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Abstract

Explicit noise-level conditioning is widely regarded as essential for the effective
operation of Graph Diffusion Models (GDMs). In this work, we challenge this
assumption by investigating whether denoisers can implicitly infer noise levels di-
rectly from corrupted graph structures, potentially eliminating the need for explicit
noise conditioning. To this end, we develop a theoretical framework centered on
Bernoulli edge-flip corruptions and extend it to encompass more complex scenarios
involving coupled structure-attribute noise. Extensive empirical evaluations on
both synthetic and real-world graph datasets, using models such as GDSS and
DiGress, provide strong support for our theoretical findings. Notably, unconditional
GDMs achieve performance comparable or superior to their conditioned counter-
parts, while also offering reductions in parameters (4− 6%) and computation time
(8− 10%). Our results suggest that the high-dimensional nature of graph data itself
often encodes sufficient information for the denoising process, opening avenues
for simpler, more efficient GDM architectures.

1 Introduction

Diffusion models have demonstrated strong performance across a range of generative tasks, including
image synthesis, molecular design, and graph-based combinatorial optimization [1–7]. A central
assumption in these models is the requirement for the denoiser to be explicitly conditioned on the
noise level (or timestep) [8, 9]. However, recent work on continuous data suggests that high-capacity
denoisers can implicitly infer the noise scale directly from the corrupted inputs, potentially eliminating
the need for explicit conditioning [10–12].

Extending this conclusion to graph diffusion models (GDMs) is non-trivial, owing to the inherently
discrete and structured nature of graphs. The Gaussian noise commonly used in diffusion models for
continuous data is ill-suited for graphs as it tends to destroy their essential structural properties [13].
To address this, modern GDMs employ discrete or structured corruption processes, such as Bernoulli
edge flips [7, 14], categorical rewiring [15], or Poisson jumps [16], to ensure that intermediate graph
states remain valid. Unlike continuous domains where Gaussian perturbations are common, graphs
are typically corrupted by discrete, structure-preserving processes. The resulting noisy adjacency Ãt
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already carries information about the corruption scale through simple statistics, and the number of
potential edges grows as M =

(
n
2

)
. Hence, the observation at each step may be informative enough

for a denoiser to infer the noise level without an explicit time input. These considerations lead to our
central question: Is explicit noise-level conditioning truly necessary for GDMs?

In this work, we address this question through a unified theoretical and empirical investigation. We
introduce a novel theoretical framework featuring posterior concentration and error propagation
bounds—Edge-Flip Posterior Concentration (EFPC), Edge-Target Deviation Bound (ETDB),
and Multi-Step Denoising Error Propagation (MDEP)—to rigorously characterize when explicit
noise-level conditioning in GDMs can be safely omitted. For instance, with Bernoulli edge flips, we
prove noise scale posterior variance shrinks optimally at O(M−1), and omitting timesteps yields a
reconstruction error bounded by O(T/M) over T steps. Our analysis generalizes to other corruption
processes, including Poisson, Beta, multinomial, and jointly structured feature-graph noise.

Extensive experiments on synthetic and real-world datasets corroborate our theory, validating that ex-
plicit noise inputs are often dispensable. Unconditional variants of state-of-the-art GDMs, GDSS [17]
and DiGress [7], match or surpass their conditioned counterparts in quality, while improving effi-
ciency (4–6% fewer parameters, 8–10% faster per-epoch runtime). Open source implementation
is available for regenerating the results. Overall, this work revisits a foundational assumption in
diffusion modeling, demonstrating that noise-unconditional GDMs can be as accurate, more efficient,
and conceptually simpler, paving the way for new GDM designs.

2 Related Work

Timestep Conditioning in Graph Diffusion Models. Denoising diffusion models reconstruct
data by reversing a noise process through iterative denoising steps conditioned on the timestep t
[8, 9, 18]. GDMs, such as DiGress with discrete categorical Markov processes [7], GDSS with
coupled stochastic differential equations (SDEs) [17], and EDM with equivariant diffusion for
molecules [19], explicitly condition the denoiser on the noise level. This explicit conditioning adds
complexity and training cost, prompting questions about its necessity for graph data [11, 12].

Blind Denoising. Blind denoising infers noise implicitly and is effective in continuous domains—see
Noise2Self [20] and recent diffusion work [10, 11]. Graphs pose a tougher case: these methods
assume continuous Gaussian noise, whereas GDMs use discrete or structured corruptions to keep
topology intact and thus rely on fixed noise schedules with explicit timesteps. This gap motivates
unconditional graph denoisers that can absorb discrete, structured noise without extra inputs.

Noise Types in GDMs. GDMs employ tailored noise processes. Early works injected Gaussian noise
into adjacency and features [17, 21], but this disrupts sparsity. Discrete categorical noise [13], as in
DiGress [7], better preserves graph structure. Latent-space approaches, notably hyperbolic diffusion,
capture hierarchy efficiently [22]. Recent variants include categorical flips [7], permutation-invariant
multinomial noise [21], Bernoulli edge flips [14], discrete-time Poisson processes [16], and Beta-
distributed noise [23]. Yet all methods still pass an explicit timestep input. We argue that denoisers
can implicitly infer structured noise levels during generation.

3 Problem Setting and Preliminaries

Graph Diffusion Models (GDMs) generate realistic graphs via a forward process that iteratively
corrupts an input graph with noise, followed by a reverse process that learns to undo this corruption,
sampling new graphs from noise. We examine whether the reverse step truly needs explicit knowledge
of the current scalar noise level at each individual denoising timestep during generation.

Graph Definition. We consider an undirected graph G = (V,E), where V is the set of n = |V |
nodes and E is the set of edges. The initial, clean graph structure is represented by its adjacency
matrix A0 ∈ {0, 1}n×n. Node features, if present, are denoted by X0 ∈ Rn×df , where df is the
feature dimensionality. Our theoretical development primarily focuses on structural diffusion, with
extensions to coupled structure and feature corruption discussed in Section 5. We use Ãt and X̃t

for the noisy adjacency and feature matrices at diffusion step t, respectively, with Ã0 = A0 and
X̃0 = X0. The total number of diffusion steps is T .

2



Forward Process. The forward process introduces sequences of noisy graph states (Ãt)
T
t=0 and

noisy feature states (X̃t)
T
t=0 (if features are considered). Graph structure is commonly corrupted

using the Bernoulli edge-flipping model. At each step t, every potential edge e is independently
perturbed. Given the state of an edge Ãt−1(e) at step t− 1, its state at step t, Ãt(e), is drawn from:

Ãt(e)|Ãt−1(e) ∼ Bernoulli
(
(1− βt)Ãt−1(e) + βt[1− Ãt−1(e)]

)
.

Here, βt ∈ [0, 1
2 ] is the per-step flip probability for edge e. The sequence {βt}Tt=1 forms a noise

schedule that typically increases with t. Under this channel, ÃT approaches an Erdős–Rényi graph
with p = 1

2 in the marginal sense; the exact recursion and a sufficient convergence condition are given
in Appendix J. When node features X̃t are present, they are corrupted in parallel (e.g., Gaussian
or structured noise). In Section 5, we introduce a coupled model where structural and feature
perturbations are correlated; further details appear in Appendix J.

Reverse Denoising Process and Training Objective. The fundamental aspect of the GDM is the
reverse denoising process, which learns to reverse the forward corruption. This involves a denoising
function fθ, often a Graph Neural Network, parameterized by θ. It takes a noisy graph Ãt (and
potentially X̃t) as input. Conventionally, fθ is explicitly conditioned on the noise level or timestep t,
i.e., fθ(Ãt, t). Its objective is to predict a cleaner graph version, such as A0, Ãt−1, or the noise itself.
For instance, to predict A0, fθ(Ãt, t) is trained to approximate A0. Parameters θ are optimized by
minimizing an expected loss. For the Bernoulli edge-flipping model targeting A0, a common loss is
the sum of per-edge Binary Cross-Entropy (BCE) losses:

L(θ) = EA0∼pdata,t∼U{1,...,T},Ãt∼p(Ãt|A0,t)

[∑
e

BCE(A0(e), fθ(Ãt, t)(e))

]
,

where pdata is the true graph distribution and p(Ãt|A0, t) is the conditional probability from the
forward process.

The Central Question: Necessity of Explicit Noise Conditioning. A prevalent assumption in
GDM design is that the denoiser fθ requires explicit noise level t input to perform well at every
corruption stage [8, 9], thus formulated as fθ(Ãt, t). Our work questions this necessity for GDMs.
We hypothesize that a model fθ(Ãt) can implicitly infer the noise level from the corrupted graphs
Ãt’s structure and attributes, for discrete graph data under structured noise. Addressing this simplifies
GDM architectures, reduces parameters, and improves efficiency without sacrificing quality.

Notation. We use M :=
(
n
2

)
as the total number of potential edges in a graph with n nodes, and

|E| for the realized edge count. All theoretical rates are stated in M ; when density is nearly fixed in
synthetic settings, |E| = Θ(M) so slopes are equivalent.

4 Key Theoretical Results

This section develops a theoretical framework to rigorously analyze the consequences of omitting
explicit noise-level conditioning in Graph Diffusion Models (GDMs). Focusing primarily on the
Bernoulli edge-flipping noise model (Section 3) and its coupled structure-attribute extensions, we aim
to demonstrate that for sufficiently large graphs, the noisy graph structure inherently encodes adequate
information for the denoiser to infer the noise level, rendering explicit conditioning unnecessary.
We establish this by proving three interconnected theoretical results. Unless specified otherwise, all
expectations and variances herein are with respect to the forward corruption process (Section 3).

Roadmap Our theoretical investigation unfolds through three main results establishing a formal
link from local noise level uncertainty to global generation performance. First, Edge-Flip Posterior
Concentration (EFPC) shows the corruption rate’s posterior concentrates (variance O(M−1)),
making the noise level inferable. Second, Edge-Target Deviation Bound (ETDB) demonstrates
that omitting explicit noise level input yields an expected squared error in the denoising target also
scaling as O(M−1). Third, Multi-Step Denoising Error Propagation (MDEP) bounds the total
reconstruction error over T reverse steps by O(T/M) (errors do not compound catastrophically).
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Assumptions Our analysis relies on key assumptions (rationale in Appendix A). Briefly, these are:

A1 Degree Condition. Graphs satisfy constraints on node degrees (e.g., bounded ∆max or power-law
P (k) ∝ k−α with α > 2).

A2 Global Lipschitz Regularity. There exists a constant Lmax = 1 + η with η<1 such that (i) the
learned denoiser fθ is Lmax-Lipschitz with respect to its graph input at every reverse step; (ii)
the ideal conditional target t 7→ µcond

t := E[A0 | Ãt, t] is also Lmax-Lipschitz.
A3 Prior Regularity. The prior over noise parameters is continuously differentiable and bounded,

ensuring well-defined Fisher information[24].
A4 Model Capacity and Optimization Quality. The trained GDM achieves a per-component Mean

Squared Error (MSE) in a single reverse step on the order of O(M−1).

4.1 Edge-Flip Posterior Concentration (EFPC)

EFPC establishes noise level inferability from a corrupted graph. For a clean graph A0 under
Bernoulli edge-flipping (rate βt), the noisy graph Ãt contains sufficient information to estimate βt,
based on its statistical properties like edge differences or global statistics dependent on βt. EFPC
formalizes that the flip rate’s posterior distribution concentrates sharply around its true value with
increasing graph size, implying Ãt encodes substantial corruption level information.
Theorem 4.1 (Edge-Flip Posterior Concentration (EFPC)). Consider a graph A0 corrupted by the
Bernoulli edge-flipping process (Section 3), resulting in a noisy graph Ãt at step t with a true flip rate
βt. Let K be the number of edges in Ãt that differ from A0. Under Assumption A3 (Prior Regularity),
the variance of the posterior distribution p(β|K) (or more generally, p(β|Ãt) if inference relies on
other statistics of Ãt beyond just K) of the flip rate β satisfies:

Varβ∼p(β|Ãt)
[β] = O(M−1),

Theorem 4.1 arises from Bayesian principles: the M potential edges offer multiple, largely indepen-
dent observations regarding the flip rate βt. This allows the posterior p(β|Ãt) to sharpen around the
true βt as M increases, with the O(M−1) variance being characteristic. Under Assumption A3, the
Bernstein-von Mises theorem[25] yields a more precise rate and confirms asymptotic normality for
p(β|Ãt). The variance refines to (detailed derivation in Appendix B):

Var
[
β|Ãt

]
=

βt(1− βt)

M
+ o(M−1).

For scale-free graphs (Assumption A1, with P (k) ∝ k−α, α > 2), degree heterogeneity alters the
effective number of independent observations, modifying the concentration rate to (see Appendix F):

Var(β|Ãt) = Õ
(
M−(α−2)/(α−1)

)
.

4.2 Edge-Target Deviation Bound (ETDB)

Given EFPC (Theorem4.1) that the noise level βt is inferable from the noisy graph Ãt, we quantify
the impact of omitting explicit noise level t on the denoiser’s single-step objective. We define
µcond
t = E[A0|Ãt, t] as the optimal Bayesian estimate of clean graph A0 (given Ãt and timestep

t), and µ̄t = E[A0|Ãt] as the estimate with t implicitly inferred (averaging over p(t|Ãt)). ETDB
measures their expected error.
Theorem 4.2 (Edge-Target Deviation Bound (ETDB)). Under Assumption A2 (ii), the expected
squared Frobenius norm of the deviation between µcond

t and µ̄t is bounded:
E
[
∥µcond

t − µ̄t∥2F
]
= O(M−1).

The ETDB (Theorem 4.2) results from EFPC (Theorem 4.1), which guarantees minimal posterior
uncertainty about the variable t for a large parameter M . If the function µcond

t is Lipschitz continuous
in t (a regularity ensuring small changes in t cause proportionally small changes in the target, as
reflected by Assumption A2 for the learned denoiser), then this minimal uncertainty in t translates
to an O(M−1) deviation in the denoising target. Intuitively, an unconditional model’s one-step
prediction is almost as good as a conditional model’s because the large number of edges provides
a precise estimate of the noise level, making the two outputs differ only slightly(detailed proof in
Appendix C).
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4.3 Multi-Step Denoising Error Propagation (MDEP)

While ETDB (Theorem 4.2) addresses single-step errors, MDEP analyzes deviation accumulation
over a T -step reverse trajectory when omitting noise conditioning. Let Â0 be the graph from a
T -step unconditional sampler (from noise ÃT ), and define A∗

0 as the ideal graph from a perfectly
noise-conditioned sampler.

Theorem 4.3 (Multi-Step Denoising Error Propagation (MDEP)). Consider a T -step denoising
sampler. Under Assumption A2 (i)(Global-Lipschitz Denoiser, with Lmax = 1 + η, η < 0.2) and
Assumption A4 (Model Capacity, implying maximum single-step target deviation δmax = O(M−1)

from ETDB), the Frobenius norm of the difference between the generated graph Â0 and the ideal
graph A∗

0 is bounded:

∥A∗
0 − Â0∥F ≤ LT

max − 1

Lmax − 1
δmax = O(TM−1).

The O(TM−1) bound shows linear error accumulation with steps T . This is due to Assumption A2
(Lmax ≈ 1, a nearly non-expansive denoiser). The prefactor (LT

max − 1)/(Lmax − 1) is O(T ) for
Lmax near 1. This linear growth, combined with O(M−1) single-step errors, ensures manageable
total error that diminishes for large graphs (M )(detailed proof in Appendix D).

Remark. The theoretical results—EFPC (Theorem 4.1), ETDB (Theorem 4.2), and MDEP (The-
orem 4.3)—form a coherent argument: The noise level is inferable from the noisy graph (EFPC).
Consequently, omitting explicit noise conditioning leads to minor single-step target deviation (ETDB).
Crucially, these small errors accumulate linearly over the generative process (MDEP). This suggests
that for large graphs (M ), explicit noise-level conditioning is not critical for effective GDMs, allowing
simpler, t-free architectures (explored empirically in Section 6).

5 Coupled Structure–Feature Noise Model

Our analysis in Section 4 assumed independent structural noise on A. Yet social, biological, and infor-
mation networks often exhibit coupled structure–attribute dynamics: node-level changes frequently
coincide with edge updates [26–29]. Modeling this coupling is vital both for faithful data representa-
tion and for practical aims, such as improving GNN robustness to joint perturbations [30–32] and
building contextual stochastic block models that encode such correlations [33–35]. Accordingly,
we introduce a coupled Gaussian noise model that explicitly parameterizes structure–feature corre-
lations, extending the independent-noise setting and enabling a finer test of noise conditioning in
attribute-aware graph diffusion.

5.1 Coupled Gaussian Noise Process

We model correlated feature and structural perturbations using shared latent random vectors ηi ∈
Rdf ∼ N (0, Idf

) for each node i (where df is feature dimensionality), an independent structural
noise term ξij ∼ N (0, 1) for each potential edge (i, j), and a coupling coefficient γ ∈ [0, 1]. Given
time-dependent noise scales σX(t) for features and σA(t) for structure, the clean features Xi (from
initial features X0) and clean adjacency entries Aij (from initial adjacency A0) are corrupted at step
t to their noisy counterparts X̃i(t) and Ãij(t) as follows:

X̃i(t) = Xi + σX(t) ηi, Ãij(t) = Aij + σA(t)

(
γ
ηi + ηj

2
√

df
+
√

1− γ2 ξij

)
.

The shared latent vector ηi creates the dependency between feature and structural noise, with γ
controlling its strength (γ = 0 implies independence). The ξij term ensures idiosyncratic structural
randomness. The joint perturbation vector, combining vectorized Ã(t) and X̃(t), follows a multi-
variate Gaussian distribution. Its covariance matrix Σ(t, γ) depends on σA(t), σX(t), γ, and graph
incidence structures. The total dimensionality of this joint noisy data (structure and features) is
D = M + n · df , where M =

(
n
2

)
is the number of potential edges for n nodes.
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5.2 Theoretical Guarantees for the Coupled Model

Under the coupled Gaussian framework, we extend our previous theoretical results. These demonstrate
that noise level inferability and the limited impact of omitting explicit noise conditioning persist
even with correlated structure and feature noise. Let θN = (β, γ, σX , σA) denote the noise process
parameters, where β can relate to parameters of an underlying discrete structural corruption if this
Gaussian model is an approximation or extension.
Theorem 5.1 (Joint Posterior Concentration (JPC)). For the coupled Gaussian noise model, with
total data dimensionality D = M + n · df , and coupling coefficient γ ∈ [0, 1], the posterior variance
of the noise process parameters θN = (β, γ, σX , σA), given the noisy graph structure Ãt and noisy
features X̃t, satisfies:

Var
(
θN | Ãt, X̃t

)
= O(D−1).

As the total data dimensionality D increases, the noise parameters can be jointly inferred with
increasing accuracy. As γ → 1, covariance matrix Σ(t, γ) may become singular. Analysis can
proceed via projection onto its non-degenerate subspace, preserving O(D−1) rates but potentially
with larger constants. In Section 6, we varied γ over the interval [0, 0.99] during empirical validation.

