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Abstract

Neural Network Interatomic Potentials (NNIPs) are a cornerstone of modern atom-
istic simulations, but their reliability is limited by the difficulty in quantifying
prediction uncertainty. Current uncertainty quantification (UQ) methods present
a trade-off: model ensembles offer a robust, data-free metric based on model
disagreement but are computationally expensive, while faster single-model meth-
ods typically require access to the original training data which can be practically
inconvenient and chemically sparse. This paper introduces a novel differentiable
UQ metric for direct-force pre-trained models that combines the strengths of both
paradigms, offering the data-free reliability of ensembles with the computational
speed of a single model. Our metric is derived from the internal disagreement
between two force predictions from a single NNIP—the directly predicted (non-
conservative) force and the energy-gradient-derived (conservative) force. We show
a strong monotonic correlation between this force disagreement and the true force
error against Density Functional Theory calculations. This relationship is robust
across a diverse set of materials and holds even for out-of-distribution structures
generated via adversarial attacks. Because the method is computationally cheap
and requires no training data, it offers a powerful, out-of-the-box tool for on-the-
fly assessment of model confidence with wide-ranging applications for reliable
atomistic modeling.

1 Introduction

Machine-learned interatomic potentials (MLIPs), particularly those based on neural networks (NNIPs),
have become essential tools in computational materials science, bridging the accuracy of quantum
mechanics with the efficiency of classical force fields [1-4]. Despite their success, NNIPs can fail
catastrophically on out-of-distribution (OOD) structures, leading to unstable simulations and incorrect
scientific conclusions [5-7]. Robust uncertainty quantification (UQ) is therefore critical for their
trustworthy application [8—11].

The dominant UQ methods for MLIPs fall into two main families. The first, deep ensembles, trains
multiple models and uses their prediction variance as a robust, data-free uncertainty estimate, but at a
high computational cost [5, 12, 13]. The second family comprises single-model methods. Many of
these, such as Bayesian Neural Networks (BNNs), require specialized and often complex training
procedures to learn an approximate posterior distribution over model weights [14, 15]. Other single-
model approaches, including those based on distance metrics or density estimators like Gaussian
Mixture Models (GMMs), but these are data-dependent, requiring access to the original training set to
assess novelty [2, 16—18]. This is a major bottleneck for the growing ecosystem of large, pre-trained
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“foundation models” as access to the massive training datasets can be time-consuming and the datasets
themselves can have low utility for a specific system of interest [19-22].

Modern NNIPs can predict forces in two ways: (1) conservative forces (Fc) calculated as the
negative gradient of the predicted energy (Fc = —VE), which is physically rigorous but slower
[23, 24]; and (2) non-conservative forces (Fnc), predicted directly as a vector output, which is
faster but violates energy conservation [25-27]. We propose that the disagreement between these two
predictions, a quantity we term the “Force Delta,” can be used as a powerful, data-free UQ metric.
Our method captures the data-free benefit of ensembles, which rely on internal model disagreement,
while retaining the computational efficiency of single-model UQ, offering an out-of-the-box tool with
efficient implementation for on-the-fly model evaluation (see Appendix for Computational Cost).

2 Methods

2.1 The Force Delta Uncertainty Metric

A fundamental property of a physical force field is that it must be conservative, meaning the forces
are the negative gradient of a potential energy, F = —Vg E. A direct mathematical consequence is
that the curl of a conservative force field is zero (V x F = 0). Any violation of this condition signals
a failure to represent the true underlying physics.

An NNIP is a function Fyy that maps an atomic configuration R = {r;, Z;} to a predicted
potential energy Fnn (R) and a set of atomic forces. The conservative force on atom ¢ is
F.;(R) = —V,, Exn(R), computed via automatic differentiation. The non-conservative force,
]?‘,,w,,», is predicted directly by a separate output head for direct-force NNIPs.

In a perfectly learned model, these two forces would be identical. Therefore, any disagreement
between them is a direct measure of the model’s physical inconsistency and a local violation of
energy conservation. A non-zero difference implies that the directly predicted force field has a

non-zero curl, a clear indicator of the model’s failure to capture the true potential energy surface.
This interpretability is a significant advantage over more abstract metrics like ensemble variance.

