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Abstract—This paper proposes two novel mathematical models
for optimizing the charging schedules of Unmanned Aerial
Vehicles (UAVs) within systems featuring either fixed or mobile
charging stations. The primary objective is to minimize the
total charging time for all UAVs. Initially, the fixed charging
station (FCS) system is modeled, followed by a comparison of
four different algorithms. Subsequently, the model is extended
to consider a mobile charging station (MCS) system, where the
station can relocate as necessary. In this scenario, an algorithm is
proposed to optimize the charging station’s position to enhance
charging efficiency. Finally, a numerical example is presented
to compare the performance of different algorithms in both
fixed and mobile charging station systems. The simulation results
demonstrate that the proposed algorithm effectively improves
charging efficiency by strategically positioning the charging
station.

Index Terms—Unmanned aerial vehicles, charging scheduling,
fixed charging station, mobile charging station

I. INTRODUCTION

In recent years, unmanned aerial vehicles have been widely
used in military, civil and commercial fields, showing great
potential for application. In the military field, UAVs are
widely used for tasks such as dangerous reconnaissance [1],
search and rescue [2], and logistics distribution [3] due to
their flexible deployment capability. Compared with ordinary
vehicles, UAVs can quickly reach areas with complex road
conditions, greatly improving the efficiency of rescue and
cargo transportation missions [4]. Due to the limitations of
battery technology and longer mission times, the endurance
issue of UAVs has become a major barrier to their develop-
ment. To overcome this problem, there has been some research
to improve the battery technology of UAVs. Reference [5]
summarizes recent advancements in battery technology. An-
other way to enhance endurance is to plan the scheduling of
UAVs such as path planning and task assignment, which is a
strategy used in many studies [6]–[9]. However, these studies
have some shortcomings. On one hand, some research imposes

restrictions on the charging scenarios, such as requiring mobile
charging vehicles to travel to the drones for power supply [8].
In certain situations, UAVs may need to perform hazardous
tasks in remote areas where charging vehicles cannot reach.
This requires UAVs to travel to the charging vehicle location
for energy replenishment. On the other hand, these studies do
not pay enough attention to the queuing problem caused by
the increased demand for charging, as their focus is on the
path and task planning of drones. Therefore, it is essential to
study the queuing problem in the scenario where UAVs need
to travel to charging stations to recharge their batteries.

The charging scheduling problem for commercial electric
vehicles shares similarities with that of drones [10]. The for-
mer has conducted thorough research on the queuing problem
in the charging process, providing methods and insights for the
latter. Based on the mobility of charging stations, these studies
can be categorized into fixed charging stations (FCS) and
mobile charging stations (MCS). For FCS, the studies mainly
address the layout of charging stations and the scheduling and
management of charging vehicles. Zhu et al. [11] proposed
a charging scheduling strategy that determines the charging
sequence based on the electric vehicles’ charging needs rather
than their arrival times at the charging stations. Hamed et
al. [12] considered different charging needs (day and night)
and various charging scenarios, formulating the problem as
a mixed-integer linear problem with multiple constraints. To
address the shortcomings of FCS, such as range anxiety and
lengthy charging times, some studies have begun to utilize
MCS [13], [14]. Li et al. [13] proposed a framework for
optimizing mobile charging vehicle operations and developed
a variant of a Mixed-Integer Linear Programming (MILP)
model. Inspired by the above research, we consider both fixed
and mobile scenarios of charging stations, and build the FCS
and MCS systems based on the scenario in which UAVs need
to travel to charging stations to charge.

The contributions of this paper are summarized as follows.



• Considering the scenario of UAVs traveling to charging
stations and the queuing problem caused by limited
charging capacity, we model the fixed charging station
system and use four different algorithms to solve the
problem.

• Based on the FCS system model, the MCS system model
is established by adding the mobility of the charging
station, and an algorithm to optimize the location of the
charging station is proposed. Simulation results indicate
that, compared to the FCS, the MCS system model
effectively reduces the total flight distance of drones
caused by charging.