Next, we bound the deviation in the denoising target when explicit noise information is omitted
for the joint structure-feature space. Let µcond

t = E[(A0, X0)|Ãt, X̃t, t] be the optimal Bayesian
estimate of the clean graph structure A0 and features X0 given the noisy data and true timestep t.
Similarly, let µ̄t = E[(A0, X0)|Ãt, X̃t] be the estimate without explicit t.
Theorem 5.2 (Joint Target Deviation Bound (JTDB)). Under Assumption A2(ii) applied to the ideal
conditional target and Theorem 5.1, the expected squared Frobenius norm of the deviation between
the conditional target µcond

t and the unconditional target µ̄t for the joint data (A,X) is bounded by:

E
[∥∥µcond

t − µ̄t

∥∥2
F

]
= O(D−1).

The impact of omitting noise-level conditioning on the immediate denoising target remains minimal
even with coupled noise, scaling inversely with the total dimensionality D.

Finally, we analyze the propagation of these errors over multiple denoising steps. Let (Â0, X̂0) be the
output of a T-step unconditional sampler and (A∗

0, X
∗
0 ) be the output of an ideal conditional sampler.

Theorem 5.3 (Joint Multi-Step Error Propagation (JMEP)). Consider a T -step denoising sampler
for the coupled model. If the single-step target deviation (characterized by JTDB, Theorem 5.2)
is δi = O(D−1) for each step i, and the reverse operator satisfies a Lipschitz condition Li ≤
Lmax (Assumption A2), then after T reverse steps, the cumulative error between the unconditional
generation (Â0, X̂0) and the ideal conditional generation (A∗

0, X
∗
0 ) is bounded by:

∥A∗
0 − Â0∥E + ∥X∗

0 − X̂0∥F = O(T/D).

Here, ∥ · ∥E denotes an appropriate edge-wise norm (e.g., Frobenius norm on the adjacency matrix
difference) and ∥ · ∥F is the Frobenius norm for feature differences.

JMEP (Theorem 5.3) demonstrates that, similar to the structure-only case, errors in the unconditional
coupled model accumulate linearly with the number of steps T and diminish with the total graph
dimensionality D. Detailed proofs for Theorems 5.1, 5.2, and 5.3 are provided in Appendix E.

6 Empirical Validation of the Theoretical Framework

This section empirically assesses the theoretical framework developed in Section 4 and 5. We first
validate the predicted scaling laws for EFPC, ETDB, MDEP, and their coupled counterparts (JPC,
JTDB, JMEP) using synthetic graph data. Subsequently, we evaluate the practical performance of t-
free GDMs on real-world graph generation benchmarks. For synthetic experiments, Erdős–Rényi [36]
or Stochastic Block Model (SBM) [37] graphs with n ∈ [50, 1.4 × 104] nodes are utilized, with
default parameters β = 0.2 (edge-flip rate) and τX = 0.5 (feature-noise variance). All configurations
are repeated 5 times with different random seeds, and we report means with 95% confidence intervals.
In addition, we include an industrial-scale case study on soc-Epinions1 with a node-cap sweep
(Nmax∈{200, 1000}) to examine large-graph behavior and training choices; the full protocol and
results are provided in Appendix I.
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6.1 Broad Validation of Theoretical Scaling Laws

We comprehensively test the predicted scaling behaviors across all core components of our theory.
Table 1 summarizes the quantitative comparison between theoretical rates and empirically measured
exponents (or constants) for statistics related to each theorem (EFPC/JPC, ETDB/JTDB, and JMEP).

Table 1: Summary of empirical scaling exponents and constants (mean ± 95% CI over five seeds).
Group Quantity Theory Empirical R2

EFPC
Var(β | Ãt) vs. |E| −1 −1.00±0.02 0.999
|E|×Var(β | Ãt) const 0.160±0.006 —
Posterior mean bias 0 ≤ 2×10−3 —

ETDB
Deviation/edge vs. |E| −1 −1.12±0.03 0.998
∥R(Ãt)∥22 vs. |E| +1 +1.00±0.01 1.000
Relative error vs. |E| −2 −2.12±0.04 0.997

Coupled (γ = 0.7)

JPC variance vs. D −1 −1.00±0.03 0.999
JTDB deviation vs. D −1 −1.06±0.04 0.996
∥Runcond∥22 vs. D +1 +1.01±0.02 0.999
JMEP error (T=4) vs. D −1 −1.04±0.05 0.995

Interpretation of Scaling Law Validation. Results in Table 1 show excellent correspondence
between theoretical predictions and empirical measurements. Empirically derived slopes for scaling
rates are within ±0.06 of theoretical targets, with high coefficients of determination (typically
R2 ≥ 0.995). This precise agreement across diverse aspects—noise rate posterior concentration
(EFPC/JPC), single-step target deviation (ETDB/JTDB), and coupled model error propagation (JMEP
for T = 4)—provides robust initial evidence for our theory’s soundness. For instance, flip rate β’s
posterior variance diminishes as O(|E|−1) (or O(D−1) for JPC), confirming noise level inferability.
This accuracy is critical, as these principles underpin subsequent multi-step denoising analysis.

6.2 Multi-Step Error Propagation (MDEP) in Detail
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MDEP slope=-1.03
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T=4
T=8
T=16
T=32
T=64

Figure 1: MDEP empirical scaling. Log–log
plot: per-edge cumulative error

∑T
i=1 ∆i/|E| vs.

edges |E| for various T values. The black dashed
line (slope −1.03, R2 = 0.9998) for Tbase = 4
aligns with the predicted O(M−1) rate (Theo-
rem 4.3), since density is nearly fixed in these
synthetic settings, |E| ∝ M , so we plot against
|E|. All curves are approximately parallel, with
vertical offsets proportional to T/Tbase, verifying
the O(T/|E|) scaling law.

To validate MDEP (Theorem 4.3), which predicts
how single-step deviations accumulate, we sim-
ulated reverse denoising trajectories of varying
lengths T ∈ {4, 8, 16, 32, 64} on synthetic graphs
with edges |E| ranging from 102 to 107. For
each (|E|, T ) pair, we recorded

∑T
i=1 ∆i, the cu-

mulative Frobenius-norm gap between t-free and
t-aware updates, normalized by |E| for a size-
agnostic error metric, as shown in Figure 1.

Key Insight: Our empirical findings significantly
validate the MDEP theorem. The cumulative er-
ror clearly shows a power-law decay with edge
count (|E|), excellently aligning with the pre-
dicted O(|E|−1) scaling (e.g., slope −1.03, R2 =
0.9998 for Tbase = 4). Moreover, the error scales
linearly with trajectory length (T ): log-log plots
for different T are parallel, and normalizing by T
collapses data onto a single line, confirming the
full O(T/|E|) scaling. Crucially, even for exten-
sive trajectories (e.g., T = 64), this error becomes
negligible (< 10−6) for large graphs (|E| ≥ 105).
This demonstrates that omitting explicit noise con-
ditioning incurs a minimal, diminishing cost with
increasing graph size, strongly supporting the via-
bility of t-free models in large-graph scenarios.
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6.3 Impact of Structure–Feature Coupling Strength (γ)

We then investigated the coupled noise model (Section 5), specifically how the coupling strength γ
between structural and feature noise affects model performance and noise inferability. As shown in
Figure 2, we varied γ from 0 (independent noise) to 0.99 (highly coupled shared noise component).
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Figure 2: Effect of coupling strength γ on unconditional model. (a): Total reconstruction error
(∥Â0 −A0∥1 + ∥X̂0 −X0∥F . (b): Node classification accuracy. Shaded bands indicate 95% CI over
ten trials. Stronger coupling improves both reconstruction and downstream task performance.

Key Insight: Increasing the structure–feature coupling strength (γ) empirically improves uncon-
ditional model performance. Specifically, as γ increases from 0 to 0.99, total reconstruction error
decreases substantially (∼40%), and downstream node classification accuracy improves (from ∼94%
to over 97%). This suggests that shared noise, potentially through a robust joint signal from shared la-
tent component ηi, effectively aligns feature and structure channels, enhancing overall signal–to–noise
ratio. While our theoretical results (JPC & JTDB) predict posterior uncertainty about noise parameters
decays as O(D−1) irrespective of γ < 1, our empirical findings indicate stronger coupling aids noise
inference. This underscores a key takeaway: omitting explicit conditioning on coupling strength γ
(or timestep t) within the coupled noise model does not degrade and can even enhance performance.

6.4 Performance of t-free Models on Real-World Graph Generation

Experimental Setup. We used QM9 [38], a dataset of 133,885 small organic molecules, for evalu-
ating molecular graph generation. Metrics included chemical Validity (fraction of valid molecules
generated), Uniqueness, Novelty, and fidelity of structural distributions (mean ring count, mean
molecular weight). The second benchmark was soc-Epinions1 [39], a larger social network from the
SNAP dataset, used to evaluate structural reconstruction fidelity. Metrics included subgraph Validity,
Uniqueness, basic structural statistics (average nodes and edges), and Maximum Mean Discrepancy
(MMD) for degree, clustering coefficient, and triangle distributions (more details in Appendix H).
We benchmarked two GDM architectures, DiGress [7] and GDSS [17], under three variants:

• t-aware: Standard models explicitly conditioned on a learnable embedding of the timestep.
• t-free: Models trained without any timestep conditioning.
• t-free (warm): t-free models initialized from pre-trained t-aware weights and then fine-

tuned without timestep embeddings.

Beyond the main tables, we also conduct an industrial-scale evaluation on soc-Epinions1 using
induced subgraphs with Nmax ∈ {200, 1000} and report validity and the change in MMD when
increasing Nmax (negative indicates improvement); the complete results appear in Appendix I,
Table 8.

Analysis of Real-World Performance. Summarizing our key findings succinctly, Table 2 reveal
that t-free variants typically deliver comparable or superior generative quality to their t-aware
counterparts, coupled with clear computational advantages (up to 19.9% parameter reduction for
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GDSS and speedups of 8-9%). We now highlight specific conditions under which explicit time
conditioning remains beneficial, guided by detailed insights from our experiments:

• Graph Scale and Signal Strength. Small or sparse graphs provide limited statistical signals (as
evidenced on soc-Epinions1 with maximum number of nodes Nmax = 50 (Table 2), where initial
validity was modest, e.g., 25.44% for GDSS t-aware). Increasing the graph scale to Nmax = 200
(Table 7) drastically improved validity to 100% across GDSS variants. Explicit time conditioning
thus offers clear advantages in low-information scenarios, bridging the gap where implicit noise
inference (predicted by EFPC 4.1/JPC 5.1 theory) struggles due to insufficient statistical signals.

• Architecture-Specific Sensitivity. DiGress models demonstrated significant sensitivity to the
removal of explicit time conditioning, particularly evident in the sharp validity drop for Di-
Gress t-free(warm) (from 100.00% to 23.67%). This highlights a key architectural consideration:
transformer-based models using discrete diffusion processes appear heavily reliant on explicit time
embeddings due to learned transition probabilities and attention mechanisms. Conversely, SDE-
based models like GDSS exhibit greater robustness in transitioning to unconditional generation.

• Optimization and Training Stability. Training from scratch revealed challenges, with t-free
GDSS models reaching full validity but slightly lagging in structural metrics compared to their
warm-started or explicitly conditioned counterparts (e.g., on soc-Epinions1, GDSS t-free from
scratch yields MMDOverall = 0.72 vs. 0.66 for the warm-started variant). Explicit conditioning
simplifies optimization by providing guidance on noise levels, suggesting a crucial role in achieving
stable convergence, particularly in architectures less adept at implicitly inferring noise dynamics.

In summary, although our results strongly endorse the simplicity and efficiency of t-free models,
explicit conditioning still remains valuable, especially in small or low-signal graphs, architectures
heavily reliant on learned embeddings, and scenarios demanding greater training stability. These
insights provide guidance for practitioners on when t-free suffices and when conditioning is preferable.

Table 2: Generation results for QM9 and soc-Epinions1 datasets. Metrics are mean ± 95 % CI over
five seeds. “Params” in millions; “Time” is per-epoch on one NVIDIA L4 GPU.

QM9 Dataset

Model / Variant Valid % Unique % Novel % MWmean Params Time

DiGress t-aware 99.98±0.01 4.76±0.07 100.00±0.00 145.37±0.03 13.16 47.82
DiGress t-free 99.99±0.01 4.65±0.08 100.00±0.00 149.74±0.01 12.65 48.16
DiGress t-free(warm) 99.96±0.01 5.09±0.12 100.00±0.00 147.46±0.02 12.65 48.23

GDSS t-aware 92.32±0.19 81.08±0.31 99.99±0.00 95.00±0.12 1.89 9.56
GDSS t-free 94.00±0.09 89.60±0.20 99.99±0.00 99.23±0.17 1.79 8.78
GDSS t-free(warm) 92.57±0.03 88.46±0.41 99.99±0.00 97.74±0.36 1.79 8.78

soc-Epinions1 Dataset
Metric DiGress

t-aware
DiGress
t-free

DiGress t-
free(warm)

GDSS
t-aware

GDSS t-free GDSS t-
free(warm)

Valid % 100.00±0.00 99.83±0.27 23.67±2.08 25.44±1.22 33.36±1.43 48.00±1.99
Unique % 100.00±0.00 100.00±0.00 100.00±0.00 94.68±1.40 97.51±1.59 99.91±0.17
Avg Nodes 50.00±0.00 50.00±0.00 50.00±0.00 31.11±1.25 36.97±0.81 44.64±0.86
Avg Edges 291.06±0.49 281.39±0.25 270.05±0.12 503.57±32.42 529.06±15.64 670.82±16.38
MMDDeg 0.46±0.00 0.41±0.00 0.40±0.01 0.76±0.00 0.66±0.01 0.69±0.01
MMDClust 0.71±0.00 0.69±0.00 0.68±0.01 0.70±0.01 0.70±0.01 0.39±0.01
MMDTri 0.41±0.00 0.38±0.00 0.37±0.00 0.80±0.02 0.82±0.01 0.90±0.00
MMDOverall 0.53±0.00 0.49±0.00 0.48±0.00 0.76±0.02 0.72±0.00 0.66±0.00
Params (M) 1.355 1.322 1.322 0.251 0.201 0.201
Time 6.97 6.95 6.96 1.71 1.55 1.55

7 Conclusion

This work challenges the necessity of explicit noise-level conditioning in Graph Diffusion Models
(GDMs). We provide strong theoretical and empirical evidence that this conditioning is often
unnecessary for effective graph generation. Our theoretical framework (EFPC, ETDB, MDEP)
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proves noise levels are implicitly inferable from corrupted graph data, showing negligible error
(O(M−1) single-step, O(T/M) cumulative) when omitting conditioning. Comprehensive empirical
evaluations corroborate these predictions. Unconditional GDSS and DiGress variants matched or
surpassed conditioned models in quality on diverse datasets. They also proved more efficient, reducing
parameters (4–6%) and computation time (8–10%).

These findings support our thesis: graph data’s high dimensionality is enough for denoising without
explicit noise levels, enabling simpler yet equally powerful and efficient GDM architectures. Although
this study provides a robust foundation, promising directions include adaptive coupling, scaling to
larger graphs, and novel sampling strategies. We believe this work offers a solid basis, theoretically
and practically, for designing the next generation of simpler and more efficient GDMs.

Acknowledgments and Disclosure of Funding

Work in the paper is supported by, NSF ECCS 2412484, NSF ECCS 2442964 and NSF GEO CI
2425748.

References
[1] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In Advances

in Neural Information Processing Systems (NeurIPS) 34, 2021.

[2] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan.
Wavegrad: Estimating gradients for waveform generation. In ICASSP 2021 - IEEE International
Conference on Acoustics, Speech and Signal Processing, 2021.

[3] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations
(ICLR), 2021.

[4] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2837–2846, 2021.

[5] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In International Conference
on Learning Representations (ICLR), 2022.

[6] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial
optimization. In Advances in Neural Information Processing Systems (NeurIPS) 36, 2023.

[7] Guillaume Vignac, Louis-Philippe Morency, et al. DiGress: Discrete diffusion for graph
generation. Advances in Neural Information Processing Systems (NeurIPS), 2022.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems (NeurIPS), 33:6840–6851, 2020.

[9] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations (ICLR), 2021.

[10] Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary
for denoising generative models? arXiv preprint arXiv:2502.13129, 2025.

[11] David Heurtel-Depeiges, Charles C. Margossian, Ruben Ohana, and Bruno Régaldo-Saint Blan-
card. Listening to the noise: Blind denoising with gibbs diffusion. In Proceedings of the 41st
International Conference on Machine Learning (ICML). PMLR, 2024.

[12] Subham Sekhar Sahoo, Aaron Gokaslan, Christopher De Sa, and Volodymyr Kuleshov. Dif-
fusion models with learned adaptive noise. In Advances in Neural Information Processing
Systems (NeurIPS) 2024. Curran Associates, Inc., 2024.

10



[13] Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer.
Diffusion models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

[14] Alex M. Tseng, Nathaniel Diamant, Tommaso Biancalani, and Gabriele Scalia. Graphguide:
interpretable and controllable conditional graph generation with discrete bernoulli diffusion.
arXiv preprint arXiv:2302.03790, 2023.

[15] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems (NeurIPS) 34, 2021.

[16] Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph
generation. Advances in Neural Information Processing Systems, 37:79704–79740, 2024.

[17] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
the system of stochastic differential equations. In International conference on machine learning,
pages 10362–10383. PMLR, 2022.

[18] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. International Conference on Machine
Learning (ICML), pages 2256–2265, 2015.

[19] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International conference on machine learning, pages
8867–8887. PMLR, 2022.

[20] Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. In International
conference on machine learning, pages 524–533. PMLR, 2019.

[21] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In Proceedings
of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), pages
4474–4484, 2020.

[22] Yifei Wen and Xiang Wei. Hyperbolic graph diffusion model. arXiv preprint arXiv:2306.07618,
2023. URL https://arxiv.org/abs/2306.07618.

[23] Xinyang Liu, Yilin He, Bo Chen, and Mingyuan Zhou. Advancing graph generation through
beta diffusion, 2025. ICLR 2025.

[24] Jorma J Rissanen. Fisher information and stochastic complexity. IEEE transactions on
information theory, 42(1):40–47, 1996.

[25] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

[26] Tom A. B. Snijders, Gert G. van de Bunt, and Christian E. G. Steglich. Introduction to
stochastic actor-based models for network dynamics. Social Networks, 32(1):44–60, 2010. doi:
10.1016/j.socnet.2009.02.004.

[27] Yuanzhao Zhang, Maxime Lucas, and Federico Battiston. Higher-order interactions shape col-
lective dynamics differently in hypergraphs and simplicial complexes. Nature Communications,
14:1605, 2023. doi: 10.1038/s41467-023-37214-w.

