
Zero-Cost Benchmarks: Towards Lower Reliance on 1

Spearman Rank Correlation 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Zero-cost proxies (ZCPs) have received increasing attention due to their potential for re- 5

moving computational bottlenecks in Neural Architecture Search (NAS). Special attention 6

has been given to the benchmarking of such proxies in the design process. So far, Spearman 7

rank correlation has been used as a go-to similarity measure for these benchmarks. In 8

this paper, we investigate the shortcomings of this abundantly used metric and find that, 9

in opposition to the core goals of NAS, Spearman rank correlation wrongly estimates the 10

performance of ZCPs when it comes to top-ranked architectures in the search space. We 11

propose Rank-Biased Overlap (RBO) as an alternative measure to prevent overfitting of ZCP 12

design in the future. Our RBO benchmarking reveals new insights on ZCPs that cannot 13

be inferred from the Spearman benchmarking. The introduction of RBO as an additional 14

criterion could help lower the reliance of the benchmarks on a single measure. 15

1 Introduction 16

While most neural network architectures are designed by human experts, Neural Architecture 17

Search (NAS) proposes to instead find the most suitable architecture for a given task automatically. 18

Various paradigms for NAS have emerged, each with their own limitations. In cases where the cost 19

of training many architectures is not prohibitive, classic predictor-based methods inspired by early 20

NAS works [24, 14] find better performing architectures [21, 7]. In practice, training candidate 21

architectures from scratch is often too costly for common usage, hence the success of two-stage 22

methods [18, 8, 3, 15] and more recently the rise of zero-cost approaches [16, 1], which aim to 23

evaluate the performance of neural networks without training them. 24

Methods that fall into the zero-cost category are built around two key elements: a search 25

algorithm to iteratively sample architectures from the search space, and a metric with which to 26

evaluate the sampled architectures, also known as Zero-Cost Proxy (ZCP). Although both aspects 27

are of similar importance, a stronger focus has been cast on the design of the ZCPs in recent 28

literature. Specifically, to fully decouple ZCPs from the search algorithm, substantial efforts are 29

made to evaluate them in isolation. 30

An example of a comprehensive benchmark for ZCPs in the zero-cost NAS context is NAS- 31

Bench-Suite-Zero [10]. This benchmark is a collection of previous benchmarks from the NAS 32

literature, namely NAS-Bench-101 [22], NAS-Bench-201 [5], NAS-Bench-301 [19] and TransNAS- 33

Bench-101 [6]. Each benchmark corresponds to an architectural search space, where possible 34

architectures in the search space have been exhaustively evaluated on several tasks, such as classic 35

vision tasks [11, 4] or the Taskonomy task bank [23]. For each task, by comparing the architecture 36

ranking given by the ZCP and the true architecture ranking, it is possible to assess all metrics 37

against each other. 38

A common practice, in NB-Suite-Zero as well as other independent benchmarks conducted by 39

ZCP works, is to evaluate the metrics with the Spearman rank correlation: 40

𝑟𝑠 =
𝑐𝑜𝑣 (𝑟𝑎𝑛𝑘 (𝑋 ), 𝑟𝑎𝑛𝑘 (𝑌 ))

𝜎𝑟𝑎𝑛𝑘 (𝑋 )𝜎𝑟𝑎𝑛𝑘 (𝑌 )
(1)
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params
grad_norm

fisher
jacov
snip

grasp
synflow

ntk
zen

zico
meco
swap

0.72 0.72 0.69 0.48 0.44 0.64 0.45 -0.01 0.63 0.30 0.68 0.16 0.33 0.17 0.04 0.44 0.00 0.14
0.59 0.64 0.58 -0.03 0.35 0.65 0.38 -0.32 0.35 0.25 0.60 -0.27 -0.33 -0.55 0.30 0.36 -0.26 0.21
0.50 0.55 0.49 -0.27 0.00 0.66 0.44 -0.59 0.00 0.31 0.11 -0.25 -0.12 -0.29 -0.21 0.17 -0.21 0.02
0.73 0.73 0.72 -0.02 0.57 0.76 0.52 0.19 0.74 0.42 0.82 0.18 0.26 0.14 0.44 0.50 0.13 0.59
0.59 0.64 0.58 -0.03 0.41 0.71 0.45 -0.26 0.49 0.32 0.68 -0.20 -0.14 -0.37 0.19 0.47 -0.19 0.27
0.51 0.54 0.52 0.29 -0.13 -0.28 -0.21 -0.13 -0.02 -0.28 0.00 -0.26 -0.43 -0.63 -0.01 -0.02 -0.11 -0.03
0.73 0.76 0.75 0.18 0.47 0.72 0.48 0.00 0.00 0.31 0.71 0.34 0.28 0.12 0.00 0.00 -0.02 0.27
-0.25 -0.17 -0.19 0.09 -0.29 -0.47 -0.36 0.17 0.16 -0.24 0.21 0.30 0.54 0.72 0.11 0.08 0.30 0.08
0.35 0.36 0.40 0.45 0.50 0.72 0.53 0.14 0.71 0.38 0.66 0.24 0.27 0.10 -0.02 0.38 -0.04 0.27
0.75 0.79 0.78 0.47 0.50 0.69 0.49 0.13 0.68 0.34 0.63 0.09 0.11 -0.07 -0.06 0.33 -0.12 0.25
0.88 0.88 0.85 0.42 0.00 0.23 0.33 0.21 0.10 0.34 0.04 0.00 0.47 0.49 0.31 0.32 0.54 0.67
0.78 0.81 0.77 0.49 0.35 0.57 0.33 -0.01 0.53 0.18 0.56 0.77 0.89 0.84 0.59 0.77 0.63 0.82