We quantify this physical violation by defining our uncertainty metric, the Force Delta (Un), as the
root-mean-square (RMS) of the vector difference between these two force predictions, averaged over
all 3N force components:

1 L. 5
Ua(R) = 3—]\,2||Fnc,i(R)—Fc,i(R)II2 Q)
=1

This metric is applicable to any model architecture that provides both an invariant scalar energy output
(for ) and a separate equivariant vector output (for F,..). To validate this metric, we compare it
against the true error, cgirct, Which is the RMS difference between the model’s non-conservative
force and the ground-truth DFT force, Fprr ;:

N
1 R
Edirect(R) = 3N Z |Fne,i(R) — Forr,i (R)||? @)
i=1

We validate against €gjrecy because Fnc is often preferred in production simulations for speed, making
its error the most relevant quantity to estimate. Our central claim is that a strong, predictive monotonic
relationship exists between Ua and Egjrect.

2.2 Adversarial Generation of OOD Structures

To rigorously test our metric on challenging OOD configurations, we employ an adversarial attack
strategy [28-31]. Starting from equilibrium structures, we iteratively perturb the atomic positions r to
find configurations that are both physically plausible (low energy) and maximally uncertain. This is
achieved by updating the atomic positions along a composite gradient that simultaneously maximizes

our uncertainty metric Ux while minimizing the predicted potential energy Exn [32]:
Tnew = Told + aerA - BerNN (3)
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where « and 3 is the learning rates for the attack and energy minimization (to ensure the generated
OOD configurations still conforms to the Boltzmann distribution), respectively. This differentiable
process efficiently drives the system towards high-uncertainty, but low-energy scenarios where the
model’s internal predictions disagree most strongly [6, 33].

3 Results and Discussion

3.1 Validation on Equilibrium Structures

We first evaluated the Force Delta on stable, in-distribution structures to establish a baseline. For each
of the 10 material systems (see Appendix), we used an equilibrium configuration and calculated the
average Force Delta (Ua) and average true error (€g4irect) across all 15 of the pre-trained models (see
Appendix). Figure 1a shows a remarkably strong monotonic association, confirmed by a Spearman’s
rank correlation coefficient of r; = 0.98. This indicates that for well-behaved structures, the Force
Delta is an initial powerful indicator of the underlying model error.

3.2 Comparison with an Ad-Hoc Ensemble Baseline

To benchmark the Force Delta against a standard ensemble-based approach, we performed a head-to-
head comparison within each model family since Orb and EquiformerV2 were trained using different
ground-truth DFT methods (w/ vs. w/o D3). We compared how well our single-model Force Delta
predicts the error of its individual model against how well the ad-hoc ensemble variance predicts the
error of the ensemble’s average prediction.

It is crucial to note that these ad-hoc collection of models are not “deep ensembles” in the strictest
sense, as they were not co-trained with varied initializations on an identical dataset. However, they
represent the most direct ensemble-based UQ approach available to a user working with publicly
available pre-trained models.

The results, summarized in Table 1, reveal the remarkable effectiveness of the Force Delta. For the
EquiformerV?2 family, the single-model Force Delta significantly outperforms the 10-model ensemble
variance, achieving a much higher average Spearman correlation. This demonstrates that for this
diverse set of models, probing the internal physical consistency is a fundamentally more reliable UQ
strategy than measuring external disagreement.

For the Orb family, the ensemble variance shows a slightly stronger correlation on average, suggesting
that the optimal UQ strategy can be model-dependent. Nonetheless, the Force Delta still provides
a robust and reliable uncertainty estimate. This confirms that our method provides UQ of a quality
comparable to an expensive ensemble, while retaining the out-of-the-box efficiency of a single-model
approach in any practical application.

Table 1: Comparison of UQ strategies on equilibrium structures. The single-model Force Delta (Ua)
is benchmarked against the ad-hoc ensemble force variance (U,,:). The Force Delta demonstrates
significantly superior performance for the EquiformerV2 family and competitive performance for the
Orb family, while being far more computationally efficient in practice.

Model Family Avg. rg (Force Delta, Un) rs (Ensemble Variance, Uy,,)
Orb (5 models) 0.70 £ 0.04 0.73
EquiformerV2 (10 models) 0.91 + 0.02 0.78

3.3 Robustness under Adversarial Attack

The strong monotonic correlation generally holds even for OOD structures generated via adversarial
attacks. Figure 1b shows a parity plot for individual structures (both standard and adversarial) for
the Orb potential across all 10 systems. The data points cluster tightly along a monotonic curve,
demonstrating a direct correspondence between the internal force disagreement and the actual error.
Because the relationship is not strictly linear, we use Spearman’s rank correlation, which is a more
robust measure of association.
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Figure 1: Correlation between Force Delta (Ua) and true error (ggirect)- (2) Model-averaged values
for equilibrium structures (rs = 0.98). Adversarial structures for (b) Orb and (c) EquiformerV?2,
demonstrating generality across different model architectures and material systems

The correlation for Orb is very strong (rs > 0.9) for most systems (see Appendix). For a few systems
(e.g., MoF5, aspirin), the correlation is weaker or even negative. This is because the true error of the
initial equilibrium structure was already substantial (see Appendix). Consequently, the adversarial
attack, while still finding high-uncertainty configurations, did not produce as dramatic an increase in
error, which can weaken the calculated correlation coefficient. Crucially, the Force Delta for these
points is consistently high, correctly flagging them as unreliable. This shows the metric functions
as an effective “failure detector” for applications like active learning or molecular dynamics (MD)
monitoring, where identifying failure is often more important than perfect error prediction.

