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Abstract

Neural Network Interatomic Potentials (NNIPs) are a cornerstone of modern atom-1

istic simulations, but their reliability is limited by the difficulty in quantifying2

prediction uncertainty. Current uncertainty quantification (UQ) methods present3

a trade-off: model ensembles offer a robust, data-free metric based on model4

disagreement but are computationally expensive, while faster single-model meth-5

ods typically require access to the original training data which can be practically6

inconvenient and chemically sparse. This paper introduces a novel differentiable7

UQ metric for direct-force pre-trained models that combines the strengths of both8

paradigms, offering the data-free reliability of ensembles with the computational9

speed of a single model. Our metric is derived from the internal disagreement10

between two force predictions from a single NNIP—the directly predicted (non-11

conservative) force and the energy-gradient-derived (conservative) force. We show12

a strong monotonic correlation between this force disagreement and the true force13

error against Density Functional Theory calculations. This relationship is robust14

across a diverse set of materials and holds even for out-of-distribution structures15

generated via adversarial attacks. Because the method is computationally cheap16

and requires no training data, it offers a powerful, out-of-the-box tool for on-the-17

fly assessment of model confidence with wide-ranging applications for reliable18

atomistic modeling.19

1 Introduction20

Machine-learned interatomic potentials (MLIPs), particularly those based on neural networks (NNIPs),21

have become essential tools in computational materials science, bridging the accuracy of quantum22

mechanics with the efficiency of classical force fields [1–4]. Despite their success, NNIPs can fail23

catastrophically on out-of-distribution (OOD) structures, leading to unstable simulations and incorrect24

scientific conclusions [5–7]. Robust uncertainty quantification (UQ) is therefore critical for their25

trustworthy application [8–11].26

The dominant UQ methods for MLIPs fall into two main families. The first, deep ensembles, trains27

multiple models and uses their prediction variance as a robust, data-free uncertainty estimate, but at a28

high computational cost [5, 12, 13]. The second family comprises single-model methods. Many of29

these, such as Bayesian Neural Networks (BNNs), require specialized and often complex training30

procedures to learn an approximate posterior distribution over model weights [14, 15]. Other single-31

model approaches, including those based on distance metrics or density estimators like Gaussian32

Mixture Models (GMMs), but these are data-dependent, requiring access to the original training set to33

assess novelty [2, 16–18]. This is a major bottleneck for the growing ecosystem of large, pre-trained34
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“foundation models” as access to the massive training datasets can be time-consuming and the datasets35

themselves can have low utility for a specific system of interest [19–22].36

Modern NNIPs can predict forces in two ways: (1) conservative forces (F̂c), calculated as the37

negative gradient of the predicted energy (F̂c = −∇Ê), which is physically rigorous but slower38

[23, 24]; and (2) non-conservative forces (F̂nc), predicted directly as a vector output, which is39

faster but violates energy conservation [25–27]. We propose that the disagreement between these two40

predictions, a quantity we term the “Force Delta,” can be used as a powerful, data-free UQ metric.41

Our method captures the data-free benefit of ensembles, which rely on internal model disagreement,42

while retaining the computational efficiency of single-model UQ, offering an out-of-the-box tool with43

efficient implementation for on-the-fly model evaluation (see Appendix for Computational Cost).44

2 Methods45

2.1 The Force Delta Uncertainty Metric46

A fundamental property of a physical force field is that it must be conservative, meaning the forces47

are the negative gradient of a potential energy, F = −∇RE. A direct mathematical consequence is48

that the curl of a conservative force field is zero (∇×F = 0). Any violation of this condition signals49

a failure to represent the true underlying physics.50

An NNIP is a function FNN that maps an atomic configuration R = {ri, Zi} to a predicted51

potential energy ÊNN(R) and a set of atomic forces. The conservative force on atom i is52

F̂c,i(R) = −∇riÊNN(R), computed via automatic differentiation. The non-conservative force,53

F̂nc,i, is predicted directly by a separate output head for direct-force NNIPs.54

In a perfectly learned model, these two forces would be identical. Therefore, any disagreement55

between them is a direct measure of the model’s physical inconsistency and a local violation of56

energy conservation. A non-zero difference implies that the directly predicted force field has a57

non-zero curl, a clear indicator of the model’s failure to capture the true potential energy surface.58

This interpretability is a significant advantage over more abstract metrics like ensemble variance.59

We quantify this physical violation by defining our uncertainty metric, the Force Delta (U∆), as the60

root-mean-square (RMS) of the vector difference between these two force predictions, averaged over61

all 3N force components:62

U∆(R) =

√√√√ 1

3N

N∑
i=1

∥F̂nc,i(R)− F̂c,i(R)∥2 (1)

This metric is applicable to any model architecture that provides both an invariant scalar energy output63

