Algorithm 3) ensures: PH0
(τ < ∞) ≤ α.

Proof. It suffices to show that the proposed payoff functions are bounded. Note that:∣∣⟨ĝt, ηp(xt, ·)⟩Hd

∣∣ ≤ ∥ĝt∥Hd ∥ηp(xt, ·)∥Hd

= ∥ηp(xt, ·)∥Hd

=
√

k(xt,xt) ∥sp(xt)∥22 + 2sp(xt)⊤∆
−1
x k(xt,xt) + tr[∆−1

x′ ∆
−1
x k(x,x′)]

∣∣
x′=x

≤
√
Bk,0B2

p + 2Bk,1Bp +Bk,2,

13
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where the first inequality follows from the Cauchy-Schwartz inequality and the second inequality is due to Assumption 3.1
and Assumption 3.2. We conclude that any predictive estimate of the oracle payoff function for KDSD satisfies

|ft(xt)| ≤ 1.

Next, we show that the constructed payoff function yields a fair bet. Note that ft is constructed from {xs}t−1
s=1; thus ft is

Ft−1-measurable. Based on this fact, we have:

E[ft(xt)|Ft−1] = sExt∼q[⟨ĝt(xt), sp(xt)⟩+∆−1 · ĝt(xt)],

and in particular, the above implies that EH0
[ft(xt)|Ft−1] = 0 for H0 in (1a). In the following, we show that the resulting

wealth process is a non-negative martingale for all strategies for selecting betting fractions that are considered in this work.
Since the betting fractions are predictable, i.e. λt is Ft−1-measurable, we have:

EH0
[Kt|Ft−1] = EH0

[Kt−1(1 + λtft(xt))|Ft−1]

= Kt−1 + λtEH0
[ft(xt)|Ft−1]

= Kt−1.

The assertion of the theorem then follows directly from Ville’s inequality (Theorem B.6) when a = 1/α.

Theorem 3.7. Assuming that Assumptions 3.4, 3.5, and 3.6 hold, and setting s =
1√

2(C2
pC

2
h,0+C2

h,1)Ck,0+2(CpCh,0+Ch,1)Ck,1+C2
h,0Ck,2

, then, under the null hypothesis H0 in (1a), the bd-KSD-based

SKGT (Algorithm 4) satisfies: PH0
(τ < ∞) ≤ α.

Proof. It suffices to show that the proposed payoff functions are bounded. Note that:∣∣⟨ĝt, ζp,h(xt, ·)⟩Hd

∣∣2
≤∥ĝt∥2Hd ∥ζp,h(xt, ·)∥2Hd

= ∥∇ log p(xt)⊙ h(xt) +∇⊙ h(xt)∥22 k(xt,xt)︸ ︷︷ ︸
(I)

+ 2 ⟨∇ log p(xt)⊙ h(xt) +∇⊙ h(xt),∇k(xt,xt)⟩︸ ︷︷ ︸
(II)

+

d∑
i=1

h2
i (xt)

∂2k(x,x′)

∂xi∂x′
i

∣∣∣
x=x′=xt︸ ︷︷ ︸

III

,

where the first inequality is due to Cauchy-Schwartz inequality. For the term (I), we have

∥∇ log p(xt)⊙ h(xt) +∇⊙ h(xt)∥22 k(xt,xt) ≤ 2(∥∇ log p(xt)⊙ h(xt)∥22 + ∥∇ ⊙ h(xt)∥22)k(xt,xt)

≤ 2(∥∇ log p(xt)∥22 ∥h(xt)∥22 + ∥∇ ⊙ h(xt)∥22)k(xt,xt)

≤ 2(C2
h,0C

2
p + C2

h,1)Ck,0,

(36)

where the first inequality follows from the triangle inequality and (x+ y)2 ≤ 2x2 + 2y2, ∀x, y ∈ R, the second inequality
is due to the fact that ∥u⊙ v∥22 ≤ ∥u∥22 ∥v∥

2
2, and the third inequality follows from Assumptions 3.4, 3.5 and 3.6. For the

term (II), we have

⟨∇ log p(xt)⊙ h(xt) +∇⊙ h(xt),∇k(xt,xt)⟩ ≤ 2(∥∇ log p(xt)⊙ h(xt)∥2 + ∥∇ ⊙ h(xt)∥2) ∥∇k(xt,xt)∥2
≤ 2(CpCh,0 + Ch,1)Ck,1,

(37)

14
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where the first inequality follows from the Cauchy-Schwartz inequality and the second inequality is due to our assumptions
and the fact that ∥u⊙ v∥22 ≤ ∥u∥22 ∥v∥

2
2. For the term (III), we have

d∑
i=1

h2
i (xt)

∂2k(x,x′)

∂xi∂x′
i

∣∣∣
x=x′=xt

≤
d∑

i=1

∥h(xt)∥22
∂2k(x,x′)

∂xi∂x′
i

∣∣∣
x=x′=xt

≤ C2
h,0Ck,2,

where the first inequality is because u2
i ≤ ∥u∥22, for all i = 1, . . . , d, and the second inequality is due to our assumptions.

