
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TELL-TALE: TASK EFFICIENT LLMS WITH TASK
AWARE LAYER ELIMINATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces TALE, Task-Aware Layer Elimination, an inference-time
algorithm that prunes entire transformer layers in an LLM by directly optimizing
task-specific validation performance without retraining. We evaluate TALE on 9
tasks and 5 models, LLaMA 3.1 8B, Qwen 2.5 7B, Qwen 2.5 0.5B, Mistral 7B,
and Lucie 7B, under both zero-shot and few-shot settings; and we show that TALE
compares favorably to prior approaches, most of which require retraining. Provid-
ing user control over trade-offs between accuracy and efficiency, TALE ’s selec-
tive layer removal consistently improves accuracy while reducing computational
cost across all benchmarks. TALE produces additional performance gains when
combined with fine-tuning. Analysis shows that certain layers act as bottlenecks,
degrading task-relevant representations. TALE remedies this problem, producing
smaller, faster, and more accurate models that are also faster to fine-tune while
offering new insights into transformer interpretability.

1 INTRODUCTION

While Large Language Models (LLMs) have achieved great success, their substantial computational
demands prevent resource-constrained organizations and those with high-throughput applications
from leveraging more capable models. The use of multi-agent systems, where each agent requires an
LLM specialized for a particular role, has intensified the need for methods that simultaneously boost
task-specific performance and reduce computation costs. Fine-tuning can increase task performance
but does not reduce inference costs and requires significant training overhead and data. General
pruning reduces computation costs but typically demands significant retraining and often results in
substantial performance degradation on downstream tasks.

We offer TALE , Task Aware Layer Elimination, a method that both increases task performance
and reduces computational overhead. TALE is a lightweight, greedy, iterative layer pruning al-
gorithm. It operates at inference time, is hardware agnostic, directly optimizes for task-specific
accuracy at each pruning step and consistently offers improved results over the original model. This
improvement persists in interactions with fine tuning on our tasks. As illustrated in Figure 8 and
detailed in Section 3, TALE systematically evaluates all possible single-layer removals at each iter-
ation, selecting the layer whose elimination results in the highest validation accuracy. This process
continues iteratively until performance improvements fall below a predefined threshold, ensuring
that only layers with minimal or negative impact on task performance are removed.

TALE is based on our observation, illustrated in Figure 1, that not all layers in a transformer con-
tribute to a particular task and indeed sometimes hamper task specific performance. TALE leverages
the modular nature of transformer architectures, where each layer performs a complete transforma-
tion of the input representation through attention and feedforward mechanisms. This architectural
property enables the removal of entire layers without requiring modifications to the remaining net-
work structure. By selectively removing transformer layers, TALE improves task specific accuracy
and provides moderate computational reductions with minimal implementation complexity.

We provide experimental evidence that TALE provides consistent improvements in both accuracy
and computational efficiency on five LLMs, LLaMA 3.1 8B, Qwen 2.5 7B, Qwen 2.5 0.5B, Mistral
7B and Lucie 7B, on 9 diverse benchmark datasets (Sections 4 and 5) both in zero-shot and few-shot
settings. Comparing TALE with previous pruning methods shows that TALE achieves substantially
higher accuracy. We also show that pruning with TALE can combine with fine-tuning to provide

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Figure illustrates how TALE improves performance on the Winogrande task in LLaMA 2
13B with 5-shot prompting. The full model hallucinates the answer; random layer deletion leads to
nonsensical output; using TALE to remove a layer on the first iteration yields the right prediction.

even greater accuracy gains. We analyze layer flow using the notion of mutual information (MI)
to support the hypothesis (Section 5) that not all model layers serve a useful purpose in a given
task and may even impede performance, thus challenging the conventional assumption that deeper
models necessarily perform better. Additionally, our experiments show TALE’s potential as a tool for
understanding layer function in and across models (Section 6), thereby aiding model interpretability.

2 RELATED WORK

Zhu et al. (2024) distinguishes four primary approaches to reducing model size and computation
complexity: model pruning, quantization, low-rank approximation, and knowledge distillation. Our
work focuses on pruning, which comprises unstructured, structured, and semi-structured methods.
Unstructured pruning removes individual parameters, resulting in irregular, sparse structures Han
et al. (2015b); Chen et al. (2015); Srinivas & Babu (2015); structured pruning eliminates entire
components such as neurons, attention heads, or layers while maintaining the overall network struc-
ture He et al. (2017); Voita et al. (2019); Lagunas et al. (2021); Men et al. (2024). Semi-structured
pruning combines fine-grained control with structural regularity, and has been explored in recent
work Li et al. (2023); Frantar & Alistarh (2023b); Sun et al. (2024). Early pruning methods lever-
aged second-order information for structured pruning LeCun et al. (1989); Hassibi et al. (1993), but
the field has since shifted toward computationally simpler, magnitude-based approaches that prune
parameters by importance scores Han et al. (2015a); See et al. (2016); Narang et al. (2017). Model
pruning has also benefited from information-theory (Tishby et al., 2000; Tishby & Zaslavsky, 2015;
Ganesh et al., 2020; Westphal et al., 2024). Fan et al. (2021) propose a layer-wise strategy that lever-
ages mutual information estimates to reduce hidden dimensionality in a top-down manner. A central
challenge, however, is the difficulty of estimating MI. Despite interesting theoretical work as in Ish-
mael Belghazi et al. (2018), in practice, probing classifiers Belinkov (2022) remain the dominant
tool due for such estimations.

For large transformers, Zhang & Papyan (2025) proposes a pruning strategy using matrix approxi-
mations. Similarly, Xia et al. (2023) shows that structured layer and hidden-dimension pruning can
create smaller submodels that outperform same-sized models trained from scratch, though they do
not match the original model’s performance. Kim et al. (2024) explores lock-level pruning based on
weight importance. These methods generally require fine-tuning to recover accuracy and are prone
to degradation, often needing additional retraining Xia et al. (2024), with improvements typically
measured relative to small models rather than the original unpruned baselines.

Closer to TALE are pruning approaches that do not require retraining. Frantar & Alistarh (2023a);
Zhang et al. prune contiguous blocks, especially in attention layers, with minimal performance loss.
SLEB Song et al. (2024) removes entire layers based on the cosine similarity of their represen-
tations, but evaluates perplexity before permanently pruning to avoid degrading linguistic perfor-
mance. SliceGPT Ashkboos et al. (2024) prunes layer dimensions via Principal Component Analy-
sis, eliminating less informative components in embeddings and hidden states. SparseGPT Frantar
& Alistarh (2023c) introduces sparsity by setting individual weights to zero using a reconstruction-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

based criterion, while Wanda Sun et al. (2023) removes weights according to the product of their
magnitudes and input activation norms.

Although these training-free pruning methods are designed to be general, they often degrade linguis-
tic and reasoning abilities. TALE applies task-specific pruning, optimizing the model for a particular
task, which not only improves performance over the original model but also increases inference
speed.