Figure 1: Spearman rank correlations of various ZCPs on the NB201, NB301 and TNB101 benchmarks.

Spearman was computed over 3 seeds against the entire search space.
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0.31 0.26 0.11 0.21 0.39 0.10 0.25 -0.02 -0.15 0.14 0.27 0.02 0.35 -0.02 0.16 0.22 0.08 0.18
0.32 0.06 -0.09 0.02 0.19 0.02 0.17 -0.10 0.02 0.05 0.45 -0.05 0.05 -0.00 -0.10 0.08 0.10 0.08
0.19 -0.11 -0.11 -0.07 0.18 -0.01 0.35 -0.07 0.06 0.01 0.29 -0.11 0.14 -0.09 -0.04 -0.04 0.02 0.08
0.11 0.14 0.00 -0.01 0.04 0.07 -0.36 -0.18 -0.22 0.24 0.10 0.08 0.06 -0.04 -0.04 0.13 -0.18 0.15
0.30 0.05 -0.11 0.01 0.24 0.04 0.20 -0.11 -0.03 0.10 0.46 -0.04 0.16 -0.01 -0.01 0.15 0.10 0.15
0.26 0.02 -0.04 -0.01 0.15 -0.14 -0.10 -0.03 0.20 0.15 0.04 -0.00 -0.03 -0.08 0.06 0.09 0.11 0.04
0.35 0.21 0.24 0.06 0.17 0.12 0.11 0.00 0.00 0.18 0.63 0.10 0.32 0.09 0.00 0.00 0.04 0.27
-0.07 -0.18 -0.10 0.03 -0.19 -0.08 -0.06 0.16 -0.23 -0.10 -0.04 0.01 -0.16 0.03 -0.07 0.24 -0.20 -0.16
0.32 0.49 0.22 0.19 0.30 0.06 0.10 0.07 -0.16 0.10 0.60 0.13 0.24 0.10 0.16 0.24 0.01 0.18
0.40 0.25 0.09 0.21 0.26 0.09 0.05 -0.07 -0.09 0.23 0.66 0.10 0.24 0.11 0.15 0.24 0.03 0.16
0.37 0.29 0.13 0.11 0.00 0.16 0.14 0.00 -0.06 0.04 0.20 0.00 -0.12 -0.01 -0.33 -0.19 0.18 -0.27
0.36 0.21 0.14 0.28 -0.09 0.06 0.02 -0.24 0.01 0.20 0.60 0.10 -0.12 0.05 0.29 0.15 0.19 0.28

Figure 2: Spearman rank correlations of various ZCPs on the NB201, NB301 and TNB101 benchmarks.

Spearman was computed on 3 seeds against the top 1% architectures in the space.

where 𝑋 and 𝑌 are two rankable series of observations derived from the task at hand. Specifically, 41

in the zero-cost context, 𝑋 contains the ZCP scores for all architectures in the search space, while 𝑌 42

contains the "true" scores, given by direct evaluation on the task. The Spearman rank correlation is 43

simple, intuitive and hyperparameter-free. This explains its success in the context of benchmarking 44

various NAS methods, including but not limited to zero-cost NAS. 45

This paper exposes the limitations of using the Spearman rank correlation as the sole evaluation 46

metric of ZCP benchmarks. Specifically, we highlight the discrepancy that exists when evaluating 47

the entire search space or a restriction of the search space to the best architectures. In order to 48

resolve this issue, we propose Rank-Biased Overlap (RBO) as an alternative and reproduce the 49

