
Can Graph Learning Improve Planning
in LLM-based Agents?

Xixi Wu1,3∗ Yifei Shen2∗� Caihua Shan2 Kaitao Song2 Siwei Wang2 Bohang Zhang4

Jiarui Feng5 Hong Cheng3 Wei Chen2 Yun Xiong1� Dongsheng Li2

1Fudan University† 2Microsoft Research Asia 3The Chinese University of Hong Kong
4Peking University 5Washington University, Saint Louis

Abstract

Task planning in language agents is emerging as an important research topic along-
side the development of large language models (LLMs). It aims to break down
complex user requests in natural language into solvable sub-tasks, thereby fulfilling
the original requests. In this context, the sub-tasks can be naturally viewed as a
graph, where the nodes represent the sub-tasks, and the edges denote the dependen-
cies among them. Consequently, task planning is a decision-making problem that
involves selecting a connected path or subgraph within the corresponding graph
and invoking it. In this paper, we explore graph learning-based methods for task
planning, a direction that is orthogonal to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of
attention and auto-regressive loss impede LLMs’ ability to effectively navigate
decision-making on graphs, which is adeptly addressed by graph neural networks
(GNNs). This theoretical insight led us to integrate GNNs with LLMs to enhance
overall performance. Extensive experiments demonstrate that GNN-based methods
surpass existing solutions even without training, and minimal training can further
enhance their performance. The performance gain increases with a larger task
graph size. 3

1 Introduction

LLM-based agents have recently emerged as a rapidly growing field of research and are considered
a significant step towards artificial general intelligence (AGI) [61, 7]. These agents have achieved
remarkable successes across a variety of domains, as evidenced by their ability to address complex
AI challenges (e.g., HuggingGPT [46]), excel in gaming environments (e.g., Voyager [58]), and
drive innovation in chemical research (e.g., [5]). Within this burgeoning field, task planning in
language agents emerges as a critical area of study. It involves LLMs autonomously interpreting user
instructions, breaking user’s instructions in natural language into concrete and solvable sub-tasks,
and then fulfilling the user’s request by executing each sub-task [43, 46, 45]. For instance, in the
case of HuggingGPT [46], task planning involves invoking expert AI models from the HuggingFace
website to solve complex AI tasks beyond the capabilities of GPT alone.

Given its practical significance, numerous algorithms have been proposed, with a major focus on
prompt design [45, 46, 33, 30, 60, 49, 71, 4, 63]. This paper proposes to explore an orthogonal

∗ denotes equal contributions. Work was done during Xixi Wu’s (xxwu@se.cuhk.edu.hk) internship at
Microsoft Research Asia. Corresponding authors (yifeishen@microsoft.com, yunx@fudan.edu.cn)

† Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
3 The code and datasets are available at https://github.com/WxxShirley/GNN4TaskPlan

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/WxxShirley/GNN4TaskPlan

direction, i.e., graph-learning-based approaches. In task planning, solvable sub-tasks can be naturally
represented as a task graph, wherein each node corresponds to a distinct sub-task, and each edge
signifies the dependencies between these sub-tasks. The crux of task planning, therefore, involves
selecting a connected path or subgraph to satisfy the user’s request, which is a decision-making
problem on graphs. Adopting this framework, we analyze the task planning capabilities of LLMs,
specifically within the context of HuggingGPT [46]. Our empirical investigation uncovers that a con-
siderable portion of planning failures can be ascribed to the LLMs’ inefficacy in accurately discerning
the structure of the task graph. This finding presents intriguing questions from both theoretical and
empirical perspectives. Theoretically, it initiates a discussion on the inherent limitations of LLMs
in processing task graphs. Empirically, it highlights the urgent need for developing effective and
efficient strategies to mitigate this deficiency and improve task planning performance.

For the theoretical question, we first investigate the expressiveness of Transformer architectures
when applied to graph tasks with sequential graph input, such as edge list representations, which
is the graph input format for task planning. Our initial hypothesis is that the format of sequential
graph input might not align with the inductive bias inherent to graph structures, potentially reducing
expressiveness. Contrary to this hypothesis, it is proved that by taking edge lists as the input, a
constant-width Transformer can solve graph decision-making problems by simulating dynamic
programming algorithms on edge lists. Nevertheless, we find that LLMs’ solutions lack invariance
under graph isomorphism, an important property for graph decision-making problems. In addition,
the expressiveness is weakened if the attention is sparse, which is typically observed in LLMs [66].
Beyond expressiveness, we also examine the influence of auto-regressive loss, demonstrating that it
introduces spurious correlations that can be harmful to graph decision-making tasks. These insights
expose the inherent limitations of LLMs in task planning and, more broadly, in graph-related problems
(e.g., the challenges in [14, 59, 34]).

To tackle the limitations, we take the use of GNNs, which have been shown to adeptly handle graph
decision-making problems, both in theory and in practice [24, 68]. Initially, we deploy LLMs to
interpret an ambiguous user request, breaking it down into more detailed steps. Subsequently, we
utilize a GNN to retrieve the relevant sub-tasks based on these detailed steps and the corresponding
sub-task descriptions. Notably, this approach can be implemented without training if we adopt
parameter-free GNN models such as SGC [65]. In the case of training-based methods, we apply
the Bayesian Personalized Ranking (BPR) loss [41] to facilitate learning from the implicit sub-task
rankings. Extensive experiments demonstrate that the proposed methods achieve better performance
than baselines. Specifically, our main contributions are summarized as follows:

1. Task Planning Formulation: This study presents a formulation of task planning as a graph
decision-making problem. In the realm of task planning, our work initiates the exploration
of graph learning methodologies to enhance performance. Concurrently, it introduces task
planning as a new application in the graph learning domain.

2. Theoretical Insights: We prove that Transformers have expressiveness to solve graph
decision-making problems based on edge list input, but inductive biases of attention and the
auto-regressive loss function may serve as obstacles to their full potential.

3. Novel Algorithms: Based on the theoretical analysis, we introduce an additional GNN
for sub-task retrieval, available in both training-free and training-based variants. The ex-
periments on diverse LLMs and planning datasets demonstrate that the proposed method
outperforms existing solutions with much less computation time. Furthermore, the perfor-
mance is further enhanced by improved prompts or a fine-tuned model.

2 Preliminaries

In this section, we introduce task planning in language agents and the current LLM-based solutions.

2.1 Task Planning in Language Agents

We start with the definition of task planning with a concrete example of HuggingGPT [46]. In task
planning, there is a pool of pre-defined tasks. Task planning inputs include this task pool and a user
request. The user request is expressed in natural language, which is ambiguous and could encompass

2

I have an image named 'example.jpg’. I want to make
all the red cars in the image blue and then identify
and label the objects in the image. Finally, I need
token classification of the object labels in the text.

Image
Segmentation

Image Editing

Object Detection

Token Classification

node

link

Tool Invocation Graph

Language
Agents

Image
Segmentation Object

Detection Image
Editing

Task GraphUser Request

Please generate an image
where a girl is reading a
book, and her pose is the
same as the boy in
“example.jpg”, then please
describe the new image
with your voice.

Task Planning
Pose

Detection

Pose-to-Image

Summarization

Image
Classification

Image-
to-Text

Audio
ClassificationText-to-

Speech

Translation

 task node

Image
Caption Pose

Detection

Pose-to-Image Image-
to-Text

Text-to-
Speech

Figure 1: Illustration of Task Planning in Language Agents (e.g., HuggingGPT [46])

multiple complex tasks. The output is a sequence of tasks and the order of their invocation to address
the user’s request.

Figure 1 features the task planning in HuggingGPT, with the pre-defined tasks corresponding to
APIs from the HuggingFace website, such as Translation and Pose-to-Image, accompanied
by detailed descriptions. For instance, the detailed description for Translation is “Translation
is the task of converting text from one language to another”. The user request is “Please generate
an image where a girl is reading a book, and her pose matches the boy in ‘example.jpg’, then
describe the new image with your voice.” The ground-truth output is a sequence of four APIs (nodes):
{Pose Detection, Pose-to-Image, Image-to-Text, Text-to-Speech}, outlining the order of
their invocation (a path). By invoking these APIs on HuggingFace, the user request can be fulfilled.

2.2 Current LLM-based Solution to Task Planning

The current solution of task planning is purely based on LLMs and involves two stages [45, 46].
The first stage involves request decomposition, where a user’s ambiguous request is broken down
into concrete steps via LLMs. For instance, the request illustrated in Figure 1 is decomposed
into the following steps: (1) analyze the pose of the boy; (2) take that pose and generate a new
image; (3) generate the caption for newly generated image; (4) convert the generated text into audio.
The second stage is task retrieval. For each decomposed step, LLMs are employed to retrieve an
appropriate task from the task pool and execute them in sequence. For example, “Analyze the pose of
the boy” corresponds to Pose detection. The output tasks should be (1) Pose detection; (2)
Pose-to-Image; (3) Image-to-Text; (4) Text-to-Speech. Figure 6 illustrates this procedure.

3 Graph Formulation and Insights

3.1 Graph Formulation of Task Planning

In this subsection, we formulate the task planning as a decision-making problem on the task graph.
The task graph is a special kind of text-attributed graphs and we define it as G = (V,E, T). Each
node v ∈ V represents a pre-defined task in the task pool, associated with a text tv ∈ T describing its
function (e.g., “Translation. Translation is the task of converting text from one language to another.”).
Each edge (u, v) ∈ E indicates a dependency between tasks (e.g., the output format of task u matches
the input format of task v). Task planning is to select a path or connected sub-graph on the task graph.

Viewed from this angle, task planning bears resemblance to traditional decision-making problems on
graphs, such as planning for the shortest path. Compared with traditional planning, task planning in
language agents involves diverse and open-ended goals due to the varied users’ personal requests.
For example, on platforms like HuggingFace, users’ intentions span across video, text, and image
domains. On the contrary, classic planning has a fixed goal for a given domain, which is often
explicitly expressed by mathematical formulas [55, 36].

3.2 Failures of LLMs in Planning: Empirical Findings

With the task graph at hand, we diagnose LLMs in task planning in Figure 2. We adopt the
experimental settings as outlined in the work of HuggingGPT [46], where the prompts are specifically
optimized for task planning on HuggingFace. The evaluation metric calculates the F1 score to assess
the accuracy of the tasks identified by LLMs against the ground-truth tasks. Additionally, we report

3

Baichuan2-13B
Vicuna-13B

CodeLlama-13BMistral-7B
GPT-3.5-turbo

20

40

60

80

Sc
or

e
(%

)

Performance-Task F1
Hallucination-Edge
Hallucination-Node

(a) Performance and Hallucination ratios

CodeLlama-13B GPT-3.5-turbo GPT-4-turbo
0

10

20

30

No
de

 H
al

lu
cin

at
io

n
(%

)

Node (HuggingFace)
Node (UltraTool)

0

20

40

60

Ed
ge

 H
al

lu
cin

at
io

 (%
)

Edge (HuggingFace)
Edge (UltraTool)

(b) Hallucination ratios across datasets

Figure 2: Illustration of (a) LLMs’ planning performance and hallucination in HuggingGPT,
and (b) hallucination in relation to task graph size.

two task-graph-related metrics: the node hallucination ratio and the edge hallucination ratio. These
metrics measure the frequency of non-existent nodes (i.e., tasks) and edges (i.e., dependencies)
outputted by LLMs, respectively, indicative of the models’ misinterpretation of the graph input.

Our empirical findings reveal that (1) LLMs exhibit a certain hallucination ratio, and (2) there is a
strong correlation between the hallucination ratio and planning performance. This suggests that LLMs
struggle to accurately interpret the task graph while the task graph is the key to the performance.

We further explore whether the incidence of hallucinations correlates with the number of sub-tasks.
The HuggingGPT dataset contains 23 sub-tasks, and our analysis is expanded to incorporate the
UltraTool dataset [20], which consists of 260 sub-tasks. Figure 2b illustrates that the hallucination
ratio increases with a larger task graph size.

3.3 Failures of LLMs in Planning: Theoretical Insights

In this subsection, we provide theoretical insights into the limitations of LLMs in processing task
graphs. In contrast to previous graph learning approaches for graph decision-making problems, LLMs
process the graph input by flattening it into a sequence and are trained using an auto-regressive loss.
We will then examine the impact of these two factors.

How does sequential graph input impact the expressiveness? We consider general graph decision-
making problems that can be resolved using dynamic programming (DP) as described in (2). The
input comprises the edge list and initial states:

u1 v1 c[u1][v1] u1 v2 c[u1][v2] . . .︸ ︷︷ ︸
edge list

u1 Answer[0][u1] . . . un Answer[0][un]︸ ︷︷ ︸
initial states

(1)

The intended output format is u1 Answer[k][u1] . . . un Answer[k][un]. In existing studies, task
graphs are often presented in (1), where the edge list is described by natural language and the initial
states are the task descriptions of each task node, detailed in Appendix A.9 of [45].

As discussed in the previous subsection, task planning is a decision-making problem on the task graph.
The decision-making problems on graphs are often solved by DP [3] and its general formulation is
given by

Answer[k][i] = f
(
□j∈T (i)g(Answer[k − 1][j], c[i][j])

)
, (2)

where Answer[k][i] is the solution to state i in the k-th iteration, c[i][j] is a cost associated with
state i and j, T (i) is the set of state can be transited to i, □j∈T (i) is an aggregation function such
as MAX or SUM, and f, g are task-specific update functions. We give the formulation of typical
DP algorithms in Appendix D.1 including some NPC problems. For the decision-making problems
on the text-attributed graphs (e.g., task planning), one may conceptualize them as DP in the feature
space, as discussed in [68].

To our surprise, although the edge list input does not directly reflect the geometric structures of graphs,
it enables Transformers to simulate DP efficiently, in terms of expressiveness, as demonstrated by the
following theorem.

4

Theorem 1. (LLMs have enough expressiveness) Assume the input format is given in (1) and f, g,□
in DP update (2) satisfy the assumptions 1 and 2 in Appendix. There exists a log-precision constant-
depth and constant-width Transformer that simulates one step of DP update in (2). As a consequence,
there exists a log-precision O(k)-depth and constant-width Transformer that simulates k steps of DP
update in (2).

The proof is presented in Appendix D.2. However, certain aspects of the proof’s constructions are
challenging to be realized in Transformers that have been pretrained on natural language. First, the
embedding process must be carefully filtered to ensure invariance under graph isomorphism. This
invariance property does not align with the inductive biases inherent in natural language, making
it difficult to achieve. Consequently, if an LLM can accurately produce the correct answer for a
specific ordering of nodes, it might not maintain this accuracy after the nodes have been reordered
(experiments given in Appendix D.3). Second, each token needs to synchronize its hidden states
with all other tokens sharing the same token ID, which is of order O(|V |). In practice, the attention
trained from natural language is typically sparse [66], leading to intractability issues. The formal
lower bound is provided in the following proposition and the proof is given in Appendix D.4.

Proposition 1. (Inductive bias of language hinders expressiveness) Assume the input format is
described (1) and that the attention mechanism is limited to attending to a constant number of tokens.
There exists at least one instance of one-step DP update such that no log-precision constant-width
constant-depth transformer can simulate.

How does auto-regressive Loss impact the generalization? Our investigation next focuses on
the auto-regressive loss and considers the following scenario: given a fixed task graph, user data is
collected to perform instruction tuning with next-token-prediction loss. For a tractable theoretical
study, we conceptualize this issue as a path-planning problem, since the output of task planning
is essentially a path. We consider the training dataset comprises input sequences of the form
s t s v1 v2 · · · t, where s represents the source node, t the target node, and the sequence s v1 v2 · · · t
is a path that adheres to specified constraints. During testing, given the initial and target nodes
s and t, the model is expected to generate a path with the same constraint. Our findings indicate
that auto-regressive loss can lead to the emergence of a frequency-based spurious correlation, as
substantiated by the following theorem and the proof is given in Appendix D.5.

Theorem 2. (Spurious correlations of auto-regressive loss) Assume (1) the loss employed is a next-
token-prediction loss utilizing cross-entropy, applied to the sub-sequence v1 v2 · · · t during training;
(2) the output logits are determined by target node t and the current node vi−1. Let Nt,vi−1,u be the
number of times in the training dataset such that t is the target node, vi−1 is the current node and
vi = u is the next node. The optimal logits for predicting the next node u from current node vi−1

towards target node t is given by v̂i[u] =
Nt,vi−1,u∑
u Nt,vi−1,u

if
∑

u Nt,vi−1,u > 0. If
∑

u Nt,vi−1,u = 0,

v̂i[u] can be any non-negative number subject to
∑

u v̂i[u] = 1.