2.1 BASICS AND INTUITIONS

A transformer maps a sequence of input vectors (x1, · · · , xn) to a corresponding sequence of out-
put vectors through a stack of L layers. Each layer ℓ transforms the hidden representations X(ℓ) =

(x
(ℓ)
1 , . . . , x

(ℓ)
n) into X(ℓ+1) through attention and feedforward blocks, connected by residual path-

ways. Removing layer ℓ from this pipeline simply redirects the flow such that X(ℓ−1) → X(ℓ+1), a
property that makes the architecture naturally amenable to layer-wise pruning.

Our initial intuition for TALE came from examining the behavior of partial forward passes. Let h(k)

denote the hidden representation after k layers. Instead of always decoding from the final represen-
tation h(L), we projected intermediate representations h(k) for k < L directly into the vocabulary
space using the output projection Wout, i.e.,

ŷ(k) = softmax(Wouth
(k)).

We then compared the performance of ŷ(k) across different values of k. Surprisingly, we observed
that for many tasks, intermediate layers (k < L) achieved higher accuracy than the final layer L
(Figure 4). This indicated that additional depth does not always translate into better task-specific
performance: some layers contribute marginally, while others introduce representational noise.

This experiment led to our central hypothesis: not all layers in an LLM are equally useful, and se-
lectively removing redundant layers can preserve—or even improve—downstream accuracy. TALE
(Task-Aware Layer Elimination) formalizes this intuition into a principled, iterative pruning strategy.

Algorithm 1 TALE : Greedy Iterative Layer Pruning

Require: Pre-trained modelM with L layers; validation set Dval; performance threshold ϵ
Ensure: Compressed modelM∗

1: InitializeM∗ ←M
2: repeat
3: for each layer ℓ ∈ {1, . . . , L} ofM∗ do
4: Construct candidate modelM−ℓ by removing layer ℓ
5: Compute validation accuracy Aℓ = Acc(M−ℓ,Dval)
6: end for
7: Select ℓ∗ = argmaxℓ Aℓ

8: if Aℓ∗ ≥ Acc(M∗,Dval)− ϵ then
9: UpdateM∗ ←M−ℓ∗

10: else
11: break
12: end if
13: until All Accuracies below threshold
14: returnM∗

2.2 TALE

TALE is a greedy iterative layer pruning algorithm for pre-trained open-weights LLM compression
that systematically removes layers while preserving or even improving model performance (Algo-
rithm 6). Starting with a full pre-trained model, TALE evaluates all possible single-layer removals
at each iteration, computing the validation accuracy for each candidate pruned architecture. The
layer whose removal results in the highest accuracy is permanently eliminated from the model, and
this compressed architecture becomes the baseline for the next iteration. This process continues
iteratively until the performance improvement falls below a predefined threshold, at which point the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

algorithm terminates and returns the most compressed model that maintains performance above the
specified threshold. We prune on a subset of a benchmark, while evaluation uses a separate subset
within the same distribution. Thus, TALE improves performance on the underlying task itself, rather
than merely being specific to the pruning data. Our approach directly optimizes for task-specific
accuracy at each pruning step, ensuring that only layers with minimal impact on the target objec-
tive are removed. This exhaustive evaluation strategy, while computationally intensive during the
pruning phase, provides strong empirical guarantees about the optimality of each pruning decision
within the greedy framework.

3 BENCHMARKS AND DATASETS

We evaluate TALE across a diverse suite of nine benchmarks spanning reasoning, language under-
standing, and commonsense knowledge. For mathematical reasoning, we include GSM8K-Hard, a
curated subset of GSM8K Cobbe et al. (2021) with more than five premises per question to increase
difficulty, and MATH500 Hendrycks et al. (2021b), a benchmark for symbolic and arithmetic rea-
soning (for evaluation details see Appendix A). For language understanding, we consider MMLU
Hendrycks et al. (2021a) and BoolQ Clark et al. (2019), while Winogrande Sakaguchi et al. (2021),
CommonsenseQA Talmor et al. (2019), and BIG-Bench Srivastava et al. (2023) capture common-
sense and multi-task generalization. Finally, we include both ARC-Easy and ARC-Challenge Clark
et al. (2018), which evaluate scientific and factual reasoning at varying difficulty levels. Together,
these nine datasets cover a broad spectrum of downstream challenges and allow us to assess both the
generality and task-specific benefits of our pruning strategy.

4 RESULTS

(a) ARC-Easy (b) ARC-Challenge (c) WinoGrande

(d) CommonQA (e) GSM8K-Hard (f) MMLU

Figure 2: Accuracy progression of TALE across 6 benchmark datasets for LLaMA 3.1 8B. Each
curve represents the accuracy at successive iterations. The ⋆ denotes the best-performing layer drop
configuration, while the □ highlights the Best Speed up with at least Baseline Accuracy (BSBA)
configuration. Plots for all tasks are in Appendix E.

We evaluate TALE across five medium-scale models (LLaMA 3.1 8B, Mistral 7B, Lucie 7B,
Qwen 2.5 7B) and one smaller model (Qwen 2.5 0.5B), spanning nine benchmarks that cover com-
monsense reasoning, reading comprehension, and mathematical problem solving. All experiments
are conducted in the zero-shot setting unless otherwise noted.1

1Code available at https://anonymous.4open.science/r/tale/

4

https://anonymous.4open.science/r/tale/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We employed two evaluation strategies, the standard one from the LM-Eval library (Table 2) and an
automatic evaluation (Our Eval) that we developed for the test portions of our datasets (see Figure
5, Tables 1, 3, and additional tables in the appendix). The LM-Eval method selects the answer with
the highest probability from options provided. This has drawbacks which we discuss in Appendix A
and doesn’t really measure actual, generated output, whereas Our Eval does. We force the model to
predict its answer after reasoning steps in a particular format and then calculate the accuracy. This
can lower accuracy from what is expected; but since we used the same evaluation criteria for all the
techniques and models and are interested in relative changes in performance under pruning, these
unexpected increases/decreases are moot. Table 5 summarizes model configurations.

TALE requires only modestly-sized validation sets for task-specific optimization, ranging from 500
to 1500 examples. As seen in Table 13 (Appendix H), once the validation set size exceeds 500
examples, the set of layers dropped stabilizes across all tasks.

Dataset LLaMA 3.1 8B (zero-shot) Qwen 2.5 7B (zero-shot)

Baseline Best Model BSBA Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp. Perf. Perf. #D Sp. saved Perf. #D Sp.