The rest of the paper is organized as follows. Section II
introduces the system model. In Section III, optimization
algorithms are introduced. Numerical experiments and analysis
are conducted in Section IV. Finally, Section V concludes this
paper.

II. SYSTEM MODEL

In this section, a fixed charging station system is presented
to solve the queuing problem encountered in UAV charging.
Then, considering the practical needs of mobile charging sta-
tions, this paper establishes a mobile charging station system.
This system involves the selection of charging station location
and the scheduling of UAVs.

A. Fixed Charging Station System Model

1) FCS System: The fixed charging station system consists
of a fixed charging station and several UAVs operating tasks
in the vicinity of the FCS. Each UAV is designated by the
index i, i ∈ {1, 2, 3, . . . , N}. The UAVs can communicate
with the FCS, sending their current data to the FCS. The FCS
is equipped with the capability to collect and process various
data from UAVs, enabling it to calculate charging sequence
schemes. Data related to UAVs and the charging station are
presented in Table I. The FCS has sufficient energy but a
fixed number of charging ports. When all charging ports are
occupied by UAVs, the remaining UAVs need to queue up
in the charging sequence and wait their turn. The number of
charging ports is denoted as M and the coordinates of the FCS
are located at the origin.

The scheduling process of the FCS system is shown in
Fig. 1. A complete charging scheduling process involves: at
regular time intervals T , the FCS collects relevant data from
each UAV, confirms the set of UAVs capable of reaching
the FCS, and proceeds with the solution of the scheduling
scheme. UAVs unable to reach the FCS do not participate in
the schedule and terminate their tasks. At the same time, the
participating UAVs move to the FCS for charging. Upon arrival
at the station, each UAV lines up at the charging port in the
charging sequence provided by the FCS. After finish charging,
they will autonomously return to the mission site to continue
their missions. When all the UAVs involved in the scheduling
return to their mission sites, the scheduling process for this
round ends.

TABLE I: Description of the symbol

Symbol Description Unit
Ci The battery capacity of the UAV i Wh
Ii The initial charge of the UAV i Wh
vi The flying speed of the UAV i km/h
xi The abscissa of the UAV i km
yi The ordinate of the UAV i km
Pfi The mobile power of the UAV i W
Pci The charging power of the UAV i W
N The total number of UAVs /

M
The number of charging ports

for the charging station /
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Fig. 1: Scheduling process of FCS system

During the simulation, it is observed that the time required
to solve the scheduling solution is significantly shorter than
the arrival time of the UAVs. Therefore, it is reasonable to
allow the UAVs to travel to the FCS at the beginning of the
scheduling process.

2) Problem Formulation: We choose the optimization ob-
jective as the total duration from the start of the charging
schedule until all UAVs return to their respective task points to
resume task execution. This aims to minimize the time wasted
by UAVs due to charging.

To calculate the charging sequence, the first step is to assess
the eligibility of UAVs for scheduling. The time at which UAV
i arrives at the charging location is represented as:

ti =
Si

vi
, (1)

where vi represents the flying speed of UAV i. Si is the
distance from UAV i to the charging station, where Si =√
x2i + y2i . The condition that the remaining battery level of

UAV i needs to satisfy upon reaching the charging location
can be represented as:

Ii − tiPfi ≥ 0, (2)

where Ii is the initial battery level of UAV i and Pfi is
the flight power of UAV i.If condition (2) is satisfied, UAV
i participates in the current round of scheduling; otherwise,
it does not participate. Then, update the value of parameter
N to represent the total number of UAVs participating in the
scheduling.