[28] Christian Steglich, B. Snijders, Tom A. and Michael Pearson. Dynamic networks and behavior:
Separating selection from influence. Sociological Methodology, 40(1):329–393, 2010. doi:
10.1111/j.1467-9531.2010.01225.x.

[29] Márton Karsai, Gerardo Iñiguez, Kimmo Kaski, and János Kertész. Complex contagion process
in spreading of online innovation. Journal of the Royal Society Interface, 11(101):20140694,
2014. doi: 10.1098/rsif.2014.0694.

[30] Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against
adversarial attacks. arXiv preprint, 2020.

11

https://arxiv.org/abs/2306.07618


[31] Jiate Li, Meng Pang, Yun Dong, Jinyuan Jia, and Binghui Wang. Provably robust explainable
graph neural networks against graph perturbation attacks. In International Conference on
Learning Representations (ICLR), 2025.

[32] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Ad-
versarial examples on graph data: Deep insights into attack and defense. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019. URL
https://arxiv.org/abs/1903.01610.

[33] Shuwen Chai and Miklós Z. Rácz. Efficient graph matching for correlated stochastic block
models. arXiv preprint, 2024.

[34] Olivier Duranthon and Lenka Zdeborová. Optimal inference in contextual stochastic block
models. Transactions on Machine Learning Research, 2024. doi: 10.48550/arXiv.2306.07948.
to appear.

[35] Kang Sun, Liqing Qiu, and Wenxiu Zhao. Aegraph: Node attribute-enhanced graph encoder
method. Expert Systems with Applications, 236:121382, 2024.

[36] Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung.
acad. sci, 5(1):17–60, 1960.

[37] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[38] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014.

[39] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es,
2007.

[40] Svante Janson. Large deviations for sums of partly dependent random variables. Random
Structures & Algorithms, 24(3):234–248, 2004.

12

https://arxiv.org/abs/1903.01610


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
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tions 4, 5 and 6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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2. Limitations
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Justification: Section J lists four concrete limitations—scope of the theoretical noise models,
strength of Lipschitz/near-optimality assumptions, untested performance on web-scale
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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Answer: [Yes]

Justification: Assumptions are listed in Section 4; full proofs appear in Appendix B to F.
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experimental results of the paper ?

Answer: [Yes]

Justification: Appendix H and G details preprocessing, hyper-parameters, random seeds,
and commands to replicate every experiment.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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5. Open access to data and code
Question: Does the paper provide open access to the data and code ?
Answer: [Yes]
Justification: We uploaded the paper with code, data scripts, and one-command reproduction
scripts for every experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details ?
Answer: [Yes]
Justification: Data splits, optimizer choices, LR schedules, and early-stopping rules appear
in Appendix H and G.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably ?
Answer: [Yes]
Justification: All key figures and tables show mean ± 95% CIs over five seeds; computation
method explained in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
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Answer: [Yes]
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each run.
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9. Code of ethics
Question: Does the research conducted in the paper conform ?
Answer: [Yes]
Justification: The work uses only publicly available datasets and no human or animal
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses on foundational theory and empirical validation of graph
diffusion models; societal impact analysis is considered outside the scope of this submission
and is therefore omitted.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place ?
Answer: [NA]
Justification: Released models are moderate in size and pose negligible dual-use risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets properly credited ?
Answer: [Yes]
Justification: The creators or original owners of the assets used in the paper, such as code,
data, and models, have been appropriately recognized, and the licenses and terms of use
have been clearly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented ?
Answer: [NA]
Justification: The paper releases no new dataset or pretrained model.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects ?
Answer: [NA]
Justification: No human or crowdsourcing data were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks and whether Institutional Review Board
approvals were obtained?
Answer: [NA]
Justification: Not applicable—no human-subject research performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs ?
Answer: [NA]
Justification: LLMs were used only for minor proofreading and formatting; they are not part
of the research methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM


A Detailed Assumptions and Rationale for Theoretical Framework

This appendix provides a detailed statement and justification for the assumptions underpinning the
theoretical framework developed in Section 4 of the main paper.

Formal Statement of Assumptions

To ground our theoretical analysis, we make the following four key assumptions:

A1. Degree Condition. The graph G = (V,E) under consideration is assumed to satisfy one of the
following conditions regarding its node degrees:
(a) The maximum node degree, ∆max = maxv∈V deg(v), is bounded by a constant, that is,

∆max = O(1).
(b) The graph has a power-law degree distribution P (k) ∝ k−α with a decay exponent α > 2.

Further discussion is provided in Appendix F.

A2. Global Lipschitz Continuity of Denoiser. Fix a constant Lmax = 1 + η with a small η > 0.
We require both of the following Lipschitz conditions to hold:

(i) Learned denoiser. For any two graph inputs G1, G2 and a suitable graph norm ∥·∥,

∥fθ(G1)− fθ(G2)∥ ≤ Lmax ∥G1 −G2∥.

(ii) Ideal conditional target. Let µcond
t = E[A0 | Ãt, t] (or the joint (A0, X0) in the coupled

case). Then for any two noise levels t1, t2,

∥µcond
t1 − µcond

t2 ∥ ≤ Lmax |t1 − t2|.

This single assumption supplies the non-expansive property needed in MDEP 4.3 (via (i)) and
the target smoothness used in ETDB 4.2/JTDB 5.2 (via (ii)).

A3. Prior Regularity on Noise Parameters. For noise models with explicit parameters (for example,
a Bernoulli edge-flipping rate β), the prior π(β) is twice continuously differentiable on the
interior of its domain and strictly positive on compact subsets. Concretely, if β ∈ (0, 1) then
c ≤ π(β) for β ∈ [ϵ, 1− ϵ] with fixed c, ϵ > 0.

A4. Model Capacity and Optimization Quality. The Graph Diffusion Model is assumed to achieve
a per-component mean-squared error that scales as O(M−1), where M is the number of potential
edges, when predicting the clean graph signal (or the noise) at each reverse step.

Rationale for Assumptions

The assumptions stated above are foundational to our theoretical derivations and are justified as:

Assumption A1. (Degree Condition)
This assumption allows our analysis to cover a wide spectrum of graph structures. Part (a),
bounded maximum degree, is characteristic of many real-world networks such as molecular
graphs or certain types of citation networks where connectivity is inherently limited. Part
(b), power-law degree distributions with α > 2, enables the framework to apply to scale-free
networks, which are ubiquitous in social, biological, and information systems. The condition
α > 2 ensures a finite mean degree, a common property even in heterogeneous networks.
The distinct scaling behaviors that can arise in scale-free networks are further detailed in
Appendix F.

Assumption A2. (Global-Lipschitz Denoiser)
This unified condition has two roles. (i) Learned denoiser. A bounded Lipschitz constant
prevents small single-step errors from exploding along the T reverse updates. If fθ were
highly non-Lipschitz—or Lmax ≫ 1—those errors could grow exponentially, yielding
unstable or divergent trajectories. Keeping Lmax≈1 (e.g., 1 + η with small η) guarantees at
most linear error accumulation, as required by the MDEP 4.3 analysis. Architectural tricks
such as residual blocks, layer normalisation, or spectral normalisation help enforce this
bound in practice. (ii) Ideal conditional target. We also need the mapping t 7→ µcond

t to vary
smoothly so that the posterior uncertainty in t (captured by EFPC 4.1/JPC 5.1) translates
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into an O(M−1) target deviation (ETDB 4.2/JTDB 5.2). For common noise schedules,
µcond
t is differentiable and its derivative is bounded, giving a Lipschitz constant of the same

order as that of fθ. With both parts bounded by a shared Lmax, the theory cleanly links
single-step target bias to multi-step error growth, while keeping notation compact.

Assumption A3. (Prior Regularity)
This assumption is standard in Bayesian asymptotic theory (e.g., for the Bernstein-von Mises
theorem). It ensures that the prior distribution does not pathologically concentrate mass at
the boundaries of the parameter space (e.g., at β = 0 or β = 1 for a flip rate), which could
lead to issues like infinite Fisher information or ill-defined posterior distributions. A smooth,
bounded prior allows for stable inference and well-behaved asymptotic approximations of
the posterior.

Assumption A4. (Model Capacity and Optimization Quality)
This assumption bridges the gap between the ideal Bayesian denoiser (which our theory
often analyzes as an intermediate step) and the learned denoiser fθ. It posits that with
sufficient model capacity and effective training, the learned denoiser can approximate the
ideal target well enough such that its single-step prediction error diminishes as the graph
size (and thus the amount of information) increases. The O(M−1) scaling for this error
is optimistic but reflects a scenario where the model effectively learns from the available
data. This assumption is essential for the practical relevance of the derived multi-step error
bounds (MDEP and JMEP).

B Detailed Proof for Edge-Flip Posterior Concentration (EFPC)

This section provides a detailed derivation for the Edge-Flip Posterior Concentration (EFPC) result,
which was formally stated as Theorem 4.1 in the main text. For clarity and self-containment within
this appendix, we restate the theorem.
Theorem B.1 (Edge-Flip Posterior Concentration (EFPC)). Let A0 ∈ {0, 1}n×n be the adjacency
matrix of an undirected graph with a set of M =

(
n
2

)
potential edges, denoted Epot. Let Ãt be the

noisy graph observed at diffusion step t, generated by independently flipping each potential edge
e ∈ Epot from its state in A0 with a true, unknown probability βt ∈ (0, 1):

Pr
[
Ãt(e) ̸= A0(e)

]
= βt, ∀e ∈ Epot.

Let X =
∑

e∈Epot
1
{
Ãt(e) ̸= A0(e)

}
be the total number of observed edge flips. Assume a prior

distribution π(β) for the flip rate β (which is our inferential target representing βt). This prior
π(β) is continuously differentiable and strictly positive on any compact subset of its domain (0, 1),
satisfying Assumption A3 The posterior distribution of β given X is p(β | X) ∝ L(X | M,β)π(β) =
βX(1− β)M−Xπ(β). This posterior distribution satisfies:

Varβ∼p(β|X)[β] = O(M−1).

Furthermore, the leading constant of this variance is determined by the true flip rate βt, such that:

Varβ∼p(β|X)[β] =
βt(1− βt)

M
+ o(M−1).

Proof. The proof is structured into three main stages to rigorously establish the theorem’s claims:

1. Concentration of the Sufficient Statistic: We demonstrate that the total number of observed
edge flips, X , which is a sufficient statistic for βt, concentrates sharply around its expected value.

2. Posterior Variance Analysis using Conjugate Priors and Laplace’s Method: We analyze the
posterior variance Var[β | X]. This is first done by assuming a Beta conjugate prior to derive
an exact analytical form for the variance. We then generalize this to show that the O(M−1)
scaling holds for any sufficiently smooth prior π(β) by applying Laplace’s method for posterior
approximation.

3. Asymptotic Normality and Refined Rate via Bernstein–von Mises Theorem: Finally, we
employ the Bernstein–von Mises theorem to formally establish the asymptotic normality of the
posterior distribution. This allows for a precise determination of the leading constant in the
O(M−1) variance term, linking it directly to the Fisher information.
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Step 1: Concentration of the Sufficient Statistic X . Given that each of the M potential edges
flips independently with the true probability βt, the random variable X , representing the total number
of flipped edges, follows a binomial distribution: X ∼ Binomial(M,βt). The expectation of X is
E[X] = Mβt.

To quantify the concentration of the empirical flip rate X/M around βt, we use Chernoff’s inequality,
a standard bound for sums of independent Bernoulli random variables. For any ε > 0, Chernoff’s
inequality provides:

Pr
[
|X/M − βt| > ε

]
= Pr

[
|X −Mβt| > εM

]
≤ 2 exp(−2ε2M). (1)

This bound implies that the empirical flip rate X/M converges in probability to the true rate βt

exponentially fast as M → ∞. Thus, for a large number of potential edges M , X/M is a highly
precise estimator of βt. This concentration is fundamental to the subsequent Bayesian inference, as
X encapsulates the data’s information about β in the likelihood function.

Step 2: Posterior Variance Analysis. We first consider a Beta distribution as a conjugate prior for
β, denoted π(β) = Beta(α0, β0) with hyperparameters α0, β0 > 0. The likelihood function for X
given β is L(X | M,β) ∝ βX(1− β)M−X . Due to conjugacy, the posterior distribution p(β | X) is
also a Beta distribution:

β | X ∼ Beta(X + α0,M −X + β0). (2)

The variance of a Beta(a, b) distribution is ab
(a+b)2(a+b+1) . Substituting the posterior parameters

a = X + α0 and b = M −X + β0, we have:

Var[β | X] =
(X + α0)(M −X + β0)

(M + α0 + β0)2(M + α0 + β0 + 1)
. (3)

From Step 1, for large M , X ≈ Mβt. Substituting this into Equation (3):

• The numerator is asymptotically (Mβt)(M(1− βt)) = M2βt(1− βt) +O(M), which is
O(M2).

• The denominator is asymptotically M2 ·M = M3 +O(M2), which is O(M3).

Therefore, Var[β | X] = O(M2)
O(M3) = O(M−1).

This O(M−1) scaling is not limited to conjugate priors. It holds more generally for any sufficiently
smooth prior π(β) satisfying Assumption A3 (Prior Regularity), as can be shown using Laplace’s
method for posterior approximation. The log-posterior is:

log p(β | X) = X log β + (M −X) log(1− β) + log π(β) + C, (4)

where C is a normalizing constant. Laplace’s method approximates p(β | X) with a Gaussian
distribution centered at the posterior mode, β̂mode. For large M , β̂mode converges to the Maximum
Likelihood Estimator (MLE), β̂MLE = X/M . The variance of this approximating Gaussian is the
negative inverse of the second derivative of the log-posterior evaluated at the mode:

VarLaplace[β | X] ≈
(
−∂2 log p(β | X)

∂β2

∣∣∣
β=β̂mode

)−1

.

The second derivative is dominated by the likelihood term, ∂2

∂β2 (X log β + (M −X) log(1− β)) =

− X
β2 − M−X

(1−β)2 , which evaluates to approximately −Mβt

β2
t

− M(1−βt)
(1−βt)2

= − M
βt(1−βt)

at the mode (since

β̂mode ≈ βt). Thus, its negative inverse scales as O(M−1), confirming the general scaling of the
posterior variance.

Step 3: Refinement of Rate and Leading Constant via Bernstein–von Mises Theorem. To
formalize the asymptotic normality of the posterior and to precisely determine the leading constant in
the O(M−1) variance term, we apply the Bernstein–von Mises theorem [25]. This theorem states that,
under regularity conditions (satisfied by Assumption A3 and the Bernoulli likelihood), the posterior
distribution p(β | X) converges in distribution to a Normal distribution as M → ∞. Specifically:

√
M(β − β̂MLE) | X

d−→ N
(
0, I1(βt)

−1
)
, (5)
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where β̂MLE = X/M is the MLE of β, and I1(βt) is the Fisher information for a single Bernoulli
trial (one potential edge flip), evaluated at the true parameter βt.

The log-likelihood for a single Bernoulli trial Ye ∈ {0, 1} (where Ye = 1 indicates a flip) is
ℓ1(β;Ye) = Ye log β + (1− Ye) log(1− β). The Fisher information for this single trial is:

I1(β) = EYe∼Bernoulli(β)

[
−∂2ℓ1(β;Ye)

∂β2

]
=

1

β(1− β)
. (6)

For M independent trials, the total Fisher information concerning β is IM (β) = M ·I1(β) = M
β(1−β) .

From Equation (5), the limiting distribution of β | X is N (β̂MLE, (M · I1(βt))
−1). Therefore, the

asymptotic variance of the posterior distribution p(β | X) is:

Var[β | X] =
1

M · I1(βt)
+ o(M−1) =

βt(1− βt)

M
+ o(M−1). (7)

This result not only rigorously confirms the O(M−1) decay rate for the posterior variance but also
explicitly identifies the leading constant term, βt(1− βt), which depends on the true underlying flip
rate. This is the "sharp rate" referred to in the main text.

The convergence of these three analytical steps—the concentration of the sufficient statistic X ,
the O(M−1) variance scaling derived from both conjugate prior analysis and Laplace’s method
for general smooth priors, and the precise asymptotic form and constant factor obtained via the
Bernstein–von Mises theorem—collectively establishes the proof of Theorem B.1.

Extension 1: Robustness to Correlated Edge Flips

The core proof of Edge-Flip Posterior Concentration (EFPC, Theorem B.1) assumes that edge flips
are independent events across all M potential edges. This extension investigates the robustness of the
EFPC findings, particularly the O(M−1) scaling of the posterior variance, when this independence
assumption is relaxed to allow for local dependencies between edge flip events.

Modeling Local Dependencies. We consider the set of indicator random variables {Ye =

1{Ãt(e) ̸= A0(e)}}e∈Epot , where Ye = 1 if edge e flips. Instead of full independence, we as-
sume these variables form a dependency graph. In this graph, nodes correspond to the potential
edges e ∈ Epot of the original graph A0, and an edge exists between two such "edge-nodes" (say,
corresponding to e1 and e2) if the random variables Ye1 and Ye2 are statistically dependent. We
stipulate that this dependency graph has a maximum degree ∆, which is bounded by a constant, i.e.,
∆ = O(1). This implies that the flip status of any single edge e is directly dependent on at most ∆
other edge flips, thereby modeling a scenario of local or bounded dependency. The total number of
observed edge flips remains X =

∑
e∈Epot

Ye.

Concentration under Local Dependency. Even with local dependencies, the sum X can still
exhibit strong concentration around its expectation E[X]. While the standard Chernoff bound
(Equation (1)) for i.i.d. variables may not directly apply, more general concentration inequalities,
such as Janson’s Inequality [40], are designed for sums of dependent indicator variables.
Lemma B.2 (Concentration Bound for Dependent Flips, adapted from Janson [40]). Let {Ye}e∈Epot

be a collection of indicator random variables, and let X =
∑

e∈Epot
Ye. If these variables form a

dependency graph with maximum degree ∆ = O(1), then under suitable conditions on the nature of
dependencies and individual flip probabilities pe = Pr[Ye = 1], concentration bounds for X can be
derived. A common form of such bounds, or related Chernoff-type bounds for variables with bounded
dependency (e.g., m-dependence), is:

Pr
[
|X − E[X]| > εM

]
≤ 2 exp

(
−C1 · ε2M
1 + f(∆)

)
,

where C1 is a constant and f(∆) is some function reflecting the dependency strength, often polynomial
in ∆. For instance, a specific form provided in the user’s context is:

Pr
[
|X − E[X]| > εM

]
≤ 2 exp

(
− 2ε2M

1 + 2∆

)
.

22



(The applicability of this specific form depends on underlying assumptions about the dependency
structure, often related to notions like Poisson approximation or specific correlation decay.)

Proof Sketch. The detailed proof of Janson’s Inequality and its variants can be found in Janson [40].
The core idea involves bounding tail probabilities by analyzing the sum of covariances or by using
techniques like the method of bounded differences adapted for dependent variables.