In our setup, s t is the instruction and the third token is a duplicate of the first token. It is reasonable
to exclude these tokens in the loss calculation, which is the first assumption. The second assumption
assumes that the output only depends on the current node and target node, which is a minimal
requirement for path-related problems. For DP problems, the frequency-based prediction contradicts
to the value-based ground-truth. We then give an example that auto-regressive loss even cannot find a
valid path.

Example 1. Consider a training dataset consisting of a sufficient number of valid paths. Suppose
the dataset contains two paths a b c and b c d and there are no other paths such that t = d and the
current node vi = a for all i. Then we have Nd,a,u ≡ 0 for all u and the logits for the next node can
be arbitrary. This results in the model’s inability to predict the next node of a when given a as the
source node and d as the target node.

To a human, finding a path from a to d simply involves concatenating the paths a b c and b c d.
However, auto-regressive loss fails under such circumstances. In task planning datasets, we indeed
observe that the performance of fine-tuned LLMs is inferior to that of GNNs trained on the same
dataset, as shown in Figure 3b.

5

4 Integrating GNNs and LLMs for Planning

4.1 Motivations

In the last section, we find that a considerable portion of planning failures can be ascribed to the
LLMs’ inefficacy in accurately discerning the structure of the task graph, due to the hallucination, the
inductive bias of the attention, and next-token prediction loss. In contrast to LLMs, GNNs can strictly
operate on the task graph, thereby avoiding hallucinations. Additionally, they leverage the graph
structure as input, rather than flattening the graph into a sequence, thus overcoming the theoretical
limitations discussed previously. Furthermore, GNNs have demonstrated proficiency in handling
graph decision-making problems, both theoretically and empirically [68, 11, 24]. As a result, the
simplest fix is to integrate GNNs into the task-planning algorithm.

In the following subsections, we propose both training-free and training-based approaches to enhance
performance. Training-free methods are necessary when the available tasks are continuously changing,
or new tasks are emerging constantly. This scenario is common when the task planning module is
deployed in a new system. Once the task planning module has been deployed for a period, it becomes
possible to collect users’ requests and label a small proportion of the data, enabling lightweight
training-based methods.

4.2 A Training-free GNN-based Approach

As we discussed in Section 2.2, the current solution to task planning involves two stages. The first
stage requires the ability to understand users’ requests in natural language and break them down into
concrete instructions, which is the unique ability of LLMs. The second stage is to select a path on the
task graph, where each node corresponds to a decomposed step. Thus, we can integrate GNNs in this
stage. The illustration of our framework is shown in Figure 7 in Appendix.

For each decomposed step outputted by the first stage, we use a GNN to select a corresponding node
within the task graph. Suppose we are selecting the node for the i-th decomposed step. First, we
utilize a small pre-trained language model, e5-335M [62], to embed the i-th decomposed step. The
resulting embedding is denoted as xstep

i . Second, for the task graph, we first use the same pre-trained
language model e5-335M to convert each node’s description into embeddings, denoted as the node
feature h0

v , where the superscript indicates the layer and the subscript represents the node. Then we
adopt a K-layer SGC [65] to compute the final node embeddings, resulting in hv = h

(K)
v . Given a

sequence of previously selected task nodes {v1, · · · , vi−1}, the next node vi is chosen according to
vi = argmaxv∈N (vi−1)

⟨hv,x
step
i ⟩, where hv is the final node embedding, and N (vi−1) denotes the

neighbors of node vi−1 in the task graph. Particularly, v1 can be selected from the whole graph.

As e5-335M is pre-trained and SGC is parameter-free, the proposed method requires no additional
training and can be effectively applied in a zero-shot manner.

4.3 A Training-required GNN-based Approach

The inference process in training-required methods mirrors that of the training-free approach, with
the difference being the substitution of parameter-free GNNs with parametric counterparts, such as
GAT [57] or GraphSAGE [15]. Here we specify the training process of GNNs.

Data Preparation: We assume that each entry in the task planning dataset comprises a user re-
quest, a sequence of decomposed steps, and the corresponding ground-truth tasks, denoted as
(request, {s1, . . . , sn}, {v1, . . . , vn}). If the dataset does not adhere to this format, we reformat it
accordingly using GPT-4, with details provided in Appendix C.2. It is important to note that there
is a one-to-one correspondence between the steps and tasks in the dataset. Therefore, the training
dataset can be represented as {(si, vi)}ni=1, where si is a step described in natural language, and vi is
its corresponding invoked task.

Training Loss: The problem in the dataset can be viewed as a binary ranking problem, where the
labeled node is 1 and the other nodes are 0. Therefore, we adopt the Bayesian Personalized Ranking
(BPR) loss [41] designed for recommendation with binary rankings. The loss function is given by
ℓ =

∑
(xstep,v,v′) − log σ(⟨hv,x

step⟩ − ⟨hv′ ,xstep⟩), where xstep represents the embedding of the
step’s textual description generated by e5-335M, v is the ground-truth task, and v′ is a negative task.

6

We select negative tasks that are textually similar to the positive task, and for computational efficiency,
we limit our selection to 2 negative tasks per positive task. The trainable parameters may merely
include GNNs or both GNNs and e5-335M with illustrative configurations shown in Figure 8 in
Appendix.

5 Experiments and Analysis

5.1 Experimental Setup

Datasets: We utilize four datasets across two task planning benchmarks: HuggingFace tasks,
Multimedia tasks, and Daily Life API tasks from TaskBench [45], as well as TMDB API tasks from
RestBench [50]. The HuggingFace dataset includes AI models on the HuggingFace. The Multimedia
dataset provides a wide range of user-centric tasks, such as file downloading and video editing. The
Daily Life APIs cater to everyday services like web search and shopping functionalities. TMDB
focuses on movie-related search and retrieval tasks. Statistics for each dataset are presented in Table 7
with illustrative examples shown in Figure 4 in Appendix. Other benchmarks, such as ToolBench [39]
and ToolAlpaca [54], are less suitable for our experiments due to (1) the absence of a well-defined
task graph detailing tasks and their dependencies, and (2) a scarcity of samples involving multi-task
planning, with a focus on single-task retrieval.

Evaluation: For the datasets from TaskBench, we split 3000 samples for training and 500 samples
for testing, each containing an invocation path with at least two tasks. For the TMDB dataset, we
first filter to include the samples with two or more invoked tasks, and then randomly select a sample
served as the in-context learning example. The remaining 94 samples are designated for testing. We
adopt the evaluation metric in TaskBench [45] and HuggingGPT [46], i.e., Node F1-Score (n-F1)
and Link F1-Score (l-F1), which measure the accuracy of invoked tasks and invoked dependencies,
respectively. Besides, the Accuracy (Acc) can measure the success rate from task level. We also
measure the token consumption (# tok) as the efficiency metric.

Choices of LLMs: We consider close-sourced LLMs, i.e., GPT-3.5-turbo and GPT-4-turbo, as well
as open-sourced LLMs with different parameter scales, including CodeLlama-13B(or 7B)-Instruct-hf
[42], Mistral-7B-Instruct-v0.2 [23], Vicuna-13B-v1.5 [72], and Baichuan2-13B-Chat [69].

Choices of GNNs: To comprehensively investigate the effectiveness of different graph learning
methods for task planning, we consider a wide range of graph neural networks, including SGC [65],
GCN [26], GAT [57], GraphSAGE [15], GIN [67], and Graph Transformers [47].

5.2 Performance of the Training-free Approach

We compare the performance across three training-free methods: (1) LLM’s Direct Inference is
introduced in Section 2.2. (2) GraphSearch [33, 52, 32] leverages the classic graph search method
to generate the candidate nodes and uses LLMs to give a score for node selection. Given a step,
GreedySearch consistently selects the node with the highest score and adjacent to the previous task
node; AdaptiveSearch selects the nodes with scores above a fixed threshold, adjusting the breadth
of the search space in an adaptive mode; BeamSearch retains the k nodes with highest scores. (3)
SGC [65] employs a training-free SGC for task retrieval based on decomposed task steps. The
details of baselines are given in Section E.1 and illustrated in Figure 6. Table 1 shows both the
overall performance and token consumption costs, with results of Accuracy (Acc) moved to Table 9
in Appendix.

Compared with direct inference, integrating an SGC consistently improves performance, underscoring
the effectiveness of the proposed method. GraphSearch-type methods rely on beam search to identify
paths and employ LLMs for evaluation, where longer processing times generally lead to better
outcomes. Notably, our proposed method achieves comparable or superior performance (Table 1
and Table 9) to BeamSearch while requiring 5-10 times fewer tokens (Table 1) and inference time
(Table 10). The case studies are provided in Appendix H. However, we observed only marginal
improvements with GPT-4-turbo. A unique feature of GPT-4-turbo is its ability to manage ChatGPT-
plugins, and it may have been specially trained on task planning datasets. In addition, the pre-trained
language model used for feature extraction in SGC is e5-335M, which may not be sufficiently
powerful to effectively analyze GPT-4’s output. A detailed diagnostic analysis of cases involving
GPT-4 is provided in Figure 11 in Appendix.

7

Table 1: Comparison of Training-free Methods: Overall Performance (Node-F1 and Link-F1 in
%) and Token Consumption in ×103. Performance of other LLMs are given in Table 8.

TaskBench RestBench
HuggingFace Multimedia Daily Life TMDBLLM Method

n-F1 ↑ l-F1 ↑ # Tok ↓ n-F1 ↑ l-F1 ↑ # Tok ↓ n-F1 ↑ l-F1 ↑ # Tok ↓ n-F1 ↑ l-F1 ↑ #Tok ↓

Vicuna
13B

Direct 50.46 21.27 2.50 53.57 23.19 2.64 73.70 45.80 3.82 44.66 14.01 2.02
GreedySearch 52.94 25.73 6.23 46.99 23.11 5.55 42.98 13.33 7.18 45.22 13.69 3.42

AdaptiveSearch 54.36 25.67 9.81 51.24 24.32 11.25 62.71 31.15 13.92 41.32 7.02 6.51
BeamSearch 56.64 26.93 24.11 54.09 26.19 25.42 54.55 23.60 24.86 46.91 15.41 7.79

SGC 59.62 31.98 2.31 61.78 37.60 2.43 83.33 63.77 3.82 48.79 15.99 1.89

Mistral
7B

Direct 60.60 30.23 2.49 69.83 39.85 2.64 84.26 53.63 3.77 62.23 22.02 1.96
GreedySearch 65.91 38.13 6.52 58.92 34.72 6.26 75.18 49.47 8.27 60.64 23.18 4.38

AdaptiveSearch 67.30 38.90 7.68 71.59 44.84 10.66 86.39 63.65 10.92 54.04 21.35 9.99
BeamSearch 67.13 36.73 25.66 73.55 47.12 31.10 85.87 61.53 39.16 63.41 26.79 11.26

SGC 67.43 42.08 2.32 74.07 49.90 2.43 87.13 66.49 3.54 64.72 25.67 1.89

CodeLlama
13B

Direct 57.55 28.88 2.45 68.57 41.79 2.59 91.20 76.07 3.88 68.91 43.74 2.02
GreedySearch 61.67 34.02 5.95 67.98 42.04 4.95 91.50 76.56 5.54 66.67 42.16 3.81

AdaptiveSearch 60.85 31.66 11.10 68.14 41.71 6.77 91.34 76.09 7.18 63.74 37.17 8.16
BeamSearch 62.65 34.31 20.14 69.53 43.35 19.51 91.74 76.60 19.19 68.08 42.92 8.88

SGC 65.51 39.44 2.31 73.32 53.28 2.43 92.96 79.57 3.64 71.40 47.55 1.90

GPT-
3.5-turbo

Direct 73.85 45.73 2.14 82.85 62.07 2.26 96.09 83.65 3.36 81.70 57.52 1.67
GreedySearch 67.75 43.88 5.29 81.11 63.02 4.92 93.77 81.26 7.36 76.19 50.11 3.06

AdaptiveSearch 72.18 47.55 7.47 81.86 62.71 5.71 93.79 81.41 8.53 77.57 53.65 5.89
BeamSearch 75.51 49.62 14.22 83.57 64.50 12.91 95.66 82.72 22.05 81.24 57.98 6.42

SGC 76.37 50.04 2.02 83.65 63.65 2.09 96.38 86.19 3.16 82.63 59.15 1.61

GPT-
4-turbo

Direct 77.60 52.18 2.19 88.29 69.38 2.28 97.36 84.58 3.37 82.56 56.67 1.75
GreedySearch 74.75 50.44 5.78 86.81 69.80 5.52 97.36 85.78 7.37 75.34 49.95 3.73

AdaptiveSearch 76.17 51.30 8.94 88.02 69.99 7.14 97.30 85.80 9.04 81.78 55.15 6.35
BeamSearch 77.56 52.54 8.98 88.16 70.39 6.90 97.35 85.78 8.99 80.11 51.00 5.18

SGC 77.79 52.20 2.03 88.54 69.83 2.10 97.35 85.76 3.16 82.27 56.37 1.62

5.3 Performance of the Training-based Approaches

Settings: We further explore the efficacy of training-based GNNs in three TaskBench datasets. The
TMDB dataset is excluded due to its limited sample size. Throughout our experiments, we trained a
spectrum of GNN variants, both with and without co-training the small LM (i.e., e5-335M), whose
role is to generate node embeddings derived from task names and descriptions. Owing to space
constraints, we only show the performance of GraphSAGE in the main text, relegating a detailed
comparison of all the situations to Table 11 and Table 12 in Appendix.

Compared Methods: Due to the lack of training-based baseline methods specifically for task
planning, we adapt two existing approaches that combine LLMs and GNNs for graph-related tasks,
including: (1) TAPE [16] employs a LLM → LM → GNN architecture for node classification task.
In this framework, LLMs generate high-quality explanatory text for each predicted node, which is
then fine-tuned by an LM to produce node embeddings. Finally, a GNN performs the downstream
classification. We adapt TAPE for task planning by reformulating the problem as classifying user
requests into corresponding node labels within the task graph. (2) GraphToken [38] uses GNNs to
tokenize graph nodes, which are then fed into LLMs to generate textual outputs. In our adaptation for
task planning, we treat the user request as the input question and the expected plan as the generated
answer. Additional implementation details are provided in the Appendix F.2.

Observations: From Table 2, we observe a significant improvement in performance when employing
a training-based GraphSAGE approach over the training-free method. However, the co-training of
GNNs with e5-335M does not yield a marked improvement, suggesting that message passing is the
crucial element for enhancing performance. Further analysis across a broad spectrum of GNNs (as
shown in Table 11 and Table 12) reveals that powerful GNNs, such as GINs, perform similarly to
networks perceived as less complex, like GCNs, and even underperform compared to GraphSAGE.
This pattern indicates that the task’s challenge may not lie in the expressiveness of the models but
rather in their ability to generalize. Regarding baselines, TAPE is unsuitable for task planning as its
classification approach simplifies task planning, overlooking task dependencies. While GraphToken
demonstrates superior performance over LLMs’ direct inference, we have noted instances of minor
hallucination. This observation suggests that GraphToken’s understanding of the task graph is not
yet perfect. In addition, GraphToken is limited to open-sourced LLMs. Besides, our proposed
approaches also greatly boost the parameter prediction performance, as given in Appendix G (e.g.
9% improvement to GPT-3.5-turbo and 3% improvement to GPT-4-turbo).

Efficiency: The details of the training time are given in Table 13. The training cost is remarkably low
because we use e5-335M [62] as the text embedding model for GNNs. If the trainable parameters
are limited to the GNNs alone, training typically concludes within just 3 minutes. Furthermore, the

8

Table 2: Comparison with Training-based Approaches: Node-F1, Link-F1, and Accuracy are
reported in %. TAPE [16] is designed for node classification task and cannot predict links, so we
report Link-F1 as “NA”. GraphToken [38] requires finetuning LLMs, which is not compatible with
close-sourced LLMs. The performance of other GNNs and LLMs are given in Table 11 and Table 12
in the Appendix.

