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ABSTRACT

This paper introduces TALE, Task-Aware Layer Elimination, an inference-time
algorithm that prunes entire transformer layers in an LLM by directly optimizing
task-specific validation performance without retraining. We evaluate TALE on 9
tasks and 5 models, LLaMA 3.1 8B, Qwen 2.5 7B, Qwen 2.5 0.5B, Mistral 7B,
and Lucie 7B, under both zero-shot and few-shot settings; and we show that TALE
compares favorably to prior approaches, most of which require retraining. Provid-
ing user control over trade-offs between accuracy and efficiency, TALE ’s selec-
tive layer removal consistently improves accuracy while reducing computational
cost across all benchmarks. TALE produces additional performance gains when
combined with fine-tuning. Analysis shows that certain layers act as bottlenecks,
degrading task-relevant representations. TALE remedies this problem, producing
smaller, faster, and more accurate models that are also faster to fine-tune while
offering new insights into transformer interpretability.

1 INTRODUCTION

While Large Language Models (LLMs) have achieved great success, their substantial computational
demands prevent resource-constrained organizations and those with high-throughput applications
from leveraging more capable models. The use of multi-agent systems, where each agent requires an
LLM specialized for a particular role, has intensified the need for methods that simultaneously boost
task-specific performance and reduce computation costs. Fine-tuning can increase task performance
but does not reduce inference costs and requires significant training overhead and data. General
pruning reduces computation costs but typically demands significant retraining and often results in
substantial performance degradation on downstream tasks.

We offer TALE , Task Aware Layer Elimination, a method that both increases task performance
and reduces computational overhead. TALE is a lightweight, greedy, iterative layer pruning al-
gorithm. It operates at inference time, is hardware agnostic, directly optimizes for task-specific
accuracy at each pruning step and consistently offers improved results over the original model. This
improvement persists in interactions with fine tuning on our tasks. As illustrated in Figure 8 and
detailed in Section 3, TALE systematically evaluates all possible single-layer removals at each iter-
ation, selecting the layer whose elimination results in the highest validation accuracy. This process
continues iteratively until performance improvements fall below a predefined threshold, ensuring
that only layers with minimal or negative impact on task performance are removed.

TALE is based on our observation, illustrated in Figure 1, that not all layers in a transformer con-
tribute to a particular task and indeed sometimes hamper task specific performance. TALE leverages
the modular nature of transformer architectures, where each layer performs a complete transforma-
tion of the input representation through attention and feedforward mechanisms. This architectural
property enables the removal of entire layers without requiring modifications to the remaining net-
work structure. By selectively removing transformer layers, TALE improves task specific accuracy
and provides moderate computational reductions with minimal implementation complexity.

We provide experimental evidence that TALE provides consistent improvements in both accuracy
and computational efficiency on five LLMs, LLaMA 3.1 8B, Qwen 2.5 7B, Qwen 2.5 0.5B, Mistral
7B and Lucie 7B, on 9 diverse benchmark datasets (Sections 4 and 5) both in zero-shot and few-shot
settings. Comparing TALE with previous pruning methods shows that TALE achieves substantially
higher accuracy. We also show that pruning with TALE can combine with fine-tuning to provide
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Figure 1: Figure illustrates how TALE improves performance on the Winogrande task in LLaMA 2
13B with 5-shot prompting. The full model hallucinates the answer; random layer deletion leads to
nonsensical output; using TALE to remove a layer on the first iteration yields the right prediction.

even greater accuracy gains. We analyze layer flow using the notion of mutual information (MI)
to support the hypothesis (Section 5) that not all model layers serve a useful purpose in a given
task and may even impede performance, thus challenging the conventional assumption that deeper
models necessarily perform better. Additionally, our experiments show TALE’s potential as a tool for
understanding layer function in and across models (Section 6), thereby aiding model interpretability.

2 RELATED WORK

Zhu et al. (2024) distinguishes four primary approaches to reducing model size and computation
complexity: model pruning, quantization, low-rank approximation, and knowledge distillation. Our
work focuses on pruning, which comprises unstructured, structured, and semi-structured methods.
Unstructured pruning removes individual parameters, resulting in irregular, sparse structures Han
et al. (2015b); Chen et al. (2015); Srinivas & Babu (2015); structured pruning eliminates entire
components such as neurons, attention heads, or layers while maintaining the overall network struc-
ture He et al. (2017); Voita et al. (2019); Lagunas et al. (2021); Men et al. (2024). Semi-structured
pruning combines fine-grained control with structural regularity, and has been explored in recent
work Li et al. (2023); Frantar & Alistarh (2023b); Sun et al. (2024). Early pruning methods lever-
aged second-order information for structured pruning LeCun et al. (1989); Hassibi et al. (1993), but
the field has since shifted toward computationally simpler, magnitude-based approaches that prune
parameters by importance scores Han et al. (2015a); See et al. (2016); Narang et al. (2017). Model
pruning has also benefited from information-theory (Tishby et al., 2000; Tishby & Zaslavsky, 2015;
Ganesh et al., 2020; Westphal et al., 2024). Fan et al. (2021) propose a layer-wise strategy that lever-
ages mutual information estimates to reduce hidden dimensionality in a top-down manner. A central
challenge, however, is the difficulty of estimating MI. Despite interesting theoretical work as in Ish-
mael Belghazi et al. (2018), in practice, probing classifiers Belinkov (2022) remain the dominant
tool due for such estimations.

For large transformers, Zhang & Papyan (2025) proposes a pruning strategy using matrix approxi-
mations. Similarly, Xia et al. (2023) shows that structured layer and hidden-dimension pruning can
create smaller submodels that outperform same-sized models trained from scratch, though they do
not match the original model’s performance. Kim et al. (2024) explores lock-level pruning based on
weight importance. These methods generally require fine-tuning to recover accuracy and are prone
to degradation, often needing additional retraining Xia et al. (2024), with improvements typically
measured relative to small models rather than the original unpruned baselines.

Closer to TALE are pruning approaches that do not require retraining. Frantar & Alistarh (2023a);
Zhang et al. prune contiguous blocks, especially in attention layers, with minimal performance loss.
SLEB Song et al. (2024) removes entire layers based on the cosine similarity of their represen-
tations, but evaluates perplexity before permanently pruning to avoid degrading linguistic perfor-
mance. SliceGPT Ashkboos et al. (2024) prunes layer dimensions via Principal Component Analy-
sis, eliminating less informative components in embeddings and hidden states. SparseGPT Frantar
& Alistarh (2023c) introduces sparsity by setting individual weights to zero using a reconstruction-
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based criterion, while Wanda Sun et al. (2023) removes weights according to the product of their
magnitudes and input activation norms.