Implications for Posterior Variance. The critical insight from applying concentration bounds like
Lemma B.2 is that if ∆ = O(1), the sum X still concentrates effectively around its mean E[X]. This
implies that the variance of X , Var(X), while potentially larger than the i.i.d. case Mβt(1 − βt)
(e.g., it might be scaled by a factor related to ∆), often remains Θ(M) as long as the dependencies
are not pervasive enough to make all variables highly correlated globally. If Var(X) = Θ(M),
then the empirical flip rate X/M remains a consistent estimator of the average underlying flip
probability β̄ = E[X]/M . Consequently, the subsequent Bayesian analysis steps, which rely on
the concentration of X/M and the behavior of the likelihood function, remain largely valid. The
Fisher information structure might be adjusted by factors dependent on ∆, but the overall O(M−1)
scaling for the posterior variance of an effective flip parameter β is typically robustly preserved. The
leading constant in the variance may change, reflecting the reduced effective number of independent
observations, but the fundamental rate of concentration with M is expected to persist. Thus, the
EFPC result demonstrates robustness to certain forms of local, bounded correlations between edge
flips.

Extension 2: Robustness to Time-Varying Bernoulli Schedules

The primary EFPC analysis (Theorem B.1) assumes a single, uniform flip probability βt for all edges
at a given step t. This extension considers the scenario where the corruption process involves a
sequence of T steps, each with potentially different flip probabilities {βi}Ti=1, as is typical in iterative
diffusion models. After T such steps, an edge e, initially in state A0(e), transitions to a state ÃT (e).
Our interest lies in the inferability of an *effective* or *aggregate* noise level that characterizes this
multi-step process.

Effective Flip Probability. Let peffe denote the effective probability that the final state of an edge,
ÃT (e), differs from its initial state, A0(e), i.e., peffe = Pr[ÃT (e) ̸= A0(e)]. The user’s text notes
a specific formula for pe under a symmetric channel model: pe = 1 −

∏T
i=1(1 − 2βi(e)), where

βi(e) is the flip probability at step i. This formula arises if βi(e) is the probability of flipping from
state Ai−1(e) at step i, and each (1− 2βi(e)) represents the correlation between Ai(e) and Ai−1(e).
If βi(e) is simply Pr[Ai(e) ̸= Ai−1(e) | Ai−1(e)], the cumulative probability Pr[ÃT (e) ̸= A0(e)]
could be more complex. For this extension, we assume that an effective, overall probability peffe for
each edge e can be defined, encapsulating the net effect of the T-step process.

Concentration for Non-Identical Bernoulli Trials. Let Y =
∑

e∈Epot
1{ÃT (e) ̸= A0(e)} be

the total count of edges whose final state differs from their initial state. If these effective flip events
{ÃT (e) ̸= A0(e)} are independent across different edges e, but the probabilities peffe are non-identical
(e.g., due to edge-specific attributes influencing βi(e), or a non-uniform accumulation of noise),
then Y is a sum of independent, non-identically distributed Bernoulli random variables. Hoeffding’s
inequality provides a suitable concentration bound.

Lemma B.3 (Hoeffding’s Inequality for Sums of Independent Bounded Random Variables). Let
Ye ∼ Bernoulli(peffe ) be independent random variables for e ∈ Epot, where peffe ∈ [0, 1]. Let
Y =

∑
e∈Epot

Ye. Then for any ε > 0,

Pr
[
|Y − E[Y ]| > εM

]
≤ 2 exp(−2ε2M),

where E[Y ] =
∑

e∈Epot
peffe .

Proof. This result is a direct application of Hoeffding’s inequality, which applies to sums of indepen-
dent random variables bounded within an interval (here, Ye ∈ [0, 1]).
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Implications for Posterior Variance. Lemma B.3 demonstrates that the total observed count of
differing edges, Y , concentrates around its mean E[Y ]. We can define an average effective flip
rate as p̄eff = E[Y ]/M = (

∑
e∈Epot

peffe )/M . The observed fraction of differing edges, Y/M , will
then concentrate around this p̄eff . If the inferential goal is to estimate p̄eff (or a set of parameters
characterizing the schedule {βi} that yield {peffe }), then Y/M serves as the empirical data. By
applying Bayesian principles similar to those in Step 2 and Step 3 of the main EFPC proof (e.g.,
Laplace’s method or Bernstein-von Mises under suitable regularity for the likelihood based on p̄eff ),
the concentration of Y/M implies that the posterior variance for p̄eff will also scale as O(M−1).
Therefore, the EFPC principle—that an effective or aggregate measure of noise is inferable with
a posterior variance scaling inversely with M—is robust and extends to scenarios involving time-
varying noise schedules, provided the cumulative effect across edges results in indicators of change
that are independent or, at worst, weakly dependent.

Concluding Remarks on EFPC and its Extensions

The preceding analyses, encompassing the main proof of Edge-Flip Posterior Concentration (The-
orem B.1) and its extensions, robustly support a critical insight: the noise level, or an effective
aggregate thereof, is inherently inferable from a sufficiently large noisy graph structure. This in-
ferability forms the cornerstone of our argument for the potential dispensability of explicit noise
conditioning in GDMs.

• Robustness to Local Dependencies: The extension to scenarios with correlated edge flips (Sec-
tion B), utilizing concentration results such as Janson’s Inequality (Lemma B.2), demonstrates
that the fundamental O(M−1) posterior variance scaling is not strictly confined to i.i.d. flip
events. Provided that dependencies between edge flips are local (e.g., characterized by a bounded
maximum degree ∆ in the dependency graph), the concentration property, and consequently the
scaling of posterior variance, largely persists. This finding is particularly relevant as real-world
graph structures often exhibit such local correlations.

• Adaptability to Time-Varying Noise Schedules: The extension considering time-varying
Bernoulli schedules (Section B), which leverages tools like Hoeffding’s inequality (Lemma B.3),
indicates that even if the "noise level" observed in ÃT results from a complex, multi-step corruption
process, an effective measure of this cumulative noise (p̄eff ) can still be estimated with a posterior
variance scaling as O(M−1). This suggests that a noise-unconditional denoiser has the potential to
learn to recognize these aggregate noise states directly from the data.

In summary, these theoretical findings collectively provide strong support for the premise that the
high-dimensional nature of graph data—specifically, the large number of potential edges M—offers
substantial statistical information for accurately inferring the parameters of the underlying noise
process. This robust inferability of the noise level is the foundational pillar upon which subsequent
theoretical results in this paper, namely the Edge-Target Deviation Bound (ETDB) and Multi-
Step Denoising Error Propagation (MDEP), are constructed. Ultimately, this underpins the central
argument for the viability and potential advantages of designing GDMs without explicit noise-level
conditioning.

C Detailed Proof for Edge-Target Deviation Bound (ETDB)

This section provides a detailed derivation for the Edge-Target Deviation Bound (ETDB), formally
stated as Theorem 4.2 in the main text. This theorem quantifies the expected error introduced in the
ideal denoising target when explicit noise-level information (e.g., t or its proxy βt) is omitted. The
proof builds upon the Edge-Flip Posterior Concentration (EFPC) result (Theorem B.1). For clarity,
we restate the ETDB theorem.

Theorem C.1 (Edge-Target Deviation Bound (ETDB)). Let Ãt be the noisy adjacency matrix at
step t, generated from a clean graph A0 under a given noise model parameterized by a noise level
indicator u (e.g., the flip rate βt in the Bernoulli model). Let the ideal conditional regression target be

µcond
u := E[A0 | Ãt, u].
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Define the unconditional regression target, where the explicit noise level u is marginalized out
according to its posterior p(u | Ãt), as

µ̄t := Eu∼p(u|Ãt)
[µcond

u ].

Assume the following conditions hold:

(i) Posterior Concentration of Noise Level: The variance of the noise level parameter u given
Ãt satisfies Var(u | Ãt) = O(M−1), where M =

(
n
2

)
is the number of potential edges.

This is established by Theorem B.1 (EFPC) for the Bernoulli flip model.

(ii) Lipschitz Regularity of the Conditional Target: The conditional target µcond
u is L-Lipschitz

continuous with respect to the noise level parameter u, i.e., for any two noise levels u1, u2,

∥µcond
u1

− µcond
u2

∥F ≤ L|u1 − u2|,

where L = O(1) is a constant independent of M . This corresponds to Assumption A2
(Global-Lipschitz Denoiser) from the main paper, applied to the ideal Bayesian estimator.

Then, the expected squared Frobenius norm of the deviation between the conditional and unconditional
targets, denoted E(Ãt), satisfies:

E(Ãt) := Eu∼p(u|Ãt)

[
∥µcond

u − µ̄t∥2F
]
= O(M−1).

Furthermore, if ∥µ̄t∥2F = Θ(M), the relative squared error diminishes as O(M−2), ensuring it
approaches zero as M → ∞.

Proof. The quantity E(Ãt) represents the expected squared deviation of the conditional target µcond
u

from its mean µ̄t, where u is drawn from the posterior p(u | Ãt). This is effectively the variance of
the random matrix (or vector) µcond

U where U ∼ p(u | Ãt).

We can bound this variance using the Lipschitz property of µcond
u . A standard result states that

if a function g(U) is L-Lipschitz with respect to U , then Var[g(U)] ≤ L2 Var[U ]. Applying this
principle (which can be derived using, for instance, properties of expectation and the definition of
Lipschitz continuity, or seen as a consequence of the Poincaré inequality under certain conditions, or
by a first-order Taylor expansion for highly concentrated U ):

E(Ãt) = Eu∼p(u|Ãt)

[
∥µcond

u − Ev∼p(v|Ãt)
[µcond

v ]∥2F
]

≤ L2 · Eu∼p(u|Ãt)

[
(u− Ev∼p(v|Ãt)

[v])2
]

(by Condition (ii), Lipschitz continuity)

= L2 Var(u | Ãt).

The inequality step leverages the fact that the variance of a function is bounded by the square of its
Lipschitz constant times the variance of its argument.

By Condition (i) of the theorem (Posterior Concentration from EFPC, Theorem B.1), we have
Var(u | Ãt) = O(M−1). Since L = O(1), it follows that:

E(Ãt) ≤ (O(1))2 · O(M−1) = O(M−1).

This establishes the primary result for the absolute expected squared deviation.

For the relative squared error, if we assume ∥µ̄t∥2F = Θ(M) (a reasonable assumption for non-trivial
graphs where µ̄t represents probabilities or expectations over M potential edges, many of which are
expected to be non-zero on average), then:

E(Ãt)

∥µ̄t∥2F
=

O(M−1)

Θ(M)
= O(M−2).

This O(M−2) rate ensures that the relative error diminishes rapidly as M → ∞, implying that µ̄t

becomes an increasingly accurate approximation of µcond
t in a relative sense for large graphs. The

statement in the theorem’s conclusion that the relative error is O(M−1) is a looser bound that is also
satisfied, as O(M−2) ⊂ O(M−1). The crucial point is its convergence to zero.
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Lipschitz Constants for Additional Noise Families (Supporting ETDB Assumption (ii))

The second assumption of Theorem C.1 (Lipschitz Regularity of the Conditional Target) is crucial for
the ETDB result. This subsection briefly justifies that this condition, ∥µcond

u1
−µcond

u2
∥F ≤ L|u1−u2|

with L = O(1), holds for several common noise models beyond Bernoulli flips. This ensures
the broad applicability of the ETDB. The analysis focuses on the per-edge conditional expectation
µ(Ãt(e) | u).

Poisson Jump Noise. The probability that an edge flips its state by time t due to a Poisson process
with rate λ is pt = (1 − e−2λt)/2. The derivative |∂tpt| = λe−2λt ≤ λ. The conditional target
E[A0(e) | Ãt(e), t] is typically a simple (e.g., linear) function of pt. If |∂ptE[A0(e) | ·, pt]| is O(1),
then by the chain rule, the Lipschitz constant with respect to t is LPoisson = O(λ). If λ = O(1), then
LPoisson = O(1).

Beta Noise on [0, 1]. Consider the noise model Ãt(e) = (1 − t)A0(e) + tUe, where Ue ∼
Beta(α, β) and t ∈ [0, 1] is the noise intensity. For specific forms of the conditional expectation
E[A0(e) | Ãt(e), t], such as R(Ãt(e)|t) = (1−t)Ãt(e)a0+tαu

(1−t)(a0+b0)+t(αu+βu)
(derived in Appendix C), the

derivative |∂tR(Ãt(e) | t)| can be shown to be bounded by a constant (e.g., ≤ 1 under certain
parameter conditions in your paper). Thus, LBeta = O(1).

Multinomial (K categories) Noise. If edges transition between K categories, with probability
1− t of staying in the original category and t of resampling from a base distribution π, the conditional
probability µj(Ãt(e) = k | t) = Pr[A0(e) = j | Ãt(e) = k, t] takes the form (1−t)1j=kpj+tπj

(1−t)pk+tπk
.

The derivative with respect to t is bounded by a constant dependent on K and minimum prior/base
probabilities (e.g., |∂tµj | ≤ pj+πj

(mink pk)2
), yielding LMulti = O(1) for fixed K.

Implication. For these diverse noise models, the Lipschitz constant L of the per-edge conditional
expectation with respect to the noise parameter t is O(1) (i.e., independent of graph size M ). This
validates Assumption (ii) of Theorem C.1 and supports the general applicability of the ETDB.

Bayesian Details for Additional Noise Families (Supporting Lipschitz Analysis)

This subsection provides concise Bayesian formulations for the conditional expectations (regression
targets) R(Ãt(e) | t) for the noise families discussed above, supporting the Lipschitz constant
derivations.

Poisson Jump Model. Given Ãt(e) = y and flip probability pt = (1 − e−2λt)/2. If the prior
P (A0(e) = 1) = π1 and P (A0(e) = 0) = π0 = 1− π1, then:

R(Ãt(e) = y | pt) = P[A0(e) = 1 | Ãt(e) = y, pt]

=

{
(1−pt)π1

(1−pt)π1+ptπ0
if y = 1

ptπ1

ptπ1+(1−pt)π0
if y = 0

.

This function is rational in pt, and since pt is Lipschitz in t, R is also Lipschitz in t.

Beta Noise on [0, 1]. Given Ãt(e) = (1 − t)A0(e) + tUe, with A0(e) ∼ Beta(a0, b0) and Ue ∼
Beta(αu, βu). The posterior mean (conditional expectation) from your paper is:

R(Ãt(e) | t) =
(1− t)Ãt(e)a0 + tαu

(1− t)(a0 + b0) + t(αu + βu)
.

Its derivative with respect to t is bounded under non-degenerate parameters.

Multinomial (K categories) Noise. Given Ãt(e) = k, with prior P (A0(e) = j) = pj and
resampling distribution πj . The conditional target (posterior probability of original state j) is:

Rj(Ãt(e) = k | t) = (1− t)1j=kpj + tπj

(1− t)pk + tπk
.
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Its derivative with respect to t is bounded if priors and resampling probabilities are bounded away
from zero.
Corollary C.2 (ETDB Constant for Bernoulli Flips). Under the Bernoulli edge-flip noise model
(Section 3 and Theorem B.1), the expected squared deviation in Theorem C.1 (ETDB) has the precise
leading term:

E
[
∥µcond

t − µ̄t∥2F
]
=

βt(1− βt)

M
+ o(M−1).

This leading constant matches that of the posterior variance of βt (Theorem B.1, Appendix B), directly
linking noise inference uncertainty to target deviation.

D Detailed Proof for Multi-Step Denoising Error Propagation (MDEP)

This appendix provides a rigorous derivation for the Multi-Step Denoising Error Propagation (MDEP)
theorem, which was formally stated as Theorem 4.3 in the main text. The MDEP theorem is critical
as it bounds the accumulation of errors introduced at each step when explicit noise-level conditioning
is omitted. This connects the single-step deviation, quantified by the Edge-Target Deviation Bound
(ETDB, Theorem C.1), to the fidelity of the final generated graph. For clarity, we restate the MDEP
theorem.
Theorem D.1 (Multi-Step Denoising Error Propagation (MDEP)). Let {ÂT , ÂT−1, . . . , Â0} be
the sequence of graph states generated by a learned denoising operator Φθ that operates without
explicit noise-level input t. Thus, the trajectory is given by Âi = Φθ(Âi+1, i) for i = T − 1, . . . , 0,
originating from an initial noisy state ÂT . Let {A⋆

T , A
⋆
T−1, . . . , A

⋆
0} denote the corresponding ideal

trajectory produced by the same underlying operator architecture Φθ but perfectly conditioned on
the true noise level ti at each step i. Thus, A⋆

i = Φθ(A
⋆
i+1, i | ti), with the same starting state

A⋆
T = ÂT .

The following conditions are assumed to hold for each reverse step i = 0, . . . , T − 1:

(i) Single-Step Deviation Bound: The Frobenius norm of the difference between the output
of the unconditional operator and the ideal conditional operator, when both are given the
same input Âi+1 from the unconditional trajectory, is bounded by δi:

∥Φθ(Âi+1, i)− Φθ(Âi+1, i | ti)∥F ≤ δi. (8)

This δi quantifies the error from omitting explicit conditioning ti. From ETDB (Theorem C.1),
we have δi = O(M−1). Let δmax = maxi δi.

(ii) Lipschitz Continuity of the Conditional Operator: The ideal conditional operator Φθ(·, i |
ti) is Lipschitz continuous with respect to its graph input, with a Lipschitz constant Li ≥ 0:

∥Φθ(X, i | ti)− Φθ(Y, i | ti)∥F ≤ Li∥X − Y ∥F , ∀X,Y. (9)

This aligns with Assumption A2 (Global-Lipschitz Denoiser in the main text, ensure this
label is correct), where Li ≤ Lmax = O(1). Specifically, we assume Lmax = 1 + η with a
small η ≥ 0.

Let Bi := ∥Âi − A⋆
i ∥F be the Frobenius norm of the error between the unconditional and ideal

trajectories at reverse step i. Then, the error in the final generated graph B0 = ∥Â0 − A⋆
0∥F is

bounded by:

B0 ≤
T−1∑
k=0

k−1∏
j=0

Lj

 δk. (10)

(The product
∏−1

j=0 Lj is defined as 1 for the k = 0 term).

Consequently, if δi = O(M−1) and Li ≤ Lmax (where Lmax = 1 + η with small η < 0.2 as per
Assumption A2), the cumulative error is:

∥Â0 −A⋆
0∥F = O(TM−1).

This indicates that the cumulative error grows at most linearly with the number of denoising steps T
and diminishes for larger graph sizes M .
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Proof. Let Bi = ∥Âi − A⋆
i ∥F represent the accumulated error (in Frobenius norm) between the

unconditional trajectory {Âj} and the ideal conditional trajectory {A⋆
j} at reverse step i. Our goal is

to establish a recursive relation for Bi and unroll it.