ARC-Easy 87.00 90.55(+4.08% ↑) 5 -14.6% 87.82 8 -23.5% 91.01 91.82(+0.89% ↑) 2 -10.0% 90.91 5 -30.3%

ARC-Challenge 75.86 78.62(+3.63% ↑) 4 -11.7% 76.90 7 -20.5% 86.55 92.00(+6.45% ↑) 2 -6.7% 86.55 6 -19.9%

BoolQ 85.00 86.20(+1.40% ↑) 3 -8.8% 85.70 7 -17.6% 84.10 86.90(+3.22% ↑) 4 -13.3% 82.70 5 -23.2%

MMLU 54.87 59.90(+9.17% ↑) 1 -2.9% 54.87 9 -26.4% 68.10 71.00(+4.26% ↑) 5 -16.6% 68.13 6 -19.9%

CommonQA 72.20 75.30(+4.29% ↑) 3 -8.8% 73.10 6 -17.6% 80.30 84.40(+5.11% ↑) 2 -6.6% 80.50 6 -19.9%

Winogrande 53.83 56.67(+5.28% ↑) 4 -11.7% 53.83 12 -32.2% 62.04 67.25(+8.40% ↑) 3 -10.0% 62.19 6 -19.9%

BIG-Bench 75.20 83.60(+11.17% ↑) 5 -14.4% 75.20 11 -32.2% 79.20 81.60(+3.03% ↑) 6 -19.9% 81.60 6 -19.9%

GSM8K-HARD 15.07 37.08(+146.05% ↑) 1 -2.9% 35.0 4 -11.7% 7.9 27.0(+243.58% ↑) 2 -6.6% 19.1 4 -13.3%

Math500 20.50 26.00(+26.83% ↑) 1 -2.9% 26.00 3 -8.8% 18.00 27.00(+50.0% ↑) 2 -6.6% 21.00 4 -13.3%

Dataset Lucie 7B (zero-shot) Mistral 7B (zero-shot)

Baseline Best Model BSBA Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp. Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 72.45 76.55(+5.66% ↑) 6 -18.1% 72.55 13 -39.2% 81.02 83.45(+4.23% ↑) 5 -15.4% 81.09 9 -27.7%

ARC-Challenge 48.00 53.79(+12.06% ↑) 7 -21.1% 51.38 11 -33.1% 72.20 74.83(+3.64% ↑) 6 -18.5% 72.41 8 -24.6%

BoolQ 53.70 77.50(+44.32% ↑) 5 -17.2% 60.60 19 -54.2% 80.36 83.20(+3.53% ↑) 6 -18.5% 80.60 10 -27.7%

MMLU 21.36 42.98(+101.2% ↑) 8 -24.1% 39.39 15 -45.2% 52.73 57.81(+9.63% ↑) 2 -6.2% 52.91 8 -24.6%

CommonQA 55.50 69.70(+25.59% ↑) 3 -9.1% 57.10 17 -48.2% 57.32 61.40(+7.12% ↑) 4 -12.3% 57.40 7 -21.5%

Winogrande 54.20 57.80(+6.64% ↑) 5 -27.1% 54.30 15 -45.2% 52.55 58.80(+11.53% ↑) 10 -30.7% 53.43 13 -40.0%

BIG-Bench 69.60 77.20(+9.84% ↑) 9 -27.1% 72.00 15 -45.1% 70.00 76.40(+9.14% ↑) 9 -28.0% 72.80 11 -33.8%

GSM8K-HARD 14.20 17.80(+25.35% ↑) 1 -3.1% 17.40 3 -9.1% 11.24 19.10(+69.92% ↑) 2 -6.2% 15.73 4 -12.3%

Math500 19.00 27.00(+42.11% ↑) 2 -6.0% 26.00 3 -9.1% 8.00 16.00(+100% ↑) 1 -3.1% 10.00 4 -12.3%

Table 1: Performance comparison across language models under 0-shot evaluation. Accuracy (Perf.)
uses Our Eval We also report number of dropped layers (#D), and relative inference speedup (Sp.) in
terms of percentage of Tflops saved (Percentage saved = TflopsBaseline−TflopsPruned-model

TflopsBaseline
× 100). Percentage

gain = AccBest−AccBaseline
AccBaseline

×100. Best accuracy is highlighted in bold; BSBA shows balanced trade-offs.

Iterative pruning trajectories. Figure 5 visualizes the iterative layer-pruning process for
LLaMA 3.1 8B. Each curve tracks accuracy as layers are progressively removed. As the graphs
reveal, the first iteration of TALE typically provides a large boost in accuracy; this boost can make
a weak, uncompetitive model competitive. Almost all the trajectories reveal a big initial boost fol-
lowed by slight increases or decreases; they then follow monotonic decreasing path to accuracies
below the baseline and eventually to 0. We stop the iterations once the model accuracy descends
below the baseline, and we have found no cases where the trajectory later goes above the baseline.
The curve in itself is worthy of future study.

We use this first iteration to guide pruning when trying to balance accuracy with model compression
The ⋆ denotes the best-performing pruned model (Best), while the □ highlights the Best Speedup
with Baseline Accuracy (BSBA) model—the pruned configuration achieving maximum compression
and inference speedup without falling below the accuracy provided by TALE’s first iteration.

From these trajectories, three consistent patterns emerge: (i) TALE identifies compressed models
that outperform the original across diverse tasks, with ⋆ markers lying strictly above baseline. (ii)
Accuracy improvements persist across multiple pruning steps before diminishing returns, showing

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that substantial redundancy exists even in carefully tuned pretrained models. (iii) Pruning dynamics
are task-specific: datasets such as ARC-Easy and MMLU tolerate deeper pruning while continuing
to improve, whereas reasoning-heavy tasks like GSM8K-Hard converge earlier, reflecting heteroge-
neous layer importance across domains.

Computation costs The computational cost of running TALE is modest. For multi-choice tasks
such as MMLU, using a validation set of 500 examples, three full TALE iterations complete in ≈
1 GPU-hour on a single A100. Since this pruning is performed once per task, the amortized cost is
negligible relative to the inference savings. For details see Appendix C.

Best vs. BSBA models. Table 1 compares baseline models against their pruned counterparts under
both Best and BSBA configurations. Across all benchmarks, the Best models yield consistent ac-
curacy gains—up to +146% (LLaMA 8B on GSM8K-Hard), +101% (Lucie 7B on MMLU) and
+244% (Qwen 7B on GSM8k-Hard)—while also delivering moderate speedups. BSBA models,
by construction, trade smaller gains in accuracy for more aggressive speedups, offering practical
operating points when inference cost is the dominant concern.

Few-shot setting. We tested TALE under the few-shot regime for Lucie and LLaMA models (Ap-
pendix Tables 6–7). Few-shot prompting improves baselines on reasoning tasks such as GSM8K and
Math500, yet TALE-pruned variants still achieve higher accuracy in nearly all settings. This shows
that pruning-induced improvements are largely complementary to gains from in-context learning.

Comparisons to other training-free pruning methods

Model Method Sparsity WinoGr HellaSwag ARC-e ARC-c
Baseline 0% 69.1 76.0 74.6 46.3
SpareGPT 2:4 (50%) 64.3 57.9 60.3 33.8
Wanda 2:4 (50%) 61.9 54.8 56.9 32.1

LLaMA-2-7B SliceGPT 25% 62.9 53.1 57.9 33.3
SliceGPT 30% 60.8 47.9 51.4 30.9
SLEB 10% 62.4 69.3 62.7 36.9
TALE 10% 73.1 80.0 76.7 54.5
Baseline 0% 72.22 79.39 77.48 49.23
SpareGPT 2:4 (50%) 68.31 65.22 66.44 38.76
Wanda 2:4 (50%) 66.81 62.19 64.11 36.10

LLaMA-2-13B SliceGPT 25% 66.98 56.90 62.10 37.42
SliceGPT 30% 66.11 52.39 56.12 33.17
SLEB 10% 66.93 74.36 71.84 41.55
TALE 10% 76.8 83.39 80.5 53.0

Table 2: Accuracies (%) with LM Eval on zero-shot tasks for LLaMA-2-7B and LLaMA-2-13B