At each moment, the number of UAVs currently charging
must not exceed the number of charging ports available at the
charging point. This constraint can be represented as:

N∑
i=1

χi ≤M, (3)

where χi is a binary function.When UAV i is charging, χi

equals 1; otherwise, it equals 0.
The scheduling solution provided by the model is the

charging sequence of the UAVs, which is a permutation of
the numbers from 1 to N .This permutation is denoted as p,
p ∈ PN . PN is the set consisting of all permutations containing
the numbers 1 to N . p[j] is the j-th element in the permutation
p, representing the UAV index positioned at the j-th slot in the
permutation. This implies that for p[j] = k, j represents the
charging order of the UAV with index k. For consistency, we
denote in the permutation p that p[ji] = i, where ji represents
the charging order of the UAV with index i. After UAVs reach
the charging location, they charge sequentially according to
the charging order. If there are no available charging ports,
they have to wait. Twi(p[ji]) is the waiting time of UAV i in
the permutation p. Note that this refers solely to the waiting
time of UAV i in the context of permutation p, and not as a
complex function. Similarly, Tci(p[ji]) represents the charging
time of UAV i in the permutation p. ti is denoted as ti(p[ji])
for consistency. The total duration of charging and movement
for UAV i in the permutation p can be represented as:

tsumi
(p[ji]) = 2ti(p[ji]) + Twi(p[ji]) + Tci(p[ji]), (4)

where ti(p[ji]) needs to be calculated twice because the UAV
needs to travel to the charging location and then return to the
task location. After determining the charging schedule time for
each UAV, taking the maximum value gives the total duration
of the scheduling, denoted as:

TI(p) = max
i∈N

tsumi
(p[ji]), (5)

where TI(p) is the total duration of the scheduling under the
permutation p. The UAV charging scheduling problem can be
formulated as:

min TI(p)

s.t. C1 : Ii − ti(p[ji])Pfi ≥ 0

C2 :

N∑
i=1

χi ≤M

C3 : p ∈ PN ,

(6)

where C1 requires that the UAV i must have sufficient power
to reach the charging location. C2 requires that the number of
UAVs charging simultaneously does not exceed the number of
charging ports available at the charging location. C3 represents
the solution of the problem as a charging order arrangement.

B. Mobile Charging Station System Model

1) MCS System: The mobile charging station system con-
sists of a mobile charging station and several UAVs operating
tasks in the vicinity of the MCS. The only difference between
the FCS and MCS systems is that the charging location in the
former is fixed, while that in the latter is mobile. Therefore,
the scheduling problem is divided into two parts: the selection
of MCS location and the scheduling of UAVs.

system.pdf
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Fig. 2: Scheduling process of MCS system

The scheduling process of the MCS system is shown in
Fig. 2. A complete charging scheduling process for the MCS
system involves: at regular time intervals T , the MCS gathers
relevant data from the UAVs to determine the MCS location.
Once the location L for the MCS is determined, both the
MCS and UAVs capable of reaching location L proceed to L
simultaneously. The charging sequence scheme is calculated
immediately after selecting location L. The round of charging
scheduling process is considered complete when all UAVs
involved in the charging schedule have returned to their
respective mission points. At the beginning of each scheduling
round, the coordinates of the MCS are initialized to the origin.

2) Problem Formulation: For selecting the MCS location,
the ideal location L is characterized by the charging station
being able to accommodate more UAVs for scheduling, while
the total distance for UAVs to reach the location is shorter.
We assume that the selected location is L = (xL, yL); the
distance from UAV i to location L is Si, where Si =√

(xi − xL)2 + (yi − yL)2. For the FCS system, the values
of xL and yL are always 0. Define the variable βi to indicate
whether UAV i participates in scheduling, as follows:

βi =

{
1 if Ii − tiPfi ≥ 0

0 otherwise,
(7)

where Ii− tiPfi ≥ 0 indicates that UAV i has enough power
to reach the charging location. Then, the location selection
problem can be formulated as:

min
xL,yL

−
N∑
i=1

βi + α

N∑
i=1

Siβi, (8)



where α = 0.01,
∑N

i=1 βi and
∑N

i=1 Siβi represent the total
number of UAVs participating in scheduling and the sum
of the distances from these UAVs to the charging location.
Setting a small value for α ensures that the number of UAVs
participating in scheduling is prioritized before optimizing the
total distance.

The scheduling after selecting the charging station location
is the same as that in the FCS system. Therefore, it will not
be elaborated upon further.