HuggingFace Multimedia Daily LifeLLM Method n-F1 ↑ l-F1 ↑ Acc ↑ n-F1 ↑ l-F1 ↑ Acc ↑ n-F1 ↑ l-F1 ↑ Acc ↑

Vicuna-13B

Direct 50.46 21.27 8.72 53.57 23.19 11.20 73.70 45.80 24.43
TAPE 59.47 NA 5.07 54.97 NA 2.07 73.26 NA 12.50

GraphToken 63.37 31.54 15.61 65.40 36.38 19.87 81.65 48.29 43.37
GraphSAGE 61.86 35.68 20.08 63.71 39.88 21.37 86.07 67.63 48.64

GraphSAGEco-train 62.82 37.04 19.68 65.89 42.18 21.58 84.23 65.44 47.81

Mistral-7B

Direct 60.60 30.23 16.36 69.83 39.85 25.05 84.26 53.63 44.52
TAPE 61.82 NA 6.13 58.92 NA 3.29 76.40 NA 16.44

GraphToken 64.42 32.04 18.60 72.31 42.60 30.31 86.82 57.06 53.99
GraphSAGE 68.12 43.09 25.77 75.51 52.94 34.29 87.51 66.57 52.74

GraphSAGEco-train 67.61 43.14 27.20 76.96 55.46 33.26 87.61 66.75 52.97

CodeLlama-13B

Direct 57.55 28.88 14.29 68.57 41.79 24.10 91.20 76.07 66.40
TAPE 64.03 NA 8.05 58.27 NA 2.01 77.74 NA 17.37

GraphToken 62.15 32.55 20.08 74.57 47.60 35.06 92.50 73.57 69.42
GraphSAGE 67.30 42.41 26.56 74.93 54.52 38.55 93.84 80.38 73.60

GraphSAGEco-train 68.92 44.85 29.58 76.28 55.41 37.75 93.30 79.51 74.00
Direct 73.85 45.73 28.95 82.85 62.07 47.96 96.09 83.65 81.30
TAPE 68.00 NA 8.83 62.43 NA 3.87 70.67 NA 8.92GPT-3.5-turbo GraphSAGE 77.90 52.68 35.11 85.29 65.80 53.55 96.43 86.26 83.13

GraphSAGEco-train 77.87 53.04 35.32 85.51 66.56 55.91 96.34 86.09 83.13

Direct 77.60 52.18 33.68 88.29 69.38 60.56 97.36 84.58 86.77
TAPE 68.82 NA 9.50 63.94 NA 4.02 71.51 NA 9.40GPT-4-turbo GraphSAGE 78.76 52.53 34.09 88.63 69.65 60.36 97.34 85.67 86.97

GraphSAGEco-train 78.49 52.62 33.88 88.86 70.25 62.37 97.42 85.80 86.57

Table 3: Performance Comparison of SGC and GraphSAGE on the UltraTool Benchmark [20].
Integrating GNNs can lead to more significant improvements in LLMs on larger task graphs.

0-shot 1-shotLLM Method n-F1 ↑ l-F1 ↑ Acc ↑ # Tok ↓ n-F1 ↑ l-F1 ↑ Acc ↑ # Tok ↓
Direct 38.88 16.42 13.58 10,535 57.64 30.44 26.25 10,737

BeamSearch 49.71 22.51 17.08 26,008 64.93 36.23 33.47 23,023
SGC 61.07 37.61 25.31 10,456 71.64 44.00 39.68 10,658CodeLlama-13B

GraphSAGE 63.78 39.91 27.98 10,456 72.81 45.26 43.49 10,658
Direct 54.35 21.35 18.33 8,462 63.58 30.85 25.00 8,614

BeamSearch 55.40 28.02 19.76 21,979 63.41 34.05 26.28 20,813
SGC 59.80 37.82 25.87 8,352 64.96 37.96 29.70 8,504GPT-3.5-turbo

GraphSAGE 63.97 42.26 30.35 8,352 70.49 47.79 39.74 8,504
Direct 68.63 40.01 27.20 8,513 69.54 41.79 28.17 8,693

BeamSearch 71.29 43.99 30.40 18,793 71.99 44.54 31.62 20,515
SGC 70.87 44.01 31.60 8,346 70.46 44.82 33.00 8,504GPT-4-turbo

GraphSAGE 70.67 43.83 34.40 8,346 70.75 47.68 37.22 8,504

training duration extends to only 15 minutes when GNNs are jointly trained with e5-335M model.
This efficiency stands in stark contrast to the 10-20 hours required for tuning open-sourced LLMs.

5.4 Scaling to Large Task Graphs

To demonstrate the scalability of our method to larger task graphs, we conducted a supplementary
experiment on the newly released planning benchmark UltraTool [20], which features a relatively
large task graph with 260 nodes. Details on processing this dataset are provided in Appendix C.3.
We present a performance comparison of GNN models (training-free SGC and training-required
GraphSAGE) against strong baselines like BeamSearch in Table 3. Among the metrics, accuracy (Acc)
is calculated based on whether the predicted tasks match the ground-truth tasks, measuring the success
rate at each case level. In such conditions, integrating a GNN significantly enhances performance and
mitigates planning failures, e.g., GPT-4-turbo undergoes a 9.05% accuracy improvement with the
introduction of GraphSAGE.

9

�%���"�#
��������%���"

�#�
�!�)$��	

�����!�)$�
��

�

��

�%
��
��
	�
��
%'
��
��

�

��	��
����
�!'��(
�'�& ����

�$���!�"���
����$���!�"�

� �(#��	
����� �(#�
��

��

��

�$
��

��
	�

��
$&

��
��

�

��		
�	����

� &��'
�&�%�����

	�!��"�� ���"

�!��"�� ���"

������ ���"
��

��

�

��
��

��
	�

��
�

��
��

�

����	
�
����
�� ��"
� �������

	�!��"�� ���"

�!��"�� ���"

������ ���"
��

��

�

��
��

��
	�

��
�

��
��

�

�	���
���
�� ��"
� �������

(a) Orthogonal to Different Prompts (b) Orthogonal to Fine-tuned LLMs
(a) Different Prompts

�%���"�#
��������%���"

�#�
�!�)$��	

�����!�)$�
��

�

��

�%
��
��
	�
��
%'
��
��

�

��	��
����
�!'��(
�'�& ����

�$���!�"���
����$���!�"�

� �(#��	
����� �(#�
��

��

��

�$
��

��
	�

��
$&

��
��

�

��		
�	����

� &��'
�&�%�����

	�!��"�� ���"

�!��"�� ���"

������ ���"
��

��

�

��
��

��
	�

��
�

��
��

�

����	
�
����
�� ��"
� �������

	�!��"�� ���"

�!��"�� ���"

������ ���"
��

��

�

��
��

��
	�

��
�

��
��

�

�	���
���
�� ��"
� �������

(a) Orthogonal to Different Prompts (b) Orthogonal to Fine-tuned LLMs
(b) Fine-tuned LLMs

Figure 3: Orthogonal Effectiveness to both Improved Prompts and Fine-tuned LLMs

The results indicate that (1) LLMs’ performance is vulnerable to the scale of task graphs; (2) The
performance gain of the proposed method increases with a larger task graph.

5.5 Improved Prompts and Fine-tuned LLMs

In this subsection, we show that the proposed method is orthogonal to two dominant methods, i.e.,
prompt engineering and fine-tuning.

Orthogonal to Improved Prompts: We investigate GNN’s effectiveness when applied to improved
prompt templates, i.e., strategically designed prompts that enhance the task planning abilities of
LLMs. Specifically, we consider two types of prompts: (1) In-context Learning with Increased
Examples [45] During main experiments, we maintain the consistent 1-shot in-context learning
example for LLM’s direct inference. To realize further improvements, we increase the number of
examples to 2, and results under this setting are denoted as “2-shot Prompt”; (2) Plan like a Graph
(PlaG) [30] We adopt the prompt in [30] to encourage LLM to think and plan in a graph-like manner.
Specifically, we convert the entire task graph into plain text and then integrate PlaG instructions to
enhance LLM’s planning. Results under this prompt template are denoted as “PlaG Prompt”.

From the results shown in Figure 3a, where we apply three different prompts to CodeLlama-13B and
Mistral-7B on HuggingFace, it is clear that applying GraphSAGE to improved prompts, where task
steps are more concisely decomposed and predictions are more accurate, can also boost performance.

Orthogonal to LLMs’ Fine-tuning: To explore whether our framework maintains effectiveness on
fine-tuned LLMs, which have acquired dataset-specific task planning capabilities, we conduct further
experiments. For each dataset, we use LoRA [19] to fine-tune two LLMs of different parameter scales,
including CodeLlama-7B and Vicuna-13B, based on the same training data as GNNs. Details of
fine-tuning process are provided in Appendix F.3. The finetuned model is named as “FT-CodeLlama”
and “FT-Vicuna” in Figure 3b.

The results depicted in Figure 3b demonstrate that fine-tuning markedly enhances the task-planning
capabilities of LLMs. Furthermore, applying GraphSAGE to the decomposed tasks of LLMs further
improves the accuracy of task planning.

6 Conclusions

This paper presents an initial exploration into graph-learning-based approaches for task planning in
language agents. Through theoretical analysis, we demonstrate the inductive bias of the attention
mechanism and the utility of auto-regressive loss impedes their effectiveness in task planning. We
propose to integrate GNNs for task graph analysis, which yields performance improvements across a
range of LLMs and planning benchmarks.

Limitations: Despite the encouraging performance, there are limitations that highlight significant
opportunities for enhancement. Firstly, our proposed method, while effective, is straightforward;
more sophisticated graph-learning-based decision-making algorithms could potentially offer further
improvements. Secondly, the construction of the task graph currently requires manual effort. Investi-
gating automated graph generation techniques for diverse applications is another promising direction
for future work.

10

Acknowledgements

This work is partly supported by grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (No. CUHK 14217622).

References
[1] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using real-time dynamic

programming. Artificial intelligence, 72(1-2):81–138, 1995.

[2] Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark, Alon B Baram, Kimberly L
Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? organizing knowledge for flexible behavior.
Neuron, 100(2):490–509, 2018.

[3] Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

[4] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving
elaborate problems with large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 17682–17690, 2024.

[5] Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research with
large language models. Nature, 624(7992):570–578, 2023.

[6] Blai Bonet and Hector Geffner. Labeled rtdp: Improving the convergence of real-time dynamic program-
ming. In ICAPS, volume 3, pp. 12–21, 2003.

[7] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[8] Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks. Journal of Machine Learning
Research, 24(130):1–61, 2023.

[9] Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang Yang.
GraphLLM: Boosting graph reasoning ability of large language model. arXiv preprint arXiv:2310.05845,
2023.

[10] Dillon Z Chen, Sylvie Thiébaux, and Felipe Trevizan. Learning domain-independent heuristics for
grounded and lifted planning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 20078–20086, 2024.

[11] Andrew J Dudzik and Petar Veličković. Graph neural networks are dynamic programmers. Advances in
neural information processing systems, 35:20635–20647, 2022.

[12] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing the
mystery behind chain of thought: a theoretical perspective. Advances in Neural Information Processing
Systems, 36, 2024.

[13] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

[14] Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models understand graph structured
data? an empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066, 2023.

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, 2017.

[16] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Harnessing
explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning, 2023.

[17] Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and question
answering. arXiv preprint arXiv:2402.07630, 2024.

11

[18] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: what’s the difference
anyway? In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 19, pp. 162–169, 2009.

[19] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685, 2021.

[20] Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, and Qun Liu. Planning, creation, usage:
Benchmarking llms for comprehensive tool utilization in real-world complex scenarios, 2024.

[21] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on Machine
Learning, pp. 9118–9147. PMLR, 2022.

[22] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716, 2024.

[23] Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, L’elio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. Mistral 7b. ArXiv, abs/2310.06825, 2023.

[24] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[26] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

[27] Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A survey of
graph meets large language model: Progress and future directions. arXiv preprint arXiv:2311.12399, 2023.

[28] Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-dataset zero-shot
transferability in graphs. arXiv preprint arXiv:2402.11235, 2024.

[29] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

[30] Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, and Janet B. Pier-
rehumbert. Graph-enhanced large language models in asynchronous plan reasoning. ArXiv, abs/2402.02805,
2024.

[31] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone. Llm+ p:
Empowering large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

[32] Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, Lirong Xiang, Yuchen Liu, and Dongkuan Xu. Toolnet:
Connecting large language models with massive tools via tool graph. ArXiv, abs/2403.00839, 2024.

[33] Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui, Xizhou Zhu, Lewei Lu, Qifeng Chen, Yu Qiao,
Jifeng Dai, and Wenhai Wang. Controlllm: Augment language models with tools by searching on graphs.
ArXiv, abs/2310.17796, 2023.

[34] Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, and Hai Jin.
Graphinstruct: Empowering large language models with graph understanding and reasoning capability.
arXiv preprint arXiv:2403.04483, 2024.

[35] Jiayuan Mao, Tomás Lozano-Pérez, Josh Tenenbaum, and Leslie Kaelbling. What planning problems can
a relational neural network solve? Advances in Neural Information Processing Systems, 36, 2023.

[36] Jiayuan Mao, Tomas Lozano-Perez, Joshua B. Tenenbaum, and Leslie Pack Kaelbing. What Planning
Problems Can A Relational Neural Network Solve? In Advances in Neural Information Processing Systems
(NeurIPS), 2023.

12

[37] Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid Palangi,
Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large language models with
CogEval. Advances in Neural Information Processing Systems, 36, 2023.

[38] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan
Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024.

[39] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and
Maosong Sun. Toolllm: Facilitating large language models to master 16000+ real-world apis, 2023.

[40] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Conference on Empirical Methods in Natural Language Processing, 2019.

[41] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

[42] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P Bhatt,
Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D’efossez, Jade Copet, Faisal Azhar,
Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open
foundation models for code. ArXiv, abs/2308.12950, 2023.

[43] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Processing Systems, 36, 2024.

[44] William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning domain-independent planning heuristics
with hypergraph networks. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 30, pp. 574–584, 2020.

[45] Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation. arXiv preprint
arXiv:2311.18760, 2023.

[46] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information Processing
Systems, 36, 2024.

[47] Yunsheng Shi, Zhengjie Huang, Wenjin Wang, Hui Zhong, Shikun Feng, and Yu Sun. Masked label
prediction: Unified massage passing model for semi-supervised classification. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence (IJCA), 2021.

[48] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

[49] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp.
11523–11530. IEEE, 2023.

[50] Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang, Cheng Li,
Ke Wang, Rong Yao, Ye Tian, and Sujian Li. Restgpt: Connecting large language models with real-world
restful apis, 2023.

[51] Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning general optimal policies with graph neural
networks: Expressive power, transparency, and limits. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 32, pp. 629–637, 2022.

[52] Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Sai Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung
yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large language model on
knowledge graph. 2023.

[53] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang. GraphGPT:
Graph instruction tuning for large language models. arXiv preprint arXiv:2310.13023, 2023.

[54] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca: Generalized
tool learning for language models with 3000 simulated cases, 2023.

13

[55] Sam Toyer, Felipe W. Trevizan, Sylvie Thiébaux, and Lexing Xie. Asnets: Deep learning for generalised
planning. ArXiv, abs/1908.01362, 2019.

[56] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving Olympiad geometry without
human demonstrations. Nature, 625(7995):476–482, 2024.

[57] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. International Conference on Learning Representations, 2018.

[58] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023.

[59] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. Can
language models solve graph problems in natural language? Advances in Neural Information Processing
Systems, 36, 2023.

[60] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. Plan-
and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language models. arXiv
preprint arXiv:2305.04091, 2023.

[61] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. Frontiers of
Computer Science, 18(6):1–26, 2024.

[62] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. ArXiv, abs/2212.03533, 2022.

[63] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022.

[64] James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil Burgess, and
Timothy EJ Behrens. The tolman-eichenbaum machine: unifying space and relational memory through
generalization in the hippocampal formation. Cell, 183(5):1249–1263, 2020.

[65] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pp. 6861–6871. PMLR,
2019.

[66] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

[67] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In International Conference on Learning Representations, 2019.

[68] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. What
can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.