Combining these terms, we obtain
∣∣⟨ĝt, ζp,h(xt, ·)⟩Hd

∣∣ ≤√2(C2
pC

2
h,0 + C2

h,1)Ck,0 + 2(CpCh,0 + Ch,1)Ck,1 + C2
h,0Ck,2.

By setting s = 1√
2(C2

pC
2
h,0+C2

h,1)Ck,0+2(CpCh,0+Ch,1)Ck,1+C2
h,0Ck,2

, we conclude that |ft(xt)| ≤ 1. Following the same

procedure as in the proof of Theorem 3.3, we can show that the resulting wealth process is a martingale. The assertion of the
theorem directly follows from Ville’s inequality.

B.3. Supporting Lemmas

To begin, let’s review the definition of hp(x, y) before presenting the first result.

hp(x, y) := ∇ log p(x)⊤∇ log p(y)k(x, y) +∇ log p(y)⊤∇xk(x, y)

+∇ log p(x)⊤∇yk(x, y) + ⟨∇xk(x, y),∇yk(x, y)⟩Gd ,

Lemma B.1 (Convergence of V -statistic). Suppose that Assumption 2.3 and 2.4 hold. Define Vn =
1
n2

∑n
i=1

∑n
i=1 hp(Zi, Zj) and S2

p(q) = EZ,Z′ [hp(Z,Z
′)], where {Zi}ni=1 is a sample from distribution q and Z ′ is

independent of Z with identical distribution q. Then for n > 1 and any δ ∈ (0, 1), it holds with probability of at least 1− δ
that: ∣∣Vn − S2

p(q)
∣∣ ≤ 8

√
log(2/δ)

n
+

8

n
.

Proof. First, note that Vn is a biased estimator of S2
p(q):

E[Vn] =
n− 1

n
EZ,Z′ [hp(Z,Z

′)] +
1

n
EZ [hp(Z,Z)].

The triangle inequality implies:

|Vn − S2
p(q)| ≤ |Vn − E[Vn]|+

1

n

∣∣S2
p(q)− EZ [hp(Z,Z)]

∣∣
Then the problem is decomposed into upper bounding the first and second term separately.

(i) Upper bounding
∣∣S2

p(q)− EZ [hp(Z,Z)]
∣∣.

We start with providing an upper bound for hp(x, y). hp(x, y) can be written as:

hp(x, y) = ⟨∇ log p(x)k(x, ·) +∇k(x, ·),∇ log p(y)k(y, ·) +∇k(y, ·)⟩Gd

Using Cauchy-Schwartz inequality, we obtain:

|hp(x, y)| ≤ ∥∇ log p(x)k(x, ·) +∇k(x, ·)∥Gd · ∥∇ log p(y)k(y, ·) +∇k(y, ·)∥Gd

By the triangle inequality of norm ∥ · ∥Gd , we have:

∥∇ log p(x)k(x, ·) +∇k(x, ·)∥Gd ≤ ∥∇ log p(x)k(x, ·)∥Gd + ∥∇k(x, ·)∥Gd

The first term ∥∇ log p(x)k(x, ·)∥Gd can be computed as:

∥∇ log p(x)k(x, ·)∥Gd =

√√√√ d∑
i=1

⟨∂xi
log p(x)k(x, ·), ∂xi

log p(x)k(x, ·)⟩

= ∥∇ log p(x)∥2
√
k(x, x) ≤ 1,

15
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where the last inequality follows from Assumption 2.3 and 2.4. The second term ∥∇k(x, ·)∥Gd is calculated as follows:

∥∇k(x, ·)∥Gd =

√√√√ d∑
i=1

⟨∂xi
k(x, ·), ∂xi

k(x, ·)⟩G

=

√√√√ d∑
i=1

∂xi ⟨∂xik(x, ·), k(x, ·)⟩G

=

√√√√ d∑
i=1

∂2k(x, y)

∂xi∂yi

∣∣∣
y=x

≤ 1,

where the last inequality follows from Assumption 2.3. Hence ∥∇ log p(x)k(x, ·) +∇k(x, ·)∥Gd ≤ 2. The same argument
also holds for ∥∇ log p(y)k(y, ·) +∇k(y, ·)∥Gd , therefore, we obtain |hp(x, y)| ≤ 4 for any x, y ∈ Rd. It implies that∣∣S2

p(q)− EZ [hp(Z,Z)]
∣∣ ≤ 8. (38)

(ii) Upper bounding |Vn − E[Vn]|.