Model Method Sparsity WinoGr ARC-e ARC-c
Baseline 0% 41.2 51.7 40

LLaMA-2-7B SLEB 10% 18 (-56.3% ↓) 29 (-43.9% ↓) 28.8 (-28.0% ↓)
TALE 10% 56 (+35.9% ↑) 62.3 (+20.5% ↑) 50 (+25.0% ↑)
TALE 25% 51 (+23.8% ↑) 64.8 (+25.3% ↑) 47.6 (+19.0% ↑)
Baseline 0% 42 73.0 54.9

LLaMA-2-13B SLEB 10% 24.2 (-42.3% ↓) 43.5 (-40.4% ↓) 29.8 (-47.3% ↓)
TALE 10% 56.4 (+34.3% ↑) 77.3 (+5.9% ↑) 64.4 (+17.1% ↑)
TALE 25% 55.2 (+31.4% ↑) 75.3 (+3.2% ↑) 64.1 (+16.4% ↑)

Table 3: Accuracies (%) with Our Eval on zero-shot tasks for LLaMA-2-7B and LLaMA-2-13B

Although general training-free pruning techniques often report acceptable accuracy using LM eval-
uation metrics, they are still far below the accuracy scores gained from TALE (Table 2). Moreover,
the accuracy of their decoded outputs deteriorates sharply (3), while TALE increases accuracy on
real outputs.

Takeaways. TALE consistently uncovers high accuracy and high accuracy/high efficiency mod-
els. By balancing task fidelity with computational savings, it enables both accuracy-focused and
efficiency-focused deployment. Even for strong models like Qwen 7B we see improvements, and
for weaker models like Lucie 7B we see very substantial improvements. Our improvements with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

TALE also apply small to language models (Qwen 0.5B). The observed diversity in pruning profiles
across datasets underscores the importance of adaptive pruning, rather than one-size-fits-all heuris-
tics, for effective model compression (For a tunable selection metric for choosing among candidate
trade-offs see Appendix F). In examining perplexity for pruned models, TALE shows that pruning to
optimize for perplexity, though it produces a model with minimal increases in perplexity, does not
translate into better performance on downstream tasks, contra Song et al. (2024). In effect perplexity
acts as an another task with its own optimally pruned model.

4.1 TALE AND FINE-TUNING: HOW DOES PRUNING INTERACT WITH FINE-TUNING?

A natural question is whether pruning layers before or after fine-tuning harms the model’s ability
to learn. One might expect that removing layers reduces representational capacity and thus limits
downstream fine-tuning performance compared to baseline instruct-tuned models. Surprisingly, our
experiments show the opposite: TALE not only preserves fine-tuning efficacy but in several cases
improves both accuracy and efficiency.

We explored four settings: (i) fine-tuning the base model (FT), (ii) applying TALE after fine-tuning
(FT → TALE), (iii) pruning first and then fine-tuning (TALE → FT), and (iv) pruning first, then
fine-tuning, and finally pruning again (TALE → FT → TALE). Across various benchmarks, we
consistently observed mostly moderate and sometimes significant gains after iterating pruning and
fine-tuning, especially on Winogrande and GSM8K (Table 4). This suggests that pruning can act as
a regularizer, simplifying the optimization landscape by removing redundant layers.

TALE also reduced computation costs for fine-tuning. For example, pruning LLaMA-3.1 8B before
fine-tuning reduced fine-tuning time by 2–2.5 GPU hours on an A100 (an 18.5% reduction) while
simultaneously improving Winogrande performance by +2.4%. Iteratively applying pruning and
fine-tuning allowed us to prune up to 8 layers achieving still higher accuracy (87.37%) than the full
fine-tuned model (85.00%). Similarly, pruning the fully fine-tuned model yielded a 7-layer reduction
while maintaining strong accuracy (86.66%).

Model Dataset
Baseline Pruned Only FT Only Prune→ FT FT→ Prune (Prune→ FT)→ Prune

Perf. #D Perf. #D Perf. #D Perf. #D Perf. #D Perf. #D

Llama 3.1 8B
Winogrande 53.83 0 56.67 4 85.00 0 87.06 4 86.74 7 87.37 8
MMLU 54.87 0 59.90 1 63.62 0 63.49 1 64.21 2 64.01 2
CommonQA 72.20 0 75.30 3 81.88 0 81.80 3 83.40 3 82.90 6
GSM8K 15.07 0 37.08 3 42.70 0 53.96 1 50.86 2 54.02 2

Qwen 0.5B
Winogrande 49.86 0 51.88 5 50.43 0 50.43 5 50.49 2 52.49 9
MMLU 31.48 0 39.98 2 44.87 0 43.76 2 45.53 2 45.58 3

Table 4: Comparison of Llama 3.1 8B and Qwen 0.5B across Winogrande, MMLU, and Com-
monQA under different pruning and fine-tuning regimes. Columns denote: (i) Baseline = original
model, (ii) Pruned Only = TALE without fine-tuning, (iii) FT Only = fine-tuned without pruning, (iv)
Prune→ FT = prune then fine-tune, (v) FT→ Prune = fine-tune then prune, (vi) (Prune→ FT)→
Prune = best fine-tuned-pruned model further pruned. Perf. = performance score, #D = number of
deleted layers.

Overall, these results highlight an unexpected but consistent trend: pruning with TALE does not
hinder fine-tuning but instead synergizes with it. Pruning acts like a regularizer, simplifying the
optimization landscape, and can effectively interleave with fine-tuning to create models that are
both more accurate and computationally efficient. Pruned models fine-tune faster, require fewer
parameters to adapt, and are close to or better in performance than their full counterparts.

5 INFORMATION THEORY: WHY PRUNED MODELS MIGHT PERFORM BETTER.

Our results pose a puzzle: the increase in accuracy with TALE is counterintuitive: why would remov-
ing parts of a carefully trained model lead to better performance? One way to explore this question
is mutual information.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Alemi et al. (2016); Tishby & Zaslavsky (2015) use information theory (Shannon, 1948) to analyze
how neural networks learn and represent data. Fano & Hawkins (1961) define I(X;Y), the mutual
information between two random variables X and Y , with the equation:

I(X;Y) = H(Y)− H(Y | X) = H(X)− H(X | Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x) p(y)
(1)

where p(x, y) is the joint distribution of X and Y, and p(x), p(y) are their marginals and where
H(X) = −

∑
x p(x) log p(x) is the Shannon (1948) entropy. I(X;Y) measures how much knowing

X reduces uncertainty about Y (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017). To attempt
to explain why accuracy increases through task pruning we also use MI.

A major challenge of this approach is that it requires information about true distributions, which are
infeasible to compute. As a result, researchers typically assume a Gaussian distribution Gabrié et al.
(2019); Gao et al. (2015); Park et al. (2024) or approximate the probe using a classifier Belinkov
(2022); Alain & Bengio (2016) or an MLP Belghazi et al. (2018). These approximations can yield
useful insights. In our case, the Gaussian assumption did not fit our datasets. Since we evaluate
on QA tasks, we used a trainable classifier to approximate the probes and estimate I(Xℓ,Y) at
each layer, where Xℓ denotes the contextualized representations at layer ℓ and Y denotes the target
answer. This approximates how much information the layer ℓ representations contain about the
answer. The goal is then to examine whether some layers exhibit a sharp drop in information and
whether those layers coincide with the ones whose removal leads to improved performance.