[69] Ai Ming Yang, Bin Xiao, and et al. Baichuan 2: Open large-scale language models. ArXiv, abs/2309.10305,
2023.

[70] Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye, Di He, and
Liwei Wang. Do efficient transformers really save computation? arXiv preprint arXiv:2402.13934, 2024.

[71] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

[72] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong Zhang, Joseph Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena. ArXiv, abs/2306.05685, 2023.

[73] Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19724–19731, 2024.

14

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Task Planning in Language Agents . 2

2.2 Current LLM-based Solution to Task Planning . 3

3 Graph Formulation and Insights 3

3.1 Graph Formulation of Task Planning . 3

3.2 Failures of LLMs in Planning: Empirical Findings 3

3.3 Failures of LLMs in Planning: Theoretical Insights 4

4 Integrating GNNs and LLMs for Planning 6

4.1 Motivations . 6

4.2 A Training-free GNN-based Approach . 6

4.3 A Training-required GNN-based Approach . 6

5 Experiments and Analysis 7

5.1 Experimental Setup . 7

5.2 Performance of the Training-free Approach . 7

5.3 Performance of the Training-based Approaches 8

5.4 Scaling to Large Task Graphs . 9

5.5 Improved Prompts and Fine-tuned LLMs . 10

6 Conclusions 10

A Related Works and Discussions 17

A.1 Planning Algorithms in LLMs . 17

A.2 Task Planning in Traditional AI . 17

A.3 Planning in Agents and Neuroscience . 17

A.4 LLMs for Graphs . 18

A.5 Theoretical Analysis of Reasoning . 18

A.6 GNNs and GraphSearch for Combinatorial Optimization 19

B Prompts 20

C Datasets 23

C.1 Overview . 23

C.2 Reformatting Details of RestBench . 23

C.3 Reformatting Details of UltraTool . 23

D Supplementary Materials for Theoretical Results 25

15

D.1 Dynamic Programming . 25

D.2 Proof of Theorem 1 . 25

D.3 Permutation Invariance Test of LLMs . 26

D.4 Proof of Proposition 1 . 26

D.5 Proof of Theorem 2 . 27

E Supplementary Materials for Training-free Methods 28

E.1 Implementation of Baselines . 28

E.2 Results of All LLMs . 28

E.3 Accuracy Results of Training-free Methods . 29

E.4 Computational Cost Analysis . 29

F Supplementary Materials for Training-based Methods 31

F.1 Implementation of Training-based GNNs . 31

F.2 Implementation of TAPE and GraphToken . 31

F.3 Implementation of Fine-tuning LLMs . 32

F.4 Full Results of Training-based GNNs . 32

F.5 Performance of LM+GNN Co-trained Mode . 35

F.6 Computational Cost Analysis . 35

G Experiments on Task Parameter Prediction 36

G.1 Prompting LLMs to Fill in Parameters . 36

G.2 Empirical Results of LLMs Predicted Parameters 36

H Case Studies 37

I Broader Impacts 40

16

A Related Works and Discussions

A.1 Planning Algorithms in LLMs

The existing studies of task planning approaches can be categorized into several directions, including
task decomposition, multi-plan selection, the use of external planners, reflection, and memory-aided
planning [22]. Task decomposition methods, such as the chain-of-thought approach [63], employ the
divide-and-conquer strategy, utilizing LLMs for both task decomposition and sub-task planning. The
application of this method to task planning is detailed in Section 2.2 and is referred to as “Direct”
in the baseline comparison. Multi-plan selection strategies, exemplified by the tree-of-thought [71]
and graph-of-thought [4], leverage search-based methods to generate plans. Subsequently, LLMs
evaluate these plans to select the most effective one. The “GraphSearch” methods used in our
baselines fall into this category. External planner approaches [31] use LLMs to convert the problem
into Planning Domain Definition Language (PDDL) and then employ classic solvers to address the
planning problem. PDDL requires a pre-defined goal, for example, moving the blocks from one
state to another state. However, the goal of task planning investigated in language agents deals with
more flexible and personal goals, spanning personal needs in video, text, and image processing.
Translating these goals into formal PDDL is very difficult. We instead demonstrate that GNNs can
serve as an effective external planner in this application. Reflection-based methods [48] focus on
reflecting upon experiences to refine the plan, while memory-aided planning approaches [73] utilize
external experiences, such as those from search engines. These approaches are deployed in interactive
environments and orthogonal to this paper.

A.2 Task Planning in Traditional AI

Apart from task planning in language agents, there is also a domain in traditional AI called task
planning [1, 6, 18, 55, 44, 51, 35, 10]. Task planning in traditional AI is defined as (S,A, T , C,G, s0),
where S is the states, A is the action space, T : S × S ×A → [0, 1], a cost function C : S ×A →
[0,∞), a set of goal states G ⊆ S, and an initial state s0. An agent following a policy π : A× S →
[0, 1] will start in state s0, then repeatedly choose an action a ∼ π(a|s) and execute it to reach a
new state s′ ∼ T (s′|s, a), incurring a cost C(s, a) along its way. An optimal policy π∗(a|s) is one
that reaches the goal state with probability 1 while minimizing the total expected cost. Traditionally,
task planning is solved by reinforcement learning approaches [6] and heuristic A∗ approaches [18].
The neural network-based approaches are employed to accelerate the computation and improve the
performance [55, 44, 51, 35, 10].

The task planning in language agents is a different application. It cannot be solved as a constraint
satisfaction problem, since both the features of task graph and user request are expressed in natural
language. Compared with traditional planning, task planning for language agents involves diverse
and open-ended goals due to the varied personal requirements users have. For example, on platforms
like Hugging Face, users’ intentions span across video, text, and image domains. On the contrary,
classic planning has a fixed goal for a given domain, e.g., in the n-puzzle [55], the goal is formally
as placing the tiles in numerical order. Within this new application domain, while existing research
primarily focuses on prompt design for pre-trained LLMs, our work underscores the importance of
traditional planning methods, such as GNNs, in complementing LLMs.

A.3 Planning in Agents and Neuroscience

Planning is a pivotal topic in both agents and neuroscience, where graphs play an indispensable role.
We believe the concepts and insights presented in this paper are useful to these fields.

The TaskBench, RestBench, and UltraTool dataset used in this paper belongs to the tool agents. The
Math agent, AlphaGeometry, employs LLMs to generate auxiliary constructions in geometry [56].
Considering lemmas as nodes and their interdependencies as edges, the endeavor to prove a theorem
resembles the task of identifying a route to the theorem node within the graph constituted by potential
lemma nodes and the edges that represent their interdependencies. There are no explicit task graphs
in game agents [58], embodied agents [21], and code agents [48]. The core strategy in these domains
is to employ verbal reinforcement learning within LLMs. The state and transitions in reinforcement
learning can be modeled as nodes and edges in the graph. In addition, there are case-by-case graph
models in these agent applications. For example, in code agents, one can view the class as the nodes

17

and dependencies as the edges. In the embodied agents, the objects in the environment can be viewed
as the nodes.

In the neuroscience, animal planning is often assessed through path planning in mazes [2, 64].
Inspired by these animal experiments, planning testbenches have been developed for LLMs [37].
A computational model known as the Tolman-Eichenbaum Machine (TEM) has been proposed
to decipher the mechanisms of general planning in animals across various environments, such as
mazes [64]. The TEM model posits that hippocampal cells, including place and landmark cells,
remap between environments, while entorhinal cells exhibit a range of properties that mirror spatial
responses, including grid, band, border, and object-vector cells. In essence, hippocampal cells
map sensory inputs onto locations in abstract graphs and remap, and entorhinal cells execute graph
operations.

A.4 LLMs for Graphs

With the breakthroughs in LLMs, there has been a surge of interest in applying LLMs to graph-
related problems [27, 28]. GPT4Graph [14] and NLGraph [59] are two prominent benchmarks
designed to evaluate the performance of LLMs in the context of graph tasks. They encompass
a wide spectrum of challenges, various input formats, and state-of-the-art prompting techniques,
demonstrating that LLMs possess basic graph processing capabilities. Importantly, the choice of
prompts and formats significantly influences performance. However, these benchmarks also expose
the models’ susceptibility to spurious correlations within graphs. For instance, GPT-4 achieves only
about 50% accuracy on shortest-path tasks, even with the use of complex prompts. GraphInstruct
[34] attempts to fine-tune LLMs on graph-theory-related tasks, resulting in improved performance,
though it remains far from satisfactory. Despite these empirical efforts, there is a limited theoretical
understanding of these evaluation results. The analysis in Section 3.3 aims to shed light on the
empirical observations reported in these studies.

Considering these negative results, a new line of research has emerged that utilizes the output of GNNs
as tokens for LLMs, as seen in GraphGPT [53], GraphLLM [9], GraphToken [38], and G-Retriever
[17]. These approaches have demonstrated significant improvements in performance on GNN-related
tasks. However, they have not yet been applied to task planning due to the lack of extensive training
data. A promising future direction involves using task planning data generated by GPT to fine-tune
graph foundation models, such as GraphGPT [53], and applying them to task planning. This paper
proposes to use task planning as a new benchmark for this line of research.

A.5 Theoretical Analysis of Reasoning

Reasoning is closely related to task planning and decision-making. The theoretical exploration of the
reasoning abilities of neural networks was initiated by [68]. This work unifies various reasoning tasks,
such as intuitive physics, visual question answering, and shortest path calculations, into DP problems.
It then analyzes the generalization capabilities of MLPs, DeepSets, and GNNs. It is demonstrated
that GNNs exhibit the best generalization bounds, attributed to their architecture’s resemblance to
the Bellman-Ford algorithm, which is adept at solving DP problems. In terms of reasoning abilities
within LLMs, [12] examines how the Chain of Thought (CoT) approach aids in solving arithmetic
and DP problems without graphs. By decomposing challenging problems into simpler subproblems,
CoT extends the expressive capabilities of Transformers from TC0 to P. This analysis is further
applied to linear and sparse Transformers in [70].

Our proof of Theorem 1 builds upon the proof of Theorem 4.7 in [12]. However, while [12] addresses
DP problems without graph structures, Theorem 1 specifically focuses on DP problems with graph
edge list inputs. Moreover, unlike [12], which decomposes and solves the DP problem sequentially,
Theorem 1 proposes a method to simulate DP on edge lists in parallel. In addition, we analyze the
negative results rising from the inductive bias of attention mechanism and auto-regressive loss. These
theoretical contributions are novel and promise to be valuable for general reasoning and planning
tasks.

18

A.6 GNNs and GraphSearch for Combinatorial Optimization

GNNs are popular approaches for solving decision-making problems on graphs. The problems
investigated are typically NP-hard, such as the minimum vertex cover, maximum cut, and the
traveling salesman problem [8]. The basic approach involves selecting nodes one by one in a manner
that satisfies the constraints [24]. In this paper, we adopt this method to sequentially select task
nodes. Furthermore, reinforcement learning can be used to enhance the performance of GNNs beyond
what is achievable with supervised labels alone [24]. In [24], the node with the highest score is
selected exclusively. Conversely, [29] employs beam search to improve performance by selecting
the top-k nodes in a single iteration. Additionally, GNNs are utilized as the method for variable
selection in exhaustive searches for exact solutions to combinatorial optimization problems [13].
This paper conceptualizes task planning as a graph-based decision-making problem. Both greedy
and beam search algorithms have been adopted in task planning [33, 32]. Given this connection,
a promising future direction involves repurposing GNNs for decision-making approaches in task-
planning applications.

19

B Prompts

Table 4: Prompt template for LLM’s direct inference [45]

TASK LIST
{{ task list }}

GOAL
Based on the above tasks, I want you to generate task steps and a task invocation graph (including nodes
and edges) to address the # USER REQUEST #. The format must be in strict JSON format, like:
{
2 “task_steps”: [step description for one or more steps],
2 “task_nodes”: [{
2 “task”: “ task name must be from # TASK LIST # ”,
2 “arguments”: [a concise list of arguments for the task]
2}],
2 “task_links”: [{ “source”: “task name i”, “target”: “task name j” }],
}

REQUIREMENTS
1. Generated task steps and task nodes can resolve the user request # USER REQUEST # perfectly. Task
name must be selected from # TASK LIST #.
2. The task steps should strictly align with the task nodes, and the number of task steps should be same
with the task nodes.
3. The task links should reflect the temporal and resource dependencies among task nodes, i.e., the order
in which the tasks are invoked.

EXAMPLE
{{ in-context learning examples }}

USER REQUEST
{{ user request }}

Now, please generate your response in a strict JSON format: # RESULT #

20

Table 5: Prompt templates of GraphSearch [33]
Scenario Prompt

Task
Assessment

CANDIDATE TASK LIST
{{ candidate tasks }}

GOAL
Based on the provided # CANDIDATE TASK LIST # and the user’s request described in
the # STEP #, generate a score dictionary to assess each task’s problem-solving abilities.
The output must be in a strict JSON format, like: { “candidate task name 1”: score, ... }.

REQUIREMENTS
1. The keys of the generated score dictionary must align with the provided candidate
tasks, and you should output scores for all candidate tasks.
2. The “score” field denotes a concrete score that assesses whether each task can solve
the given step’s demand. The score should be in the range of [1, 2, 3, 4, 5], where a
higher score indicates better task-solving and matching abilities.
3. Carefully consider the user’s intention in # STEP # to assign the score. If the # STEP
contains a candidate task, its score should be >= 3.

EXAMPLE
{{ in-context learning examples }}

STEP
{{ step description }}

Now please generate your result in a strict JSON format: # RESULT #

Path
Selection

GOAL
Based on the provided # USER REQUEST # and initially inferred # STEPS #, select the
best path solution list from # SOLUTION LIST #. The selected solution should be the
one that can perfectly solve the user’s request and strictly align with the inferred steps.
The output must be in strict JSON format, like: { “best_solution”: [list of invoked tasks]}

REQUIREMENTS
1. Carefully analyze both the user’s request and previously inferred task steps. Select the
best solution that can perfectly follow the inferred steps and solve user’s request. Do not
change their corresponding sequences.
2. Make sure that each task in the final solution list exists in the valid # TASK LIST # {{
task list }}.

USER REQUEST
{{ user request }}

STEPS
{{ steps }}

SOLUTION LIST
{{ list of searched solutions }}

Now please generate your result in a strict JSON format: # RESULT #

21

Table 6: Prompt template for LLM’s filling in invocation parameters [45]

GOAL
Given a # USER REQUEST # and # PLANNED TASKS # to be invoked in sequence to solve this
request, please fill up each invoked task’s invocation parameters.
The format must be in strict JSON format, like:
{
2 “task_nodes”: [{
2 “task”: “ task name must be from # PLANNED TASKS # ”,
2 “arguments”: [a concise list of arguments for this task]
22}, . . .] 2
}

REQUIREMENTS
1. Consider each task’s input and output requirements, and carefully fill in the arguments for each task.
2. Analyze the resource dependencies, keeping in mind that these tasks are invoked sequentially to
address the original request.
3. The number of predicted task_nodes must strictly align with the provided tasks.

USER REQUEST
{{ user request }}

PLANNED TASKS
{{ a list of previously GNN retrieved tasks }}

DETAILS OF TASKS
{{ details, i.e., input and output requirements of each planned task }}

EXAMPLE
{{ in-context learning examples }}

Now, please generate your response in a strict JSON format: # RESULT #

22

Table 7: Statistics of Experimental Datasets
TaskBench RestBenchType Statistic HuggingFace Multimedia Daily Life TMDB UltraTool

Task Graph
Node 23 40 40 46 260
Links 225 449 1560 979 611

Link Type Resource Resource Temporal Resource / Category Resource

All Data # Samples 7,546 5,584 4,320 100 3,527

Test Set
Samples 500 500 500 94 500

Avg Nodes 3.81 3.92 4.05 2.33 2.38
Avg Links 2.81 2.92 3.05 1.33 1.38

C Datasets

C.1 Overview

We provide the statistics of experimental datasets from three task planning benchmarks in Table 7.
The illustrative examples from each dataset are shown in Figure 4. For datasets from TaskBench [45],
each sample consists of original user request, corresponding decomposed task steps, and ground-
truth task invocation path. As RestBench [50] and UltraTool [20] include only user requests and
corresponding API invocation sequences, we prompt GPT-4 to infer decomposed task steps aligned
with each invoked API, thereby finalizing the dataset.