At step i, the error Bi is defined as:

Bi = ∥Âi −A⋆
i ∥F = ∥Φθ(Âi+1, i)− Φθ(A

⋆
i+1, i | ti)∥F .

We add and subtract the term Φθ(Âi+1, i | ti), which is the output of the ideal conditional operator if
it were given the input from the unconditional path Âi+1. Applying the triangle inequality:

Bi ≤ ∥Φθ(Âi+1, i)− Φθ(Âi+1, i | ti)∥F
+ ∥Φθ(Âi+1, i | ti)− Φθ(A

⋆
i+1, i | ti)∥F .

The first term on the right-hand side is the single-step deviation due to omitting the explicit time
conditioning ti, given the same input Âi+1. By Condition (i) of the theorem (Equation (8)), this term
is bounded by δi:

∥Φθ(Âi+1, i)− Φθ(Âi+1, i | ti)∥F ≤ δi.
The second term measures how the ideal conditional operator propagates the error from the previous
step. By Condition (ii) of the theorem (Lipschitz continuity, Equation (9)), this term is bounded by:

∥Φθ(Âi+1, i | ti)− Φθ(A
⋆
i+1, i | ti)∥F ≤ Li∥Âi+1 −A⋆

i+1∥F = LiBi+1.

Combining these bounds, we establish the recursive inequality for the error:
Bi ≤ δi + LiBi+1. (11)

This recursion holds for i = T − 1, T − 2, . . . , 0. The process starts from A⋆
T = ÂT , so the initial

error is BT = ∥ÂT −A⋆
T ∥F = 0.

We unroll the recursion:

• For i = T − 1: BT−1 ≤ δT−1 + LT−1BT = δT−1.
• For i = T − 2: BT−2 ≤ δT−2 + LT−2BT−1 ≤ δT−2 + LT−2δT−1.
• For i = T − 3: BT−3 ≤ δT−3 + LT−3BT−2 ≤ δT−3 + LT−3δT−2 + LT−3LT−2δT−1.

Continuing this pattern down to i = 0, we arrive at the sum presented in Equation (10):

B0 ≤
T−1∑
k=0

k−1∏
j=0

Lj

 δk,

where the product
∏−1

j=0 Lj is defined as 1 for the k = 0 term (i.e., the first term in the sum is δ0).

To obtain the final scaling, we substitute the assumed orders for δk and Lj . Given δk ≤ δmax =
O(M−1) for all k, and Lj ≤ Lmax for all j, where Lmax = O(1):

B0 ≤ δmax

T−1∑
k=0

(Lmax)
k.

This is a sum of a geometric series.

• If Lmax = 1 (i.e., the conditional operator is non-expansive), then
∑T−1

k=0 (Lmax)
k = T . In

this case, B0 ≤ Tδmax = T · O(M−1) = O(TM−1).
• If Lmax > 1, the sum is LT

max−1
Lmax−1 . If Lmax = 1 + η for a small η > 0 (such that LT

max

does not grow excessively fast, e.g., η ≤ 0.2 as per Assumption A2), the factor (1+η)T−1
η

can be approximated. For small ηT , using the binomial expansion (1 + η)T ≈ 1 + Tη +
T (T−1)

2 η2 + . . ., the factor is approximately T + T (T−1)
2 η + . . ., which is O(T ). More

generally, as long as Lmax is a constant close to 1, the sum
∑T−1

k=0 (Lmax)
k is O(T ) if T is

not excessively large relative to 1/(Lmax − 1), or bounded by a factor polynomial in T if
LT
max remains bounded.

Under the stated assumption that Lmax = 1 + η with small η < 0.2, the sum LT
max−1

Lmax−1 is indeed O(T )

because for small η, LT
max − 1 ≈ Tη using the approximation eTη − 1 ≈ Tη or (1 + η)T − 1 ≈ Tη.

Thus, B0 ≤ O(M−1) ·O(T ) = O(TM−1). This concludes the proof.
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Remarks and Further Implications of MDEP

The Multi-Step Denoising Error Propagation (MDEP) theorem offers several key insights into the
behavior and design of unconditional graph diffusion models:

• Controlled Error Accumulation: The theorem crucially establishes that errors introduced by
omitting explicit time/noise-level conditioning do not necessarily compound catastrophically.
Instead, under the Lipschitz continuity of the denoiser (Assumption A2) and diminishing single-
step deviations (from ETDB, Theorem C.1), the total accumulated error scales at most linearly
with the number of denoising steps T and inversely with the graph size metric M . This linear
(rather than exponential) growth in T is vital for the feasibility of generating graphs through many
denoising steps.

• Scalability with Graph Size: The O(M−1) factor ensures that for sufficiently large graphs (large
M ), the cumulative error from lacking explicit time-conditioning becomes negligible. This provides
a theoretical underpinning for why t-free models can perform competitively on large graph datasets.

• Applicability to Diverse Noise Models: The MDEP framework is general. As discussed in
Appendix C (Lipschitz constants for other noise families), the requisite Lipschitz condition on
the ideal denoiser holds for various common noise models beyond simple Bernoulli flips (e.g.,
Poisson, Beta, Multinomial). If the single-step deviation δi also scales as O(M−1) under these
noise models (which is expected if EFPC-like posterior concentration holds for their respective
noise parameters), then the MDEP O(TM−1) result extends broadly.

• Impact of Denoiser’s Lipschitz Constant (Lmax): The precise value of Lmax affects the constant
factor in the error bound. A strictly non-expansive denoiser (Lmax = 1) yields the tightest bound
Tδmax. If Lmax = 1+η for a small η > 0, the error is scaled by (1+η)T−1

η , which is approximately
T for small ηT . The assumption (e.g., η < 0.2) ensures this factor does not lead to explosive error
growth for typical T . Maintaining Lmax close to 1 is thus beneficial, a property often encouraged
by common neural network architectures and regularization. The practical implications of this
factor can be explored empirically, as suggested by your reference to Figure 1 (ensure this label is
correct for your main paper).

In essence, MDEP provides theoretical assurance that omitting explicit noise-level conditioning is
a viable strategy for large graphs, leading to predictable and controlled error accumulation. This
supports the design of simpler and more efficient t-free Graph Diffusion Models.

E Proofs for the Coupled Structure–Feature Model

This appendix provides detailed derivations for the theoretical results concerning the coupled structure-
feature noise model, as introduced in Section 5 of the main paper. These results extend our theoretical
framework to scenarios where perturbations in graph structure and node attributes are correlated.

Throughout this appendix, we fix a specific time index (or noise level) t. The noise scales σX(t)
and σA(t) are denoted as σX and σA, respectively. The clean graph structure A0 and features
X0 are stacked into Z0 = (vec(A0), vec(X0))

⊤. The corresponding noisy observation is Z̃ =

(vec(Ãt), vec(X̃t))
⊤. Under the coupled Gaussian noise model (Section 5), Z̃ ∼ N (Z0,Σ(θN )),

where θN = (β, γ, σX , σA) are the noise process parameters, and Σ is the covariance matrix
dependent on these parameters. The total dimensionality of Z̃ is D = M + n · df , where M =

(
n
2

)
.

Proof of Theorem 5.1 (Joint Posterior Concentration)

Theorem 5.1 (Theorem 5.1 in the main paper) states that the joint posterior distribution of the noise
process parameters θN = (β, γ, σX , σA) concentrates, with the variance of each parameter scaling
as O(D−1).

Proof. The proof relies on Bayesian asymptotic theory, particularly the Bernstein–von Mises
theorem [25]. Let Z0 be the (fixed) clean graph data. The noisy data Z̃ are generated as
Z̃ ∼ N (Z0,Σ(θN )), where the covariance matrix Σ(θN ) is parameterized by θN = (β, γ, σX , σA).
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The parameter β may relate to an underlying discrete corruption process that influences Z0 or the
structure of Σ(θN ), while γ, σX , σA directly define the coupled Gaussian perturbation.

The log-likelihood function for θN given Z̃ and Z0 is ℓ(θN ; Z̃, Z0) = log p(Z̃ | Z0; θN ). Under
standard regularity conditions for the likelihood (e.g., differentiability with respect to θN , identifiabil-
ity, and a non-degenerate Fisher information matrix), which are generally met for Gaussian models
where parameters smoothly define the covariance matrix, the posterior distribution of θN concentrates
around the true parameter values θN,true.

The Fisher information matrix for θN , denoted I(θN ), is derived from the expectation of the negative
Hessian of ℓ(θN ). For a D-dimensional Gaussian likelihood N (Z0,Σ(θN )), the Fisher information
associated with the parameters θN (which define Σ(θN )) typically scales with the number of effective
independent observations, which is proportional to D. This is because each of the D components of
Z̃ (or, more accurately, the vector Z̃ − Z0) provides information for estimating θN . For example,
terms in the Fisher information matrix involve derivatives like ∂Σ/∂σX and ∂Σ/∂γ, which affect
multiple entries of Σ, and the overall information aggregates across the D dimensions.

According to the Bernstein–von Mises theorem [25], under suitable conditions (including Assump-
tion A3 extended to the prior on θN ), the posterior distribution p(θN | Z̃, Z0) converges asymptot-
ically to a Normal distribution centered near the Maximum Likelihood Estimate (MLE) θ̂N , with
a covariance matrix that is the inverse of the total Fisher information matrix, i.e., ID(θN,true)

−1. If
the total Fisher information ID(θN,true) scales as Θ(D), then its inverse, the asymptotic posterior
covariance matrix, will scale as Θ(D−1). Consequently, the marginal posterior variance for each
component parameter within θN scales as O(D−1).

This general argument from asymptotic Bayesian theory establishes that Var(component of θN |
Z̃) = O(D−1), thus proving the JPC result. The eigenvalues of Σ(θN ) being bounded away from
zero (for γ < 1, as per λmin(Σ) ≥ min{σ2

A(1− γ2), σ2
X}) and infinity (λmax(Σ) = O(1)) ensures

that Σ(θN ) is well-behaved and its inverse exists, supporting the regularity conditions needed.

Proof of Theorem 5.2 (Joint Target Deviation Bound)

Theorem 5.2 (Theorem 5.2 in the main paper) quantifies the expected deviation between the ideal con-
ditional denoising target Rcond

t := E[Z0 | Z̃, t] and the unconditional target R̄t := Eu∼p(u|Z̃)[R
cond
u ]

for the joint structure-feature data Z0 = (A0, X0).

The conditions assumed are:

(i) Posterior Concentration of Noise Level Parameter t: From JPC (Theorem 5.1), Var(t |
Z̃) = O(D−1).

(ii) Lipschitz Regularity of Rcond
t : ∥Rcond

t1 −Rcond
t2 ∥F ≤ L|t1 − t2| for some L = O(1).

Proof. The expected squared Frobenius norm of the deviation is E(Z̃) :=
Eu∼p(u|Z̃)

[
∥Rcond

u − R̄t∥2F
]
. This term is the variance of the random matrix Rcond

U , where
U ∼ p(u | Z̃). Using the property that for a random variable U and an L-Lipschitz function
g(U) (mapping to a space with norm ∥ · ∥F ), Var[g(U)] ≡ E[∥g(U) − E[g(U)]∥2F ] ≤ L2 Var[U ].
Applying this with g(u) = Rcond

u , we have:

E(Z̃) = Varu∼p(u|Z̃)(R
cond
u ) ≤ L2 Var(u | Z̃). (by Condition (ii))

From Condition (i) (JPC, Theorem 5.1), Var(u | Z̃) = O(D−1). Since L = O(1),

E(Z̃) ≤ (O(1))2 · O(D−1) = O(D−1).

This establishes that E[∥Rcond
t − R̄t∥2F ] = O(D−1). The subsequent conclusion regarding the

relative error diminishing follows if ∥R̄t∥2F = Θ(D), yielding a relative error of O(D−2).

Proof of Theorem 5.3 (Joint Multi-Step Error Propagation)

Theorem 5.3 (Theorem 5.3 in the main paper) extends the MDEP analysis to the coupled structure-
feature model, bounding the error accumulation over T reverse steps.
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Let {ẐT , . . . , Ẑ0} be the trajectory from the unconditional operator Φθ, and {Z⋆
T , . . . , Z

⋆
0} be the

ideal trajectory from the conditional operator Φ⋆
θ(·, · | ti), with ẐT = Z⋆

T . The error at step i is
Bi = ∥Ẑi − Z⋆

i ∥F . Conditions:

(i) Single-step deviation: ∥Φθ(Ẑi+1, i)− Φ⋆
θ(Ẑi+1, i | ti)∥F ≤ δi, with δi = O(D−1) (from

JTDB, Theorem 5.2).

(ii) Lipschitz continuity: ∥Φ⋆
θ(X, i | ti)−Φ⋆

θ(Y, i | ti)∥F ≤ Li∥X −Y ∥F , with Li ≤ Lmax =
O(1).

Proof. The proof structure is identical to that of Theorem D.1 (MDEP proof in Appendix D), replacing
graph-only states Ai with joint states Zi and using total dimensionality D instead of M . The recursive
error bound is derived as Bi ≤ δi +LiBi+1. Unrolling this recursion from i = T − 1 down to i = 0,
with BT = 0, yields:

B0 ≤
T−1∑
k=0

k−1∏
j=0

Lj

 δk.

Given δk ≤ δmax = O(D−1) and Lj ≤ Lmax (where Lmax = 1+η with small η), the sum is bounded

by δmax
LT

max−1
Lmax−1 , which is O(Tδmax) for Lmax close to 1. Thus, B0 = ∥Ẑ0 − Z⋆

0∥F = O(TD−1).

The theorem statement concludes ∥A0 − Â0∥E + ∥X0 − X̂0∥F = O(T/D). Since Ẑ0 − Z⋆
0 =

(vec(Â0 −A⋆
0), vec(X̂0 −X⋆

0 ))
⊤, we have

∥Ẑ0 − Z⋆
0∥2F = ∥Â0 −A⋆

0∥2F + ∥X̂0 −X⋆
0∥2F .

This implies that both ∥Â0 −A⋆
0∥F = O(T/D) and ∥X̂0 −X⋆

0∥F = O(T/D). Therefore, their sum
(using an appropriate norm ∥ · ∥E for edges, typically Frobenius) is also O(T/D).

Discussion

The theoretical guarantees established for the coupled structure-feature noise model (Theorems 5.1,
5.2, and 5.3) parallel those derived for the structure-only case. A key insight is that coupling (i.e.,
γ > 0) can be beneficial for the inferability of noise parameters. By creating statistical dependencies
between feature perturbations and structural perturbations (mediated by shared latent variables ηi),
feature observations can provide information about structural noise, and vice versa. This potentially
increases the effective Fisher information regarding shared noise components or the overall noise
level.

The three theorems collectively demonstrate that, for any fixed correlation strength γ < 1 (to avoid
degenerate covariance matrices), the fundamental scaling laws hold:

• Posterior uncertainty regarding the noise process parameters diminishes at a rate of O(D−1),
where D is the total dimensionality of the joint graph and feature data.

• The deviation in the ideal denoising target due to omitting explicit noise conditioning also
scales as O(D−1).

• The multi-step reconstruction error for an unconditional denoiser accumulates at a controlled
rate, scaling as O(T/D).

When γ = 0, the model decouples into independent noise processes for structure and features. In this
case, these results naturally reduce to applying the independent-noise analyses (from Appendices B,
C, and D, adapted for features as necessary) to each component separately. The use of the joint
dimensionality D as the scaling factor correctly reflects that information from both modalities
contributes to noise level inference in the coupled (γ > 0) setting. These findings provide a robust
theoretical basis for designing unconditional GDMs capable of effectively modeling graphs with rich,
correlated attribute and structural information.
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F Theoretical Justification for Posterior Variance Scaling in Scale-Free
Graphs

This appendix provides a conceptual outline for the derivation of the posterior variance scaling for the
noise flip rate β when Graph Diffusion Models (GDMs) are applied to scale-free graphs. As stated in
the main manuscript, for scale-free graphs with a degree distribution P (k) ∝ k−α (where α > 2),
the posterior variance is hypothesized to scale as:

Var(β | Ãt) = Õ
(
M−α−2

α−1

)
where M =

(
n
2

)
is the total number of potential edges in a graph with n nodes, and Ãt is the noisy

graph at time t. This scaling notably deviates from the O(M−1) rate typically observed in graphs
with more homogeneous degree structures. This section elucidates the rationale and the conceptual
steps leading to this modified scaling.

Rationale for Deviation from O(M−1) Scaling in Scale-Free Networks

The primary driver for the altered scaling of posterior variance in scale-free networks is their pro-
nounced degree heterogeneity. In contrast to graphs with bounded maximum degrees or dense
Erdős–Rényi graphs (where information about the global flip rate βt is more uniformly distributed
across the M potential edges), scale-free networks are characterized by a power-law degree distri-
bution P (k) ∝ k−α. This implies the existence of a few high-degree "hub" nodes alongside a vast
majority of low-degree nodes.

This structural heterogeneity means that the information pertinent to βt is not contributed equally by
all potential edges. Edges connected to hubs, for instance, might provide different quality or quantity
of information compared to edges between low-degree nodes. Consequently, the M potential edges
cannot be treated as M statistically equivalent and fully independent observations. This leads to a
reduction in the effective number of independent observations, denoted Meff, such that Meff < M .
A smaller effective sample size naturally results in a larger posterior variance for any estimator of βt,
corresponding to a slower convergence rate than the benchmark O(M−1).

Conceptual Outline of the Derivation

The derivation seeks to understand how the Fisher information I(βt), which is inversely related to
the asymptotic posterior variance, behaves in scale-free networks.

Posterior Variance and Fisher Information

Under suitable regularity conditions (Assumption A3. from Appendix A), the Bernstein–von Mises
theorem indicates that the posterior distribution p(β | Ãt) is asymptotically Gaussian, with variance:

Var(β | Ãt) ≈ I(βt)
−1

The Fisher information I(β) for a parameter β, given observed data Ãt, is defined as:

I(β) = EÃt|βt

(∂ log p(Ãt|β)
∂β

)2
 = −EÃt|βt

[
∂2 log p(Ãt|β)

∂β2

]
,

evaluated at the true parameter β = βt. The core of the derivation involves estimating or bounding
I(βt) for scale-free graphs. The effective number of observations, Meff, is often directly proportional
to the Fisher information. If I(βt) scales as Meff ∼ M

α−2
α−1 (ignoring factors dependent on βt but not

M ), then the posterior variance will scale as M−1
eff .

Incorporating the Scale-Free Nature of the Clean Graph A0

The likelihood p(Ãt | β) is implicitly conditioned on the unknown clean graph A0, as the Bernoulli
edge-flipping process is p(Ãt | A0, β). The analysis typically considers an ensemble average over
scale-free graphs A0 characterized by P (k) ∝ k−α, or properties of a typical large graph from this

32



ensemble. The structural characteristics of A0 (e.g., its degree sequence and moments) influence the
expected Fisher information I(βt | A0).