(for F̂c) and a separate equivariant vector output (for F̂nc). To validate this metric, we compare it64

against the true error, εdirect, which is the RMS difference between the model’s non-conservative65

force and the ground-truth DFT force, FDFT,i:66

εdirect(R) =

√√√√ 1

3N

N∑
i=1

∥F̂nc,i(R)− FDFT,i(R)∥2 (2)

We validate against εdirect because F̂nc is often preferred in production simulations for speed, making67

its error the most relevant quantity to estimate. Our central claim is that a strong, predictive monotonic68

relationship exists between U∆ and εdirect.69

2.2 Adversarial Generation of OOD Structures70

To rigorously test our metric on challenging OOD configurations, we employ an adversarial attack71

strategy [28–31]. Starting from equilibrium structures, we iteratively perturb the atomic positions r to72

find configurations that are both physically plausible (low energy) and maximally uncertain. This is73

achieved by updating the atomic positions along a composite gradient that simultaneously maximizes74

our uncertainty metric U∆ while minimizing the predicted potential energy ÊNN [32]:75

rnew = rold + α∇rU∆ − β∇rÊNN (3)
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where α and β is the learning rates for the attack and energy minimization (to ensure the generated76

OOD configurations still conforms to the Boltzmann distribution), respectively. This differentiable77

process efficiently drives the system towards high-uncertainty, but low-energy scenarios where the78

model’s internal predictions disagree most strongly [6, 33].79

3 Results and Discussion80

3.1 Validation on Equilibrium Structures81

We first evaluated the Force Delta on stable, in-distribution structures to establish a baseline. For each82

of the 10 material systems (see Appendix), we used an equilibrium configuration and calculated the83

average Force Delta (U∆) and average true error (εdirect) across all 15 of the pre-trained models (see84

Appendix). Figure 1a shows a remarkably strong monotonic association, confirmed by a Spearman’s85

rank correlation coefficient of rs = 0.98. This indicates that for well-behaved structures, the Force86

Delta is an initial powerful indicator of the underlying model error.87

3.2 Comparison with an Ad-Hoc Ensemble Baseline88

To benchmark the Force Delta against a standard ensemble-based approach, we performed a head-to-89

head comparison within each model family since Orb and EquiformerV2 were trained using different90

ground-truth DFT methods (w/ vs. w/o D3). We compared how well our single-model Force Delta91

predicts the error of its individual model against how well the ad-hoc ensemble variance predicts the92

error of the ensemble’s average prediction.93

It is crucial to note that these ad-hoc collection of models are not “deep ensembles” in the strictest94

sense, as they were not co-trained with varied initializations on an identical dataset. However, they95

represent the most direct ensemble-based UQ approach available to a user working with publicly96

available pre-trained models.97

The results, summarized in Table 1, reveal the remarkable effectiveness of the Force Delta. For the98

EquiformerV2 family, the single-model Force Delta significantly outperforms the 10-model ensemble99

variance, achieving a much higher average Spearman correlation. This demonstrates that for this100

diverse set of models, probing the internal physical consistency is a fundamentally more reliable UQ101

strategy than measuring external disagreement.102

For the Orb family, the ensemble variance shows a slightly stronger correlation on average, suggesting103

that the optimal UQ strategy can be model-dependent. Nonetheless, the Force Delta still provides104

a robust and reliable uncertainty estimate. This confirms that our method provides UQ of a quality105

comparable to an expensive ensemble, while retaining the out-of-the-box efficiency of a single-model106

approach in any practical application.107

Table 1: Comparison of UQ strategies on equilibrium structures. The single-model Force Delta (U∆)
is benchmarked against the ad-hoc ensemble force variance (Uvar). The Force Delta demonstrates
significantly superior performance for the EquiformerV2 family and competitive performance for the
Orb family, while being far more computationally efficient in practice.

Model Family Avg. rs (Force Delta, U∆) rs (Ensemble Variance, Uvar)

Orb (5 models) 0.70 ± 0.04 0.73
EquiformerV2 (10 models) 0.91 ± 0.02 0.78

3.3 Robustness under Adversarial Attack108

The strong monotonic correlation generally holds even for OOD structures generated via adversarial109

attacks. Figure 1b shows a parity plot for individual structures (both standard and adversarial) for110

the Orb potential across all 10 systems. The data points cluster tightly along a monotonic curve,111

demonstrating a direct correspondence between the internal force disagreement and the actual error.112

Because the relationship is not strictly linear, we use Spearman’s rank correlation, which is a more113

robust measure of association.114
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(a) Equilibrium structures

(b) Adversarial (Orb) (c) Adversarial (eqV2)

Figure 1: Correlation between Force Delta (U∆) and true error (εdirect). (a) Model-averaged values
for equilibrium structures (rs = 0.98). Adversarial structures for (b) Orb and (c) EquiformerV2,
demonstrating generality across different model architectures and material systems