C.2 Reformatting Details of RestBench

The TMDB dataset from RestBench, focuses on movie-related searching and recommending functions.
To align RestBench with our experiments, we have implemented the following processing steps:

Reformatting original APIs by assigning unique task names and descriptions: APIs in RestBench
were represented by request paths, such as “GET /movie/top_rated”, referring to the API that
retrieves top-rated movies on TMDB. To enhance semantic differentiation among APIs, we first
prompt GPT-4 to assign a unique name and a detailed functional description to each API. These
names and descriptions were then manually verified and refined. For example, the API previously
mentioned is renamed “Get Top-Rated Movies” with the description: “This API retrieves a list of
the highest-rated movies.” Note that though the original TMDB dataset contains 54 APIs, some were
never invoked in any data examples. Therefore, we focus only on those APIs that appeared in at least
one user request, resulting in a refined set of 46 APIs.

Constructing a Task Graph: Each API is regarded as a unique task node, and we depict their
relationships from two aspects: (1) categorical association, and (2) resource dependencies. For
instance, APIs that provide movie-related functionalities, such as retrieving movie details or recom-
mending films, are grouped under the movie category. Conversely, APIs focused on person-related
functions, like searching for actors, are classified under the person category. Additionally, if two APIs
share a common parameter like move_id, we establish a link between them to indicate a resource
dependency.

Reformatting Raw Data Examples: The original data samples in RestBench included a single
query and its corresponding API invocation sequence. To reformat this data into a path structure, we
treated each invoked API as a node and the sequence of invocations as directed links from one API
to the next. For example, a TMDB data sample consists of the query “Who was the lead actor in
the movie The Dark Knight” and corresponding ground-truth API solution [“GET /search/movie”,
“GET /movie/{movie_id}/credits”]. We transform this solution into a task invocation path as
“{ “task_nodes”: [“Search Movie”, “Get Movie Credit”], “task_links”: [{“source”: “Search
Movie”, “target”: “Get Movie Credit”}]} ”.

C.3 Reformatting Details of UltraTool

Motivation: In our main experiments using TaskBench [45] and RestBench [50], we observed that
strong LLMs like GPT-4-turbo already perform well. This may be attributed to two factors: (1)
the training of GPT-4-turbo likely included knowledge relevent to these benchmarks, as both were
released before GPT-4 and utilize popular platforms such as HuggingFace and TMDB; (2) the task

23

HuggingFace TMDB

I just finished watching Titanic
and I want some other movie
recommendations.

Step 1 Call Search Movie to find
the movie ID of Titanic
Step 2 Call Movie Recommend
to obtain a list of recommended
movies based on Titanic’s ID

Daily LifeMultimedia

I have an image “example.jpg”. I
want to detect the objects in the
image, generate a brief summary
describing them, and then
modify the image accordingly.

Step 1 Detect objects in the image
Step 2 Apply Summarization on
the output of step 1
Step 3 Modify the image based on
the summarized text

U
se

r
R

eq
ue

st
Ta

sk
 S

te
ps

Ta
sk

 In
vo

ca
tio

n
Pa

th

Object
Detection

Summarization
Image
Editing

I have an old black and white
photo “example.jpg”. I would
like to colorize the image and
then find other images that are
similar to the colorized version.

Step 1 Colorize the input image
Step 2 Perform a similar image
search using the colorized image
as input to the Image Search tool

Image
Colorizer

Image Search
By Image

Help me order a pizza from Uber
Eats at my place (12 Main St.).
Also, send an invitation email to
my friend at friend@example.com.
Then, I’ll need a taxi to pick up
my friend from her place.

Step 1 Call Order Food Delivery
API with food ‘Pizza’, location ‘123
Main St’, and platform ‘Uber Eats’
Step 2 Call Send Email with
address … and content …
Step 3 Call Order Taxi with
location ‘12 Main St’

Order
Food Delivery

Send Email
Order Taxi

Search Movie

Movie
Recommend

Figure 4: Illustrative details of experimental datasets.

graphs are relatively small, containing no more than 50 tasks, which falls within the capabilities of
LLMs. Therefore, we aim to evacuate planning performance as well as GNN’s effectiveness in a
more challenging scenario, i.e., one that requires specific knowledge beyond the LLM’s training and
involves larger task graphs that possibly exceed its memory and reasoning capabilities.

Constructing a Task Graph: We utilized UltraTool [20], released in March 2024, which features
complex planning scenarios across thousands of tasks, including travel, tourism, and other daily
life domains. The original UltraTool contains 5, 824 samples with 2, 032 available tasks across 22
distinct domains. However, we observed that some tasks appear in only one sample, making them
quite rare. Therefore, we filtered this dataset as follows: first, we considered only tasks that appeared
more than 5 times across all samples, focusing on more common tasks that cater to daily life. Next,
we retained samples that incorporated these filtered tasks, ensuring that the number of invoked tasks
exceeded 2 to satisfy the multi-task planning scenario. After this filtering, we identified 260 distinct
tasks. We then constructed the task graph by treating each task as a node and adding links between
tasks that were invoked sequentially in the dataset. For each task, we further verified and refined its
functional descriptions to ensure semantic suitability.

Reformatting Raw Data Examples: We allocated 500 samples for testing and 3, 000 samples
for GNN training. Although the original UltraTool provided decomposed steps, we found them
too coarse-grained, making it difficult to align step descriptions with suitable tasks. Therefore, we
employed a similar strategy by prompting GPT-4 to infer decomposed task steps that align with each
invoked task. As a result, each data sample consists of the user request, corresponding steps, and
ground-truth invoked tasks, ensuring high quality for GNN training.

24

D Supplementary Materials for Theoretical Results

D.1 Dynamic Programming

Longest Increasing Subsequence: The Longest Increasing Subsequence (LIS) problem is a classic
dynamic programming problem that involves finding the length of the longest subsequence within a
given array arr where the elements are in strictly increasing order. The state transition function for
the LIS problem can be expressed as:

Answer[k][i] = max
j∈T (i)

(Answer[k − 1][j] + (I(j ̸= i)× 1)),

where T (i) = {i}∪{j |j < i and arr[j] < arr[i]} denotes the set of states that can transfer to state
i, the aggregation function g(x, y) is implemented as max(x, y), and the cost c[i][j] is 1 for those
candidate states that are not equal to state i as adding the element leads to a longer subsequence while
0 for the state itself.

Bellman-Ford Algorithm: The Bellman-Ford algorithm is also a classic dynamic programming
algorithm used to find the shortest paths from a single source vertex to all other vertices in a weighted
graph. The core idea behind the Bellman-Ford algorithm is that the distance from the source vertex
to a target vertex can be computed as the minimum distance from the source to any of the target’s
neighboring vertices, plus the weight of the edge connecting the neighbor to the target. Therefore,
the state transition function for the Bellman-Ford algorithm can be expressed as:

Answer[k][i] = min
j∈T (i)

(Answer[k − 1][j] + w[j][i]),

where Answer[k][i] represents the length of the shortest path from the source vertex to node i at
the k-th iteration, T (i) = N−(i) denotes the set of in-neighbors of node i, and w[j][i] denotes the
weight from node j to i. The aggregation function g(x, y) is implemented as min(x, y) as we try to
find the shortest path.

Travelling Salesman Problem (TSP): This problem is defined as, given a set of cities and the
distances between every pair of cities, finding the shortest possible route that visits every city exactly
once and returns to the starting point. If we regard the set of already visited city S ending at i-th city
as the current state, then states that can transfer to current state are those that ending city can reach k.
Therefore, the state transition function for the TSP problem can be expressed as:

Answer[k][i][S] = min
j∈S,j ̸=i

(Answer[k − 1][j][S \ {i}] + w[j][i]),

where Answer[k][i][S] represents the cost of the shortest tour that visits all the cities in the set S and
ends at the i-th city, the aggregation function g(x, y) is still implemented as min(x, y) since we aim
to find the shortest path, and w[j][i] denotes the distance from city j to city i.

D.2 Proof of Theorem 1

Assumption 1. Each function f, g in (2) can be approximated by constant size MLP.
Assumption 2. The aggregation function □ in (2) is one of min, max, sum, mean.

The first assumption is mild as MLPs are universal approximators. The second assumption is mild
because these are the most commonly used aggregation functions.
Theorem 3. (Expressiveness) Assume the input format is given in (1) and f, g,□ in DP update (2)
satisfy the assumptions 1 and 2. There exists a log-precision constant-depth and constant-width
Transformer that simulates 1 steps of DP update in (2). As a consequence, there exists a log-precision
O(k)-depth and constant-width Transformer that simulates k steps of DP update in (2).

Proof. Token Embedding and Positional Embedding: The three-dimensional token embedding
includes the token type etype1 (0 for answer; 1 for node; 2 for edge cost), refined token type etype2

(0 for answer, 1 for the node tokens in initial states, 2 for the target node tokens in the edge list,
3 for the source node tokens in the edge list, 4 for edge cost), and the token id etoken (from 0 to
|V | − 1). The two-dimensional positional embedding includes the embedding for initial state tokens
epos1 (0 for edge list tokens, 1 for the first two elements of initial states, 2 for the second two elements

25

of initial states, etc.), embedding for edge list tokens epos2 (0 for initial state tokens, 1 for the first
three elements of the edge list, 2 for the second three elements of the edge list, etc.). There are also
constant-dimensional placeholders to put the states of DP.

Block 1 - Initial State Broadcast: The goal of the first block is to broadcast the initial states from the
initial state token to node tokens. (1) Use MLPs to recover the digits of the answer tokens and put them
in the first placeholder if etypek == 0; (2) Copy the first placeholder from answer token to its previous
node token by using COPY in Lemma 1 and setting Sk = {j|(epos1

k − epos1
j)2 < δ}; (3) Broadcast the

first placeholder with SUM in Lemma 1 and setting Sk = {j|(etype1
k −etype1

j)2+(etoken
k −etoken

j)2 < δ}.
Now the state for every node token ui is [etype1, etype2, etoken, epos1, epos2,Answer[0][ui]].

Block 2 - Edge Feature Operations: The goal of the second block is to copy the edge features
from the edge feature token to the corresponding node tokens. (1) Use MLPs to recover the digits
of the edge feature tokens and put them in the second placeholder if etype1 == 2; (2) Copy the
second placeholder from the edge feature token to the node token by using SUM in Lemma 1 and
setting Sk = {j|(epos2

k − epos2
j)2 < δ}. Now the state for every node token ui of the i-th edge is

[etype1, etype2, etoken, epos1, epos2,Answer[0][ui], c[ui][vi]].

Block 3 - Message Preparation: (1) Use MLPs to compute g and place the results
in the third placeholder. Now the state for every node token ui of the i-th edge is
[etype1, etype2, etoken, epos1, epos2,Answer[0][ui], c[ui][vi], g(Answer[0][ui], c[ui][vi])]; (2) Use MLPs
to clean up the first and second placeholder. Now the state for every node token ui is
[etype1, etype2, etoken, epos1, epos2, g(Answer[0][ui], c[ui][vi])]

Block 4 - Message Passing: The goal of the fourth block is to compute □ and f . (1) Use one
or two attention heads (one for max, min, mean aggregations, and two for sum aggregations) to
perform the aggregation operation. This is achieved by using MEAN or MAX or SUM for the
first placeholder and setting Sk = {j|(etoken

k − etoken
j)2 + (etype2

k − etype2
j)2 < δ}. Now the state for

every node token ui is [etype1, etype2, etoken, epos1, epos2,□vj∈T (ui)g(Answer[0][ui], c[ui][vj])];
(2) Use MLPs to compute f . Now the state for every node token is
[etype1, etype2, etoken, epos1, epos2, f(□vj∈T (i)g(Answer[0][ui], c[ui][vj]))].

After four blocks, the final state for every node token ui is given by
[etype1, etype2, etoken, epos1, epos2,Answer[1][ui]]. Answer[k][ui] can be obtained by repeating
the above four blocks k times.

Lemma 1. [12] Let n ∈ N be an integer and x1, · · · ,xn be a sequence of vectors where xi =
(x̃i, ri, 1) ∈ [−M,M]d+2 where M is a large constant. Let K,Q,V ∈ Rd′×(d+2) be any matrices
with ∥V ∥∞ ≤ 1 and let 0 < ρ, δ < M be any real numbers. Denote qi = Qxi,kj = Kxi,vj =
V xj . Define a matching set S = {j||qT

i kj | ≤ ρ}. Define two following operations

• COPY: The output is a sequence of vectors u1, · · · ,un with ui = vpos(i), where pos(i) =
argmaxj∈Si

rj .

• MEAN, MAX, SUM: The output is a sequence of vectors u1, · · · ,un, where ui = □j∈Si
vj

and □ is min or max or sum or mean.

Specifically, for any sequence of vectors x1,x2, · · · ,xn, denote the corresponding output of the
attention layer as o1,o2, · · · ,on. Then, we have ∥ui − oi∥∞ ≤ ϵ for all i ∈ [n] and S ≠ ∅.

D.3 Permutation Invariance Test of LLMs

We test whether LLMs respect the permutation invariance property in graph problems and the results
are given in Figure 5.

D.4 Proof of Proposition 1

Proposition 2. Assume the input format is as described in Equation (1) and that the attention
mechanism is limited to attending to a constant number of tokens. There exists at least one instance

26

0
1

2

34

5

6

7

8
An undirected graph with edge list: [[0, 1], [1,
2], [2, 3], [3, 4], [0, 4], [2, 4], [0, 3], [2, 5], [5,
6], [6, 7], [7, 8], [5, 8], [5, 7], [6, 8]]. What is
the diameter of this graph? Only provide a
concrete number.

Mistral-7B

GPT-4-turbo

4
1

2

30

5

6

7

8
An undirected graph with edge list: [[4, 1],
[1, 2], [2, 3], [3, 0], [4, 0], [2, 0], [4, 3], [2,
5], [5, 6], [6, 7], [7, 8], [5, 8], [5, 7], [6, 8]].
What is the diameter of this graph? Only
provide a concrete number.

0
4

5

31

2

6

7

8
An undirected graph with edge list: [[0,
4], [4, 5], [5, 3], [3, 1], [0, 1], [5, 1], [0,
3], [5, 2], [2, 6], [6, 7], [7, 8], [2, 8], [2,
7], [6, 8]]. What is the diameter of this
graph? Only provide a concrete number.

3 4 5 6 NA

Predicted diameter distribution

5 6 7

3 4 5 6 NA 3 4 5 6 NA

5 6 7 5 6 7

Predicted diameter distribution Predicted diameter distribution

Figure 5: Illustrative Examples of LLMs Failure to Solve Graph Computational Problems under
Permutation (i.e., node re-odering). Experiments were conducted for 30 times.

of one-step DP update such that no log-precision constant-width constant-depth transformer can
simulate.

Proof. We present a proof by contradiction. Assume that a token in a Transformer with a constant
depth, constant width, and log-precision can attend to only a constant number of nodes. Under this
assumption, the total information accessible to the token in such a Transformer architecture amounts
to O(log n) bits. However, for a graph with |V | nodes, the number of possible outcomes from
executing one-step DP is O(e|V |), necessitating Θ(|V |) bits for representation. By the pigeonhole
principle, this scenario inevitably leads to at least two distinct DP outcomes being represented by the
same output sequence generated by the model, thereby constituting a contradiction.

D.5 Proof of Theorem 2

Theorem 4. (Spurious correlations of auto-regressive loss) Assume (1) the loss employed is a next-
token-prediction loss utilizing cross-entropy, applied to the sub-sequence v1 v2 · · · t during training;
(2) the output logits are determined by target node t and the current node vi−1. Let Nt,vi−1,u be the
number of times in the training dataset such that t is the target node, vi−1 is the current node and
vi = u is the next node. The optimal logits for predicting the next node u from current node vi−1

towards target node t is given by v̂i[u] =
Nt,vi−1,u∑
u Nt,vi−1,u

if
∑

u Nt,vi−1,u > 0. If
∑

u Nt,vi−1,u = 0,

v̂i[u] can be any non-negative number subject to
∑

u v̂i[u] = 1.