Although these training-free pruning methods are designed to be general, they often degrade linguis-
tic and reasoning abilities. TALE applies task-specific pruning, optimizing the model for a particular
task, which not only improves performance over the original model but also increases inference
speed.

2.1 BASICS AND INTUITIONS

A transformer maps a sequence of input vectors (x1, · · · , xn) to a corresponding sequence of out-
put vectors through a stack of L layers. Each layer ℓ transforms the hidden representations X(ℓ) =

(x
(ℓ)
1 , . . . , x

(ℓ)
n ) into X(ℓ+1) through attention and feedforward blocks, connected by residual path-

ways. Removing layer ℓ from this pipeline simply redirects the flow such that X(ℓ−1) → X(ℓ+1), a
property that makes the architecture naturally amenable to layer-wise pruning.

Our initial intuition for TALE came from examining the behavior of partial forward passes. Let h(k)

denote the hidden representation after k layers. Instead of always decoding from the final represen-
tation h(L), we projected intermediate representations h(k) for k < L directly into the vocabulary
space using the output projection Wout, i.e.,

ŷ(k) = softmax(Wouth
(k)).

We then compared the performance of ŷ(k) across different values of k. Surprisingly, we observed
that for many tasks, intermediate layers (k < L) achieved higher accuracy than the final layer L
(Figure 4). This indicated that additional depth does not always translate into better task-specific
performance: some layers contribute marginally, while others introduce representational noise.

This experiment led to our central hypothesis: not all layers in an LLM are equally useful, and se-
lectively removing redundant layers can preserve—or even improve—downstream accuracy. TALE
(Task-Aware Layer Elimination) formalizes this intuition into a principled, iterative pruning strategy.

Algorithm 1 TALE : Greedy Iterative Layer Pruning

Require: Pre-trained modelM with L layers; validation set Dval; performance threshold ϵ
Ensure: Compressed modelM∗

1: InitializeM∗ ←M
2: repeat
3: for each layer ℓ ∈ {1, . . . , L} ofM∗ do
4: Construct candidate modelM−ℓ by removing layer ℓ
5: Compute validation accuracy Aℓ = Acc(M−ℓ,Dval)
6: end for
7: Select ℓ∗ = argmaxℓ Aℓ

8: if Aℓ∗ ≥ Acc(M∗,Dval)− ϵ then
9: UpdateM∗ ←M−ℓ∗

10: else
11: break
12: end if
13: until All Accuracies below threshold
14: returnM∗

2.2 TALE

TALE is a greedy iterative layer pruning algorithm for pre-trained open-weights LLM compression
that systematically removes layers while preserving or even improving model performance (Algo-
rithm 6). Starting with a full pre-trained model, TALE evaluates all possible single-layer removals
at each iteration, computing the validation accuracy for each candidate pruned architecture. The
layer whose removal results in the highest accuracy is permanently eliminated from the model, and
this compressed architecture becomes the baseline for the next iteration. This process continues
iteratively until the performance improvement falls below a predefined threshold, at which point the
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algorithm terminates and returns the most compressed model that maintains performance above the
specified threshold. We prune on a subset of a benchmark, while evaluation uses a separate subset
within the same distribution. Thus, TALE improves performance on the underlying task itself, rather
than merely being specific to the pruning data. Our approach directly optimizes for task-specific
accuracy at each pruning step, ensuring that only layers with minimal impact on the target objec-
tive are removed. This exhaustive evaluation strategy, while computationally intensive during the
pruning phase, provides strong empirical guarantees about the optimality of each pruning decision
within the greedy framework.

3 BENCHMARKS AND DATASETS

We evaluate TALE across a diverse suite of nine benchmarks spanning reasoning, language under-
standing, and commonsense knowledge. For mathematical reasoning, we include GSM8K-Hard, a
curated subset of GSM8K Cobbe et al. (2021) with more than five premises per question to increase
difficulty, and MATH500 Hendrycks et al. (2021b), a benchmark for symbolic and arithmetic rea-
soning (for evaluation details see Appendix A). For language understanding, we consider MMLU
Hendrycks et al. (2021a) and BoolQ Clark et al. (2019), while Winogrande Sakaguchi et al. (2021),
CommonsenseQA Talmor et al. (2019), and BIG-Bench Srivastava et al. (2023) capture common-
sense and multi-task generalization. Finally, we include both ARC-Easy and ARC-Challenge Clark
et al. (2018), which evaluate scientific and factual reasoning at varying difficulty levels. Together,
these nine datasets cover a broad spectrum of downstream challenges and allow us to assess both the
generality and task-specific benefits of our pruning strategy.

4 RESULTS

(a) ARC-Easy (b) ARC-Challenge (c) WinoGrande

(d) CommonQA (e) GSM8K-Hard (f) MMLU

Figure 2: Accuracy progression of TALE across 6 benchmark datasets for LLaMA 3.1 8B. Each
curve represents the accuracy at successive iterations. The ⋆ denotes the best-performing layer drop
configuration, while the □ highlights the Best Speed up with at least Baseline Accuracy (BSBA)
configuration. Plots for all tasks are in Appendix E.

We evaluate TALE across five medium-scale models (LLaMA 3.1 8B, Mistral 7B, Lucie 7B,
Qwen 2.5 7B) and one smaller model (Qwen 2.5 0.5B), spanning nine benchmarks that cover com-
monsense reasoning, reading comprehension, and mathematical problem solving. All experiments
are conducted in the zero-shot setting unless otherwise noted.1

1Code available at https://anonymous.4open.science/r/tale/
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We employed two evaluation strategies, the standard one from the LM-Eval library (Table 2) and an
automatic evaluation (Our Eval) that we developed for the test portions of our datasets (see Figure
5, Tables 1, 3, and additional tables in the appendix). The LM-Eval method selects the answer with
the highest probability from options provided. This has drawbacks which we discuss in Appendix A
and doesn’t really measure actual, generated output, whereas Our Eval does. We force the model to
predict its answer after reasoning steps in a particular format and then calculate the accuracy. This
can lower accuracy from what is expected; but since we used the same evaluation criteria for all the
techniques and models and are interested in relative changes in performance under pruning, these
unexpected increases/decreases are moot. Table 5 summarizes model configurations.

TALE requires only modestly-sized validation sets for task-specific optimization, ranging from 500
to 1500 examples. As seen in Table 13 (Appendix H), once the validation set size exceeds 500
examples, the set of layers dropped stabilizes across all tasks.