Our findings, summarized in Figure 3 and Table 9, reveal two key patterns: (i) several layers in
large pre-trained transformers exhibit a pronounced drop in mutual information; (ii) removing layers
dictated by TALE consistently increases the mutual information at the subsequent layer across tasks.
Together, these results suggest that certain layers act more as bottlenecks than as contributors to
task-relevant representations, providing a rationale for why pruning can lead to improved accuracy.

(a) ARC-Easy (Qwen 0.5B) (b) BoolQ (Lucie 7B) (c) BigBench (Llama 8B)

Figure 3: Evolution of mutual information (MI) across transformer layers for different benchmark
datasets and different models. Each subplot shows how information is processed and transformed as
it flows through the network layers, demonstrating distinct patterns of information propagation for
(a) ARC-Easy on Qwen 0.5B, (b) BoolQ on Lucie 7B, and (c) BigBench on LLaMA 8B.

6 DISCUSSION

We summarize five key observations below from our experiments.

1. Deleting later layers frequently improves performance on various tasks. This challenges
prior claims that later layers are essential Tenney et al. (2019); Bansal et al. (2023); Song et al.
(2025). Even deleting many late layers does not reduce accuracy below baseline, whereas removing
even a single early layer is often catastrophic (see Figure 7 in Appendix I). All models exhibit sim-
ilar behavior. On the other hand, early layers often appear crucial for providing core task-relevant
representations that enable the model solve the task, even though probing outputs at those layers
does not yield interpretable responses. These results may help model interpretability. Plotting per-
formance degradation from ablating layers helps localize where specific task-solving abilities reside
in the network.

2. Task dependence of layer importance. Which layers improve or harm performance when re-
moved is highly task dependent. Sometimes a single layer is critical: for instance, removing layer

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

25 of LlaMA-8B on CommonsenseQA causes a 50-point accuracy drop. Removing LLaMA’s layer
3 improves performance on GSM8K-hard but hurts MATH500; the reverse happens when removing
layer 11. Removing early layers (1–3) reduces accuracy to near zero on commonsense reasoning
tasks (Figure 7), suggesting that certain early layers localize critical task-relevant information. Ini-
tial multilingual testing of TALE on Lucie, tuned for French conversational proficiency Gouvert
et al. (2025), with bilingual versions of the same data set showed that optimal pruning was task spe-
cific rather than language specific.This explains why pruning techniques that remove layers without
considering the target task often produce substantial losses in accuracy.

3. Structured task-specific patterns. Although pruning is task-specific, related tasks often ex-
hibit similar layer dependencies. Commonsense reasoning tasks (see Figure 7) show importance
concentrated in comparable regions of the network. Mathematical reasoning tasks benefit from
pruning one to three early layers (e.g., LLaMA layer 3, Mistral layers 6 and 22, Lucie layer 12), but
not more (Figures 9, 10, 11). Commonsense and language tasks (ARC, BoolQ, CommonsenseQA,
Winogrande, and BIG-Bench) benefit from deleting later layers (Tables 9, 11, 10). This suggests
that later layers often play a decoding role for predictions into natural language, which reinforces
point 1—pruning them doesn’t harm predictive capability.

We observe stronger pruning gains in reasoning-heavy tasks under zero-shot evaluation. All mod-
els showed notable accuracy boosts after deleting one or two layers on mathematical reasoning
(e.g., LLaMA’s and Qwen’s triple digit gains on GSM8K-hard, and large gains on for all models on
Math500 and GSM8K-hard). By contrast, knowledge-intensive tasks exhibit more modest improve-
ments (e.g., an 11% gain for LLaMA on BIG-Bench).

4. Model-specific pruning effects. Different models display distinct pruning behavior. For ex-
ample, pruned Lucie achieved a 101% gain on MMLU and double-digit gains on ARC-Challenge,
CommonsenseQA, BoolQ and GSM8K-hard. While Qwen-7B, LLaMA-8B and Mistral share a
similar architecture and scale, they had modest gains on these datasets. Lucie also benefitted from
more substantial pruning than the other models. Interestingly, Lucie was trained on a much smaller
dataset (3T tokens vs. 15T for LLaMA and 13T for Qwen). This suggests intriguing interactions
between pretraining and pruning efficiency. We hypothesize that models trained close to their per-
formance ceiling (via large-scale pretraining, instruction tuning or RLHF) yield smaller pruning
gains, whereas models trained under limited objectives may benefit more. But even the Qwen-0.5B
trained on a large corpus showed strong pruning efficiency gains (Table 14).

We experimented with producing pruned models for several tasks. We get a LLaMA math model
better than baseline LLaMA for both Math500 and GSM8K tasks by dropping layer 12. Taking an
intersection of BSBA models for several tasks improved speed up without much loss in accuracy
across multiple tasks (Table 15). A better method would be for TALE to prune models on several
tasks at once with different mixtures of data to guide the pruning.

7 CONCLUSIONS

TALE removes layers irrelevant to a given task T that consistently yields performance above the base
model on T and far above the state of the art in pruning without retraining. TALE also reduces com-
putation costs. It can also profitably interact with further training or fine tuning further increasing
task specific performance. TALE is a generic strategy and can prune at many levels: base pre-trained
models, instruction-tuned models (as we mainly do here), fine-tuned, and post-trained models with
RLHF.

TALE can benefit high-throughput applications with time constraints–e.g. in multi-agent systems
with task-specific agents or interactive AI assistants. TALE can also help organizations that face
critical trade-offs between model capability and computational efficiency use large language models
at scale.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. In International Conference on Learning Representations (ICLR) Workshop, 2016.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and
Dan Roth. Rethinking the role of scale for in-context learning: An interpretability-based case
study at 66 billion scale. In Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 11833–11856, 2023.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531–540. PMLR, 2018.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219, 2022.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In International conference on machine learning, pp.
2285–2294. PMLR, 2015.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/
v1/N19-1300. URL https://aclanthology.org/N19-1300/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018. arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Chun Fan et al. Layer-wise neuron pruning using mutual information. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

Robert M Fano and David Hawkins. Transmission of information: A statistical theory of communi-
cations. American Journal of Physics, 29(11):793–794, 1961.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323–10337. PMLR, 2023a.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. 2023b. Referenced as Frantar and Alistarh (2023) in the survey.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323–10337. PMLR, 2023c.

Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Florent Krzakala,
and Lenka Zdeborová. Entropy and mutual information in models of deep neural networks. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Praveen Ganesh et al. Mint: Mutual information-based neuron trimming for dnn compression. arXiv
preprint arXiv:2003.08472, 2020.

Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Efficient estimation of mutual information for
strongly dependent variables. arXiv preprint arXiv:1411.2003, 2015.