Proof. We denote D as the training dataset, Li as the sequence length of the i-th sequence in the
dataset, vi,j as the one hot embedding of the j-th token in the i-th training sequence, and v̂i,j,u as the
u-th logit at the j-th token in the i-th sequence. The cross-entropy loss is given by

−
∑

i∈[|D|]

Li∑
j=4

vi,j,u log v̂i,j,u = −
∑

i∈[|D|]

Li∑
j=4

Iu=vi,j log v̂i,j,u
(a)
= −

∑
t,vj−1

∑
u

Nt,vj−1,u log v̂i,j,u

(b)
= −

∑
t,vj−1,u

(∑
u

Nt,vj−1,u

)[(
Nt,vj−1,u∑
u Nt,vj−1,u

)
log v̂i,j,u

]
,

where (a) uses the assumption that the output logits are determined by target node t and the current
node vi−1. In (b), we assume that

∑
u Nt,vi−1,u ̸= 0. The cross-entropy is minimized when

v̂i,j,u =
Nt,vj−1,u∑
u Nt,vj−1,u

. If
∑

u Nt,vi−1,u = 0, then the corresponding logits will not affect the loss

function and v̂i,j,u can take any number.

27

(a) Direct
(b) GraphSearch

User Request

Alter the color of red
cars to blue in
“example.jpg”, label
the objects, and
classify the labels.

Invocation Path

Image Editing

Object
Detection

Token
Classification

LLM

User Request

Alter the color of red
cars to blue in
“example.jpg”, label
the objects, and
classify the labels.

Decomposed Steps
Step 1 Edit the image
based on the given text

Step 2 Detect objects in
the image

Step 3 Perform token
classification on the
detected labels

LLM

Step1 Edit the image
based on the given …

Task Graph

LLM Image
Editing

Step2 Detect objects
in the image LLM

Step 3 Perform token
classification on … LLM

Strategy: Greedy / Adaptive / Beam

All Searched Paths
[“Image Editing”, “Object
Detection”, “Token Classification”]
[“Image Editing”, “Object
Detection”, “Summarization”]
······

LLM

Task Assessment

Path Selection

Image
-to-Image

Object
Detection

Image
Segmentation

Tabular
Classification

Token
Classification Summarization Translation

Invocation Path

1

2

3

Image Editing

Object
Detection

Token
Classification

Figure 6: Illustration of LLM’s Direct Inference and GraphSearch Method.

E Supplementary Materials for Training-free Methods

E.1 Implementation of Baselines

In this subsection, we present the implementation details of training-free baselines, including LLM’s
direct inference, GraphSearch, and ours SGC. Method illustrations are shown in Figure 6.

LLM’s Direct Inference: The prompt template for LLM’s direct inference is given in Table 4.
During experiments, we uniformly apply 1-shot in context learning for LLM’s direct inference of
task invocation path. For open-sourced LLMs, the temperature parameter is set to 0.2.

GraphSearch: The prompt template for GraphSearch is given in Table 5. This algorithm conducts
an iterative search on the task graph to identify an optimal task invocation path that can best satisfy a
given request. In each iteration, the neighbors of the last selected task are considered as candidates.
These candidates are evaluated by LLM for their suitability for the current step (Task Assessment).
The search process follows a depth-first approach. After the task assessment in the final step, a set of
potential invocation paths is generated. Subsequently, LLM is prompted to select the most appropriate
path from these options (Path Selection). The GraphSearch algorithm is implemented in three distinct
variants, each employing a unique task selection strategy:

• GreedySearch consistently selects the task node with the highest score at each step. Although fast
and simple, this approach can lead to cascading errors, resulting in degraded performance.

• AdaptiveSearch selects tasks with scores above a fixed threshold, adjusting the breadth of the
search space in an adaptive mode. During experiments, we empirically set the score threshold to 3.

• BeamSearch retains the top-k tasks based on the LLM’s assessment scores within candidates.
Beam search can expand the search space but slightly reduces the efficiency. We uniformly set the
beam width to 2.

Ours SGC: Regarding the choices of LM backbones, for integrating GPT-3.5-turbo and GPT-4-turbo
with SGC, the Roberta-355M [40] serves as the text encoder. For all other datasets and LLMs, the
e5-335M [62] configuration is employed.

E.2 Results of All LLMs

Table 8 supplements Table 1 with other LLMs. The proposed methods perform consistently better.

28

Table 8: Comparison of Training-free Approaches: Overall Performance (Node-F1 and Link-F1
in %) and Token Consumption in ×103.

TaskBench RestBench
HuggingFace Multimedia Daily Life TMDBLLM Method

n-F1 ↑ l-F1 ↑ # Tok ↓ n-F1 ↑ l-F1 ↑ # Tok ↓ n-F1 ↑ l-F1 ↑ # Tok ↓ n-F1 ↑ l-F1 ↑ #Tok ↓

Baichuan2
13B

Direct 45.85 19.00 2.43 47.57 4.08 2.59 33.45 9.52 3.72 30.87 9.92 1.96
GreedySearch 30.58 4.89 6.42 18.74 4.45 5.69 15.60 1.61 5.91 22.52 2.98 3.62

AdaptiveSearch 39.30 10.41 10.81 33.24 9.22 11.17 34.39 12.73 16.71 30.33 10.00 8.71
BeamSearch 41.06 9.59 24.69 32.24 9.09 21.60 36.18 13.18 23.83 30.97 7.61 9.08

SGC 56.53 29.94 2.28 56.75 31.62 2.43 62.31 36.69 3.53 32.97 9.11 1.84

Vicuna
13B

Direct 50.46 21.27 2.50 53.57 23.19 2.64 73.70 45.80 3.82 44.66 14.01 2.02
GreedySearch 52.94 25.73 6.23 46.99 23.11 5.55 42.98 13.33 7.18 45.22 13.69 3.42

AdaptiveSearch 54.36 25.67 9.81 51.24 24.32 11.25 62.71 31.15 13.92 41.32 7.02 6.51
BeamSearch 56.64 26.93 24.11 54.09 26.19 25.42 54.55 23.60 24.86 46.91 15.41 7.79

SGC 59.62 31.98 2.31 61.78 37.60 2.43 83.33 63.77 3.82 48.79 15.99 1.89

CodeLlama
7B

Direct 58.06 29.39 2.44 59.44 30.83 2.57 84.12 62.89 3.82 65.67 41.99 1.94
GreedySearch 58.71 31.56 5.84 62.83 38.12 5.35 82.51 63.83 7.08 65.51 42.60 3.12

AdaptiveSearch 60.42 33.18 6.84 62.32 36.81 5.50 83.42 64.15 7.83 65.37 40.64 5.00
BeamSearch 60.34 31.36 17.95 64.12 38.99 21.48 83.25 63.48 24.48 64.60 40.50 5.78

SGC 63.98 39.27 2.30 67.04 45.04 2.43 87.73 70.49 3.59 66.15 42.62 1.88

Mistral
7B

Direct 60.60 30.23 2.49 69.83 39.85 2.64 84.26 53.63 3.77 62.23 22.02 1.96
GreedySearch 65.91 38.13 6.52 58.92 34.72 6.26 75.18 49.47 8.27 60.64 23.18 4.38

AdaptiveSearch 67.30 38.90 7.68 71.59 44.84 10.66 86.39 63.65 10.92 54.04 21.35 9.99
BeamSearch 67.13 36.73 25.66 73.55 47.12 31.10 85.87 61.53 39.16 63.41 26.79 11.26

SGC 67.43 42.08 2.32 74.07 49.90 2.43 87.13 66.49 3.54 64.72 25.67 1.89

CodeLlama
13B

Direct 57.55 28.88 2.45 68.57 41.79 2.59 91.20 76.07 3.88 68.91 43.74 2.02
GreedySearch 61.67 34.02 5.95 67.98 42.04 4.95 91.50 76.56 5.54 66.67 42.16 3.81

AdaptiveSearch 60.85 31.66 11.10 68.14 41.71 6.77 91.34 76.09 7.18 63.74 37.17 8.16
BeamSearch 62.65 34.31 20.14 69.53 43.35 19.51 91.74 76.60 19.19 68.08 42.92 8.88

SGC 65.51 39.44 2.31 73.32 53.28 2.43 92.96 79.57 3.64 71.40 47.55 1.90

GPT-
3.5-turbo

Direct 73.85 45.73 2.14 82.85 62.07 2.26 96.09 83.65 3.36 81.70 57.52 1.67
GreedySearch 67.75 43.88 5.29 81.11 63.02 4.92 93.77 81.26 7.36 76.19 50.11 3.06

AdaptiveSearch 72.18 47.55 7.47 81.86 62.71 5.71 93.79 81.41 8.53 77.57 53.65 5.89
BeamSearch 75.51 49.62 14.22 83.57 64.50 12.91 95.66 82.72 22.05 81.24 57.98 6.42

SGC 76.37 50.04 2.02 83.65 63.65 2.09 96.38 86.19 3.16 82.63 59.15 1.61

GPT-
4-turbo

Direct 77.60 52.18 2.19 88.29 69.38 2.28 97.36 84.58 3.37 82.56 56.67 1.75
GreedySearch 74.75 50.44 5.78 86.81 69.80 5.52 97.36 85.78 7.37 75.34 49.95 3.73

AdaptiveSearch 76.17 51.30 8.94 88.02 69.99 7.14 97.30 85.80 9.04 81.78 55.15 6.35
BeamSearch 77.56 52.54 8.98 88.16 70.39 6.90 97.35 85.78 8.99 80.11 51.00 5.18

SGC 77.79 52.20 2.03 88.54 69.83 2.10 97.35 85.76 3.16 82.27 56.37 1.62

Table 9: Results of Supplementary Metric: Accuracy (%) for Training-free Methods on
TaskBench. Accuracy is 1 if predicted tasks match the ground-truth task set, and 0 otherwise.

LLM Method HuggingFace Multimedia DailyLife LLM Method HuggingFace Multimedia DailyLife

Vicuna
13B

Direct 8.72 11.20 24.43

CodeLlama
7B

Direct 15.00 15.19 47.69
GreedySearch 10.95 9.34 3.76 GreedySearch 16.20 20.04 45.07

AdaptiveSearch 10.55 10.37 13.15 AdaptiveSearch 18.79 19.41 46.48
BeamSearch 12.58 12.03 11.06 BeamSearch 17.00 21.10 45.67

SGC 16.02 20.12 42.17 SGC 21.20 29.32 55.33

Mistral
7B

Direct 16.36 25.05 44.52

CodeLlama
13B

Direct 14.29 24.10 66.40
GreedySearch 20.45 16.02 29.22 GreedySearch 19.11 24.90 67.00

AdaptiveSearch 21.88 26.90 49.32 AdaptiveSearch 17.30 24.10 66.80
BeamSearch 20.45 29.36 45.89 BeamSearch 19.92 25.70 67.20

SGC 25.15 33.68 52.28 SGC 22.54 36.75 70.80

GPT-
3.5-turbo

Direct 28.95 47.96 81.30

GPT-
4-turbo

Direct 33.68 60.56 86.77
GreedySearch 26.90 52.47 73.17 GreedySearch 33.68 61.37 86.77

AdaptiveSearch 29.36 51.61 74.59 AdaptiveSearch 33.47 61.17 86.77
BeamSearch 32.03 52.47 80.87 BeamSearch 33.26 61.57 86.57

SGC 32.44 51.61 83.13 SGC 34.09 60.97 86.77

E.3 Accuracy Results of Training-free Methods

Due to space limitations, we present only the Node-F1 and Link-F1 scores for training-free methods
in the main text. Here, we provide the Accuracy results in Table 9. These results show that integrating
SGC significantly enhances accuracy across different LLMs on all datasets, making previously
unsolvable planning scenarios manageable and successful.

E.4 Computational Cost Analysis

In this subsection, we present a comprehensive efficiency study on inference time of training-free
methods and results are shown in Table 10.

29

Table 10: Computational Cost Analysis of Training-free Methods. Due to space constraints in the
table, some LLMs are abbreviated such as “GPT-3.5” for “GPT-3.5-turbo”.

Inference Times Comparison on HuggingFace (Seconds)Method Baichuan Vicuna CodeLlama-7B Mistral CodeLlama-13B GPT-3.5 GPT-4

Direct 6.0 3.6 10.9 4.5 9.7 2.7 26.1
GreedySearch 30.7 45.7 23.1 109.8 29.1 7.4 55.6

AdaptiveSearch 50.2 79.4 27.2 28.2 52.4 9.4 87.0
BeamSearch 102.0 55.0 60.8 85.5 92.3 14.9 270.2

SGC 6.1 3.7 10.7 4.6 9.5 3.0 24.4

Inference Times Comparison on Multimedia (Seconds)

Direct 9.7 3.3 13.2 4.5 14.6 2.9 25.1
GreedySearch 52.3 54.3 37.0 109.7 9.9 8.8 52.2

AdaptiveSearch 98.1 142.5 25.7 41.6 25.6 9.6 84.2
BeamSearch 122.3 69.8 103.0 92.0 84.4 15.0 70.9

SGC 9.5 3.4 12.9 4.5 14.1 3.1 23.5

Inference Times Comparison on Daily Life (Seconds)

Direct 10.0 6.5 19.4 5.6 18.6 3.4 31.0
GreedySearch 62.7 49.8 29.3 198.3 37.6 13.2 124.3

AdaptiveSearch 133.3 97.6 30.5 69.1 45.5 16.5 209.0
BeamSearch 196.9 54.1 106.9 195.9 64.9 89.4 161.7

SGC 9.9 6.5 18.6 5.7 17.9 3.6 29.5

Open-sourced LLMs were deployed as local API services using the FastChat framework4 on a single
A100-80G GPU. This configuration enables faster and parallel inference. Under this setup, LLM’s
direct inference requires 3-15 seconds per request. GPT-3.5-turbo and GPT-4-turbo are accessed via
API, with the latter generally requiring more time. GraphSearch requires several minutes to complete
a request due to its exhaustive search on the task graph, impacting the efficiency. In contrast, SGC
achieves comparable efficiency to LLM’s direct inference, as it requires only a single LLM query
and both LM and SGC’s forward propagation processes are extremely efficient (typically completing
within seconds). Note that some discrepancies in reported times, such as Mistral-7B’s GreedySearch
taking longer than other modes, may be attributed to variations in the deployment across different
A100 services.

4https://github.com/lm-sys/FastChat

30

User Request

Alter the color of red
cars to blue in
“example.jpg”, label
the objects, and
classify the labels.

Decomposed Steps
Step 1 Edit the image
based on the given text
Step 2 Detect objects in
the image
Step 3 Perform token
classification on the
detected labels

LLM 1

GNNExtract text from the
image file “image.jpg”

Step Description

Image-to-Text

Text-to-Image

Positive Task

Negative Task

GNN Training (Optional)

LM

Step 1 Edit the image
based on given text ..

Step 2 Detect objects
in the image

Step 3 Perform token
classification on the …

LM

𝒙!
"#$%

GNN

Invocation Path

𝒙&
"#$%

𝒙'
"#$%

𝒙(
"#$%

Image Editing

Object Detection

Token
Classification

/

LM
BPR Loss

2

3

Task Graph

Figure 7: Illustration of our GNN-enhanced Task Planning. First, LLMs interpret user request
into several manageable steps. Then, we leverage GNNs for task retrieval, sequentially matching
each step description to a suitable task, finally generating the invocation path.

F Supplementary Materials for Training-based Methods

F.1 Implementation of Training-based GNNs

LM and GNN Configuration: For training-based GNNs, we uniformly use the e5-335M model
[62] as the LM backbone. For the graph encoder, our setup includes a single layer with a hidden
dimension of 1024. During the model training, we set the batch size to 512 and run for 20 epochs
with a learning rate of 1e − 3. We use the Adam optimizer [25] and implement an early stopping
mechanism with a patience of 5 epochs to prevent over-fitting. All experiments are conducted on a
single NVIDIA A100-80G GPU.

Training Data Preparation: From each dataset in TaskBench, we randomly select 3, 000 samples
to create the trainset. The original data includes specific task steps and corresponding task invo-
cation paths. Therefore, we first employ a topological sort to align each task step accurately with
corresponding task, forming “<step, ground-truth task>” pairs. Then, for each pair, we randomly
sample two negative tasks to constitute the “<step, positive task, negative task>” triplets for model
training. These negative samples are selected based on how textually similar they are to the positive
one, creating a robust differentiation challenge for the model.