Dataset LLaMA 3.1 8B (zero-shot) Qwen 2.5 7B (zero-shot)

Baseline Best Model BSBA Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp. Perf. Perf. #D Sp. saved Perf. #D Sp.

ARC-Easy 87.00 90.55(+4.08% ↑) 5 -14.6% 87.82 8 -23.5% 91.01 91.82(+0.89% ↑) 2 -10.0% 90.91 5 -30.3%

ARC-Challenge 75.86 78.62(+3.63% ↑) 4 -11.7% 76.90 7 -20.5% 86.55 92.00(+6.45% ↑) 2 -6.7% 86.55 6 -19.9%

BoolQ 85.00 86.20(+1.40% ↑) 3 -8.8% 85.70 7 -17.6% 84.10 86.90(+3.22% ↑) 4 -13.3% 82.70 5 -23.2%

MMLU 54.87 59.90(+9.17% ↑) 1 -2.9% 54.87 9 -26.4% 68.10 71.00(+4.26% ↑) 5 -16.6% 68.13 6 -19.9%

CommonQA 72.20 75.30(+4.29% ↑) 3 -8.8% 73.10 6 -17.6% 80.30 84.40(+5.11% ↑) 2 -6.6% 80.50 6 -19.9%

Winogrande 53.83 56.67(+5.28% ↑) 4 -11.7% 53.83 12 -32.2% 62.04 67.25(+8.40% ↑) 3 -10.0% 62.19 6 -19.9%

BIG-Bench 75.20 83.60(+11.17% ↑) 5 -14.4% 75.20 11 -32.2% 79.20 81.60(+3.03% ↑) 6 -19.9% 81.60 6 -19.9%

GSM8K-HARD 15.07 37.08(+146.05% ↑) 1 -2.9% 35.0 4 -11.7% 7.9 27.0(+243.58% ↑) 2 -6.6% 19.1 4 -13.3%

Math500 20.50 26.00(+26.83% ↑) 1 -2.9% 26.00 3 -8.8% 18.00 27.00(+50.0% ↑) 2 -6.6% 21.00 4 -13.3%

Dataset Lucie 7B (zero-shot) Mistral 7B (zero-shot)

Baseline Best Model BSBA Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp. Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 72.45 76.55(+5.66% ↑) 6 -18.1% 72.55 13 -39.2% 81.02 83.45(+4.23% ↑) 5 -15.4% 81.09 9 -27.7%

ARC-Challenge 48.00 53.79(+12.06% ↑) 7 -21.1% 51.38 11 -33.1% 72.20 74.83(+3.64% ↑) 6 -18.5% 72.41 8 -24.6%

BoolQ 53.70 77.50(+44.32% ↑) 5 -17.2% 60.60 19 -54.2% 80.36 83.20(+3.53% ↑) 6 -18.5% 80.60 10 -27.7%

MMLU 21.36 42.98(+101.2% ↑) 8 -24.1% 39.39 15 -45.2% 52.73 57.81(+9.63% ↑) 2 -6.2% 52.91 8 -24.6%

CommonQA 55.50 69.70(+25.59% ↑) 3 -9.1% 57.10 17 -48.2% 57.32 61.40(+7.12% ↑) 4 -12.3% 57.40 7 -21.5%

Winogrande 54.20 57.80(+6.64% ↑) 5 -27.1% 54.30 15 -45.2% 52.55 58.80(+11.53% ↑) 10 -30.7% 53.43 13 -40.0%

BIG-Bench 69.60 77.20(+9.84% ↑) 9 -27.1% 72.00 15 -45.1% 70.00 76.40(+9.14% ↑) 9 -28.0% 72.80 11 -33.8%

GSM8K-HARD 14.20 17.80(+25.35% ↑) 1 -3.1% 17.40 3 -9.1% 11.24 19.10(+69.92% ↑) 2 -6.2% 15.73 4 -12.3%

Math500 19.00 27.00(+42.11% ↑) 2 -6.0% 26.00 3 -9.1% 8.00 16.00(+100% ↑) 1 -3.1% 10.00 4 -12.3%

Table 1: Performance comparison across language models under 0-shot evaluation. Accuracy (Perf.)
uses Our Eval We also report number of dropped layers (#D), and relative inference speedup (Sp.) in
terms of percentage of Tflops saved (Percentage saved = TflopsBaseline−TflopsPruned-model

TflopsBaseline
× 100). Percentage

gain = AccBest−AccBaseline
AccBaseline

×100. Best accuracy is highlighted in bold; BSBA shows balanced trade-offs.

Iterative pruning trajectories. Figure 5 visualizes the iterative layer-pruning process for
LLaMA 3.1 8B. Each curve tracks accuracy as layers are progressively removed. As the graphs
reveal, the first iteration of TALE typically provides a large boost in accuracy; this boost can make
a weak, uncompetitive model competitive. Almost all the trajectories reveal a big initial boost fol-
lowed by slight increases or decreases; they then follow monotonic decreasing path to accuracies
below the baseline and eventually to 0. We stop the iterations once the model accuracy descends
below the baseline, and we have found no cases where the trajectory later goes above the baseline.
The curve in itself is worthy of future study.

We use this first iteration to guide pruning when trying to balance accuracy with model compression
The ⋆ denotes the best-performing pruned model (Best), while the □ highlights the Best Speedup
with Baseline Accuracy (BSBA) model—the pruned configuration achieving maximum compression
and inference speedup without falling below the accuracy provided by TALE’s first iteration.

From these trajectories, three consistent patterns emerge: (i) TALE identifies compressed models
that outperform the original across diverse tasks, with ⋆ markers lying strictly above baseline. (ii)
Accuracy improvements persist across multiple pruning steps before diminishing returns, showing
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that substantial redundancy exists even in carefully tuned pretrained models. (iii) Pruning dynamics
are task-specific: datasets such as ARC-Easy and MMLU tolerate deeper pruning while continuing
to improve, whereas reasoning-heavy tasks like GSM8K-Hard converge earlier, reflecting heteroge-
neous layer importance across domains.

Computation costs The computational cost of running TALE is modest. For multi-choice tasks
such as MMLU, using a validation set of 500 examples, three full TALE iterations complete in ≈
1 GPU-hour on a single A100. Since this pruning is performed once per task, the amortized cost is
negligible relative to the inference savings. For details see Appendix C.

Best vs. BSBA models. Table 1 compares baseline models against their pruned counterparts under
both Best and BSBA configurations. Across all benchmarks, the Best models yield consistent ac-
curacy gains—up to +146% (LLaMA 8B on GSM8K-Hard), +101% (Lucie 7B on MMLU) and
+244% (Qwen 7B on GSM8k-Hard)—while also delivering moderate speedups. BSBA models,
by construction, trade smaller gains in accuracy for more aggressive speedups, offering practical
operating points when inference cost is the dominant concern.