NAS-Bench-Suite-Zero benchmark with this evaluation metric. Our findings suggest that both 50

metrics are useful as they pinpoint different strengths of ZCPs. 51

2 Limitations of Spearman-based benchmarks 52

Since the Spearman rank correlation compares rankings at the scale of the entire search space, 53

giving similar weight to all architectures, it is a metric that indicates global trends of the evaluated 54

ZCP. Intuitively, the higher the Spearman rank correlation of a ZCP, the better it can separate 55

bad architectures from good architectures. However, this does not hold at the local scale: the 56

Spearman rank correlation over the whole space gives no indication of the ability of the ZCP to 57

rank architectures with similar performance. No ZCP reaches a perfect Spearman rank correlation, 58

which is acceptable as small differences in ranking for low-ranking architectures are of little interest. 59

On the other hand, since the overarching goal of NAS is to find the best-suited architecture, small 60

2



fluctuations in ranking for top-ranking architectures are highly impactful. Therefore, the non-biased 61

aspect of Spearman rank correlation causes it to be misaligned with the objectives of NAS. 62

In order to confirm this observation, we conduct benchmarking of current state-of-the-art ZCPs 63

in the NAS-Bench-Suite-Zero benchmark
1
. First, we reenact the regular Spearman rank correlation 64

benchmark using the following ZCPs: params (parameter count of the model), grad_norm [1], 65

fisher [1], jacov [16, 1], snip [1], grasp [1], synflow [1], ntk [2], zen [13], zico [12], meco [9] 66

and swap [17]. We report our results in Fig 1. For applicable methods, the observed Spearman rank 67

correlation is similar to the correlation reported in their respective papers. 68

Secondly, for each task, we restrict the search space to only the top 1% of architectures on that 69

task based on true performance. We report the results in Fig 2. For all ZCPs and on most tasks, we 70

observe a significant drop in correlation, which indicates that the metrics are unable to rank top 71

architectures in the correct order. Some SOTA metrics with excellent correlation over the entire 72

space may exhibit no correlation or negative correlation when it comes to the top of the space. 73

This experiment displays the flaws of the Spearman-based paradigm in zero-cost benchmarking. 74

While global Spearman correlation highlights the ZCPs’ capabilities to trend towards good architec- 75

tures, it does not indicate whether ZCPs are able to find the best architecture among the good ones. 76

Furthermore, the over-reliance on Spearman rank correlation in the literature has led to the design 77

of ZCPs that are especially suited for weeding out lower-end candidates, while little attention has 78

been given to designing metrics for discerning between architectures of similar performance. 79

3 Rank-Biased Overlap: an alternative 80

Considering the drawbacks of Spearman rank correlation in the context of zero-cost benchmarking, 81

we suggest that potential alternatives should be explored. Based on our earlier observations, an 82

alternative evaluation metric to the Spearman rank correlation requires the following properties: 83

• the ability to quantify similarity between ranked lists; 84

• a direct relationship with the magnitude of disagreement for corresponding items; 85

• preferential treatment for better-ranked items. 86

The Rank-Biased Overlap (RBO) measure [20] satisfies all of the above. Consider the observation 87

(ZCP) list 𝑋 and the truth list 𝑌 , the RBO is defined as follows: 88

𝑅𝐵𝑂 (𝑋,𝑌 ) = (1 − 𝑝)
𝑁∑︁
𝑑=1

𝑝𝑑−1O𝑑 (𝑋,𝑌 ) (2)

where 𝑁 is the size of the truth list 𝑌 , 𝑝 is the exponential decay parameter, which controls the 89

contribution of items at various depths of the lists. The overlap O𝑑 (𝑋,𝑌 ) is defined for depth 𝑑 as: 90

O𝑑 (𝑋,𝑌 ) = 𝑐𝑎𝑟𝑑 (𝑟𝑎𝑛𝑘 (𝑋 ):𝑑 ∩ 𝑟𝑎𝑛𝑘 (𝑌 ):𝑑 ) (3)

i.e the overlap is the number of items up to rank 𝑑 that are present both in list 𝑋 and list 𝑌 . In 91

essence, RBO is the sum of the agreement of both lists with exponential decay starting from the 92

top, meaning agreements in the top ranks are very impactful while disagreements for mid and low 93

ranks have little impact. 94

Compared to Spearman rank correlation, RBO requires the tuning of hyperparameter 𝑝 . How- 95

ever, remark that the contribution of the top 𝑑 ranks is given by: 96

𝑊 𝑅𝐵𝑂
:𝑑

= 1 − 𝑝𝑑−1 + 1 − 𝑝

𝑝
∗ 𝑑 ∗ (𝑙𝑛( 1

1 − 𝑝
) −

𝑑∑︁
𝑖=1

𝑝𝑖

𝑖
) (4)