Choices of Different Configurations: Our training-based model offers two configuration options:
training only the GNN while keeping the LM frozen, or co-training both the LM and GNN. Il-
lustrations of these configurations are provided in Figure 8. The first configuration is designed to
explore the GNN’s capability in task retrieval. The latter leverages the LM’s dataset-specific semantic
embeddings to enhance performance. For the co-training setup, we use a learning rate of 2e− 5 and
a training duration of 10 epochs.

F.2 Implementation of TAPE and GraphToken

We adapt TAPE [16] and GraphToken [38] as training-required baselines for task planning. Here, we
detail the adaptation processes for each method.

TAPE: To adapt TAPE for task planning, we reformulate the planning task as a node classification
problem, aiming to classify a user request into the appropriate task labels within the task graph.
Firstly, LLMs interpret user requests by generating high-quality explanatory text, i.e., chain-of-
thought reasoning, to understand each request. Then, a fine-tuned LM encodes these chain-of-thought
texts into latent embeddings. The fine-tuning process is based on pairs of textual descriptions and
their corresponding ground-truth tasks. Finally, GNNs select the suitable tasks by leveraging both the
generated text embeddings and the task embeddings. For a fair performance comparison, we fine-tune
the LM as e5-335M and configure the GNN as a 2-layer GraphSAGE with a hidden dimension of

31

GNN
Extract text from the
image file “image.jpg”

Step Description

LM

Image-to-Text

Text-to-Image

Positive Task

Negative Task

BPR
Loss LM

Model Structure (Main Experiments)

GNN
Extract text from the
image file “image.jpg”

Step Description

LM

Image-to-Text

Text-to-Image

Positive Task

Negative Task

LMBPR
Loss

LM+GNN Co-trained Structure (Supplementary)

trainablefrozen

Task Graph

Task Graph

𝒉!

𝒉!"

𝒙#$%&

𝒙#$%&

𝒉!

𝒉!"

forward backward propagation

Figure 8: LM+GNN Configuration. We offer two configurations: only training the GNN while
keeping the LM frozen (Table 11), or co-training both the LM and GNN (Table 12).

1024. The training data for both the LM and GNNs are consistent, utilizing the same split of the
training dataset.

GraphToken: For adapting GraphToken, we first encode the task graph G(V,E,X) by computing
each node’s representation xv by feeding its descriptive text into the pre-trained LM, e5-335M. Then,
a GNN transforms the initial node embedding matrix into H . The GNN is configured as a 2-layer
GraphSAGE with a hidden dimension of 1024. A mean pooling operation is further applied to the
node embeddings to obtain the graph’s overall representation as hG = Mean-Pooling(H). Finally,
both hG and the text embeddings of input instruction and user request are concatenated and fed
into the LLM to generate the output planning result. During this process, the backbone LLMs are
frozen, and only the GNN’s parameters are tuned. For each dataset, we train over 4 epochs using the
same 3, 000 training samples consisting of <user request, ground-truth planning> pairs.
The batch size is set to 16, with a maximum input length of 512 and a maximum output length of
300 for HuggingFace and Multimedia datasets, and 600 for DailyLife dataset. The learning rate is
configured to 1e− 5.

F.3 Implementation of Fine-tuning LLMs

To explore the effectiveness of our proposed framework on fine-tuned LLMs, we employ Supervised
Fine-Tuning (SFT) on the CodeLlama-7B and Vicuna-13B models. We use the same set of 3, 000
samples from GNN training as the LLMs’ fine-tuning data. In fine-tuning the LLM with LoRA
[19], we set the lora_r parameter (dimension for LoRA update matrices) to 8 and the lora_alpha
(scaling factor) to 16. The dropout ratio is set to 0.1, the batch size to 2, and we conduct training over
2 epochs with a learning rate of 1e− 5. For HuggingFace dataset, the maximum input length is set
to 800, while the maximum output length is 400. For Multimedia and Daily Life datasets, which
contain a larger number of tasks and require longer textual inputs, we set the maximum input and
output length to 1000 and 500, respectively. We utilize 2 NVIDIA A100-80G GPUs for fine-tuning
the LLMs.

F.4 Full Results of Training-based GNNs

In Table 11, we present comprehensive results for all training-based GNNs, including GCN [26],
GAT [57], GraphSAGE [15], GIN [67], and Graph Transformer [47]. To highlight the improvements
brought by GNNs, we also include results from the strongest baseline, BeamSearch.

From the results, it is obvious that all GNN encoders significantly enhance the task planning
abilities. For instance, when applied to Vicuna-13B on HuggingFace dataset, the introduction of GCN
results in a performance improvement of 17.83%, GAT contributes to a 17.48% increase, GraphSAGE
leads to a 22.59% boost, and GraphTransformer improves predictions by 18.0%. This conclusion
can be generalized across various LLMs and datasets, demonstrating the robust capabilities of GNNs.

32

Table 11: Performance of training-based GNNs. We also presents the results of BeamSeaerch,
the strongest variant from GraphSearch method to provide a comprehensive comparison. All GNNs
consistently enhance task planning performance across diverse LLMs, showing the effectiveness.

HuggingFace Tools Multimedia Tools Daily Life APIsLLM Method n-F1 ↑ l-F1 ↑ n-F1 ↑ l-F1 ↑ n-F1 ↑ l-F1 ↑

Baichuan-13B

Direct 45.85 19.00 47.57 4.08 33.45 9.52
BeamSearch 41.06 9.59 32.24 9.09 36.18 13.18

GCN 57.67 31.47 55.51 30.16 62.11 37.05
GAT 57.74 31.87 54.95 29.24 62.11 37.05

GraphSAGE 59.32 34.36 56.15 31.60 65.18 40.49
GIN 57.38 31.17 55.08 30.04 62.11 37.05

GraphTransformer 59.15 34.36 56.06 31.12 64.52 40.14

Vicuna-13B

Direct 50.46 21.27 53.57 23.19 73.70 45.80
BeamSearch 56.64 26.93 54.09 26.19 54.55 23.60

GCN 59.46 33.14 62.48 38.89 83.05 62.95
GAT 59.28 33.39 62.96 39.24 83.05 62.95

GraphSAGE 61.86 35.68 63.71 39.88 86.07 67.63
GIN 59.14 32.33 62.61 38.82 83.05 62.95

GraphTransformer 59.57 33.47 63.32 39.38 85.41 66.28

CodeLlama-7B

Direct 58.06 29.39 59.44 30.83 84.12 62.89
BeamSearch 60.34 31.36 64.12 38.99 83.25 63.48

GCN 65.07 40.50 67.46 45.84 87.23 69.27
GAT 65.20 40.93 67.41 46.46 87.23 69.27

GraphSAGE 66.67 43.03 67.97 46.31 88.53 72.02
GIN 65.52 40.98 66.89 45.41 87.23 69.27

GraphTransformer 65.83 42.58 68.90 47.20 88.36 71.72

Mistral-7B

Direct 60.60 30.23 69.83 39.85 84.26 53.63
BeamSearch 67.13 36.73 73.55 47.12 85.87 61.53

GCN 66.54 40.74 73.34 50.76 86.39 65.49
GAT 66.77 40.74 73.36 50.20 86.39 65.49

GraphSAGE 68.12 43.09 75.51 52.94 87.51 66.57
GIN 66.69 40.79 72.89 50.44 86.39 65.49

GraphTransformer 68.26 43.08 73.80 51.45 88.25 67.84
Direct 57.55 28.88 68.57 41.79 91.20 76.07

BeamSearch 62.65 34.31 69.53 43.35 91.74 76.60
GCN 66.22 41.05 72.99 52.18 91.83 77.88
GAT 66.29 41.28 74.08 53.56 91.83 77.88

GraphSAGE 67.30 42.41 74.93 54.52 93.84 80.38
GIN 66.40 40.89 73.62 53.15 91.83 77.88

CodeLlama-13B

GraphTransformer 66.70 42.07 74.72 54.10 93.81 80.44

GPT-3.5-turbo

Direct 73.85 45.73 82.85 62.07 96.09 83.65
BeamSearch 75.51 49.62 83.57 64.50 95.66 82.72

GCN 76.93 51.43 84.92 65.05 96.38 86.15
GAT 75.63 49.36 84.77 65.48 96.38 86.15

GraphSAGE 77.90 52.68 85.29 65.80 96.43 86.26
GIN 76.86 51.00 84.14 64.30 96.38 86.15

GraphTransformer 77.61 52.30 84.21 64.32 96.38 86.19

GPT-4-turbo

Direct 77.60 52.18 88.29 69.38 97.36 84.58
BeamSearch 77.56 52.54 88.16 70.39 97.35 85.78

GCN 77.01 50.49 88.56 69.60 97.10 85.22
GAT 76.41 49.66 88.43 69.52 97.10 85.22

GraphSAGE 78.76 52.53 88.63 69.65 97.34 85.67
GIN 77.74 51.02 88.05 69.13 97.36 84.58

GraphTransformer 78.47 52.17 88.07 68.71 97.32 85.57

33

Table 12: Performance of Training-based GNNs under the LM+GNN Co-trained Mode. Simul-
taneous training of LM and GNN yields significant performance improvements.

HuggingFace Tools Multimedia Tools Daily Life APIsLLM Method n-F1 ↑ l-F1 ↑ n-F1 ↑ l-F1 ↑ n-F1 ↑ l-F1 ↑

Baichuan-13B

Direct 45.85 19.00 47.57 4.08 33.45 9.52
SGC 60.97 36.12 56.02 31.36 64.84 40.00
GCN 60.68 36.31 57.82 32.87 64.73 38.92
GAT 60.39 35.37 57.24 32.19 64.46 40.14

GraphSAGE 59.76 35.59 57.97 33.29 63.21 38.10
GIN 60.31 35.82 56.62 31.53 63.55 38.19

GraphTransformer 60.76 36.82 56.82 31.40 64.88 40.23

Vicuna-13B

Direct 50.46 21.27 53.57 23.19 73.70 45.80
SGC 64.40 38.97 65.12 41.63 84.74 65.90
GCN 62.06 35.49 65.02 40.63 85.22 66.93
GAT 63.06 36.97 64.58 40.30 85.63 67.11

GraphSAGE 62.82 37.04 65.89 42.18 84.23 65.44
GIN 62.09 35.33 64.44 40.67 85.31 66.83

GraphTransformer 62.11 36.01 64.57 40.17 85.42 66.55

CodeLlama-7B

Direct 58.06 29.39 59.44 30.83 84.12 62.89
SGC 67.47 43.58 69.61 48.24 87.98 70.63
GCN 67.03 43.24 69.33 47.60 87.88 70.40
GAT 67.12 42.96 68.62 46.17 88.59 71.64

GraphSAGE 67.19 42.94 70.00 48.28 87.81 70.20
GIN 66.62 42.34 69.00 47.72 88.45 71.53

GraphTransformer 67.12 43.08 69.27 47.96 88.43 71.59

Mistral-7B

Direct 60.60 30.23 69.83 39.85 84.26 53.63
SGC 69.04 44.22 76.09 54.91 87.58 66.70
GCN 67.72 43.02 76.79 54.90 87.87 67.13
GAT 67.54 43.56 76.26 53.94 87.86 67.30

GraphSAGE 67.61 43.14 76.96 55.46 87.61 66.75
GIN 68.95 43.97 76.47 54.95 87.75 67.07

GraphTransformer 67.94 43.52 77.06 55.39 87.76 67.00

CodeLlama-13B

Direct 57.55 28.88 68.57 41.79 91.20 76.07
SGC 70.14 45.20 75.65 55.45 93.45 79.89
GCN 69.39 45.18 76.03 55.22 93.38 79.74
GAT 69.68 45.57 75.24 54.99 94.06 80.96

GraphSAGE 68.92 44.85 76.28 55.41 93.30 79.51
GIN 69.01 44.76 74.72 53.91 94.24 81.23

GraphTransformer 69.52 45.68 75.46 55.14 93.98 81.06

GPT-3.5-turbo

Direct 73.85 45.73 82.85 62.07 96.09 83.65
SGC 77.87 52.86 85.95 66.95 96.39 86.16
GCN 77.72 52.58 85.84 66.92 96.33 86.06
GAT 77.49 52.30 85.81 66.97 96.38 86.15

GraphSAGE 77.87 53.04 85.51 66.56 96.34 86.09
GIN 77.73 52.36 85.63 66.69 96.38 86.19

GraphTransformer 77.78 52.79 86.09 67.26 96.33 86.06

GPT-4-turbo

Direct 77.60 52.18 88.29 69.38 97.36 84.58
SGC 78.44 52.84 89.09 70.52 97.38 85.85
GCN 78.33 52.75 89.00 70.24 97.34 85.67
GAT 78.37 52.43 88.99 70.48 97.32 85.56

GraphSAGE 78.49 52.62 88.86 70.25 97.42 85.80
GIN 78.45 53.07 88.74 69.84 97.42 85.80

GraphTransformer 78.30 52.27 88.90 70.24 97.42 85.80

34

F.5 Performance of LM+GNN Co-trained Mode

During our main experiments, the LM backbone remains frozen while only the GNN is trained to
automatically learn the alignment between implicit step descriptions and suitable tasks, facilitating
task retrieval. In this subsection, we conduct a supplementary study where the parameters of a
pre-trained LM are also tuned along with GNN during model training. The model configuration is
illustrated in Figure 8, and the results are presented in Table 12.

The results demonstrate that, compared to the GNN-only tunable mode, co-training LM+GNN can
lead to further performance improvements. This enhancement occurs because the language model
acquires task-specific semantics, which makes the representations more discriminative and boosts the
GNN’s effectiveness in task retrieval. Additionally, it is noted that under the co-training setup, the
differences between various GNN encoders are relatively minor, with performance variations across
GNNs for a specific LLM on any dataset remaining within 2%.

F.6 Computational Cost Analysis

In this subsection, we provide the computational costs of training-based methods: training time for
GNN or LM+GNN co-trained, and resources needed for fine-tuning LLMs. Results are shown in
Table 13.

Table 13: Computational Cost Analysis of Training-based Methods. We present total training
times for both GNN and LM+GNN co-trained modes, and resources needed for fine-tuning LLMs.

Training GNNs
Time (Seconds)Mode Configuration # Parameters HuggingFace Multimedia Daily Life

GNN-only

GCN 1,049,600 136.5 136.1 237.7
GAT 1,051,648 136.9 151.8 237.8

GraphSAGE 2,098,176 134.2 149.8 233.8
GIN 2,099,200 134.2 134.9 233.6

GraphTransformer 4,198,400 135.0 150.2 233.7

LM+GNN
Co-trained

LM+SGC 335,141,889 743.1 323.3 384.7
LM+GCN 336,191,488 482.8 567.8 384.2
LM+GAT 336,193,536 741.3 812.3 384.4

LM+GraphSAGE 337,240,064 741.2 406.8 381.7
LM+GIN 337,241,088 735.6 361.8 382.9

LM+GraphTransformer 339,340,288 741.0 362.7 405.8

Fine-tuning LLMs
Device & Time (Hours)LLM # Param (# Trainable Param) HuggingFace Multimedia Daily Life

CodeLlama-7B 6,742,740,992 (4,194,304) 2×A100 7.0 1×A100 13.8 2×A100 9.5
Vicuna-13B 13,022,417,920 (6,553,600) 1×A100 17.8 2×A100 10.3 2×A100 19.0

Efficiency of Training GNNs: During experiments, each dataset shares the same GNN configuration:
1 single layer with a hidden dimension of 1024. Therefore, for each GNN, its number of parameters
remains consistent across datasets. The parameter scales for GNN variants range from 1M to 4M,
and the total training time for each dataset requires only 2-4 minutes, comparable to the time taken
by GraphSearch to fulfill a single request. For LM+GNN co-trained mode, where e5-335M [62]
serves as the LM backbone, training times increase to approximately 6-12 minutes. In summary,
both modes demonstrate high efficiency, with total training times spanning minutes, showcasing their
ability to rapidly adapt to new task planning scenarios.

Efficiency of Fine-tuning LLMs: Fine-tuning a LLM with 3, 000 training samples over 2 epochs
requires huge time, typically 10-20 hours on one or two A100-80G GPU devices.