Few-shot setting. We tested TALE under the few-shot regime for Lucie and LLaMA models (Ap-
pendix Tables 6–7). Few-shot prompting improves baselines on reasoning tasks such as GSM8K and
Math500, yet TALE-pruned variants still achieve higher accuracy in nearly all settings. This shows
that pruning-induced improvements are largely complementary to gains from in-context learning.

Comparisons to other training-free pruning methods

Model Method Sparsity WinoGr HellaSwag ARC-e ARC-c
Baseline 0% 69.1 76.0 74.6 46.3
SpareGPT 2:4 (50%) 64.3 57.9 60.3 33.8
Wanda 2:4 (50%) 61.9 54.8 56.9 32.1

LLaMA-2-7B SliceGPT 25% 62.9 53.1 57.9 33.3
SliceGPT 30% 60.8 47.9 51.4 30.9
SLEB 10% 62.4 69.3 62.7 36.9
TALE 10% 73.1 80.0 76.7 54.5
Baseline 0% 72.22 79.39 77.48 49.23
SpareGPT 2:4 (50%) 68.31 65.22 66.44 38.76
Wanda 2:4 (50%) 66.81 62.19 64.11 36.10

LLaMA-2-13B SliceGPT 25% 66.98 56.90 62.10 37.42
SliceGPT 30% 66.11 52.39 56.12 33.17
SLEB 10% 66.93 74.36 71.84 41.55
TALE 10% 76.8 83.39 80.5 53.0

Table 2: Accuracies (%) with LM Eval on zero-shot tasks for LLaMA-2-7B and LLaMA-2-13B

Model Method Sparsity WinoGr ARC-e ARC-c
Baseline 0% 41.2 51.7 40

LLaMA-2-7B SLEB 10% 18 (-56.3% ↓) 29 (-43.9% ↓) 28.8 (-28.0% ↓)
TALE 10% 56 (+35.9% ↑) 62.3 (+20.5% ↑) 50 (+25.0% ↑)
TALE 25% 51 (+23.8% ↑) 64.8 (+25.3% ↑) 47.6 (+19.0% ↑)
Baseline 0% 42 73.0 54.9

LLaMA-2-13B SLEB 10% 24.2 (-42.3% ↓) 43.5 (-40.4% ↓) 29.8 (-47.3% ↓)
TALE 10% 56.4 (+34.3% ↑) 77.3 (+5.9% ↑) 64.4 (+17.1% ↑)
TALE 25% 55.2 (+31.4% ↑) 75.3 (+3.2% ↑) 64.1 (+16.4% ↑)

Table 3: Accuracies (%) with Our Eval on zero-shot tasks for LLaMA-2-7B and LLaMA-2-13B

Although general training-free pruning techniques often report acceptable accuracy using LM eval-
uation metrics, they are still far below the accuracy scores gained from TALE (Table 2). Moreover,
the accuracy of their decoded outputs deteriorates sharply (3), while TALE increases accuracy on
real outputs.

Takeaways. TALE consistently uncovers high accuracy and high accuracy/high efficiency mod-
els. By balancing task fidelity with computational savings, it enables both accuracy-focused and
efficiency-focused deployment. Even for strong models like Qwen 7B we see improvements, and
for weaker models like Lucie 7B we see very substantial improvements. Our improvements with
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TALE also apply small to language models (Qwen 0.5B). The observed diversity in pruning profiles
across datasets underscores the importance of adaptive pruning, rather than one-size-fits-all heuris-
tics, for effective model compression (For a tunable selection metric for choosing among candidate
trade-offs see Appendix F). In examining perplexity for pruned models, TALE shows that pruning to
optimize for perplexity, though it produces a model with minimal increases in perplexity, does not
translate into better performance on downstream tasks, contra Song et al. (2024). In effect perplexity
acts as an another task with its own optimally pruned model.

4.1 TALE AND FINE-TUNING: HOW DOES PRUNING INTERACT WITH FINE-TUNING?

A natural question is whether pruning layers before or after fine-tuning harms the model’s ability
to learn. One might expect that removing layers reduces representational capacity and thus limits
downstream fine-tuning performance compared to baseline instruct-tuned models. Surprisingly, our
experiments show the opposite: TALE not only preserves fine-tuning efficacy but in several cases
improves both accuracy and efficiency.

We explored four settings: (i) fine-tuning the base model (FT), (ii) applying TALE after fine-tuning
(FT → TALE ), (iii) pruning first and then fine-tuning (TALE → FT), and (iv) pruning first, then
fine-tuning, and finally pruning again (TALE → FT → TALE ). Across various benchmarks, we
consistently observed mostly moderate and sometimes significant gains after iterating pruning and
fine-tuning, especially on Winogrande and GSM8K (Table 4). This suggests that pruning can act as
a regularizer, simplifying the optimization landscape by removing redundant layers.

TALE also reduced computation costs for fine-tuning. For example, pruning LLaMA-3.1 8B before
fine-tuning reduced fine-tuning time by 2–2.5 GPU hours on an A100 (an 18.5% reduction) while
simultaneously improving Winogrande performance by +2.4%. Iteratively applying pruning and
fine-tuning allowed us to prune up to 8 layers achieving still higher accuracy (87.37%) than the full
fine-tuned model (85.00%). Similarly, pruning the fully fine-tuned model yielded a 7-layer reduction
while maintaining strong accuracy (86.66%).

Model Dataset
Baseline Pruned Only FT Only Prune→ FT FT→ Prune (Prune→ FT)→ Prune

Perf. #D Perf. #D Perf. #D Perf. #D Perf. #D Perf. #D

Llama 3.1 8B
Winogrande 53.83 0 56.67 4 85.00 0 87.06 4 86.74 7 87.37 8
MMLU 54.87 0 59.90 1 63.62 0 63.49 1 64.21 2 64.01 2
CommonQA 72.20 0 75.30 3 81.88 0 81.80 3 83.40 3 82.90 6
GSM8K 15.07 0 37.08 3 42.70 0 53.96 1 50.86 2 54.02 2

Qwen 0.5B
Winogrande 49.86 0 51.88 5 50.43 0 50.43 5 50.49 2 52.49 9
MMLU 31.48 0 39.98 2 44.87 0 43.76 2 45.53 2 45.58 3

Table 4: Comparison of Llama 3.1 8B and Qwen 0.5B across Winogrande, MMLU, and Com-
monQA under different pruning and fine-tuning regimes. Columns denote: (i) Baseline = original
model, (ii) Pruned Only = TALE without fine-tuning, (iii) FT Only = fine-tuned without pruning, (iv)
Prune→ FT = prune then fine-tune, (v) FT→ Prune = fine-tune then prune, (vi) (Prune→ FT)→
Prune = best fine-tuned-pruned model further pruned. Perf. = performance score, #D = number of
deleted layers.