Algorithm 1 Selection of MCS location
Initialization:

1: The abscissa of the UAV i xi, the ordinate of the UAV
i yi, the movement speed of the UAV i vi, the battery
capacity of the UAV i Ci, the initial charge of the UAV i
Ii, the mobile power of the UAV i Pfi

Iteration:
1: Through the battery capacity, the movement speed, the

battery capacity, the initial charge and the mobile power
of UAVs, calculate the movement radius ri of UAVs

ri =
Ci − Ii
Pfi

vi

2: Take the coordinate (xi, yi) of UAVs as the center of the
circle, and the movement radius ri as the radius of the
circle to make a circular area

3: Find the area with the most overlapping regions to get the
set of candidate coordinates

4: Through traversal or heuristics, select the coordinate point
that makes the total distance of the objective function the
shortest minxL,yL

−
∑N

i=1 βi + α
∑N

i=1 Siβi

Output: The location L

C. Assumptions

1) Measurements of the initial power of the UAV, the
coordinates of the UAV relative to the FCS/MCS, and
the power consumed by the UAV are accurate.

2) The communication time between the drone and the
FCS/MCS is neglected.

3) The time required to change the charging interface for
the UAV is neglected.

4) The time for the UAV to reach the charging location is
always greater than the time required by the FCS/MCS
to determine the scheduling plan.

5) After selecting the charging location, the MCS always
arrives at the charging site before the UAVs.

Assumptions 1)–3) are common and weak assumptions on
the UAV charging service problem. Simulation results indi-
cate that the computation time for the MCS/FCS scheduling
scheme ranges from a few seconds to several minutes, which
is significantly shorter than the time required for the drone to
reach the charging station. Since the MCS is located roughly in
the center of the swarm, the charging location will be relatively
close to the initial MCS location. The MCS moves faster than

UAVs, which ensures that it reaches the charging location
faster. Therefore, Assumptions 4)–5) are reasonable.

III. OPTIMIZATION ALGORITHMS

A. Scheduling of UAVs

It can be seen that the optimization problem we have
established is a variant of the traveling salesman problem.
Therefore, heuristic algorithms can be used to solve it. We
select simulated annealing algorithm (SA), genetic algorithm
(GA), tabu search algorithm (TS), and particle swarm opti-
mization algorithm (PSO). By comparing the performance of
four heuristic algorithms, we chose the simulated annealing
algorithm. Details can be found in Section IV.

TABLE II: The parameter settings for each algorithm

Heuristics Parameter settings

PSO

The individual learning factor is 0.5; the social learning factor
is 0.3; the inertia factor is 1; the number of particles is 30;
the maximum inertia factor is 1; the minimum inertia factor
is 0.8.

GA The number of immunized individuals is 30; the crossover
probability is 0.95; the mutation probability is 0.1.

TS
The number of neighborhood solutions: N × (N − 1)/2 for
N ≤ 10, 50 otherwise; the number of candidate solutions is
25; the taboo length is (N × (N − 1)/2)0.5.

SA
The initial temperature is 33×N ; the number of cycles in
the inner layer is 26×N ; the temperature drop rate is 0.98;
accept the new solution with probability e−18×∆E/Tinit.

B. Selection of MCS location

Based on the objectives of maximizing the number of
UAVs involved in scheduling and minimizing the total distance
traveled by the UAVs, an algorithm can be designed to solve
the problem. First, the circles representing the reachable areas
of UAVs are calculated based on UAVs data. Then, the
region with the highest overlap of these circles is identified,
representing the area accessible to all UAVs. Within this area,
the point that minimizes the total distance for UAVs to reach
the charging location is determined as location L.