35

G Experiments on Task Parameter Prediction

To assess the quality of task planning, we primarily focus on the predicted tasks and their dependencies,
leaving the parameters for invoking these tasks undiscussed. As LLMs’ direct inference for solely
predicting tasks has proven unsatisfactory (Figure 2), relying on LLMs alone to directly predict these
parameters is unreliable. In this section, we will first demonstrate that it is quite straightforward for
LLMs to fill in the parameters given a planned task sequence, which is a simple extension of our
framework. Furthermore, we will empirically show that with more accurately planned tasks, i.e.,
those retrieved by GNNs, LLMs can intelligently fill in the parameters.

G.1 Prompting LLMs to Fill in Parameters

Process: Recall that our framework enables more accurate invoked task sequences, e.g., {v1, . . . , vn},
for a specific user request. To finalize the invocation sequence, just adding an additional LLM query
can complete the invocation parameters for each task. Specifically, by providing the original user
request, planned tasks, and detailed descriptions including each task’s input and output requirements,
LLMs can be intelligently prompted to fill in the invocation parameters for each planned task, resulting
in a well-structured invocation sequence ready for execution. Prompts are provided in Table 6.

Example: Taking the request shown in Figure 1 as an example, which is: “Please generate an image
where a girl is reading a book, and her pose is the same as the boy in ‘example.jpg’. Then, please
describe the new image with your voice.” Suppose GNN’s planned tasks include { Pose Detection,
Pose-to-Image, Image-to-Text, Text-to-Speech }. LLMs can intelligently fill in the invoca-
tion arguments as follows: [{“task”: Pose Detection, “arguments”: [‘example.jpg’] }, {“task”:
Pose-to-Image, “arguments”: [output pose from Pose Detection] }, {“task”: Image-to-Text,
“arguments”: [output image from Pose-to-Image] }, {“task”: Text-to-Speech, “arguments”:
[output text from Image-to-Text]}].

G.2 Empirical Results of LLMs Predicted Parameters

Experimental Setup: We conduct this supplementary experiment on the HuggingFace dataset from
TaskBench [45]. Specifically, we compare the directly predicted invocation parameters from LLMs
(denoted as Direct) with the parameters filled automatically by LLMs using our GNN-retrieved
tasks (querying prompt as shown in Table 6). For GNNs, we consider both training-free SGC
and training-required GraphSAGE. Notably, with SGC, since the query for completing parameters
is also training-free, the entire pipeline can be deployed without any extensive model training or
labeled data. We adopt evaluation metrics from TaskBench, including Parameter-Type F1-Score
(Param t-F1) and Parameter-Value F1-Score (Param v-F1). These metrics measure the accuracy
of the predicted parameter types and concrete values, respectively. For example, when filling in the
invocation for Pose Detection, the ground-truth parameter type is Image, and the ground-truth
value is ‘example.jpg’.

Table 14: Performance (in %) of Task Parameters Prediction on the HuggingFace dataset
LLM Method t-F1 ↑ v-F1 ↑ LLM Method t-F1 ↑ v-F1 ↑

Direct 38.77 18.56 Direct 44.62 33.24
SGC 58.13+19.36 39.64+21.08 SGC 57.74+13.21 43.21+9.97Mistral-7B
GraphSAGE 59.07+20.30 41.40+22.84

CodeLlama-13B
GraphSAGE 59.49+14.87 45.54+12.30

Direct 62.42 48.27 Direct 70.73 55.54
SGC 68.13+5.71 54.34+6.07 SGC 72.91+2.18 58.02+2.48GPT-3.5-turbo
GraphSAGE 71.19+8.77 56.83+8.56

GPT-4-turbo
GraphSAGE 73.09+2.36 58.20+2.66

Observation: From the results shown in Table 14, we can conclude that: (1) LLMs’ direct inference
of invocation arguments is unsatisfactory. Even for the strongest LLM, GPT-4-turbo, the Parameter-
Value F1 score is only 55%, which is far from expectations. (2) With accurate planning provided by
GNNs, LLMs can leverage their inherent reasoning abilities to analyze the context and correctly fill
in the parameters. Across four LLMs, improvements of 3% to 23% can be observed, highlighting the
advantages of GNN-enhanced planning. (3) Our method is well-suited for training-free scenarios, as
the tasks retrieved by the training-free SGC already enable LLMs to infer the parameters effectively,
with only a minor performance gap compared to the training-required GraphSAGE.

36

H Case Studies

Effectiveness of GNNs: We show two cases in Figure 9 where the results of LLM’s direct inference,
BeamSearch, and GraphSAGE are compared. Due to space constraints and issues such as LLM’s
output content decoding errors or invalid paths, we present only the first four valid paths searched by
BeamSearch on the task graph. From the cases, we can conclude that BeamSearch relies on LLM’s
inherent reasoning abilities. Although LLM can explore the ground-truth invocation path on the task
graph, their final solutions are usually not the optimal as either containing the hallucination or wrongly
invoked tasks due to limited instruction following and reasoning abilities. On the contrary, GNN can
effectively align decomposed steps with suitable tasks, accurately achieving the ground-truth result
and enhancing task planning.

Failure Cases of GNNs: We also present the failure cases where GNN performance deteriorates
compared to direct inference to provide a comprehensive discussion of our method. Our conclusion
is that the method is sensitive to the quality of decomposed task steps, as an ambiguous step may
mislead GNN to wrongly select the task, and such errors can cascade due to the sequential selection
of tasks on the task graph. As the case shown in Figure 10, step 2 is ambiguously described as
“Segment the image and identify the tabular data”, which actually incorporates two distinct steps.
This ambiguity causes GNN to choose the unsuitable Tabular Classification instead of the
correct Image Segmentation. Since tasks are selected sequentially on the task graph, where the
next task is a neighbor of the current selection, such an error can prevent the exploration of the next
appropriate task, as it may not be a neighbor of the current, incorrect selection. We also present the
BeamSearch explored paths and its final solution, where it hits the ground-truth result.

Diagnosing GraphSearch with GPT-4-turbo: In our experiments, GraphSearch brings marginal or
even decreased performance for GPT-4-turbo across most experimental datasets, contradicting current
research [33, 32] which suggests that exhaustive search strategies can enhance the performance of
more powerful LLMs. To provide a detailed analysis, we show three types of cases in Figure 11:
Successful cases, Failure cases, as well as Maintaining cases:

• Successful Cases: As shown in the figure, despite inaccuracies in task decomposition (GPT-4
predicts an extra step compared to the three-step ground truth), its inherent reasoning abilities and
the knowledge explored along the task graph can fix these mistakes, hitting the ground-truth.

• Failure Cases: In the failure case, although GPT-4 identifies the ground-truth solution during
searching process, the final decision includes an incorrect task. This occurs because the final
solution selection demands complex reasoning abilities of LLM, as the context contains long
textual information from different aspects: the full task graph, user request, all searched
paths, and related instructions. The demanding context and reasoning challenge exceed GPT-4’s
capabilities, leading to errors.

• Maintaining Cases: These occur when GraphSearch merely replicates the result of LLM’s
direct inference, indicating no added benefit from exploring the task graph. In these instances,
despite navigating the graph, the LLM fails to self-correct inaccuracies due to inherent reasoning
limitations.

We emphasize that the results of GraphSearch with GPT-4-turbo, tend to “maintaining” cases. Under
such conditions, even a few failures can degrade overall performance, explaining why GraphSearch
does not consistently enhance performance for GPT-4-turbo.

37

User
Request

Convert the text “I love nature” into speech audio, classify the audio.
Finally, generate an image according to the audio classification result.

M
is
tr
al
-7
B

Text-to-Speech

Automatic
Speech

Recognition

Image
Generation

x

x

Text-to-Speech

Automatic
Speech

Recognition
Audio

Classification

Text-to-Image Image
Editing Text-to-Image Image

Editing

Text-to-Speech

Audio
Classification

Text-to-Image

Step 1 Convert the
text “I love nature”
into speech audio

Step 2 Classify the
generated speech
audio

Step 3 Generate
an image based on
classification result

G
N
N

Searched Paths Final Solution

V
ic
un
a-
13
B

Text-to-Speech

Audio
Classification

Audio-to-
Audio

x

Text-to-Speech

Automatic
Speech

Recognition
Audio

Classification

Text-to-Image Translation Text-to-Image Translation

Text-to-Speech

Audio
Classification

Text-to-Image

Step 1 Generate
speech audio from
the input text

Step 2 Classify the
generated audio

Step 3 Generate
an image based on
the classification
result

G
N
N

(a) Direct (b) BeamSearchwidth=2 (c) GraphSAGE (Ours)

LLM Direct
BeamSearchwidth=2

GraphSAGE (Ours)

Text-to-Speech

Automatic
Speech

Recognition

Image
Generation

x

x

Text-to-Speech

Audio
Classification

Text-to-Image

C
od
eL
la
m
a-
13
B

Translation

Token
Classification Summarization

Text
Generation

Image
Editing

Text
Generation

Image
Editing

Translation

Token
Classification

Text
Generation

Translation

Token
Classification

Text-to-Image

Step 1 Translate
the given text from
English to Spanish

Step 2 Identify key
entities in translated
text

Step 3 Generate an
example image
based on the
identified entities

G
N
N

I have an English text “During summer, John loves to visit the Eiffel Tower in Paris, France. He usually spends his time
taking pictures and eating ice cream at the nearby café.”, and I would like it translated to Spanish. Then, please identify
the key entities in the translated text, and generate an example image based on those entities.

Translation

Named Entity
Recognition

Text
Generation

x

x

x

M
is
tr
al
-7
B

Translation

Token
Classification

Text
Generation

Text-to-Image Text
Generation Text-to-Image Image

Editing

Translation

Named Entity
Recognition

Text-to-Image

x

Translation

Token
Classification

Text-to-Image

Step 1 Translate
the given English
text to Spanish
Step 2 Identify
key entities in the
translated text

Step 3 Generate
an example image
based on the
identified entities

G
N
N

User
Request

Searched Paths Final SolutionLLM Direct
BeamSearchwidth=2

GraphSAGE (Ours)

Translation

Named Entity
Recognition

Text-to-Image

x

Figure 9: Case Study of GNN’s Effectiveness. Nodes colored in pink and red denote wrongly
predicted task or hallucinated task, respectively. Due to space limitations, we only show the first four
valid searched paths of BeamSearch for illustration. Even though LLM can explore ground-truth paths
during searching, they lack certain instruction-following and reasoning abilities to consistently
choose the optimal path. On the contrary, GNN can correctly align decomposed steps with suitable
tasks, hitting the ground-truth result.

38

User Request I have this image “example.jpg”, and the description is: change the color of the table in the image to blue.
After that, segment the image to identify the tabular data. Finally, classify the tabular data.

Direct Inference

Image Editing

Image
Segmentation

Tabular
Classification

GraphSAGE (Ours)

G
N
N

Step 1 Change the
color of the table in the
given input image

Step 2 Segment the
image and identify the
tabular data

Step 3 Classify the
tabular data

Image Editing

Tabular
Classification

Token
Classification

x

x

GraphSearch

Image Editing

Image
Segmentation

Tabular
Classification

Image
Editing

Audio
Classification

Image
Segmentation

Tabular
Classification

Translation

Tabular
Classification

Image
Editing

Final Solution

Figure 10: Failure cases of GNN. Our framework relies heavily on the quality of decomposed task
steps. Ambiguous steps (step 2 which actually incorporates two steps) may mislead GNN to select
the wrong task.

Tabular
Classification

Translation

Sentence
Similarity

I have a table in an image file
“example.jpg” which is in French.
I need to classify the table,
translate the output text to English
and then compare its similarity to
this reference text: “This is an
important reference text.”

Tabular
Classification

Translation

Image-to-Text

Sentence
Similarity

Translation

Sentence
Similarity

Token
Classification

Image-to-Text

Translation

Sentence
Similarity

x

User Request
Searched Paths Final Solution

Direct BeamSearchwidth=2

Fa
ilu

re
 C

as
e

M
os

t C
as

e
(M

ai
nt

ai
n) Image

Segmentation

Object
Detection

Image-to-
Image

Image
Segmentation

Object
Detection

Image
Editing

Text-to-
Image

Object
Detection

Text-to-
Image

Image
Editing

Image
Segmentation

Object
Detection

Image-
to-Image

Image
Segmentation

Object
Detection

Image-to-
Image

I would like to input an example
image of a street view scene
(example.jpg) that contains multiple
objects. Please divide the image into
segments, identify the objects, and
generate images showcasing these
detected objects separately.

Su
cc

es
s C

as
e

I have an image file named
example.jpg, and I want to
know what the image is about.
Then, I want to ask a question
‘What color is the main object
in the image?’, and finally, I
want to check the similarity
between the answer to the
question and this sentence:
“The main object in the image
is blue.”

Image
Classification

Image-to-Text

Visual Question
Answering

Sentence
Similarity

Image
Classification

Text
Generation

Visual Question
Answering

Sentence
Similarity

Visual Question
Answering

Question
Answering

Document
Question

Answering

Sentence
Similarity

Sentence
Similarity

Image
Classification

Visual Question
Answering

Sentence
Similarity

Figure 11: Diagnosing GraphSearch for GPT-4. We provide three types of cases: Success Cases
where GPT-4 can leverage inherent reasoning abilities to select the optimal invocation path, which
may even fix wrongly decomposed task steps. Failure Cases where GPT-4 miss in the extremely
long context, containing the whole task graph, all searched paths, and instructions, selecting an
unsatisfactory path. Maintain Cases where the searched result is the same as direct inference result,
and those wrongly predicted tasks can still not be refined even under exhaustive search.

39

I Broader Impacts

In this paper, we did not use any non-public data, unauthorized software, or API in our paper, there
are no privacy or other related ethical concerns. Similar to other models designed for autonomous
agents, our model also has the unfortunate potential to be used for malicious attacks. We pledge to
restrict the usage of our model exclusively to the realm of research to prevent such misuse.

40

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in abstract and introduction truthfully reflect our contribution.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

41

Justification: Please see Appendix D.2 & D.5 where we provide detailed theoretical analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detailed all the experimental setups and implementation details in Section
5.1 and Appendix E.1 & F.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

42

Answer: [Yes]
Justification: Please refer to uploaded Supplementary Materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the data splits, hyperparameter settings, and model
configurations in both Experimental Setups in Section 5.1 and Appendix E.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow existing studies to set up experiments, which does not provide the
error bar. We can add the error bar if needed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

43

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Table 13 in the Appendix where we list the experimental devices
and costed time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully follow the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We specify them in Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

44

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

45

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

46

	Introduction
	Preliminaries
	Task Planning in Language Agents
	Current LLM-based Solution to Task Planning

	Graph Formulation and Insights
	Graph Formulation of Task Planning
	Failures of LLMs in Planning: Empirical Findings
	Failures of LLMs in Planning: Theoretical Insights

	Integrating GNNs and LLMs for Planning
	Motivations
	A Training-free GNN-based Approach
	A Training-required GNN-based Approach

	Experiments and Analysis
	Experimental Setup
	Performance of the Training-free Approach
	Performance of the Training-based Approaches
	Scaling to Large Task Graphs
	Improved Prompts and Fine-tuned LLMs

	Conclusions
	Related Works and Discussions
	Planning Algorithms in LLMs
	Task Planning in Traditional AI
	Planning in Agents and Neuroscience
	LLMs for Graphs
	Theoretical Analysis of Reasoning
	GNNs and GraphSearch for Combinatorial Optimization

	Prompts
	Datasets
	Overview
	Reformatting Details of RestBench
	Reformatting Details of UltraTool

	Supplementary Materials for Theoretical Results
	Dynamic Programming
	Proof of Theorem 1
	Permutation Invariance Test of LLMs
	Proof of Proposition 1
	Proof of Theorem 2

	Supplementary Materials for Training-free Methods
	Implementation of Baselines
	Results of All LLMs
	Accuracy Results of Training-free Methods
	Computational Cost Analysis

	Supplementary Materials for Training-based Methods
	Implementation of Training-based GNNs
	Implementation of TAPE and GraphToken
	Implementation of Fine-tuning LLMs
	Full Results of Training-based GNNs
	Performance of LM+GNN Co-trained Mode
	Computational Cost Analysis

	Experiments on Task Parameter Prediction
	Prompting LLMs to Fill in Parameters
	Empirical Results of LLMs Predicted Parameters

	Case Studies
	Broader Impacts