Overall, these results highlight an unexpected but consistent trend: pruning with TALE does not
hinder fine-tuning but instead synergizes with it. Pruning acts like a regularizer, simplifying the
optimization landscape, and can effectively interleave with fine-tuning to create models that are
both more accurate and computationally efficient. Pruned models fine-tune faster, require fewer
parameters to adapt, and are close to or better in performance than their full counterparts.

5 INFORMATION THEORY: WHY PRUNED MODELS MIGHT PERFORM BETTER.

Our results pose a puzzle: the increase in accuracy with TALE is counterintuitive: why would remov-
ing parts of a carefully trained model lead to better performance? One way to explore this question
is mutual information.
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Alemi et al. (2016); Tishby & Zaslavsky (2015) use information theory (Shannon, 1948) to analyze
how neural networks learn and represent data. Fano & Hawkins (1961) define I(X;Y), the mutual
information between two random variables X and Y , with the equation:

I(X;Y) = H(Y)− H(Y | X) = H(X)− H(X | Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x) p(y)
(1)

where p(x, y) is the joint distribution of X and Y, and p(x), p(y) are their marginals and where
H(X) = −

∑
x p(x) log p(x) is the Shannon (1948) entropy. I(X;Y) measures how much knowing

X reduces uncertainty about Y (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017). To attempt
to explain why accuracy increases through task pruning we also use MI.

A major challenge of this approach is that it requires information about true distributions, which are
infeasible to compute. As a result, researchers typically assume a Gaussian distribution Gabrié et al.
(2019); Gao et al. (2015); Park et al. (2024) or approximate the probe using a classifier Belinkov
(2022); Alain & Bengio (2016) or an MLP Belghazi et al. (2018). These approximations can yield
useful insights. In our case, the Gaussian assumption did not fit our datasets. Since we evaluate
on QA tasks, we used a trainable classifier to approximate the probes and estimate I(Xℓ,Y) at
each layer, where Xℓ denotes the contextualized representations at layer ℓ and Y denotes the target
answer. This approximates how much information the layer ℓ representations contain about the
answer. The goal is then to examine whether some layers exhibit a sharp drop in information and
whether those layers coincide with the ones whose removal leads to improved performance.

Our findings, summarized in Figure 3 and Table 9, reveal two key patterns: (i) several layers in
large pre-trained transformers exhibit a pronounced drop in mutual information; (ii) removing layers
dictated by TALE consistently increases the mutual information at the subsequent layer across tasks.
Together, these results suggest that certain layers act more as bottlenecks than as contributors to
task-relevant representations, providing a rationale for why pruning can lead to improved accuracy.

(a) ARC-Easy (Qwen 0.5B) (b) BoolQ (Lucie 7B) (c) BigBench (Llama 8B)

Figure 3: Evolution of mutual information (MI) across transformer layers for different benchmark
datasets and different models. Each subplot shows how information is processed and transformed as
it flows through the network layers, demonstrating distinct patterns of information propagation for
(a) ARC-Easy on Qwen 0.5B, (b) BoolQ on Lucie 7B, and (c) BigBench on LLaMA 8B.

6 DISCUSSION

We summarize five key observations below from our experiments.

1. Deleting later layers frequently improves performance on various tasks. This challenges
prior claims that later layers are essential Tenney et al. (2019); Bansal et al. (2023); Song et al.
(2025). Even deleting many late layers does not reduce accuracy below baseline, whereas removing
even a single early layer is often catastrophic (see Figure 7 in Appendix I). All models exhibit sim-
ilar behavior. On the other hand, early layers often appear crucial for providing core task-relevant
representations that enable the model solve the task, even though probing outputs at those layers
does not yield interpretable responses. These results may help model interpretability. Plotting per-
formance degradation from ablating layers helps localize where specific task-solving abilities reside
in the network.

2. Task dependence of layer importance. Which layers improve or harm performance when re-
moved is highly task dependent. Sometimes a single layer is critical: for instance, removing layer
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25 of LlaMA-8B on CommonsenseQA causes a 50-point accuracy drop. Removing LLaMA’s layer
3 improves performance on GSM8K-hard but hurts MATH500; the reverse happens when removing
layer 11. Removing early layers (1–3) reduces accuracy to near zero on commonsense reasoning
tasks (Figure 7), suggesting that certain early layers localize critical task-relevant information. Ini-
tial multilingual testing of TALE on Lucie, tuned for French conversational proficiency Gouvert
et al. (2025), with bilingual versions of the same data set showed that optimal pruning was task spe-
cific rather than language specific.This explains why pruning techniques that remove layers without
considering the target task often produce substantial losses in accuracy.

3. Structured task-specific patterns. Although pruning is task-specific, related tasks often ex-
hibit similar layer dependencies. Commonsense reasoning tasks (see Figure 7) show importance
concentrated in comparable regions of the network. Mathematical reasoning tasks benefit from
pruning one to three early layers (e.g., LLaMA layer 3, Mistral layers 6 and 22, Lucie layer 12), but
not more (Figures 9, 10, 11). Commonsense and language tasks (ARC, BoolQ, CommonsenseQA,
Winogrande, and BIG-Bench) benefit from deleting later layers (Tables 9, 11, 10). This suggests
that later layers often play a decoding role for predictions into natural language, which reinforces
point 1—pruning them doesn’t harm predictive capability.

We observe stronger pruning gains in reasoning-heavy tasks under zero-shot evaluation. All mod-
els showed notable accuracy boosts after deleting one or two layers on mathematical reasoning
(e.g., LLaMA’s and Qwen’s triple digit gains on GSM8K-hard, and large gains on for all models on
Math500 and GSM8K-hard). By contrast, knowledge-intensive tasks exhibit more modest improve-
ments (e.g., an 11% gain for LLaMA on BIG-Bench).

4. Model-specific pruning effects. Different models display distinct pruning behavior. For ex-
ample, pruned Lucie achieved a 101% gain on MMLU and double-digit gains on ARC-Challenge,
CommonsenseQA, BoolQ and GSM8K-hard. While Qwen-7B, LLaMA-8B and Mistral share a
similar architecture and scale, they had modest gains on these datasets. Lucie also benefitted from
more substantial pruning than the other models. Interestingly, Lucie was trained on a much smaller
dataset (3T tokens vs. 15T for LLaMA and 13T for Qwen). This suggests intriguing interactions
between pretraining and pruning efficiency. We hypothesize that models trained close to their per-
formance ceiling (via large-scale pretraining, instruction tuning or RLHF) yield smaller pruning
gains, whereas models trained under limited objectives may benefit more. But even the Qwen-0.5B
trained on a large corpus showed strong pruning efficiency gains (Table 14).