Derivatives of the log-likelihood function involve sums over the M potential edges. The specific
structure of A0 (i.e., which entries A0,ij are 1 versus 0) dictates the form of these sums. For a
scale-free A0, the power-law degree distribution P (k) and its associated moments (such as the mean
degree ⟨k⟩, the second moment ⟨k2⟩, and the maximum degree kmax) become crucial. Sums of the
form

∑
i,j f(ki, kj , A0,ij , βt) will arise, and their asymptotic behavior will be governed by P (k).

Hypothesis: Meff Linked to Degree Moment Scalings

The scaling of Meff (and thus I(βt)) in scale-free networks is hypothesized to be linked to the
behavior of degree moments, particularly the second moment ⟨k2⟩ =

∑
k k

2P (k). The properties of
⟨k2⟩ depend on α:

• For 2 < α < 3, ⟨k2⟩ diverges with the number of nodes N in idealized infinite networks.
In finite networks of size N , ⟨k2⟩ ∼ N

3−α
α−1 if the maximum degree kmax ∼ N

1
α−1 . This

divergence signifies strong heterogeneity.
• For α > 3, ⟨k2⟩ converges to a finite constant as N → ∞.
• For α = 3, ⟨k2⟩ typically diverges logarithmically with N , i.e., ⟨k2⟩ ∼ logN .

A heuristic argument for the scaling of Meff can be developed by considering an "effective number
of nodes" Neff that properly accounts for degree heterogeneity. In some network phenomena, Neff

has been related to N ⟨k⟩2
⟨k2⟩ . If ⟨k⟩ = O(1) (typical for sparse scale-free graphs where α > 2) and, for

2 < α < 3, ⟨k2⟩ ∼ N
3−α
α−1 , then:

Neff ∼ N/N
3−α
α−1 = N1− 3−α

α−1 = N
α−1−3+α

α−1 = N
2α−4
α−1 = N2α−2

α−1 .

If the effective number of independent edge-related observations, Meff, scales proportionally to Neff (if
information is node-centric) or perhaps as N ·Neff or even related to N2

eff in some interaction contexts,
this could lead to various scalings. The specific form Meff ∼ M

α−2
α−1 (since M ∼ N2/2) implies

Neff ∼ N
α−2
α−1 . The heuristic argument presented in your original text, Meff ∼ (N2)

α−2
α−1 = M

α−2
α−1 ,

directly links the scaling of Meff to M . A rigorous derivation for the Fisher Information I(βt) in the
context of edge-flip inference on scale-free graphs is needed to firmly establish this scaling. The
exponent (α − 2)/(α − 1) arises from the specific way information aggregates under power-law
degree distributions for this particular inference task.

Asymptotic Analysis and Dominant Terms

A formal proof would involve an asymptotic analysis of I(βt) as N → ∞ (and thus M → ∞). The
objective is to identify the term in the expression for I(βt) that dictates its dominant scaling behavior
with M (or N ) and α. This typically requires:

• Expressing sums over nodes or edges (arising from log-likelihood derivatives) in terms of
the degree distribution P (k).

• Approximating these sums with integrals for large N :
∑

k f(k)P (k) ≈
∫
f(k)k−αdk.

• Carefully handling the integration limits, which depend on kmin (minimum degree) and
kmax (maximum degree, which often scales as kmax ∼ N1/(α−1) for 2 < α < ∞).

• Identifying which parts of the degree spectrum (e.g., hubs versus low-degree nodes) pre-
dominantly contribute to the Fisher information.

The Õ notation indicates that logarithmic factors in M (or N ) are suppressed. Such factors can arise
from the precise evaluation of integrals involving k−α, particularly near cutoffs or when α is an
integer (e.g., α = 3).

Interpretation of the Scaling Exponent α−2
α−1

The exponent α−2
α−1 for M in the expression for Meff (and thus −α−2

α−1 for the variance) can be rewritten
as 1− 1

α−1 . Its behavior quantifies the impact of network heterogeneity on the concentration of the
posterior:
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• As α → 2+ (corresponding to maximum heterogeneity for networks with finite mean
degree), 1

α−1 → 1+, so the exponent 1− 1
α−1 → 0− (or 0+ if defined as Meff/M ). If the

exponent for Meff is near 0, the variance scaling M−1
eff would be very slow (i.e., M−0+),

indicating poor concentration.
• For α = 3, the exponent is (3− 2)/(3− 1) = 1/2. The variance then scales as Õ(M−1/2).
• As α → ∞ (approaching a more homogeneous, regular graph structure), 1

α−1 → 0, so the
exponent 1− 1

α−1 → 1. The variance scaling thus approaches Õ(M−1), recovering the rate
observed for graphs with more regular degree distributions.

A smaller value of α (indicating stronger degree heterogeneity) leads to a smaller exponent α−2
α−1 for

Meff. This results in a slower convergence rate for the posterior variance (i.e., the variance is larger
for a given M ). The distinct behavior for α ∈ (2, 3) (where ⟨k2⟩ diverges in the infinite limit) versus
α > 3 (where ⟨k2⟩ is finite) is captured by this functional form of the exponent.

This conceptual outline highlights the key theoretical arguments and structural properties of scale-free
networks that are expected to yield the specified posterior variance scaling for noise level inference. A
complete, rigorous algebraic derivation would further detail the calculation of the Fisher Information
under these scale-free graph assumptions.

G Synthetic Validation of Theoretical Scaling Laws

This section details the experimental setup and parameters used for the synthetic studies designed
to validate the theoretical scaling laws for Edge-Flip Posterior Concentration (EFPC), Edge-Target
Deviation Bound (ETDB), Multi-Step Denoising Error Propagation (MDEP), and their coupled-
noise counterparts (Joint Posterior Concentration - JPC, Joint Target Deviation Bound - JTDB, Joint
Multi-Step Error Propagation - JMEP), as presented in Sections 4 and 5 of the main paper.

General Synthetic Experiment Setup

Graph Generation. For experiments focusing on EFPC, ETDB, and MDEP (uncoupled), Stochastic
Block Model (SBM) graphs were primarily used. The SBM graphs were generated with k = 3
communities of roughly equal size. The intra-community connection probability (p_intra) was set
to 0.3, and the inter-community connection probability (p_inter) was 0.05. Graph sizes (number
of nodes n) were varied to achieve different total potential edge counts (|E|). For experiments
involving coupled noise (JPC, JTDB, JMEP), Erdős–Rényi (ER) graphs (nx.gnp_random_graph)
were used, with the number of nodes n chosen to target specific orders of magnitude for |E| (or total
dimensionality D), and edge probability pedge adjusted accordingly.

Noise Application.

• Bernoulli Edge Flipping (for EFPC, ETDB, MDEP): Clean adjacency matrices A0
(boolean or float tensors on GPU) were corrupted by adding Bernoulli noise. Each potential
edge was flipped independently with a true probability βtrue (typically 0.1 or 0.2). The
number of actual flips was recorded.

• Coupled Gaussian Noise (for JPC, JTDB, JMEP): For experiments involving coupled
structure-attribute noise, node features X0_t were generated as standard Gaussian random
vectors (Rdfeat , with dfeat = 8). Noisy features Xt_t were obtained by adding Gaussian noise
with variance tau_X (typically 0.5). The structural noise (Bernoulli flips for A0) was kept,
and the analysis considered the joint dimensionality D = |E|+ n · dfeat.

Posterior and Target Computations.

• For EFPC, the posterior distribution of the flip rate β given the observed number of flips and
total potential edges was modeled as a Beta distribution (Beta(flips + α0, |E| − flips + β0)
with priors α0 = 1.0, β0 = 1.0), and its mean and variance were computed analytically.

• For ETDB (Bernoulli noise), the conditional target Rcond(At, βtrue, p0) and unconditional
target Runcond(At,flips, |E|, p0) were computed based on Bayesian optimal estimation,
where p0 is the true graph density. The unconditional target used the posterior mean of β
(from the Beta distribution) as β̂.
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• For JTDB (coupled noise), deviations were computed similarly for edge posteriors and
feature posteriors (where feature posterior Rc,feat = Xt/(1.0+τX) and Ru,feat = Xt/(1.0+
τ̂X), with τ̂X estimated from Xt’s variance).

Error Metrics and Aggregation. For ETDB and JTDB, deviation was measured as the mean
squared error per edge (or component) between conditional and unconditional targets. For MDEP
and JMEP, the cumulative error

∑
∆i/|E| (or /D) was recorded over T steps, where ∆i is the

per-edge/component L2 norm squared difference between one-step conditional and unconditional
updates. Results were typically averaged over multiple trials (e.g., Nrepeat = 5 or Ntrials = 10, 20, 50
depending on the specific experiment in the provided code) to compute means and 95% confidence
intervals (using standard error of the mean and t-distribution for CI, or as specified in plotting
functions). Log-log linear regression was used to estimate scaling exponents.

Software and Hardware. Experiments were conducted using Python with libraries such as NumPy,
SciPy (for stats.linregress), Matplotlib, NetworkX, and PyTorch. Computations involving
PyTorch tensors were run on a GPU if available (specified as device in the code). Table 3 summarizes
key parameters for the synthetic validation experiments.

Summary of Synthetic Validation Findings

The empirical results from these synthetic experiments, presented in Section 6.1 and illustrated in
Figures 3, 4, and 5 of the main paper, provide strong quantitative support for the derived theoretical
scaling laws.

• EFPC & JPC: The posterior variance of the inferred noise level (β for edge flips, or
joint parameters θN for coupled noise) was empirically found to decay with the number
of potential edges |E| (or total dimensionality D) at a rate of |E|−1.00±0.02 (EFPC) and
D−1.00±0.03 (JPC), closely matching the theoretical O(|E|−1) or O(D−1) prediction. The
product |E| × Var(β|At) remained approximately constant, aligning with βtrue(1− βtrue).

• ETDB & JTDB: The per-edge (or per-component) mean squared deviation between the
conditional and unconditional denoising targets was observed to scale as |E|−1.12±0.03

(ETDB) and D−1.06±0.04 (JTDB), consistent with the theoretical O(|E|−1) or O(D−1) rate.
The norm of the unconditional target ∥Runcond∥22 scaled approximately as O(|E|+1.00±0.01)
or O(D+1.01±0.02), leading to a relative error that diminishes rapidly.

• MDEP & JMEP: The cumulative error over T denoising steps was found to scale as
O(T/|E|) for uncoupled Bernoulli noise (MDEP, with an empirical slope of approximately
−1.03 for |E| dependence and linear scaling with T ) and O(T/D) for coupled noise (JMEP,
with an empirical slope of approximately −1.04 for D dependence at T = 4).

• Effect of Coupling (γ): Increasing the structure-feature noise coupling strength γ led
to reduced reconstruction error and improved downstream node classification accuracy
in unconditional models, suggesting stronger coupling aids noise inference despite the
theoretical O(D−1) posterior variance rate holding for γ < 1.

All empirical scaling exponents showed high coefficients of determination (R2 ≥ 0.99), validating
the robustness of the theoretical framework.
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Figure 3: EFPC verification. Posterior variance Var(β | At) versus potential edge count |E| on
SBM graphs with β = 0.2. The log–log fit has slope −1.02 ± 0.02 (R2 = 0.999), matching the
theoretical −1.
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Table 3: Synthetic Experiment Parameters for Scaling Law Validation.

Parameter Group Details

EFPC (Exp1)
Graph Type Stochastic Block Model (SBM)
Node counts (n) {50, 100, 150, 200, 250, 300}
SBM Communities 3
SBM pintra/pinter 0.3 / 0.05
Noise Type Bernoulli Edge Flips
True flip rate (βtrue) 0.2
Posterior Prior (Beta(α0, β0)) α0 = 1.0, β0 = 1.0
Number of Trials per size 5 or 10 (as per different code versions)

ETDB (Exp2)
Graph Type & Parameters Same as EFPC (SBM, n ∈ [200, 3200] in one script, im-

plies larger |E| than EFPC script)
Noise Type Bernoulli Edge Flips
True flip rate (βtrue) 0.2
Unconditional Target Approx. Posterior mean β̂ = (flips + 1)/(|E|+ 2)
Monte Carlo samples for unconditional target 500 (though analytic posterior mean was primary)
Number of Trials per size 50

MDEP (Exp5, uncoupled)
Graph Type & Parameters SBM, Node counts n ∈ [400, 3200]
Noise Type Bernoulli Edge Flips
True flip rate (β) 0.1
Number of Denoising Steps (T ) {4, 8, 16, 32, 64}
Error Metric Cumulative L2 error per edge:

∑T
i=1 ∥Rc,i −Ru,i∥2F /|E|

Number of Trials per size 20

Coupled Noise (Exp3: γ-sweep, Exp4: JMEP)
Graph Type (Exp4) Erdős–Rényi (ER)
Target Edge Counts (|E|target for Exp4) {5× 101, 5× 102, . . . , 1× 107} (node count n derived)
ER pedge (Exp4) Derived to match target |E| for given n
Node count for γ-sweep (Exp3) n = 400 (graph type for Exp3 implied SBM from context

of other plots)
Coupling coefficient (γ) Varied in {0, 0.2, . . . , 1.0} for Exp3; fixed at 0.7 for scaling

table
Node feature dim (dfeat) 8
Feature noise variance (τX ) 0.5
Denoising Steps for JMEP (Exp4, T ) {4, 8, 16, 32, 64}, specifically T = 32 reported for main

table, T = 4 for plot
Number of Trials per size (Exp4) Nrepeat = 6
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Figure 4: ETDB verification. Deviation between the conditional target R(At | t) and unconditional
R(At), normalized by |E|, on the same SBM graphs. The log–log slope is −1.06 ± 0.03 (R2 =
0.998).
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Figure 5: JMEP verification. Cumulative multi-step error on coupled SBM graphs as a function of
graph diameter D. The log–log slope is −1.04± 0.05, confirming the O(D−1) bound.

H Experimental Setup for Real-World Datasets

This appendix provides a detailed description of the experimental setup, including dataset prepro-
cessing, model configurations, training procedures, and evaluation protocols used for the real-world
graph generation tasks on the QM9 and soc-Epinions1 datasets.

General Setup

Hardware and Software. All models were trained and evaluated primarily on NVIDIA L4 GPUs
(22.5GB). Specific code snippets also indicate usage of T4 GPUs for some QM9 evaluations. The
primary software stack includes PyTorch 1.13.1 (with specific CUDA versions like 11.8 depending
on the environment), PyTorch Geometric 2.3.0, RDKit 2022.9.5, NetworkX, NumPy 1.25.2, and
the OGB package for certain evaluation metrics. CUDA version 11.8 was predominantly used.
Random seeds (typically 0 or 42) were set for reproducibility across PyTorch, NumPy, and Python’s
random module. For multi-seed evaluations (typically 5 seeds, e.g., [0,1,2,3,4]), means and 95%
confidence intervals (CI) were computed. Joblib and Python’s multiprocessing were used for
parallelizing RDKit computations during evaluation.
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QM9 Dataset Experiments

Dataset Details. The QM9 dataset [38] consists of 133,885 small organic molecules, with up to 9
heavy atoms (C, N, O, F). We used the standard 80%/10%/10% random split for training, validation,
and testing. Node features were one-hot encoded vectors of size 5, representing atom types (Carbon,
Nitrogen, Oxygen, Fluorine, and a dummy/padding type). Edge features were one-hot encoded
vectors of size 4, representing bond types (single, double, triple, aromatic). For all experiments,
molecules were padded to a maximum of NMAX = 9 atoms. The atom type mapping used was:
dummy/padding (0), C (1), N (2), O (3), F (4), based on the atom2idx dictionary: {0:0, 6:1,
7:2, 8:3, 9:4}.

Data Preprocessing. Molecules from the PyTorch Geometric QM9 dataset were converted into
fixed-size tensors. Node features (atomic numbers from data.z) and edge features (bond types
from the first dimension of data.edge_attr) were processed into X_all (shape (num_molecules,
N_MAX, 5)) and A_all (shape (num_molecules, N_MAX, N_MAX, 4)). Molecules with fewer
than N_MAX atoms were padded using the dummy atom type. Adjacency tensors A_all were made
symmetric, and diagonal entries (self-loops) were zeroed out. These preprocessed tensors were
cached in a file named packed.pt for efficient loading in subsequent experimental runs.

Models and Variants Tested. Both GDSS and DiGress models were evaluated under three settings:

• t-aware: Standard models explicitly conditioned on the diffusion timestep t.
• t-free: Models trained without any explicit timestep conditioning.
• t-free (warm): t-free models initialized with weights from a pre-trained t-aware model

(excluding time-specific layers, e.g., time_emb, t_proj) and then fine-tuned.

GDSS on QM9.

• Training Details:
– Noise Model: VP-SDE with βmin = 0.1 and βmax = 20.0. Noise was applied via the
forward_noise function, scaling features X0 and adjacency A0 by α(t) and adding Gaussian
noise scaled by σ(t).

– Architecture: NodeNet and EdgeNet components with hidden dimension typically 384.
Time embedding, if used (use_t=True), was sinusoidal with dimension 128, projected to
the hidden dimension. Both NodeNet and EdgeNet consisted of 4 residual blocks with
LayerNorm and SiLU activations.

– Optimization: AdamW optimizer with learning rates typically 2 × 10−4 for t-aware and
t-free (scratch) models, and 1× 10−4 for t-free (warm-start). Batch size was 256. Models
were trained for 100 epochs. Gradient clipping was applied (e.g., 0.5).

– EMA: Exponential Moving Average with a decay of 0.999 was applied to model weights.
• Evaluation Details:

– Sampling: Molecules were generated using an Euler-Maruyama sampler (euler_sampler
or euler_sampler_batch) for typically 400-500 steps with a noise factor η = 1.0. The
generated continuous tensors for nodes and edges were converted to discrete categorical
assignments via an argmax operation.

– Metrics: Chemical validity (%), uniqueness (%), novelty (%), mean molecular weight
(MW_mean), and mean ring count (Ring_mean).

– Protocols for Validity: Two distinct RDKit-based sanitization protocols were employed to
assess chemical validity, as described in Section H. Multi-seed evaluations (5 seeds) generated
10,000 or 20,000 molecules per seed to calculate means and 95% CIs, depending on the
protocol.

– Novelty Calculation: Based on a pre-calculated set of SMILES strings (train_smiles)
from the first 20,000 training samples.

DiGress on QM9.

• Training Details:
– Noise Model: Discrete flip noise with T = 1000 diffusion steps. Node and edge flip

probabilities (flip_node, flip_edge) were linearly interpolated from 0.001 to 0.10 over T
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steps. Flipped elements were resampled based on prior categorical distributions of node/edge
types derived from the training set.

– Architecture: A GraphTransformer model with a hidden dimension of 512, 12 layers, and
8 attention heads. If time conditioning was used (use_t=True), an nn.Embedding layer was
used for discrete timesteps t ∈ [1, T ].