10

https://aclanthology.org/N19-1300/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Olivier Gouvert, Julie Hunter, Jérôme Louradour, Christophe Cerisara, Evan Dufraisse, Yaya Sy,
Laura Rivière, Jean-Pierre Lorré, et al. The lucie-7b llm and the lucie training dataset: Open
resources for multilingual language generation. arXiv preprint arXiv:2503.12294, 2025.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations (ICLR), 2021a. arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and R Devon Hjelm. Mine: mutual information neural estimation. arXiv e-prints, pp.
arXiv–1801, 2018.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11:1, 2024.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Yun Li et al. E-sparse: Boosting the large language model inference through entropy-based n:m
sparsity. 2023. Referenced as Li et al. (2023b) in the survey.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in recurrent
neural networks. arXiv preprint arXiv:1704.05119, 2017.

Seungho Park, Seunghan Kim, Jinhyeok Baek, Hoyoung Shin, Minjae Lee, Hyunwook Jang, and
Kyungsik Kim. Gaussian mutual information maximization for efficient graph self-supervised
learning. In Proceedings of the 32nd ACM International Conference on Multimedia, pp. 8647–
8656, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.
doi: 10.1145/3452469.

Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of neural machine
translation models via pruning. arXiv preprint arXiv:1606.09274, 2016.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Xinyuan Song, Keyu Wang, PengXiang Li, Lu Yin, and Shiwei Liu. Demystifying the roles of llm
layers in retrieval, knowledge, and reasoning. arXiv preprint arXiv:2510.02091, 2025.

Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural networks. arxiv
2015. arXiv preprint arXiv:1507.06149, 2015.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam R.
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain,
Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, An-
ders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, An-
drew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, and ...
others. Beyond the imitation game: Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj. Preprint / TMLR.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Mingjie Sun et al. A simple and effective pruning approach for large language models. 2024.
Referenced as Sun et al. (2024) in the survey.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, volume 1, pp. 4149–4158. Association for Computational Linguistics, June
2019. doi: 10.18653/v1/N19-1421.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pp. 1–5. Ieee, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Daniel Westphal et al. Mutual information preserving pruning (mipp). arXiv preprint
arXiv:2411.00147, 2024.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. 2024.

Stephen Zhang and Vardan Papyan. Oats: Outlier-aware pruning through sparse and low rank de-
composition. In The Thirteenth International Conference on Learning Representations, 2025.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms. In
The Twelfth International Conference on Learning Representations.

12

https://openreview.net/forum?id=uyTL5Bvosj

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
for large language models. Transactions of the Association for Computational Linguistics, 12:
1556–1577, 2024.

A IMPLEMENTATION DETAILS

Hardware. All experiments were conducted on 1 NVIDIA A100 GPU with 80GB memory.

Models. We applied TALE to five open-weights LLMs of varying scales: Qwen2.5-0.5B-Instruct,
Qwen2.5-7B-Instruct, Lucie-7B-Instruct, Mistral-7B-Instruct, and Llama-3.1-8B-Instruct.

Datasets for TALE pruning. The greedy layer-pruning algorithm was evaluated across nine
widely used benchmarks covering reasoning, commonsense, and knowledge-intensive tasks: ARC-
Challenge, ARC-Easy, MMLU, Winogrande, GSM8K, MATH500, CommonQA, BIG-Bench,
and BoolQ.

Pruning setup. At each iteration, TALE evaluates all candidate single-layer deletions with respect
to validation accuracy. The pruning threshold was defined as the baseline accuracy of the full model,
ensuring that pruning never reduces performance relative to the original unpruned model. The iter-
ative procedure terminates once no further layer removals satisfy this criterion.

Fine-tuning setup. For fine-tuning experiments, we focused on Winogrande and MMLU. We
employed LoRA with rank 64, a batch size of 4, and the optimizer paged adamw 32bit. A
cosine learning rate scheduler was used, and models were trained for 10 epochs.

Evaluation. The LM-Eval methodology presents a significant limitation: it selects the answer
with the highest probability among the provided options rather than assessing what the model would
actually generate. This approach ignores hallucination behavior and systematically inflates scores;
for example, in a two-choice setting, a hallucinated answer still has a 50% chance of being counted
as correct. Furthermore, LM-Eval often assigns relatively high scores to weak models, compress-
ing performance differences and making stronger approaches appear only marginally better despite
substantial real-world gains. This produces a misleading picture of model capability, as high LM-
Eval results do not guarantee that a model will produce correct, coherent outputs in practice. For
these reasons, we relied primarily on Our Eval that measures actual accuracy based on the model’s
generated outputs, which we implemented for each task.

Prompting. For zero-shot and few-shot evaluation, we used task-specific prompts. Below we
show the prompt used for datasets, consisting of a system instruction :

ARC-E & ARC-C System Prompt

You are a Science expert assistant. Your task is to answer multiple-choice science questions at grade-school
level. Each question has four answer choices, labeled A, B, C, and D.
For each question: - Carefully read the question and all answer choices. - Select the single best answer
from the options (A, B, C, or D). - Respond only with the letter of the correct answer, and nothing else—no
explanation or extra words.
Be precise and consistent: Only the answer letter.

Bigbench System Prompt

”You are a boolean expression evaluator. You must respond with exactly one word: either ’True’ or ’False’.
Do not provide explanations, steps, or any other text. Only respond with ’True’ or ’False’.”

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

BOOLQ System Prompt

”You are a helpful assistant that answers True/False questions based on given passages. Read the passage
carefully and determine if the question can be answered as True or False based on the information in the
passage. ”Respond with only ’A’ for True or ’B’ for False.”

CommonQA System Prompt

”You are a helpful assistant that answers multiple-choice questions requiring commonsense knowledge and
reasoning. Read each question carefully and select the most logical answer from the given options based
on common knowledge and reasoning. Respond with only the letter of your chosen answer (A, B, C, D, or
E).”

GSM8K System Prompt

”You are a math problem solver. Solve the given math problem step by step. ” ”Show your complete
reasoning and calculations. ” ”At the end, write your final answer after ’####’ like this: #### [your final
numerical answer]””

MMLU System Prompt

”You are a helpful assistant that answers multiple-choice questions across various academic subjects includ-
ing humanities, social sciences, STEM, and professional fields. Read each question carefully and select the
best answer from the given options. Respond with only the letter of your chosen answer (A, B, C, or D).”

Winogrande System Prompt

You are a careful math problem solver. Show complete step-by-step reasoning and all calculations needed
to arrive at the answer. Use clear, numbered or labeled steps so the reasoning is easy to follow.
IMPORTANT (formatting):

• After the full reasoning, write the final answer on a new line by itself in exactly this format:

####
integer

• <integer> must be digits only, optionally with a leading “-” for negatives (e.g., -7).

• Do not add words, punctuation, units, or commentary on the same line as the #### line.

• The #### line must be the final line of the output (nothing may follow it).

• Assume all problems expect integer answers; ensure the final line contains a single integer.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B NUMBER OF PARAMETERS PER LAYER FOR EACH MODEL

Model LLaMA 3.1 8B Qwen 2.5 7B Mistral 7B Lucie 7B Qwen 2.5 0.5B

Parameters 218,112,000 233,057,792 218,112,000 192,946,176 14,912,384

Table 5: Model parameter counts comparison. LLaMA 3.1 8B, Mistral 7B and Lucie 7B has 32
layers, Qwen 2.5 7B has 28 layers and Qwen 2.5 0.5B has 24 layers.