We experimented with producing pruned models for several tasks. We get a LLaMA math model
better than baseline LLaMA for both Math500 and GSM8K tasks by dropping layer 12. Taking an
intersection of BSBA models for several tasks improved speed up without much loss in accuracy
across multiple tasks (Table 15). A better method would be for TALE to prune models on several
tasks at once with different mixtures of data to guide the pruning.

7 CONCLUSIONS

TALE removes layers irrelevant to a given task T that consistently yields performance above the base
model on T and far above the state of the art in pruning without retraining. TALE also reduces com-
putation costs. It can also profitably interact with further training or fine tuning further increasing
task specific performance. TALE is a generic strategy and can prune at many levels: base pre-trained
models, instruction-tuned models (as we mainly do here), fine-tuned, and post-trained models with
RLHF.

TALE can benefit high-throughput applications with time constraints–e.g. in multi-agent systems
with task-specific agents or interactive AI assistants. TALE can also help organizations that face
critical trade-offs between model capability and computational efficiency use large language models
at scale.
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A IMPLEMENTATION DETAILS

Hardware. All experiments were conducted on 1 NVIDIA A100 GPU with 80GB memory.

Models. We applied TALE to five open-weights LLMs of varying scales: Qwen2.5-0.5B-Instruct,
Qwen2.5-7B-Instruct, Lucie-7B-Instruct, Mistral-7B-Instruct, and Llama-3.1-8B-Instruct.

Datasets for TALE pruning. The greedy layer-pruning algorithm was evaluated across nine
widely used benchmarks covering reasoning, commonsense, and knowledge-intensive tasks: ARC-
Challenge, ARC-Easy, MMLU, Winogrande, GSM8K, MATH500, CommonQA, BIG-Bench,
and BoolQ.

Pruning setup. At each iteration, TALE evaluates all candidate single-layer deletions with respect
to validation accuracy. The pruning threshold was defined as the baseline accuracy of the full model,
ensuring that pruning never reduces performance relative to the original unpruned model. The iter-
ative procedure terminates once no further layer removals satisfy this criterion.

Fine-tuning setup. For fine-tuning experiments, we focused on Winogrande and MMLU. We
employed LoRA with rank 64, a batch size of 4, and the optimizer paged adamw 32bit. A
cosine learning rate scheduler was used, and models were trained for 10 epochs.

Evaluation. The LM-Eval methodology presents a significant limitation: it selects the answer
with the highest probability among the provided options rather than assessing what the model would
actually generate. This approach ignores hallucination behavior and systematically inflates scores;
for example, in a two-choice setting, a hallucinated answer still has a 50% chance of being counted
as correct. Furthermore, LM-Eval often assigns relatively high scores to weak models, compress-
ing performance differences and making stronger approaches appear only marginally better despite
substantial real-world gains. This produces a misleading picture of model capability, as high LM-
Eval results do not guarantee that a model will produce correct, coherent outputs in practice. For
these reasons, we relied primarily on Our Eval that measures actual accuracy based on the model’s
generated outputs, which we implemented for each task.

Prompting. For zero-shot and few-shot evaluation, we used task-specific prompts. Below we
show the prompt used for datasets, consisting of a system instruction :

ARC-E & ARC-C System Prompt

You are a Science expert assistant. Your task is to answer multiple-choice science questions at grade-school
level. Each question has four answer choices, labeled A, B, C, and D.
For each question: - Carefully read the question and all answer choices. - Select the single best answer
from the options (A, B, C, or D). - Respond only with the letter of the correct answer, and nothing else—no
explanation or extra words.
Be precise and consistent: Only the answer letter.

Bigbench System Prompt

”You are a boolean expression evaluator. You must respond with exactly one word: either ’True’ or ’False’.
Do not provide explanations, steps, or any other text. Only respond with ’True’ or ’False’.”
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BOOLQ System Prompt

”You are a helpful assistant that answers True/False questions based on given passages. Read the passage
carefully and determine if the question can be answered as True or False based on the information in the
passage. ”Respond with only ’A’ for True or ’B’ for False.”

CommonQA System Prompt

”You are a helpful assistant that answers multiple-choice questions requiring commonsense knowledge and
reasoning. Read each question carefully and select the most logical answer from the given options based
on common knowledge and reasoning. Respond with only the letter of your chosen answer (A, B, C, D, or
E).”

GSM8K System Prompt

”You are a math problem solver. Solve the given math problem step by step. ” ”Show your complete
reasoning and calculations. ” ”At the end, write your final answer after ’####’ like this: #### [your final
numerical answer]””

MMLU System Prompt

”You are a helpful assistant that answers multiple-choice questions across various academic subjects includ-
ing humanities, social sciences, STEM, and professional fields. Read each question carefully and select the
best answer from the given options. Respond with only the letter of your chosen answer (A, B, C, or D).”

Winogrande System Prompt

You are a careful math problem solver. Show complete step-by-step reasoning and all calculations needed
to arrive at the answer. Use clear, numbered or labeled steps so the reasoning is easy to follow.
IMPORTANT (formatting):

• After the full reasoning, write the final answer on a new line by itself in exactly this format:

####
integer

• <integer> must be digits only, optionally with a leading “-” for negatives (e.g., -7).

• Do not add words, punctuation, units, or commentary on the same line as the #### line.

• The #### line must be the final line of the output (nothing may follow it).

• Assume all problems expect integer answers; ensure the final line contains a single integer.
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B NUMBER OF PARAMETERS PER LAYER FOR EACH MODEL

Model LLaMA 3.1 8B Qwen 2.5 7B Mistral 7B Lucie 7B Qwen 2.5 0.5B

Parameters 218,112,000 233,057,792 218,112,000 192,946,176 14,912,384

Table 5: Model parameter counts comparison. LLaMA 3.1 8B, Mistral 7B and Lucie 7B has 32
layers, Qwen 2.5 7B has 28 layers and Qwen 2.5 0.5B has 24 layers.