As stated in the seminar work of Hoeffding (1963), any V-statistic can be written as a U-statistic :

Vn =
1

n(n− 1)

∑
i ̸=j

h∗
p(Zi, Zj),

where h∗
p(Zi, Zj) =

n−1
n hp(Zi, Zj) +

1
nhp(Zi, Zi) for i ̸= j. We have shown that hp(x, y) ∈ [−4, 4], then it also holds

that h∗
p(Zi, Zj) ∈ [−4, 4]. We are ready to use the result of Hoeffding (1963, Equation (5.7)):

P(|Vn − E[Vn]| ≥ t) ≤ 2 exp(−nt2/64).

Choosing t = 8
√

log(2/δ)
n , then we have, with probability of at least 1− δ:

|Vn − E[Vn]| ≤ 8

√
log(2/δ)

n
. (39)

Combining (38) and (39), we have, with probability of at least 1− δ:

|Vn − S2
p(q)| ≤ 8

√
log(2/δ)

n
+

8

n
.

Now, we recall the definition of Eq̂t−1
[ξp(Z, ·)]:

Eq̂t−1
[ξp(Z, ·)] :=

1

t− 1

t−1∑
i=1

ξp(Zi, ·) (40)

Lemma B.2. Suppose that Assumption 2.3 and 2.4 hold. For Eq̂t−1
[ξp(Z, ·)] defined in (40), it holds that∥∥Eq̂t−1 [ξp(Z, ·)]

∥∥
Gd

a.s.−→ ∥Eq[ξp(Z, ·)]∥Gd . (41)

Proof. We have

∥Eq[ξp(Z, ·)]∥2Gd = S2
p(q)∥∥Eq̂t−1

[ξp(Z, ·)]
∥∥2
Gd =

1

(t− 1)2

t−1∑
i=1

t−1∑
i=1

hp(Zi, Zj) =: Vt−1,

16
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where Vt−1 is defined in Lemma B.1. From Lemma B.1 and the Borel-Cantelli lemma, it follows that:∥∥Eq̂t−1
[ξp(Z, ·)]

∥∥2
Gd

a.s.−→ ∥Eq[ξp(Z, ·)]∥2Gd .

The result then follows from the continuous mapping theorem.

Lemma B.3. Suppose that Assumption 2.3 and 2.4 hold. Under H1 in (1b), for the oracle (10) and plug-in (12) witness
function, it holds that:

⟨ĝt, g∗⟩Gd

a.s.−→ 1. (42)

As a consequence, ∥ĝt − g∗∥Gd

a.s.−→ 0.

Proof. Assuming that the alternative (1b) is true, it follows that:

∥Eq[ξp(Z, ·)]∥Gd > 0.

We aim to show that: 〈
Eq̂t−1

[ξp(Z, ·)]∥∥Eq̂t−1 [ξp(Z, ·)]
∥∥
Gd

,
Eq[ξp(Z, ·)]

∥Eq[ξp(Z, ·)]∥Gd

〉
Gd

a.s.−→ 1.

From Lemma B.2, we know that
∥∥Eq̂t−1

[ξp(Z, ·)]
∥∥
Gd

a.s.−→ ∥Eq[ξp(Z, ·)]∥Gd . Hence, it suffices to show that〈
Eq̂t−1 [ξp(Z, ·)],Eq[ξp(Z, ·)]

〉
Gd

a.s.−→ ∥Eq[ξp(Z, ·)]∥2Gd . (43)

We rewrite
〈
Eq̂t−1

[ξp(Z, ·)],Eq[ξp(Z, ·)]
〉
Gd as:〈
Eq̂t−1

[ξp(Z, ·)],EZ∼q[ξp(Z, ·)]
〉
Gd

=
1

t− 1

t−1∑
i=1

⟨ξp(Zi, ·),EZ∼q[ξp(Z, ·)]⟩Gd

=
1

t− 1

t−1∑
i=1

EZ∼q[hp(Zi, Z)].

Since we have shown in the proof of (B.1) that |hp(x, y)| ≤ 4, by the SLLN, we obtain:

1

t− 1

t−1∑
i=1

EZ∼q[hp(Zi, Z)]
a.s.−→ EZ,Z′ [hp(Z,Z

′)] = S2
p(q).

Therefore, we deduce that: 〈
Eq̂t−1

[ξp(Z, ·)],EZ∼q[ξp(Z, ·)]
〉
Gd

a.s.−→ ∥Eq[ξp(Z, ·)]∥2Gd .

∥ĝt−1 − g∗∥Gd

a.s.−→ 0 simply follows from the fact that

∥ĝt − g∗∥Gd =
√

2(1− ⟨ĝt, g∗⟩Gd).