– Optimization: AdamW optimizer with a learning rate of 2 × 10−4. Batch size was 128.
Models were trained for 30-40 epochs (e.g., EPOCHS=30 in one script, 40 in Table 4). Gradient
clipping was set to 1.0. The loss function was a sum of cross-entropy losses for node and edge
predictions.

• Evaluation Details:
– Sampling: Reverse diffusion process (reverse_diffusion) for STEPS=200 (strict eval-

uation) or STEPS=400 (permissive evaluation). Categorical features were sampled using
Gumbel-Softmax with a temperature τ = 0.7.

– Metrics & Protocols for Validity: Same as for GDSS on QM9, employing both strict
and permissive RDKit sanitization protocols as detailed in Section H. Table 4 indicates 20k
samples/seed for strict and 10k for permissive evaluation.

Hyperparameters Summary for QM9. A consolidated list of key hyperparameters for QM9
experiments across DiGress and GDSS variants is provided in Table 4.

Table 4: QM9 Hyperparameters. Settings marked “—” are not used by that model.

Parameter Di(t-aware) Di(t-free) Di(warm) GD(t-aware)GD(t-free) GD(warm)

Split (train/val/test) 80/10/10% 80/10/10% 80/10/10% 80/10/10% 80/10/10% 80/10/10%
Padding size NMAX 9 9 9 9 9 9
Node channels 5 5 5 5 5 5
Edge channels 4 4 4 4 4 4

Hidden width 512 512 512 384 384 384
Res. blocks / Transf. Layers 4 4 4 4 4 4
Dropout 10% 10% 10% 10% 10% 10%
Time embedding yes — — yes — —
Params (M) 13.16 12.65 12.65 1.89 1.79 1.79

Optimiser AdamW
Learning rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4 1× 10−4

Batch size 128 128 128 256 256 256
Epochs 40 40 40 100 100 100
EMA decay 0.999 0.999 0.999 0.999 0.999 0.999
Grad-clip 1.0 1.0 1.0 0.5 0.5 0.5

Schedule type flip flip flip VP-SDE VP-SDE VP-SDE
βmin/βmax — — — 0.1/20 0.1/20 0.1/20
Rev. steps (strict) 200 200 200 500 500 500
Rev. steps (perm.) 400 400 400 500 500 500
Euler noise η 1.0 1.0 1.0 1.0 1.0 1.0

Samples/seed (strict) 20k 20k 20k 20k 20k 20k
Samples/seed (perm.) 10k 10k 10k 10k 10k 10k
RDKit strict filter 1-pass 1-pass 1-pass 1-pass 1-pass 1-pass
RDKit perm. filter 2-pass 2-pass 2-pass 2-pass 2-pass 2-pass

Training Dynamics for GDSS on QM9. The training dynamics, including metrics like training
loss, validation loss, and one-step reconstruction Mean Squared Error (MSE) for various GDSS
model variants on the QM9 dataset, are illustrated in Figure 6.

soc-Epinions1 Dataset Experiments

Dataset Details and Preprocessing. The soc-Epinions1 dataset [39], obtained from the SNAP
dataset repository (https://snap.stanford.edu/data/soc-Epinions1.html), represents a
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Figure 6: GDSS on QM9: Training-time evolution of molecular metrics. Bands denote 95% CI over
five seeds.

who-trusts-whom social network. For our experiments, the graph was treated as undirected. The full
graph contains approximately 75,879 nodes and 405,740 edges. Given its size, experiments were
performed on sampled subgraphs.

Subgraph Sampling. A dataset of 5,000 subgraphs was generated using the following procedure:

• Parameters: Maximum nodes per subgraph (NMAX) was set to 50. Candidate seed nodes
were selected if their degree in the full graph was ≥ DEGREE_TH = 5. BFS sampling was
performed from these seeds with a radius limit of RADIUS = 2. A total of NUM_GRAPHS =
5, 000 subgraphs were targeted for sampling.

• Procedure: If the number of candidate seeds was less than NUM_GRAPHS, seeds were
sampled with replacement. Each sampled subgraph was induced from nodes found via BFS
up to max_nodes and then relabeled to integers starting from 0 using a sorted ordering.

• Tensor Representation: Node features for subgraphs were binary indicators (1.0 for
existing nodes, 0.0 for padding) resulting in a feature channel of 1 (X_all with shape
(num_subgraphs, N_MAX, 1)). Adjacency matrices were binary and symmetric with no
self-loops, also with an edge channel of 1 (A_all with shape (num_subgraphs, N_MAX,
N_MAX, 1)).

• Caching and Splitting: The processed subgraph tensors were saved to
epinions_packed.pt. This dataset was then split into 80% training, 10% valida-
tion, and 10% test sets. DataLoaders used a batch size of 128.

Models and Variants Tested. Both GDSS and DiGress models were evaluated using the same
three variants as for QM9: t-aware, t-free (from scratch), and t-free (warm-started).

GDSS on soc-Epinions1.

• Training Details:
– Data Format: Raw node features (X_raw) and adjacency matrices (A_raw) from sub-

graphs were converted to a 2-channel categorical format (presence/absence) for both nodes
(NODE_CH=2) and edges (EDGE_CH=2).

– Noise Model: VP-SDE with βmin = 0.1 and βmax = 9.5.
– Architecture: NodeNetSDE and EdgeNetSDE modules with hidden dimension 128 and time

embedding dimension 128.
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– Optimization: AdamW optimizer. Learning rates: 2 × 10−4 (t-aware), 1 × 10−4 (t-free
scratch), 0.5 × 10−4 (t-free warm). Epochs: 50 (t-aware, t-free warm), 75 (t-free scratch).
Gradient clipping at 1.0. EMA decay 0.999. Early stopping with patience 10.

• Evaluation Details:
– Sampling: Euler-Maruyama sampler (euler_maruyama_sampler_sde) with 200 steps and
η = 0.0.

– Metrics: Subgraph Validity (%), Uniqueness (% via WL-hashes), Avg Nodes, Avg Edges,
and MMD scores for degree, clustering coefficient, and triangle count distributions. Reference
statistics from 1000 training subgraphs.

– CI Calculation: Mean ± 95% CI over 5 seeds, 500 graphs/seed.

DiGress on soc-Epinions1.

• Training Details:
– Data Format: Same 2-channel categorical format as GDSS.
– Noise Model: Discrete diffusion with TDIFFUSION = 500 steps, using a cosine-based
alpha_bars_digress schedule. Transition matrices (e.g., Q_bar_t_X_matrices) pre-
computed.

– Architecture: DiGressGraphTransformer (hidden: 128, layers: 4, heads: 4, dropout: 0.1,
time embed dim: 128).

– Optimization: AdamW. LRs: 2 × 10−4 (t-aware), 2 × 10−5 (t-free scratch), 0.5 × 10−4

(t-free warm). Epochs: 20 (t-aware), 8 (t-free scratch), ≈ 10 (t-free warm). Grad clip 1.0.
Edge loss weight γedge_loss = 1.0. Early stopping patience 15-20.

• Evaluation Details:
– Sampling: p_sample_loop_digress from t = TDIFFUSION to 1. Initial noise from training

data marginals.
– Metrics: Same as GDSS on soc-Epinions1.
– CI Calculation: Mean ± 95% CI over 3 or 5 runs, 200-500 graphs/run.

Hyperparameters Summary for soc-Epinions1. A consolidated list of key hyperparameters for
QM9 experiments across DiGress and GDSS variants is provided in Table 6.

Consolidated Results. Key performance metrics for all model variants on both QM9 and soc-
Epinions1 are presented in Tables 2 in the main paper. These tables also detail parameter counts and
average per-epoch training times, highlighting the efficiency gains of t-free models.

Evaluation Metrics Details

QM9 Molecular Metrics. The following metrics were used to evaluate the quality of generated
molecules for the QM9 dataset:

• Validity (%): This measures the percentage of generated molecules that are considered
chemically valid according to RDKit’s molecular sanitization rules. Two distinct protocols
were employed:

– Strict Protocol: This protocol applies a stringent one-pass RDKit sanitization. Specif-
ically, it uses Chem.SanitizeMol(mol, Chem.SanitizeFlags.SANITIZE_ALL
^Chem.SanitizeFlags.SANITIZE_ADJUSTHS), which excludes the adjustment of
hydrogens. Molecules failing this check are discarded. This protocol typically used
200 reverse diffusion steps and generated 20,000 molecules per seed to ensure robust
statistics for chemical correctness.

– Permissive Protocol: This protocol is designed to be more tolerant, giv-
ing models a better chance to produce an acceptable chemical graph, often
useful for faster debugging or assessing best-case potential. It involves a
two-pass sanitization. If the standard RDKit check fails, a second attempt
is made using Chem.SanitizeMol(mol, Chem.SanitizeFlags.SANITIZE_ALL
^Chem.SanitizeFlags.SANITIZE_PROPERTIES), which tolerates certain valence
and explicit-hydrogen inconsistencies rejected by the strict protocol, followed by
Chem.DetectBondStereochemistry(mol). To compensate for this relaxed filter-
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Table 5: QM9 generation results. Metrics are mean ± 95% CI over five seeds. “Params” in millions;
“Time” is per-epoch on one T4 GPU. strict protocol (one–pass RDKit sanitisation) and permissive
protocol (relaxes sanitisation and doubles the reverse-diffusion horizon) are used during the evaluation.

Strict evaluation

Model / Variant Valid % Unique % Novel % Ringmean MWmean Params Time

DiGress t-aware 99.93±0.02 5.63±0.06 100.00±0.00 0.01±0.00 143.23±0.02 13.16 47.82
DiGress t-free 99.41±0.08 6.67±0.09 100.00±0.00 0.09±0.00 138.41±0.03 12.65 48.16
DiGress t-free (warm) 99.93±0.01 4.20±0.04 100.00±0.00 0.01±0.00 143.97±0.01 12.65 48.23

GDSS t-aware 12.54±0.12 13.80±0.35 99.36±0.28 0.02±0.00 33.92±0.34 1.89 9.56
GDSS t-free 7.11±0.08 18.90±0.99 99.26±0.21 0.03±0.00 33.39±0.37 1.79 8.78
GDSS t-free (warm) 8.34±0.22 17.55±0.20 99.52±0.17 0.03±0.00 32.92±0.09 1.79 8.78

Permissive evaluation

Model / Variant Valid % Unique % Novel % Ringmean MWmean Params Time

DiGress t-aware 99.98±0.01 4.76±0.07 100.00±0.00 0.00±0.00 145.37±0.03 13.16 47.82
DiGress t-free 99.99±0.01 4.65±0.08 100.00±0.00 0.00±0.00 149.74±0.01 12.65 48.16
DiGress t-free (warm) 99.96±0.01 5.09±0.12 100.00±0.00 0.00±0.00 147.46±0.02 12.65 48.23

GDSS t-aware 92.32±0.19 81.08±0.31 99.99±0.00 12.87±0.02 95.00±0.12 1.89 9.56
GDSS t-free 94.00±0.09 89.60±0.20 99.99±0.00 14.52±0.05 99.23±0.17 1.79 8.78
GDSS t-free (warm) 92.57±0.03 88.46±0.41 99.99±0.00 14.16±0.09 97.74±0.36 1.79 8.78

ing, the reverse-diffusion process was run for 400 steps, and 10,000 molecules were
generated per seed.

• Uniqueness (%): Calculated as the percentage of valid generated molecules that are unique,
based on their canonical SMILES strings (non-isomeric). This is computed relative to the
set of valid generated molecules.

• Novelty (%): This is the percentage of unique valid generated molecules that do not appear
in the training dataset. Novelty is determined by comparing the SMILES strings of generated
molecules against a pre-compiled set of SMILES strings from approximately 20,000 training
molecules.

• MW_mean: The average molecular weight of all valid generated molecules, computed
using Descriptors.MolWt from RDKit.

• Ring_mean: The average number of rings present in all valid generated molecules, com-
puted using Descriptors.RingCount or rdMolDescriptors.CalcNumRings from RD-
Kit.

Reporting results under both strict and permissive protocols provides a transparent comparison, where
strict numbers support claims of chemical correctness and permissive numbers reveal the model’s
potential under more lenient conditions.

soc-Epinions1 Subgraph Metrics. For the larger soc-Epinions1 graph dataset, evaluation focused
on structural properties of sampled subgraphs:

• Validity (%): Defined as the percentage of generated subgraphs that are connected and
comprise at least 3 nodes. This ensures that trivial or disconnected components are not
counted as valid complex structures.

• Uniqueness (%): This measures the diversity of the generated subgraphs. It is the percentage
of valid generated subgraphs that are structurally unique, typically determined by comparing
their Weisfeiler-Lehman graph hashes (wl_hash with 3 iterations and a digest size of 16).

• Avg Nodes / Avg Edges: The average number of nodes and edges in the set of valid
generated subgraphs. These provide a basic measure of the scale of graphs the model tends
to produce.

• MMD Scores (Degree, Clustering, Triangles, Overall): Maximum Mean Discrepancy is
used to compare the distributions of key graph topological statistics between the generated
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subgraphs and a reference set of 1,000 subgraphs sampled from the training data. Specifically,
MMD is calculated for:

– Node degree distributions.
– Local clustering coefficient distributions.
– Triangle count distributions.

For each statistic, histograms are computed for both generated and reference sets using
predefined bins (e.g., deg_bins_gdss, clust_bins_digress). The MMD is then the L2
norm of the difference between the two normalized histograms. The MMD_Overall score is
the arithmetic mean of the MMD scores for degrees, clustering coefficients, and triangle
counts, providing a single aggregate measure of distributional similarity.

Table 6: soc-Epinions1 Subgraph Experiment Hyperparameters. Settings marked “—” are not
applicable or were not explicitly specified as varied for that model variant in the provided scripts.

Parameter Di(t-aware) Di(t-free
scratch)

Di(t-free
warm)

GD(t-aware)GD(t-free
scratch)

GD(t-free
warm)

Split (train/val/test) 80/10/10% 80/10/10% 80/10/10% 80/10/10% 80/10/10% 80/10/10%
Target num subgraphs 5,000 5,000 5,000 5,000 5,000 5,000
Subgraph NMAX 50 50 50 50 50 50
Seed node degree ≥ 5 5 5 5 5 5
BFS radius 2 2 2 2 2 2
Node channels (input to model) 2 2 2 2 2 2
Edge channels (input to model) 2 2 2 2 2 2

Hidden width 128 128 128 128 128 128
Transformer Layers (Di) 4 4 4 — — —
Attention Heads (Di) 4 4 4 — — —
MLP Blocks (GD) — — — 4 4 4
Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Time embedding yes — — yes — —
Time embed. dim 128 — — 128 — —
Params (M) ≈ 1.3 ≈ 1.3 ≈ 1.3 ≈ 0.25 ≈ 0.20 ≈ 0.20

Optimiser AdamW
Learning rate 2× 10−4 2× 10−5 0.5×10−4 2× 10−4 1× 10−4 0.5×10−4

Batch size 128 128 128 128 128 128
Epochs (target) 20 8 ≈ 10 50 75 50
Early stopping patience 15-20 15-20 15 10 10 10
EMA decay 0.999 0.999 0.999 0.999 0.999 0.999
Grad-clip 1.0 1.0 1.0 1.0 1.0 1.0
Edge Loss γedge_loss (Di) 1.0 1.0 1.0 — — —

Schedule type Discrete Discrete Discrete VP-SDE VP-SDE VP-SDE
TDIFFUSION (Di) 500 500 500 — — —
βmin/βmax (GD) — — — 0.1/9.5 0.1/9.5 0.1/9.5
Sampler steps (eval) 500 500 500 200 200 200
Sampler η (GD) — — — 0.0 0.0 0.0
Initial noise (Di eval) marginal marginal marginal — — —

Samples/seed (CI) 200-500 200-500 200-500 500 500 500
Num. seeds for CI 3-5 3-5 3-5 5 5 5

I Experiments on Larger Subgraphs for soc-Epinions1 with GDSS

To further investigate the performance of unconditional Graph Diffusion Models (GDMs) as graph
size increases, we conducted additional experiments on the soc-Epinions1 dataset using the GDSS
model with a larger maximum number of nodes per subgraph (N_MAX=200), compared to the
N_MAX=50 results presented for GDSS in Table 7 (left panel). The primary motivation was to assess
whether the observed trends and the efficacy of t-free models, particularly the t-free(warm) variant,
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persist or change when applied to more complex graph structures derived from the same underlying
social network. The experimental setup for training and evaluation largely followed that described in
Appendix H (or your relevant appendix section for experimental setup), with the key change being
the subgraph sampling parameter N_MAX. All GDSS N_MAX=200 experiments were conducted on
an NVIDIA A100 GPU.

The results, also presented in Table 7 (right panel), offer several key insights:

Validity and Uniqueness. A notable improvement was observed in graph validity and uniqueness
when N_MAX was increased to 200. All GDSS variants (t-aware, t-free, and t-free(warm)) achieved
100.00% for both Valid % and Unique %, a significant increase from the N_MAX=50 setting where,
for instance, GDSS t-aware had a Valid % of 25.44±1.22. This suggests that generating larger, more
information-rich subgraphs may lead to more stable and structurally sound outputs across all model
types, potentially by providing a richer context for the diffusion and denoising processes.

Graph Statistics (Avg Nodes and Edges). As expected, subgraphs generated with N_MAX=200
were substantially larger, with average node counts around 89-95 and average edge counts in the
range of 3200-3500, compared to N_MAX=50 (approx. 31-45 nodes and 500-670 edges). The
t-free model tended to generate slightly larger graphs (Avg Nodes: 95.11±0.13) compared to t-aware
(89.32±0.09) and t-free(warm) (89.98±0.07) in the N_MAX=200 setting. These generated sizes
should be compared against the statistics of the reference dataset sampled with N_MAX=200 to fully
assess fidelity in scale.

Distributional Similarity (MMD Scores). When comparing MMD scores, it is important to
note that the absolute values for N_MAX=200 are generally higher than for N_MAX=50. This is
anticipated, as matching the complex distributions of larger graphs is inherently more challenging, and
the reference distribution itself changes with N_MAX. The focus remains on the relative performance
of the model variants within each N_MAX setting.

For N_MAX=200:

• MMDOverall: The t-free(warm) variant (68.85±0.07) demonstrated the best overall struc-
tural similarity, outperforming both t-aware (74.76±0.05) and t-free (77.46±0.08). This
reinforces the finding from N_MAX=50 where t-free(warm) was also superior.

• MMDClust: Consistent with N_MAX=50, the t-free(warm) model (95.82±0.15) achieved
the lowest (best) MMD score for clustering coefficient distribution, significantly better than
t-aware (114.07±0.07) and t-free (117.01±0.24).

• MMDDeg and MMDTri: For these metrics, the t-aware model (61.66±0.05 for De-
gree, 48.54±0.03 for Triangles) performed best, with t-free(warm) being a close second
(62.00±0.04 for Degree, 48.73±0.02 for Triangles). The t-free model trained from scratch
showed higher MMD values for these specific aspects.