C PRACTICAL COMPUTING SAVINGS AND SCALING

We quantify TALE’s inference-cost reduction by measuring TFLOPs (tera-FLOPs) drop per re-
moved layer. Across models and tasks, removing a single transformer layer yields a mean TFLOPs
reduction of 3.00% ± 0.20%. Because TALE removes entire layers sequentially, the total TFLOPs
reduction scales essentially linearly with the number of iterations (layers removed). In practice this
means only a few iterations are required to reach common sparsity targets: e.g., three iterations
remove roughly ≈9% TFLOPs, sufficient to realize 10% sparsity in our settings.

D INTUTION BEHIND TALE

(a) ARC-Challenge (b) MMLU

Figure 4: Layer-wise output performance for LLaMA models: results when generating predictions
from intermediate layers 1 through 32 on three different datasets.

E RESULTS
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(a) ARC-Easy (b) ARC-Challenge (c) BoolQ

(d) MMLU (e) CommonQA (f) WinoGrande

(g) BIG-Bench (h) GSM8K-Hard (i) Math500

Figure 5: Accuracy progression of TALE across 9 benchmark datasets for LLaMA 3.1 8B. Each
curve represents the accuracy at successive iterations. The ⋆ denotes the best-performing layer drop
configuration, while the □ highlights the Best Speed up with at least Baseline Accuracy (BSBA)
configuration.

F A TUNABLE METRIC FOR FINDING ACCURACY VS. SPEED UP
OPTIMIZATION

To systematically select among these candidates according to user priorities, we propose the Accu-
racy–Efficiency Harmonic Mean (AE-HM):

rA =
Acc(Model)

Acc(Baseline)
, AE-HM(Model) =

(1 + λ2)rA S

λ2S + rA
=

1 + λ2

λ2

rA
+ 1

S

(2)

where S denotes the relative inference speedup and λ controls the relative importance of accuracy
versus efficiency. The user can set AE-HE’s parameter λ to desired specifications: if λ > 1, we
prioritize rA; if λ < 1 we prioritize Speedup.

By computing AE-HM for candidate models, we can automatically identify the model with the
highest score for a given task or a set of tasks given a particular AE-HM parameter setting:

Mbest-compromise = argmax
i

AE-HM(Mi) (3)
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Dataset
Lucie 7B few-shots

Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 69.2 72.36 9 1.41 71.27 12 1.68
ARC-Challenge 49.31 55,17 9 1.39 51.72 13 1.67
BoolQ 77.6 79.10 6 1.22 78.5 10 1.27
MMLU 41.02 43.44 7 1.26 41.48 11 1.55
COMMONQA 55.4 69.7 3 1.22 57.10 17 2.02
WINOGRANDE 52.8 56.90 12 1.58 53.30 17 1.74
BIG-Bench 68.8 77.20 9 1.61 72 15 2.23
GSM8K-HARD 26.97 29.21 1 1.03 26.97 2 1.1

Table 6: Results of Lucie 7B across nine benchmarks. All tested on 5-shots, except gms8k on 8-
shots Performance (%) cells are color-coded: green = gain, red = decline, and gray = near-neutral
change compared to baseline.

Dataset
LLaMA 3.1 8B few-shots

Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 90.36 92.182.01% ↑ 4 1.14 90.91 8 1.37
ARC-Challenge 78.2 83.10 6.27% ↑ 3 1.17 78.62 9 1.42
BoolQ 82.7 85.3 3.1% ↑ 4 1.11 83.0 6 1.22
MMLU 59.2 62.385.37% ↑ 4 1.14 59.57 7 1.26
COMMONQA 73.30 75.302.72% ↑ 6 1.22 73.80 7 1.32
WINOGRANDE 57.01 60.15,26% ↑ 3 1.1 57.02 8 1.3
BIG-Bench 70.0 83.6019,43% ↑ 5 1.2 81.20 15 1.83
GSM8K-HARD 60.67 60.67 0 1 60.67 0 1
MATH500 44.00 49.0011.36% ↑ 1 1.02 45.00 2 1.03

Table 7: Results of LLaMA 3.1 8B across nine benchmarks. All tested on 5-shots, except gms8k
and MATH500 on 8-shots

G DELETED LAYERS IN EACH MODEL AND BENCHMARK

Dataset Best Model BSBA

ARC-Easy 19 25 27 28 19 20 21 24 25 26 27 28

ARC-Challenge 19 22 27 19 20 21 22 23 24 26 27 28

BoolQ 19 25 26 32 15 19 21 22 25 26 30 32

MMLU 20 21 27 28 20 21 22 24 27 28 32

CommonQA 21 22 27 28 31 32 21 22 23 27 28 31 32

Winogrande 20 22 24 17 19 20 22 24 26 29 32

BIG-Bench 11 16 20 21 26 10 11 16 20 21 22 23 24 26 27 28 29 30 31 32

MATH500 28 24 28

Table 8: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for LlaMA 3.1 8B with few-shots.
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Figure 6: Relative Gain comparison across datasets. LLaMA β = 3

Table 9 shows how using AE-HM allows us to bring model size down effectively on our BSBA
Llama model with 0 shot performance on our nine data sets. The BSBA LLama model had speed
up gains between 27 and 46% on our various benchmarks and maintained performance at or above
original model levels (See Table 9).

Dataset Best Model BSBA

ARC-Easy 19 20 21 29 32 19 20 21 22 25 27 29 32

ARC-Challenge 19 20 23 27 19 20 21 23 25 27 28

BoolQ 21 23 28 18 21 22 27 28 32

MMLU 21 19 21 22 24 25 26 27 28 31

CommonQA 19 23 28 19 22 23 26 27 28

Winogrande 23 24 26 32 20 21 22 23 24 25 26 27 29 31 32

BIG-Bench 14 20 22 28 29 14 18 20 21 22 23 24 28 29 31 32

GSM8K-Hard 3 3 21 22 25 26 27 29

Table 9: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for LlaMA 3.1 8B 0 shot.

Dataset Best Model BSBA

ARC-Easy 19 22 28 6 19 22 24 26 27 28

ARC-Challenge 27 28 7 22 23 26 27 28

BoolQ 18 21 27 28 12 19 21 22 26 27 28

MMLU 22 23 26 27 28 18 22 23 26 27 28

CommonQA 22 28 6 21 22 23 27 28

Winogrande 22 26 27 6 20 22 25 26 27

BIG-Bench 10 19 23 25 26 27 10 19 23 25 26 27

Table 10: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for Qwen 2.5 7B zero-shot.
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Dataset Best Model BSBA

ARC-Easy 15 16 23 24 27 28 13 15 16 18 19 20 21 22 23 24 25 27 28

ARC-Challenge 16 18 20 21 23 25 26 15 16 18 19 20 21 22 23 25 26 28

BoolQ 8 17 25 28 29 5 8 11 12 13 14 15 16 17 19 20 23 25 26 27 28 29 31

MMLU 11 12 15 16 20 21 22 28 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 30 31

CommonQA 11 12 27 11 12 13 15 16 17 18 19 20 21 22 23 24 25 27 28

BIG-Bench 6 7 15 17 20 21 25 26 27 6 7 13 15 17 19 20 21 22 24 25 26 27 28 29

GSM8K-Hard 12 12 21 23

Table 11: Deleted layers represented as color-coded inline numbers. Blue = Best Model, Orange =
BSBA for Lucie 7B 0 shots.