C PRACTICAL COMPUTING SAVINGS AND SCALING

We quantify TALE’s inference-cost reduction by measuring TFLOPs (tera-FLOPs) drop per re-
moved layer. Across models and tasks, removing a single transformer layer yields a mean TFLOPs
reduction of 3.00% ± 0.20%. Because TALE removes entire layers sequentially, the total TFLOPs
reduction scales essentially linearly with the number of iterations (layers removed). In practice this
means only a few iterations are required to reach common sparsity targets: e.g., three iterations
remove roughly ≈9% TFLOPs, sufficient to realize 10% sparsity in our settings.

D INTUTION BEHIND TALE

(a) ARC-Challenge (b) MMLU

Figure 4: Layer-wise output performance for LLaMA models: results when generating predictions
from intermediate layers 1 through 32 on three different datasets.

E RESULTS

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) ARC-Easy (b) ARC-Challenge (c) BoolQ

(d) MMLU (e) CommonQA (f) WinoGrande

(g) BIG-Bench (h) GSM8K-Hard (i) Math500

Figure 5: Accuracy progression of TALE across 9 benchmark datasets for LLaMA 3.1 8B. Each
curve represents the accuracy at successive iterations. The ⋆ denotes the best-performing layer drop
configuration, while the □ highlights the Best Speed up with at least Baseline Accuracy (BSBA)
configuration.

F A TUNABLE METRIC FOR FINDING ACCURACY VS. SPEED UP
OPTIMIZATION

To systematically select among these candidates according to user priorities, we propose the Accu-
racy–Efficiency Harmonic Mean (AE-HM):

rA =
Acc(Model)

Acc(Baseline)
, AE-HM(Model) =

(1 + λ2)rA S

λ2S + rA
=

1 + λ2

λ2

rA
+ 1

S

(2)

where S denotes the relative inference speedup and λ controls the relative importance of accuracy
versus efficiency. The user can set AE-HE’s parameter λ to desired specifications: if λ > 1, we
prioritize rA; if λ < 1 we prioritize Speedup.

By computing AE-HM for candidate models, we can automatically identify the model with the
highest score for a given task or a set of tasks given a particular AE-HM parameter setting:

Mbest-compromise = argmax
i

AE-HM(Mi) (3)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dataset
Lucie 7B few-shots

Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 69.2 72.36 9 1.41 71.27 12 1.68
ARC-Challenge 49.31 55,17 9 1.39 51.72 13 1.67
BoolQ 77.6 79.10 6 1.22 78.5 10 1.27
MMLU 41.02 43.44 7 1.26 41.48 11 1.55
COMMONQA 55.4 69.7 3 1.22 57.10 17 2.02
WINOGRANDE 52.8 56.90 12 1.58 53.30 17 1.74
BIG-Bench 68.8 77.20 9 1.61 72 15 2.23
GSM8K-HARD 26.97 29.21 1 1.03 26.97 2 1.1

Table 6: Results of Lucie 7B across nine benchmarks. All tested on 5-shots, except gms8k on 8-
shots Performance (%) cells are color-coded: green = gain, red = decline, and gray = near-neutral
change compared to baseline.

Dataset
LLaMA 3.1 8B few-shots

Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 90.36 92.182.01% ↑ 4 1.14 90.91 8 1.37
ARC-Challenge 78.2 83.10 6.27% ↑ 3 1.17 78.62 9 1.42
BoolQ 82.7 85.3 3.1% ↑ 4 1.11 83.0 6 1.22
MMLU 59.2 62.385.37% ↑ 4 1.14 59.57 7 1.26
COMMONQA 73.30 75.302.72% ↑ 6 1.22 73.80 7 1.32
WINOGRANDE 57.01 60.15,26% ↑ 3 1.1 57.02 8 1.3
BIG-Bench 70.0 83.6019,43% ↑ 5 1.2 81.20 15 1.83
GSM8K-HARD 60.67 60.67 0 1 60.67 0 1
MATH500 44.00 49.0011.36% ↑ 1 1.02 45.00 2 1.03

Table 7: Results of LLaMA 3.1 8B across nine benchmarks. All tested on 5-shots, except gms8k
and MATH500 on 8-shots

G DELETED LAYERS IN EACH MODEL AND BENCHMARK

Dataset Best Model BSBA

ARC-Easy 19 25 27 28 19 20 21 24 25 26 27 28

ARC-Challenge 19 22 27 19 20 21 22 23 24 26 27 28

BoolQ 19 25 26 32 15 19 21 22 25 26 30 32

MMLU 20 21 27 28 20 21 22 24 27 28 32

CommonQA 21 22 27 28 31 32 21 22 23 27 28 31 32

Winogrande 20 22 24 17 19 20 22 24 26 29 32

BIG-Bench 11 16 20 21 26 10 11 16 20 21 22 23 24 26 27 28 29 30 31 32

MATH500 28 24 28

Table 8: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for LlaMA 3.1 8B with few-shots.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Relative Gain comparison across datasets. LLaMA β = 3

Table 9 shows how using AE-HM allows us to bring model size down effectively on our BSBA
Llama model with 0 shot performance on our nine data sets. The BSBA LLama model had speed
up gains between 27 and 46% on our various benchmarks and maintained performance at or above
original model levels (See Table 9).

Dataset Best Model BSBA

ARC-Easy 19 20 21 29 32 19 20 21 22 25 27 29 32

ARC-Challenge 19 20 23 27 19 20 21 23 25 27 28

BoolQ 21 23 28 18 21 22 27 28 32

MMLU 21 19 21 22 24 25 26 27 28 31

CommonQA 19 23 28 19 22 23 26 27 28

Winogrande 23 24 26 32 20 21 22 23 24 25 26 27 29 31 32

BIG-Bench 14 20 22 28 29 14 18 20 21 22 23 24 28 29 31 32

GSM8K-Hard 3 3 21 22 25 26 27 29

Table 9: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for LlaMA 3.1 8B 0 shot.

Dataset Best Model BSBA

ARC-Easy 19 22 28 6 19 22 24 26 27 28

ARC-Challenge 27 28 7 22 23 26 27 28

BoolQ 18 21 27 28 12 19 21 22 26 27 28

MMLU 22 23 26 27 28 18 22 23 26 27 28

CommonQA 22 28 6 21 22 23 27 28

Winogrande 22 26 27 6 20 22 25 26 27

BIG-Bench 10 19 23 25 26 27 10 19 23 25 26 27

Table 10: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for Qwen 2.5 7B zero-shot.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dataset Best Model BSBA

ARC-Easy 15 16 23 24 27 28 13 15 16 18 19 20 21 22 23 24 25 27 28

ARC-Challenge 16 18 20 21 23 25 26 15 16 18 19 20 21 22 23 25 26 28

BoolQ 8 17 25 28 29 5 8 11 12 13 14 15 16 17 19 20 23 25 26 27 28 29 31

MMLU 11 12 15 16 20 21 22 28 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 30 31

CommonQA 11 12 27 11 12 13 15 16 17 18 19 20 21 22 23 24 25 27 28

BIG-Bench 6 7 15 17 20 21 25 26 27 6 7 13 15 17 19 20 21 22 24 25 26 27 28 29

GSM8K-Hard 12 12 21 23

Table 11: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for Lucie 7B 0 shots.