The correlation for Orb is very strong (rs > 0.9) for most systems (see Appendix). For a few systems115

(e.g., MoF5, aspirin), the correlation is weaker or even negative. This is because the true error of the116

initial equilibrium structure was already substantial (see Appendix). Consequently, the adversarial117

attack, while still finding high-uncertainty configurations, did not produce as dramatic an increase in118

error, which can weaken the calculated correlation coefficient. Crucially, the Force Delta for these119

points is consistently high, correctly flagging them as unreliable. This shows the metric functions120

as an effective “failure detector” for applications like active learning or molecular dynamics (MD)121

monitoring, where identifying failure is often more important than perfect error prediction.122

To test generality, we performed the same analysis on EquiformerV2 for six systems. While the123

Spearman correlation is more modest (see Appendix), a clear positive monotonic trend remains124

for most systems, as shown in Figure 1c. This demonstrates that the underlying principle—that125

internal force disagreement tracks with true error—is not unique to one model architecture. The126

weaker correlation suggests that the quality of the UQ metric may be model-dependent (different127

architectures or training strategies), but the metric itself is still present and useful.128

Our results confirm the Force Delta is an excellent metric for ranking uncertainty, making it ideal129

for applications like active learning. However, the metric is not calibrated: its magnitude does not130

directly predict the magnitude of the true error, as shown in Figure 1. Therefore, its primary role is as131

a robust and efficient criterion for identifying unreliable predictions, not as a precise error estimator.132
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3.4 The Data-Free Advantage at a Single-Model Efficiency133

Our method combines the strengths of the two dominant UQ families, extending the ensemble134

principle to a single model, where disagreement among diverse models is a robust, data-free estimate135

for epistemic uncertainty [5, 12]. It measures the disagreement between two physically-motivated136

predictive pathways within a single model, providing a similar estimate of internal inconsistency137

but at the computational cost of a single model (see Appendix), avoiding the substantial expense of138

training and running multiple large models [13, 11].139

This data-free nature is not merely a convenience but a critical advantage, essentially eliminating140

setup costs associated with often proprietary or intractable training data of large-scale foundation141

models. Moreover, the implementation is computationally efficient, requiring only a single additional142

backpropagation pass per structure, in contrast to the substantial cost of training an entirely separate143

statistical model on a large training set. Data-dependent UQ also suffers from a more fundamental144

data utility problem—a universal potential’s training set may be vast but sparse for a specific system145

[1, 34]. Furthermore, on heterogeneous data, these methods are known to underestimate errors and146

can fail counterintuitively in OOD settings, where uncertainty may decrease as error grows [6, 35–37].147

Our method avoids these pitfalls by directly probing the model’s physical inconsistency—the inability148

of the model to perfectly represent the true physics—which is the dominant source of error in MLIPs149

and is often ignored by standard Bayesian UQ frameworks [38–40].150

3.5 Applications in Atomistic Modeling151

This work provides an essential out-of-the-box estimate of model reliability with wide-ranging152

applications for reliable atomistic modeling. In high-throughput screening, it can act as a filter to153

flag unreliable predictions for more expensive validation, focusing resources where they are most154

needed [41, 42]. For molecular dynamics, it provides an on-the-fly safeguard to detect when a155

simulation could enter an OOD region, preventing numerical instabilities and enabling more stable156

long-timescale simulations [43, 44]. In active learning, it provides a highly efficient differentiable157

sampling strategy to guide the selection of new training data, improving the data-efficiency of model158

training and accelerating the development of a robust potential [45, 46]. Finally, the method enables159

new paradigms for benchmarking and model development. It allows for the data-free selection of160

the best pre-trained model for a specific task and can be used as a physics-informed regularization161

term during training to improve generalization. For the growing number of foundation models, this162

gives users an essential tool to evaluate model reliability on their own systems.163

4 Conclusion164

We have introduced the Force Delta, a fast, accurate, and data-free uncertainty metric for NNIPs165

based on internal model disagreement. We demonstrated a strong monotonic correlation between166

this metric and the true DFT error across diverse materials, models, and for both equilibrium and167

adversarially generated OOD structures. The method’s key advantage is its data-free and single-model168

nature with efficient implementation, overcoming the severe practical and theoretical limitations of169

data-dependent UQ and enables reliable uncertainty estimation for any direct-force pre-trained model.170

By providing a new paradigm for high-throughput screening, molecular dynamics simulations, active171

learning, model benchmarking, and physics-informed training, this work provides a computationally172

lightweight and out-of-the-box framework for assessing the predictive reliability of the next generation173

of direct-force foundation models for materials discovery.174
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A Appendix312