To test generality, we performed the same analysis on EquiformerV2 for six systems. While the
Spearman correlation is more modest (see Appendix), a clear positive monotonic trend remains
for most systems, as shown in Figure 1c. This demonstrates that the underlying principle—that
internal force disagreement tracks with true error—is not unique to one model architecture. The
weaker correlation suggests that the quality of the UQ metric may be model-dependent (different
architectures or training strategies), but the metric itself is still present and useful.

Our results confirm the Force Delta is an excellent metric for ranking uncertainty, making it ideal
for applications like active learning. However, the metric is not calibrated: its magnitude does not
directly predict the magnitude of the true error, as shown in Figure 1. Therefore, its primary role is as
a robust and efficient criterion for identifying unreliable predictions, not as a precise error estimator.
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3.4 The Data-Free Advantage at a Single-Model Efficiency

Our method combines the strengths of the two dominant UQ families, extending the ensemble
principle to a single model, where disagreement among diverse models is a robust, data-free estimate
for epistemic uncertainty [5, 12]. It measures the disagreement between two physically-motivated
predictive pathways within a single model, providing a similar estimate of internal inconsistency
but at the computational cost of a single model (see Appendix), avoiding the substantial expense of
training and running multiple large models [13, 11].

This data-free nature is not merely a convenience but a critical advantage, essentially eliminating
setup costs associated with often proprietary or intractable training data of large-scale foundation
models. Moreover, the implementation is computationally efficient, requiring only a single additional
backpropagation pass per structure, in contrast to the substantial cost of training an entirely separate
statistical model on a large training set. Data-dependent UQ also suffers from a more fundamental
data utility problem—a universal potential’s training set may be vast but sparse for a specific system
[1, 34]. Furthermore, on heterogeneous data, these methods are known to underestimate errors and
can fail counterintuitively in OOD settings, where uncertainty may decrease as error grows [6, 35-37].
Our method avoids these pitfalls by directly probing the model’s physical inconsistency—the inability
of the model to perfectly represent the true physics—which is the dominant source of error in MLIPs
and is often ignored by standard Bayesian UQ frameworks [38—40].

3.5 Applications in Atomistic Modeling

This work provides an essential out-of-the-box estimate of model reliability with wide-ranging
applications for reliable atomistic modeling. In high-throughput screening, it can act as a filter to
flag unreliable predictions for more expensive validation, focusing resources where they are most
needed [41, 42]. For molecular dynamics, it provides an on-the-fly safeguard to detect when a
simulation could enter an OOD region, preventing numerical instabilities and enabling more stable
long-timescale simulations [43, 44]. In active learning, it provides a highly efficient differentiable
sampling strategy to guide the selection of new training data, improving the data-efficiency of model
training and accelerating the development of a robust potential [45, 46]. Finally, the method enables
new paradigms for benchmarking and model development. It allows for the data-free selection of
the best pre-trained model for a specific task and can be used as a physics-informed regularization
term during training to improve generalization. For the growing number of foundation models, this
gives users an essential tool to evaluate model reliability on their own systems.

4 Conclusion

We have introduced the Force Delta, a fast, accurate, and data-free uncertainty metric for NNIPs
based on internal model disagreement. We demonstrated a strong monotonic correlation between
this metric and the true DFT error across diverse materials, models, and for both equilibrium and
adversarially generated OOD structures. The method’s key advantage is its data-free and single-model
nature with efficient implementation, overcoming the severe practical and theoretical limitations of
data-dependent UQ and enables reliable uncertainty estimation for any direct-force pre-trained model.
By providing a new paradigm for high-throughput screening, molecular dynamics simulations, active
learning, model benchmarking, and physics-informed training, this work provides a computationally
lightweight and out-of-the-box framework for assessing the predictive reliability of the next generation
of direct-force foundation models for materials discovery.
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A Appendix

A.1 Correlation between UQ and True Error on OOD adversarial test set
A.2 Analysis of Correlation Strength vs. Initial Model Error

Figure 2 directly visualizes the argument made in the main text: that systems with a high initial error
on their equilibrium structure tend to exhibit weaker Spearman correlations during adversarial attacks.
This supports our conclusion that a weak correlation coefficient does not necessarily indicate a failure
of the UQ metric, but can be an artifact of the model already being highly uncertain.
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Table 2: Spearman’s rank correlation (r,) between Ua and egjrece On adversarial test sets.