Lemma B.4. Suppose that {xt}t≥1 is a sequence of numbers such that limt→∞ xt = x. Then the corresponding sequence
of partial averages also converges to x, that is, limn→∞

1
n

∑n
t=1 xt = x. That also implies that if {Xt}t≥1 is a sequence of

random variables such that Xt
a.s.−→ X , then 1

n

∑n
t=1 Xt

a.s.−→ X .

17
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Proof. Fix any ε > 0. Since {xt}t≥1 is converging, then ∃M > 0, such that:

|xt − x| ≤ M, ∀t ≥ 1.

Now, let n0 be such that |xt − x| ≤ ε/2 for all n > n0. Further, choose any n1 > n0: Mn0/n1 ≤ ε/2. Hence, for any
m > n1, it holds that: ∣∣∣∣∣ 1m

m∑
t=1

(xt − x)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1m

n0∑
t=1

(xt − x)

∣∣∣∣∣+
∣∣∣∣∣ 1m

m∑
t=n0+1

(xt − x)

∣∣∣∣∣
≤ 1

m

n0∑
t=1

|xt − x|+ 1

m

m∑
t=n0+1

|xt − x|

≤ n0

m
M +

m− n0

m

ε

2
≤ ε

2
+

ε

2
,

which implies the result.

Before, we state the next result, recall that KSD-based payoffs are based on the predictable estimates {gi}i≥1 of the oracle
witness function g∗ and have the following form:

fi(Zi) =
1

2
(⟨ĝi(Zi),∇ log p(Zi)⟩+∇ · ĝi(Zi)), i ≥ 1,

f∗(Zi) =
1

2
(⟨g∗(Zi),∇ log p(Zi)⟩+∇ · g∗(Zi)).

(44)

Lemma B.5. Suppose that Assumption 2.3 and 2.4 hold. Under H1 in (1b), it holds that:

1

t

t∑
i=1

fi(Zi)
a.s.−→ Eq[f

∗(Z)], (45)

1

t

t∑
i=1

(fi(Zi))
2 a.s.−→ Eq[(f

∗(Z))2]. (46)

Proof. First, we prove that (45). Note that:∣∣∣∣∣1t
t∑

i=1

fi(Zi)− E[f∗(Z)]

∣∣∣∣∣ ≤
∣∣∣∣∣1t fi(Zi)−

1

t

t∑
i=1

f∗(Zi)

∣∣∣∣∣+
∣∣∣∣∣1t

t∑
i=1

f∗(Zi)− E[f∗(Z)]

∣∣∣∣∣︸ ︷︷ ︸
a.s.−→0

,

where the second term converges almost surely to 0 by the SLLN. For the first term, we have that:∣∣∣∣∣1t
t∑

i=1

f∗(Zi)− E[f∗(Z)]

∣∣∣∣∣ ≤ 1

t

t∑
i=1

|fi(Zi)− f∗(Zi)| .

Finally, note that

|fi(Zi)− f∗(Zi)| =
1

2
|⟨ĝi − g∗, ξp(Zi)⟩|

≤ 1

2
∥ĝi − g∗∥Gd · ∥ξp(Zi, ·)∥Gd

≤ ∥ĝi − g∗∥Gd

a.s.−→ 0.

(47)

where the last inequality follows from the fact that ∥ξp(Zi, ·)∥Gd ≤ 2 and the convergence result is due to Lemma B.3. The
result (45) then follows after invoking Lemma B.4.

18



Sequential Kernel Goodness-of-fit Testing

Next, we show that (46) holds. Note that:

1

t

t∑
i=1

(fi(Zi))
2
=

1

2

t∑
i=1

(fi(Zi)− f∗(Zi) + f∗(Zi))
2

=
1

t

t∑
i=1

(fi(Zi)− f∗(Zi))
2

︸ ︷︷ ︸
a.s.−→0

+
2

t

t∑
i=1

f∗(Zi) (fi(Zi)− f∗(Zi))

+
1

t

t∑
i=1

(f∗(Zi))
2

︸ ︷︷ ︸
a.s.−→E[(f∗(Z))]

,

where the first convergence result is due to (47) and Lemma B.4 and the second converge result is due to the SLLN. Using
(47), Lemma B.4, and the fact that f∗ is bounded by 1, we deduce that:∣∣∣∣∣2t

t∑
i=1

f∗(Zi) (fi(Zi)− f∗(Zi))

∣∣∣∣∣ ≤ 2 · 1
t

t∑
i=1

|fi(Zi)− f∗(Zi)|
a.s.−→ 0,

and hence we conclude that the convergence (46) holds.

B.4. Auxiliary Results

Theorem B.6 (Ville’s inequality (Ville, 1939)). Suppose that {Mt}t≥0 is a non-negative supermartingale process adapted
to a filtration {Ft : t ≥ 0}. Then, for any a > 0 it holds that:

P(∃t ≥ 1 : Mt ≥ a) ≤ E[M0]

a
.
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