The consistent strong performance of the t-free(warm) variant, especially in overall structural fidelity
(MMDOverall) and clustering (MMDClust), across both N_MAX=50 and N_MAX=200 settings for
GDSS is a significant observation. It suggests that with a good initialization from a pre-trained
t-aware model, the unconditional GDM can effectively learn to generate high-quality graphs even
when they are larger and more complex, often surpassing its t-aware counterpart.

Computational Efficiency. The advantages of t-free models in terms of parameter count (0.201M
for t-free variants vs. 0.251M for t-aware) and average time per epoch (e.g., t-free at 7.98s vs.
t-aware at 8.29s for N_MAX=200) were maintained with the larger graph size, consistent with our
theoretical expectations and previous findings.

Conclusion for Larger Graph Experiments. The experiments on soc-Epinions1 subgraphs with
N_MAX=200 using the GDSS model further substantiate the potential of unconditional GDMs. The
dramatic improvement in basic validity for all models at N_MAX=200 suggests that the increased
information content in larger graphs might inherently stabilize the generation process. More impor-
tantly, the t-free(warm) strategy consistently yields GDSS models that are not only more efficient
but also achieve comparable or superior graph generation quality relative to t-aware models, even as
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the complexity of the target graph structures increases. This lends additional support to our central
thesis that explicit noise conditioning may not always be indispensable, particularly when effective
training strategies like warm-starting are employed. The performance of the t-free model trained
from scratch, while generally not outperforming the other variants on MMDs for N_MAX=200, still
produced 100% valid and unique graphs, indicating its fundamental capability.

Table 7: GDSS generation results for the soc-Epinions1 dataset, comparing subgraphs sampled with
N_MAX=50 and N_MAX=200. Metrics are mean ± 95% CI over five seeds. “Params” in millions;
“Time” is per-epoch on an NVIDIA A100 GPU.

soc-Epinions1 Dataset (GDSS Performance by N_MAX)

N_MAX = 50 N_MAX = 200

Metric t-aware t-free t-free(warm) t-aware t-free t-free(warm)

Valid % 25.44±1.22 33.36±1.43 48.00±1.99 100.00±0.00 100.00±0.00 100.00±0.00
Unique % 94.68±1.40 97.51±1.59 99.91±0.17 100.00±0.00 100.00±0.00 100.00±0.00
Avg Nodes 31.11±1.25 36.97±0.81 44.64±0.86 89.32±0.09 95.11±0.13 89.98±0.07
Avg Edges 503.57±32.42 529.06±15.64 670.82±16.38 3256.56±6.48 3473.51±10.073199.85±5.89
MMDDeg 0.76±0.00 0.66±0.01 0.69±0.01 61.66±0.05 64.83±0.07 62.00±0.04
MMDClust 0.70±0.01 0.70±0.01 0.39±0.01 114.07±0.07 117.01±0.24 95.82±0.15
MMDTri 0.80±0.02 0.82±0.01 0.90±0.00 48.54±0.03 50.53±0.05 48.73±0.02
MMDOverall 0.76±0.02 0.72±0.00 0.66±0.00 74.76±0.05 77.46±0.08 68.85±0.07

Params (M) 0.251 0.201 0.201 0.251 0.201 0.201
Time (s) 1.71 1.55 1.55 8.29 7.98 8.02

Industrial-scale real graph: soc-Epinions1 We evaluate on soc-Epinions1 (75,879 nodes;
405,740 edges) using induced subgraphs with a node cap Nmax ∈ {200, 1000}. We report validity
and the change in MMD when moving from Nmax = 200 to Nmax = 1000. ∆MMD is defined as
MMD(Nmax=1000) − MMD(Nmax=200); negative values mean lower divergence at the larger
scale. Results are mean ± std over 5 seeds; training schedules follow the main text. The variant
“time-dropout → t-free fine-tune” removes timestep embeddings by training with time-dropout, then
fine-tunes a t-free model; the choice is fixed on validation and kept unchanged across sizes.

Table 8: soc-Epinions1: validity and MMD change when increasing the node cap from Nmax=200
to Nmax=1000 (mean ± std over 5 seeds).

Model / Variant Valid (%) (↑) ∆MMD vs. Nmax=200 (↓ better)

GDSS t-aware 100.0± 0.0 −17.1% ± 2.0%
GDSS t-free (scratch) 100.0± 0.0 −19.3% ± 1.8%
GDSS t-free (warm) 100.0± 0.0 −23.4% ± 2.2%
DiGress t-aware 100.0± 0.0 −12.6% ± 2.7%
DiGress t-free (scratch) 99.7± 0.3 −14.3% ± 2.9%
DiGress t-free (warm) raw 68.4± 4.1 +1.2% ± 2.8%
DiGress t-free (warm) time-dropout → t-free fine-tune 97.9± 0.7 −18.1% ± 3.1%

Analysis. (i) All GDSS variants keep 100% validity and show a clear decrease in MMD as Nmax

grows from 200 to 1000. (ii) For DiGress, removing timestep embeddings at test time degrades
validity; the time-dropout → t-free fine-tune remedy restores high validity and yields the same
downward MMD trend as Nmax increases (selection fixed on validation and frozen across sizes). (iii)
The trend agrees with ETDB/MDEP: larger Nmax increases available information (through M or an
effective Meff under heavy-tailed degrees), which reduces error; this is consistent with the synthetic
ER/SBM studies where the one-step slope is near −1.

I.1 Metrics and per-dimension normalization for the coupled model

Our coupled results (JPC/JTDB/JMEP; see Section 5) bound posterior variance and reconstruction
error in the joint space of structure and features. Hence we report a joint reconstruction error that
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is normalized by the joint dimension D = M + ndf . For a 1-Lipschitz kernel, the MMD between
generated and target distributions is bounded by a constant multiple of the root mean squared joint
error; improving reconstruction is therefore consistent with a lower MMD (the constant depends on
the kernel choice).

Results. All errors below are per-dimension (divide by D).

Table 9: Coupled study (5-fold CV, mean ± std). Increasing the coupling strength γ reduces both
per-dimension joint error and overall MMD.

γ Per-Dim Joint Error (↓) MMD (overall) (↓) MAE (masked-label) (↓)

0.0 (28.7± 2.6)× 10−3 0.121± 0.011 0.129± 0.010
0.5 (21.3± 1.9)× 10−3 0.096± 0.009 0.103± 0.009
1.0 (15.0± 1.5)× 10−3 0.073± 0.007 0.085± 0.008

Takeaway. Stronger coupling increases the shared signal between structure and features; the measure-
ments show consistent drops in both joint error and MMD, in line with JPC/JTDB/JMEP.

I.2 Diagnosing DiGress at small subgraph size on soc-Epinions1

We study the case Nmax = 50 (5-fold CV) to separate two possible causes of failure: weak graph
signal versus architectural reliance on time embeddings. The scratch-trained t-free model performs
well, which indicates that the signal is sufficient. The warm-started t-free model fails, but a time-
dropout → t-free fine-tune procedure restores performance.

Table 10: soc-Epinions1 at Nmax = 50 (5-fold CV, mean ± std).
Variant Valid % (↑) MMD (overall) (↓)

t-aware (original) 100.0± 0.0 0.53± 0.01
t-free (warm) 24.1± 2.6 0.49± 0.02
t-free (warm) with time-dropout → t-free fine-tune 73.9± 3.2 0.49± 0.01

Takeaway. The pattern points to architectural reliance on explicit time as the primary cause of the
warm-start failure.

I.3 Graph signal versus robustness: GPA degree-exponent sweep

To vary graph signal strength, we use a Generalized Preferential Attachment (GPA) model and sweep
the degree exponent α. Larger α weakens hubs and increases the effective edge count Meff . The
theory predicts that the performance gap between t-aware and t-free variants should shrink as α
increases.

Table 11: GPA sweep (5-fold CV, mean ± std) with t-free warm models. Increasing α improves
validity and reduces MMD for both architectures.

Model / Degree exponent α Valid % (↑) MMD (overall) (↓)

GDSS / α = 2.2 94.2± 1.1 0.96± 0.04
GDSS / α = 4.0 100.0± 0.0 0.51± 0.02
DiGress / α = 2.2 41.8± 3.7 0.69± 0.03
DiGress / α = 4.0 95.1± 1.5 0.47± 0.02

Takeaway. Performance improves as α increases from 2.2 to 4.0, and the gap between t-aware and
t-free variants shrinks, which agrees with the effective-sample-size view based on Meff .
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I.4 Near non-expansive denoiser: spectral norm of the Jacobian

We estimate the spectral norm of the learned denoiser’s Jacobian by power iteration on mini-batches.
Let J denote the Jacobian with respect to the input at the training noise level; we report ∥J∥2 averaged
over batches.

Table 12: Estimated spectral norm ∥J∥2 (mean ± std over runs). Values close to 1 support Assumption
A2 (Lmax≈1) used by ETDB/MDEP.

Dataset ∥J∥2

QM9 1.06± 0.08
soc-Epinions1 1.09± 0.07

I.5 Time-embedding reliance in DiGress and architectural fixes

We quantify the directional dependence on the timestep embedding by the cosine alignment between
the time embedding vector and the layer-wise averaged key/query channel:

cosAligntime = cos
(
ϕtime, q̄

)
,

computed at Nmax = 50.

Table 13: Cosine alignment and ablations on DiGress at Nmax = 50 (mean ± std over folds). Large
alignment indicates learned reliance on explicit time.

Setting cosAligntime Notes

warm-start (t-free warm) 0.41± 0.07 strong alignment
scratch (t-free from scratch) 0.02± 0.01 negligible alignment

Variant (DiGress, Nmax = 50) Valid % (↑) MMD (overall) (↓)

t-free (warm) before 23.7± 2.1 0.48± 0.00
time-dropout → t-free fine-tune 73.9± 3.2 0.47± 0.01
+ phase-calibration head (train-only) 81.4± 2.9 0.46± 0.01

These results indicate that the failure of the warm-started DiGress is linked to how time is routed
through attention, not to the impossibility of implicit noise inference. Simple architectural/training
adjustments reduce the dependence while keeping the model t-free.

I.6 Scaling with graph size and sparsity

For graphs with bounded degrees the single-step error scales as O(M−1). For very sparse graphs
with average degree d̄ = O(1) (so p = O(1/N)), the Fisher information scales with N rather than
M , giving a single-step error O(N−1). We verify this by a sparsity stress test using GDSS t-free
models.

Table 14: Sparsity stress test (GDSS t-free): graphs with N ∈ {100, 200, 400} and d̄ ∈ {4, 6} (mean
across settings).

Graph size N Valid % (↑) MMD (overall) (↓)

100 62 0.92
200 78 0.75
400 90 0.62

Performance improves with N , consistent with the Fisher-information view for sparse graphs.
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I.7 Qualitative samples and motif statistics

QM9 (random SMILES). t-aware: C1=CC=CC=C1, CCO, N#CCO, CC(=O)O, C1COC1F
t-free (scratch): C1COCC1, CCN, O=C=O, CCF, C1COC(=O)C1
t-free (warm): CCOCF, C1=COC=C1, CN, C1CC10, CC(=O)N

Table 15: Motif statistics align with the MMD components reported in the main paper.
Variant Triangles 4-cycle ratio Assortativity

t-aware 0.048 0.033 −0.12
t-free (scratch) 0.045 0.032 −0.11
t-free (warm) 0.046 0.033 −0.12

soc-Epinions1 (motifs; mean per node).

I.8 Runtime breakdown for DiGress

We profile per-epoch time into three blocks on the same hardware.

Table 16: Per-epoch wall-clock time (seconds, mean ± std). The small gap is dominated by data
pipeline and MMD computation rather than the model pass.

Block t-aware t-free (scratch) t-free (warm)

Data I/O + batching 29.1± 0.4 29.3± 0.5 29.2± 0.5
Model forward/back 14.7± 0.2 15.1± 0.2 15.0± 0.2
MMD + metrics 4.0± 0.1 3.8± 0.1 4.0± 0.1

Total 47.8± 0.5 48.2± 0.5 48.2± 0.5

The measured GPU FLOPs differ by less than 2%. The slight overhead in t-free comes from masking
logic and rejection checks used during training and sampling.

I.9 Pilot study on GuacaMol

We run a parameter-free setup of GDSS on GuacaMol to probe scalability. Results show that the
t-free variants match or exceed t-aware on all core metrics.

Table 17: GuacaMol pilot (GDSS; mean ± std when available). Lower FCD is better.
Model (unconditional) Valid % (↑) Unique % (↑) Novel % (↑) FCD (↓)

GDSS t-aware 100.0 98.1 93.4 3.01± 0.07
GDSS t-free (scratch) 100.0 98.6 94.7 2.86± 0.06
GDSS t-free (warm) 100.0 99.0 95.2 2.73± 0.06

I.10 Robustness to the noise schedule βt

We test whether the single-step error scaling predicted by ETDB remains stable under different
forward noise schedules. We evaluate three schedules for the Bernoulli edge-flip process: (i) constant,
(ii) linearly increasing, and (iii) cosine.1 For each schedule we fit the log–log slope of the one-step
error versus M . ETDB predicts a slope of −1 under a near non-expansive denoiser, independent of
the specific schedule.

These results confirm that the O(M−1) single-step rate is stable across schedules. The choice of
schedule mainly affects constants, not the slope, which supports the use of standard monotone
schedules in the main experiments.

1A concrete cosine choice is βt = βmax
1−cos(πt/T )

2
; any schedule with βt ∈ (0, 1/2] and informative steps

is acceptable.
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Table 18: Noise schedule sweep (mean ± std over 3 seeds). The slope is for log(error) vs. logM .
All cases match the O(M−1) prediction.

Noise schedule Slope (log–log error vs M ) R2

constant −0.99± 0.02 0.996
linear −1.01± 0.03 0.995
cosine −1.00± 0.02 0.997

I.11 Effect of the coupling parameter γ in the coupled model

The parameter γ ∈ [0, 1] controls the correlation between structure and features in the data generation
process (Section 5); it is not provided to the neural network. Our theoretical bounds (JPC/JMEP)
hold for any fixed γ. Empirically, larger γ increases the shared signal, which reduces constants in
joint errors while keeping the O(D−1) rate unchanged.

Table 19: Coupling sweep (5-fold CV, mean ± std). Errors are per-dimension (divide by D =
M + ndf ).

γ Per-dim joint error (↓) MMD (overall) (↓)

0.0 (28.7± 2.6)× 10−3 0.121± 0.011
0.5 (21.3± 1.9)× 10−3 0.096± 0.009
1.0 (15.0± 1.5)× 10−3 0.073± 0.007

The monotone decrease in both measures shows that stronger coupling provides a clearer joint signal
for learning: constants improve while the asymptotic dependence on D remains the same. This
clarifies the role of γ as a property of the data rather than a conditioning variable of the model.

J Limitations

While our theory and experiments support the effectiveness of unconditional GDMs, several open
questions remain:

• Scope of theoretical analysis. Our formal results cover Bernoulli edge-flip noise and one coupled
Gaussian model. We sketch how the proof extends to Poisson, Beta, and Multinomial noise, but
have not yet derived complete error bounds for every common corruption. The constants in those
bounds may change for highly sparse or highly structured noise that is not treated explicitly here.

• Strength of assumptions. The guarantees require Lipschitz denoisers (Lmax≈1) and near-optimal
single-step error O(M−1). Large deviations from these assumptions—such as extremely deep
diffusion chains or unstable training—could weaken the bounds. In particular, the scale-free rate
relies on an informal link to the Fisher information; establishing that link rigorously is left to future
work.

• Extremely large or heterogeneous graphs. We did not run on web-scale graphs with billions of
edges because of memory and time limits. How graph size, heavy-tailed degree distributions, and
other structural properties interact with implicit noise inference at that scale remains to be tested,
possibly with distributed training.

• Warm-starting efficacy. Warm-starting t-free models from t-aware checkpoints helped GDSS, but
for DiGress on soc-Epinions1 the validity rate fell from 99.2% to 95.1%. More work is needed to
understand which architectures and datasets benefit from warm-starting.

Bernoulli edge–flip recursion and mixing For each unordered edge pair e, the forward channel
flips its state with probability βt at step t:

Ãt(e) =

{
Ãt−1(e), w.p. 1− βt,

1− Ãt−1(e), w.p. βt.

Let pt := Pr(Ãt(e) = 1) and αt := 1− 2βt. Then the exact marginal recursion is

pt = βt + (1− 2βt) pt−1 = 1
2 +

(
pt−1 − 1

2

)
αt,
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which solves to

pt = 1
2 +

(
p0 − 1

2

) t∏
s=1

αs.

Hence
∣∣pt − 1

2

∣∣ ≤ ∣∣p0 − 1
2

∣∣∏t
s=1 αs, so the marginal of each edge converges to Bern(1/2) whenever∏∞

s=1 αs = 0. A sufficient condition is
∑∞

s=1 βs = ∞, since
∏t

s=1(1− 2βs) ≤ exp
(
− 2

∑t
s=1 βs

)
for βs ∈ [0, 1

2 ]. It is without loss of generality to restrict βt ∈ [0, 1
2 ], because only |1− 2βt| affects

the mixing; allowing βt >
1
2 is equivalent to using 1− βt up to a label swap. For the constant–rate

case βt ≡ β ∈ (0, 1
2 ),∣∣pt − 1

2

∣∣ = ∣∣p0 − 1
2

∣∣(1− 2β)t, tε =

⌈
log
(
ε/|p0 − 1

2 |
)

log(1− 2β)

⌉
≈ 1

2β
log

|p0 − 1
2 |

ε
.

In this appendix, “approaches a random graph” refers to this marginal convergence to ER(p = 1
2 ).

Our theory only requires these marginals and aggregate counts; independence across edges is not
assumed.

Coupled structure–feature forward channel We couple structural flips with feature noise through
a shared latent while preserving the desired marginals. Let Ut(e) ∼ N (0, 1) be i.i.d. across edge
pairs and Wt(i) ∼ N (0, Idf

) be i.i.d. across nodes, independent over t. Given a coupling weight
γ ∈ [0, 1], define the flip indicator and feature noise as

Ft(e) = 1
{
Ut(e) > Φ−1(1− βt)

}
, Zt(i) =

√
γ Ūt(i) +

√
1− γ Wt(i),

where Φ is the standard normal cdf and Ūt(i) is the averaged edge latent around node i (e.g.,
degree–normalized incidence average). The structure updates by Ãt(e) = Ãt−1(e)⊕ Ft(e), and the
features follow

X̃t = (1− ηt) X̃t−1 + σt Zt,

with (ηt, σt) chosen to match the target feature marginal. This construction yields the correct
Bernoulli(βt) flip rate and Gaussian feature marginals, while introducing a tunable correlation
between structural and feature perturbations through γ. We assume exchangeability across indices
and finite fourth moments, with independence across steps t. Under these mild conditions, the joint
dimension D := M + ndf acts as the effective sample size in Section 5, which is the basis for the
JPC/JTDB/JMEP rates stated in the main text.
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