Orb v3 EquiformerV2
System Group rs | System Group s
Mg17Als2 Solid 1.00 | ice Solid 0.84
LGPS Solid 1.00 | Mgi7Als2 Solid 0.42
ice Solid 091 | LGPS Solid 0.18
MoF5 Solid -0.31 | CaPd-NH,  Surface 0.23
CaPd-NH: Surface 0.58 | aspirin Molecule 0.44
paracetamol Molecule  0.97 | paracetamol Molecule 0.08
stachyose Molecule  0.93
Ac-Ala3-NHMe Molecule  0.95
DHA Molecule  0.72
aspirin Molecule -0.02
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Figure 2: Analysis of Spearman’s rank correlation (r,) from adversarial attacks versus the initial
true error (£girect) Of the equilibrium structure for each system. For systems with low initial error,
the adversarial attack creates a wide range of errors, leading to strong correlations. For systems
where the model is already highly inaccurate, the dynamic range is smaller, weakening the calculated
correlation.
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Figure 3: Correlation between Force Delta (Ua ) and true error (€girect). () Model-averaged values
for equilibrium structures

A.3 Benchmarking Potential of the Force Delta on Equilibrium Structures

To demonstrate the potential of the Force Delta as a tool for benchmarking and model selection,
this section provides a plot (Figure 3) showing the Force Delta versus the true error for each of
the 15 models in our ensemble, evaluated on the same equilibrium structures. The results show
a perfect correlation for the Orb models, indicating that the Force Delta can distinguish between
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the performance of different model versions. The EquiformerV2 models, however, show no clear
correlation in this test, suggesting that this benchmarking capability may also be model-dependent.

A.4 Computational Details
A4.1 Model Details

We performed validations using 15 state-of-the-art NNIPs representing diverse architectural classes:
five versions of Orb, all of which are attention-augmented Graph Neural Networks, and ten versions
of EquiformerV2, an E(3)-Equivariant Transformer [47-50]. This diversity allows us to test the
generality of our findings. The specific model versions are listed below.

A.4.2 Orb Models

The five Orb models used were:

* orb-d3-xs-v2

* orb-d3-v2

* orb-d3-sm-v2

* orb-v3-direct-inf-mpa

* orb-v3-direct-20-mpa

EquiformerV2 Models

The ten EquiformerV2 models used were:

* eqV2_dens_31M_mp

* eqV2_dens_153M_mp

* eqV2_dens_86M_mp

* eqV2_31M.mp

* eqV2_31M_omat

* eqV2_153M_omat

* eqV2_86M_omat

* eqV2_31M_omat_mp_salex
* eqV2_153M_omat_mp_salex
* eqV2_86M_omat_mp_salex

Adversarial attacks were performed on all 10 systems for the Orb potential
(orb-v3-direct-20-mpa) and on six representative systems for eqV2_dens_31M_mp model.

A.4.3 Materials Details

Our test set comprised 10 systems spanning solids (Mgy7Aly2, LGPS, ice, and MoF-5), surfaces
(CaPd-NH.), and molecules (Ac-Ala3-NHMe, stachyose, aspirin, paracetamol, and DHA taken
md22 dataset [51]).

A.4.4 DFT Calculation Details

All ground-truth Density Functional Theory (DFT) calculations were performed with the Vienna Ab
initio Simulation Package (VASP). We used the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [52, 53]. All calculation parameters including k-point mesh densities were chosen to
be consistent with the Materials Project [54], ensuring convergence. For surface and molecular
calculations, structures were placed in a large simulation box with at least 15 A of vacuum to ensure
no spurious interactions between periodic images.

10
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A.4.5 Computational Cost

The Force Delta offers significant speed advantages over ensembles (5-10x faster). Compared to
single-model methods, the cost depends on the context. If a simulation typically uses the fast
Fe, calculating Ua requires computing F, (the backpropagation), which roughly doubles the
computational cost per step (~2x overhead). If the simulation already uses F, the overhead is
negligible if F,. is computed during the initial forward pass. This overhead is significantly less than
the cost of data-dependent methods, which require searching large training databases or training
separate statistical models.
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