A.1 Correlation between UQ and True Error on OOD adversarial test set313

A.2 Analysis of Correlation Strength vs. Initial Model Error314

Figure 2 directly visualizes the argument made in the main text: that systems with a high initial error315

on their equilibrium structure tend to exhibit weaker Spearman correlations during adversarial attacks.316

This supports our conclusion that a weak correlation coefficient does not necessarily indicate a failure317

of the UQ metric, but can be an artifact of the model already being highly uncertain.318
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Table 2: Spearman’s rank correlation (rs) between U∆ and εdirect on adversarial test sets.
Orb v3 EquiformerV2

System Group rs System Group rs

Mg17Al12 Solid 1.00 ice Solid 0.84
LGPS Solid 1.00 Mg17Al12 Solid 0.42
ice Solid 0.91 LGPS Solid 0.18
MoF5 Solid -0.31 CaPd-NH2 Surface 0.23
CaPd-NH2 Surface 0.58 aspirin Molecule 0.44
paracetamol Molecule 0.97 paracetamol Molecule 0.08
stachyose Molecule 0.93
Ac-Ala3-NHMe Molecule 0.95
DHA Molecule 0.72
aspirin Molecule -0.02

(a) Orb v3 (b) EquiformerV2

Figure 2: Analysis of Spearman’s rank correlation (rs) from adversarial attacks versus the initial
true error (εdirect) of the equilibrium structure for each system. For systems with low initial error,
the adversarial attack creates a wide range of errors, leading to strong correlations. For systems
where the model is already highly inaccurate, the dynamic range is smaller, weakening the calculated
correlation.

Figure 3: Correlation between Force Delta (U∆) and true error (εdirect). (a) Model-averaged values
for equilibrium structures

A.3 Benchmarking Potential of the Force Delta on Equilibrium Structures319

To demonstrate the potential of the Force Delta as a tool for benchmarking and model selection,320

this section provides a plot (Figure 3) showing the Force Delta versus the true error for each of321

the 15 models in our ensemble, evaluated on the same equilibrium structures. The results show322

a perfect correlation for the Orb models, indicating that the Force Delta can distinguish between323
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the performance of different model versions. The EquiformerV2 models, however, show no clear324

correlation in this test, suggesting that this benchmarking capability may also be model-dependent.325

A.4 Computational Details326

A.4.1 Model Details327

We performed validations using 15 state-of-the-art NNIPs representing diverse architectural classes:328

five versions of Orb, all of which are attention-augmented Graph Neural Networks, and ten versions329

of EquiformerV2, an E(3)-Equivariant Transformer [47–50]. This diversity allows us to test the330

generality of our findings. The specific model versions are listed below.331

A.4.2 Orb Models332

The five Orb models used were:333

• orb-d3-xs-v2334

• orb-d3-v2335

• orb-d3-sm-v2336

• orb-v3-direct-inf-mpa337

• orb-v3-direct-20-mpa338

EquiformerV2 Models339

The ten EquiformerV2 models used were:340

• eqV2 dens 31M mp341

• eqV2 dens 153M mp342

• eqV2 dens 86M mp343

• eqV2 31M mp344

• eqV2 31M omat345

• eqV2 153M omat346

• eqV2 86M omat347

• eqV2 31M omat mp salex348

• eqV2 153M omat mp salex349

• eqV2 86M omat mp salex350

Adversarial attacks were performed on all 10 systems for the Orb potential351

(orb-v3-direct-20-mpa) and on six representative systems for eqV2 dens 31M mp model.352

A.4.3 Materials Details353

Our test set comprised 10 systems spanning solids (Mg17Al12, LGPS, ice, and MoF-5), surfaces354

(CaPd-NH2), and molecules (Ac-Ala3-NHMe, stachyose, aspirin, paracetamol, and DHA taken355

md22 dataset [51]).356

A.4.4 DFT Calculation Details357

All ground-truth Density Functional Theory (DFT) calculations were performed with the Vienna Ab358

initio Simulation Package (VASP). We used the Perdew-Burke-Ernzerhof (PBE) exchange-correlation359

functional [52, 53]. All calculation parameters including k-point mesh densities were chosen to360

be consistent with the Materials Project [54], ensuring convergence. For surface and molecular361

calculations, structures were placed in a large simulation box with at least 15 Å of vacuum to ensure362

no spurious interactions between periodic images.363
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A.4.5 Computational Cost364

The Force Delta offers significant speed advantages over ensembles (5-10x faster). Compared to365

single-model methods, the cost depends on the context. If a simulation typically uses the fast366

F̂nc, calculating U∆ requires computing F̂c (the backpropagation), which roughly doubles the367

computational cost per step (∼2x overhead). If the simulation already uses F̂c, the overhead is368

negligible if F̂nc is computed during the initial forward pass. This overhead is significantly less than369

the cost of data-dependent methods, which require searching large training databases or training370

separate statistical models.371
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