Dataset Best Model BSBA

ARC-Easy 21 22 24 26 29 21 22 23 24 25 26 29 30 32

ARC-Challenge 22 24 25 27 28 30 21 22 24 25 26 27 28 30

BoolQ 17 22 23 24 27 32 12 17 21 23 24 25 27 28 32

MMLU 24 30 22 23 24 25 26 27 30 32

CommonQA 19 22 25 28 19 21 22 24 25 28 32

Winogrande 18 19 20 22 23 24 26 27 31 32 4 13 18 19 20 22 23 24 26 27 29 31 32

BIG-Bench 3 5 15 22 23 24 26 27 28 3 5 14 15 18 22 23 24 26 27 28

GSM8K-Hard 6 22 6 11 22 28

Table 12: Deleted layers represented as color-ccdinline numbers. Blue = Best Model, Orange =
BSBA for Mistral zero-shot.

H ABLATION STUDY ON VALIDATION SET OF PRUNING

We analyze the effect of validation set size on TALE’s layer selection. Table 13 reports the specific
layers dropped for different validation set sizes across three tasks (ARC-Easy, MMLU, GSM8K)
and two models (Llama 3.1 8B, Qwen 2.5 7B).

Model Val Size Task Dropped Layers

Llama 3.1 8B

200
ARC-E {19, 20, 22, 29, 32 }
MMLU { 21 }
GSM8K { 3 }

500
ARC-E { 19, 20, 21, 29, 32 }
MMLU { 21 }
GSM8K { 3 }

1000
ARC-E { 19, 20, 21, 29, 32 }
MMLU { 21 }
GSM8K { 3 }

Qwen 2.5 7B

100
ARC-E { 22 , 27 , 28 }
MMLU { 18 , 22 , 24 , 27 , 28 }
GSM8K { 19 }

500
ARC-E { 19, 22 , 28 }
MMLU { 22 , 23 , 26 , 27 , 28 }
GSM8K { 19 }

1000
ARC-E { 19 , 22 , 28 }
MMLU { 22 , 23 , 26 , 27 , 28 }
GSM8K { 19 }

Table 13: Layers removed by TALE for different validation-set sizes across three tasks. This reveals
the stability of pruning decisions directly.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I MORE ON PRUNING AND A COMMON PRUNED LAYERS MODEL

Figure 7: Nine benchmark tasks indicating performance after one layer is dropped from different
positions in Llama3-8B.

Table 14: Performance comparison under 0-shot evaluation. Accuracy (Perf.) uses Our Eval We also
report number of dropped layers (#D), and relative inference speedup (Sp.) in terms of percentage of
Tflops saved (Percentage saved = TflopsBaseline−TflopsPruned-model

TflopsBaseline
×100). Percentage gain = AccBest−AccBaseline

AccBaseline
×

100. Best accuracy is highlighted in bold; BSBA shows balanced trade-offs.

Dataset Qwen 2.5 0.5B (zero-shot)
Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 40.00 60.91(+48.49% ↑) 3 -9.3% 48.36 5 -15.5%
ARC-Challenge 35.52 40.34(+13.57% ↑) 1 -3.1% 37.24 4 -12.4%
BoolQ 62.30 67.20(+7.87% ↑) 5 -15.5% 66.20 6 -18.6%
MMLU 31.48 39.97(+26.96% ↑) 2 -6.2% 33.90 5 -15.5%
CommonQA 42.40 49.10(+15.80% ↑) 2 -6.2% 44.00 3 -9.3%
Winogrande 49.86 51.88(+4.51% ↑) 5 -15.5% 49.87 17 -52.6%
BIG-Bench 72.40 73.60(+1.66% ↑) 2 -6.2% 73.60 2 -6.2%
GSM8K-HARD 6.74 11.24(+66.77% ↑) 1 -3.1% 8.99 2 -6.2%
Math500 8.00 12.00(+50% ↑) 1 -3.1% 9 2 -6.2%

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

J GENERAL PRUNING RESULTS

Group Dataset Baseline Pruned Model speedup

Common-sense ARC-Easy 87.0 87.82 1.2
ARC-Challenge 75.86 75.00 1.21

CommonQA 72.20 64.70 1.1
Winogrande 54.20 50.57 1.13

Reading BoolQ 85.0 85.5 1.17
BIG-Bench 75.2 67.2 1.1

Table 15: Accuracy of LLaMA-3.1-8B (baseline) versus a pruned variant obtained by dropping
layers selected through BSBA. For each task, BSBA identified removable layers, and we retained
the intersection of layers that appeared in at least 75% of tasks within the Common-sense group
(layers 19, 22, 23, 27) and (layers 18, 21, 22, 28, 32) for Reading Comprehension tasks. These
layers were then pruned globally from the model, and performance was re-evaluated across tasks.
Speedup is reported relative to the baseline.

K TALE EVALUATION WITH PERPLEXITY

Model WikiText2 LAMBADA

Vanilla TALE Vanilla TALE

LLaMA 3.1 8B 24.6 24.9 28.1 28.9
Lucie 7B 46.1 36.4 52.5 43.8

Table 16: Perplexity scores for two models across WikiText2 and LAMBADA with Vanilla and
TALE (sparisty 10%) configurations.

L TALE , OUR GREEDY-SELECTION ALGORITHM

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

LLM (ALL Layers)

Dropping Layer
Algorithm

LLM (Dropped Layer)

Evaluation Task

Layer 2

Layer 3

Layer 12

Layer 14

Layer N

Layer N-1

Linear

Softmax

Temporary Drop Layer index : i
(i : 1 to N)

Drop Layer: 1

Layer 1

Layer 2

Layer 3

Layer 12

Layer 14

Layer N

Layer N-1

Drop Layer: 2

Layer 1

Layer 2

Layer 3

Layer 12

Layer 14

Layer N

Layer N-1

Drop Layer: N-1

{drop layer : i , max(acc : x %) > Y%(threshold)}

Lay [12 , 14]

Permanently
deleted layers

While : {max(accuracy) of Permanently
deleted layer >= Threshold accuracy.}

Layer 1

Layer 2

Layer 3

Layer 12

Layer 14

Layer N

Layer N-1

Drop Layer: N

Text

This color signifies permanent dropped layer from the LLM Base

This color signifies temporary dropped layer from the LLM Base ,
which will be added to permanent if condition holds true.

Layer 1

Figure 8: Illustration of TALE layer elimination. Candidate layers (yellow) are tested for removal,
and the best-performing ones above the threshold are permanently dropped (red) until no further
improvement is possible.

22

	Introduction
	Related Work
	Basics and Intuitions
	Tale

	Benchmarks and Datasets
	Results
	Tale and Fine-tuning: How Does Pruning Interact with Fine-tuning?

	Information theory: Why pruned models might perform better.
	Discussion
	Conclusions
	Implementation Details
	Number of parameters per layer for each model
	Practical computing savings and scaling
	Intution behind Tale
	Results
	A tunable metric for finding accuracy vs. speed up optimization
	Deleted Layers in each Model and Benchmark
	Ablation study on validation Set of Pruning
	More on pruning and a common pruned layers model
	General Pruning results
	TALE evaluation with perplexity
	Tale , our Greedy-Selection Algorithm