Fig. 3: Comparison of relative errors among four algorithms



(a) 10 UAVs (b) 20 UAVs (c) 30 UAVs

Fig. 4: Comparison of scheduling duration for SA, PSO, TS, and GA with different numbers of UAVs

TABLE III: Comparison of results between FCS and MCS

System Model The number of UAVs Calculation duration Scheduling duration The total distance
traveled by the UAV

Location coordinates
of the charging vehicle

FCS 10 1.604189s 1.5147h 48.1646km [0, 0]
15 3.705172s 3.5737h 62.4658km [0, 0]
20 5.776012s 2.2079h 99.3726km [0, 0]
25 9.441099s 3.7836h 93.0275km [0, 0]
30 12.593925s 3.1608h 144.8695km [0, 0]

MCS 10 1.815212s 1.4937h 34.6202km [−4, 4]
15 3.766389s 3.4914h 33.117km [3, 2]
20 6.124744s 1.9614h 77.5759km [4, 4]
25 9.470387s 3.7803h 73.9708km [0, 2]
30 13.224203s 3.1273h 119.9724km [3, 2]
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Fig. 5: Comparison of UAV distance traveled and scheduling
duration for FCS and MCS

To simplify the problem, only integer points on a coordinate
grid (points where both the horizontal and vertical coordinates
are integers) are considered. Initially, set the value of each
integer point to 0. Each time a circular area covers a point,
increment the value of that point by 1. By selecting the integer
points with the highest values, a finite set of integer points can
be obtained as candidate locations. We designate this set as
G, where the elements in G are the coordinates of points,
with elements in the form such as (1, 2). Subsequently, by
traversing and solving or employing a heuristic algorithm, the
location L can be determined.

The pseudo code for the algorithm addressing this problem
is provided in Algorithm 1.

IV. NUMERICAL EXPERIMENTS AND ANALYSIS

For testing the FCS system model, we set the parameter
M = 2. Based on simulation experiments, it is found that,
even with 30 UAVs, the scheduling time remains within 4
hours. Therefore, we set the scheduling cycle parameter T = 4
(which can be adjusted according to the number of drones and
the number of charging ports at the charging station). Since
the optimal solution can be obtained through exhaustive search
when the number of UAVs is 10 or fewer, this part compares
the relative error of the solution results of four heuristic
algorithms against the optimal solution with the number of
UAVs ranging from 3 to 10. The relative error is defined as
the difference between the solution obtained by the algorithm
and the optimal solution, divided by the optimal solution. The
algorithm parameters are set as shown in Table II.

The comparison results of the algorithms are shown in
Fig. 3, where the relative errors of all four heuristic algorithms
are less than 0.9%. This indicates the effectiveness of the



heuristic algorithms in solving this problem. It is noteworthy
that the relative error of SA is generally lower. To compare
the performance of heuristic algorithms with a larger number
of UAVs, we test the four algorithms with 10, 20, and 30
UAVs, as shown in Fig. 4. Fig. 4 shows that SA consistently
outperforms the other three algorithms. This is the reason for
selecting SA for this problem.

For testing the MCS system model, we set the parameter
M = 4 and employ SA for solution. We compare the results
of the MCS and FCS systems under the same drone data, as
shown in Table III and Fig. 5. It can be seen that, compared to
the FCS system, the MCS system results in shorter scheduling
times and a significant reduction in the total distance traveled
by UAVs. The time required to solve the MCS system is
similar to that of the FCS system. This indicates that the
MCS system provides a better charging scheduling solution
while maintaining similar solution speed, demonstrating the
effectiveness and superiority of this model.

V. CONCLUSION

A scheduling system with fixed charging station is de-
scribed. Through simulation, it is concluded that the simu-
lated annealing algorithm is the most suitable method among
the four algorithms for solving this problem. Compared to
GA, PSO, and TS, SA demonstrates superior performance in
solving large-scale drone problems. Based on FCS system,
a scheduling system is proposed that replaces fixed charging
station with a mobile charging station. For the MCS system, a
two-stage optimization model is established, including the se-
lection of MCS location and the scheduling of drone charging.
By comparing the results of two models, it is validated that
the MCS system model can provide a more optimal scheduling
solution to meet practical needs. The future work is to study
large scheduling systems with relay charging platforms and to
design efficient algorithms for determining charging locations.
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