Dataset Best Model BSBA

ARC-Easy 21 22 24 26 29 21 22 23 24 25 26 29 30 32

ARC-Challenge 22 24 25 27 28 30 21 22 24 25 26 27 28 30

BoolQ 17 22 23 24 27 32 12 17 21 23 24 25 27 28 32

MMLU 24 30 22 23 24 25 26 27 30 32

CommonQA 19 22 25 28 19 21 22 24 25 28 32

Winogrande 18 19 20 22 23 24 26 27 31 32 4 13 18 19 20 22 23 24 26 27 29 31 32

BIG-Bench 3 5 15 22 23 24 26 27 28 3 5 14 15 18 22 23 24 26 27 28

GSM8K-Hard 6 22 6 11 22 28

Table 12: Deleted layers represented as color-ccdinline numbers. Blue = Best Model, Orange =
BSBA for Mistral zero-shot.

H ABLATION STUDY ON VALIDATION SET OF PRUNING

We analyze the effect of validation set size on TALE’s layer selection. Table 13 reports the specific
layers dropped for different validation set sizes across three tasks (ARC-Easy, MMLU, GSM8K)
and two models (Llama 3.1 8B, Qwen 2.5 7B).

Model Val Size Task Dropped Layers

Llama 3.1 8B

200
ARC-E {19, 20, 22, 29, 32 }
MMLU { 21 }
GSM8K { 3 }

500
ARC-E { 19, 20, 21, 29, 32 }
MMLU { 21 }
GSM8K { 3 }

1000
ARC-E { 19, 20, 21, 29, 32 }
MMLU { 21 }
GSM8K { 3 }

Qwen 2.5 7B

100
ARC-E { 22 , 27 , 28 }
MMLU { 18 , 22 , 24 , 27 , 28 }
GSM8K { 19 }

500
ARC-E { 19, 22 , 28 }
MMLU { 22 , 23 , 26 , 27 , 28 }
GSM8K { 19 }

1000
ARC-E { 19 , 22 , 28 }
MMLU { 22 , 23 , 26 , 27 , 28 }
GSM8K { 19 }

Table 13: Layers removed by TALE for different validation-set sizes across three tasks. This reveals
the stability of pruning decisions directly.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I MORE ON PRUNING AND A COMMON PRUNED LAYERS MODEL

Figure 7: Nine benchmark tasks indicating performance after one layer is dropped from different
positions in Llama3-8B.

Table 14: Performance comparison under 0-shot evaluation. Accuracy (Perf.) uses Our Eval We also
report number of dropped layers (#D), and relative inference speedup (Sp.) in terms of percentage of
Tflops saved (Percentage saved = TflopsBaseline−TflopsPruned-model

TflopsBaseline
×100). Percentage gain = AccBest−AccBaseline

AccBaseline
×

100. Best accuracy is highlighted in bold; BSBA shows balanced trade-offs.

Dataset Qwen 2.5 0.5B (zero-shot)
Baseline Best Model BSBA

Perf. Perf. #D Sp. Perf. #D Sp.

ARC-Easy 40.00 60.91(+48.49% ↑) 3 -9.3% 48.36 5 -15.5%
ARC-Challenge 35.52 40.34(+13.57% ↑) 1 -3.1% 37.24 4 -12.4%
BoolQ 62.30 67.20(+7.87% ↑) 5 -15.5% 66.20 6 -18.6%
MMLU 31.48 39.97(+26.96% ↑) 2 -6.2% 33.90 5 -15.5%
CommonQA 42.40 49.10(+15.80% ↑) 2 -6.2% 44.00 3 -9.3%
Winogrande 49.86 51.88(+4.51% ↑) 5 -15.5% 49.87 17 -52.6%
BIG-Bench 72.40 73.60(+1.66% ↑) 2 -6.2% 73.60 2 -6.2%
GSM8K-HARD 6.74 11.24(+66.77% ↑) 1 -3.1% 8.99 2 -6.2%
Math500 8.00 12.00(+50% ↑) 1 -3.1% 9 2 -6.2%
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J GENERAL PRUNING RESULTS

Group Dataset Baseline Pruned Model speedup

Common-sense ARC-Easy 87.0 87.82 1.2
ARC-Challenge 75.86 75.00 1.21

CommonQA 72.20 64.70 1.1
Winogrande 54.20 50.57 1.13

Reading BoolQ 85.0 85.5 1.17
BIG-Bench 75.2 67.2 1.1

Table 15: Accuracy of LLaMA-3.1-8B (baseline) versus a pruned variant obtained by dropping
layers selected through BSBA. For each task, BSBA identified removable layers, and we retained
the intersection of layers that appeared in at least 75% of tasks within the Common-sense group
(layers 19, 22, 23, 27) and (layers 18, 21, 22, 28, 32) for Reading Comprehension tasks. These
layers were then pruned globally from the model, and performance was re-evaluated across tasks.
Speedup is reported relative to the baseline.

K TALE EVALUATION WITH PERPLEXITY

Model WikiText2 LAMBADA

Vanilla TALE Vanilla TALE

LLaMA 3.1 8B 24.6 24.9 28.1 28.9
Lucie 7B 46.1 36.4 52.5 43.8

Table 16: Perplexity scores for two models across WikiText2 and LAMBADA with Vanilla and
TALE (sparisty 10%) configurations.

L TALE , OUR GREEDY-SELECTION ALGORITHM
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Linear
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Temporary Drop Layer index : i 
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Drop Layer: 1
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Drop Layer: 2

Layer 1
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Layer N

Layer N-1

Drop Layer: N-1

{drop layer : i  , max(acc : x %) > Y%(threshold)}
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While : {max(accuracy) of  Permanently
deleted layer >= Threshold accuracy.}

Layer 1

Layer 2

Layer 3
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Drop Layer: N

Text

This color signifies permanent dropped layer from the LLM Base

This color signifies temporary dropped layer from the LLM Base ,
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Layer 1

Figure 8: Illustration of TALE layer elimination. Candidate layers (yellow) are tested for removal,
and the best-performing ones above the threshold are permanently dropped (red) until no further
improvement is possible.
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