1
NAS-Bench-101 was excluded due to the high cost of evaluation while being redundant with other benchmarks.
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synflow

ntk
zen

zico
meco
swap

0.00 0.14 0.00 3.80 0.07 0.02 0.00 0.13 0.18 0.00 0.19 1.68 2.06 1.02 2.75 2.88 1.54 3.82
3.19 4.46 3.76 6.69 1.65 1.37 1.24 2.19 2.97 2.33 3.04 7.12 5.27 3.27 7.60 7.63 5.49 7.55
3.03 4.51 4.17 6.59 0.00 1.31 1.94 3.43 0.00 1.94 3.68 5.74 5.59 3.75 6.88 8.07 6.47 6.68
2.98 4.51 3.62 5.96 1.58 1.68 0.65 2.17 1.95 2.25 1.55 4.36 5.23 3.67 7.30 7.13 7.00 5.83
3.09 4.77 3.92 6.78 1.54 1.23 0.90 3.06 3.09 2.01 3.30 6.67 5.11 3.54 7.96 7.16 5.63 6.89
2.84 4.40 3.31 6.58 1.48 1.25 2.02 2.77 2.87 2.29 2.74 5.76 4.70 4.47 8.46 7.25 7.16 6.88
0.25 0.53 0.43 7.52 1.81 1.33 1.19 0.70 0.70 2.17 3.39 5.95 4.08 3.03 0.88 0.88 5.95 7.47
3.27 4.91 3.85 6.94 2.02 1.68 1.06 2.32 2.57 2.20 2.29 5.92 7.43 4.67 7.42 5.64 7.64 5.72
3.00 4.13 3.35 6.84 1.50 1.67 1.08 1.92 2.41 2.31 1.42 5.49 4.33 3.13 6.58 6.82 6.46 7.45
3.01 3.98 3.66 6.88 1.90 1.43 1.02 2.85 2.73 2.43 3.37 6.50 4.37 3.25 6.83 6.76 5.71 7.38
3.05 4.49 3.87 6.79 0.00 1.70 2.53 2.90 2.57 2.03 3.71 0.00 3.96 4.01 7.07 6.13 6.15 6.75
2.83 3.97 2.81 6.62 1.75 1.74 3.30 3.02 3.54 1.64 3.35 5.65 4.65 2.59 5.57 7.67 8.80 7.02

Figure 3: Normalized rank-biased overlap of various ZCPs on the NB201, NB301 and TNB101

benchmarks. RBO was computed on 3 seeds against the entire the space.

In order to tune 𝑝 , we can simply select the desired contribution for the top 𝑡% architectures and 97

tune accordingly, thereby decoupling the contribution from search space size 𝑁 , the only constant 98

that varies between search spaces. 99

Furthermore, in order to address the size difference between the search spaces which would 100

cause the RBO to take vastly different ranges of values for each search space, we adopt normalized 101

RBO: 102

𝑅𝐵𝑂𝑛𝑜𝑟𝑚 (𝑋,𝑌 ) =
∑𝑁

𝑑=1
𝑝𝑑−1O𝑑 (𝑋,𝑌 )∑𝑁
𝑑=1

𝑝𝑑−1𝑑
(5)

We run our normalized RBO on the same benchmark tasks as Spearman rank correlation and 103

report our results in Fig. 3. We observe that the results are very different from the Spearman-based 104

benchmark. Similarly, the best metric varies based on the specific task. Some metrics which perform 105

consistently well in the Spearman benchmark, such as params and synflow, experience collapse in 106

the RBO-based benchmark. This could indicate that while they are able to distinguish low, mid and 107

top-ranking architectures, they cannot properly order the rankings of the best architectures. 108

Conversely, a metric such as ntk performs poorly in the Spearman benchmark, but is among 109

the top performers in the RBO benchmark. This could indicate that the metric orders the best 110

architectures quite well, but may confuse low-ranking architectures for top-ranking ones, thereby 111

hurting the overall correlation. 112

Remark that both the situations of performing poorly on the Spearman benchmark and the 113

RBO benchmark are damaging. Indeed, low-scoring proxies in the RBO benchmark may be unable 114

to identify the best architecture in the midst of the good ones, while low-scoring proxies in the 115

Spearman benchmark may be unable to lead the search to a subspace containing good architectures 116

in the first place. Therefore, we suggest that RBOmay best be used as a companion to the traditional 117

Spearman benchmark when designing new proxies. 118

4 Conclusion 119

We examine an alternative metric for benchmarking ZCPs based on the RBO similarity measure. 120

This experiment depicts the metrics in a new light, revealing unknown properties. While ZCP design 121

has largely overfitted to the Spearman benchmark, RBO benchmarking should not be considered a 122

potential replacement as the insights are quite different. Rather, it is an additional measure for the 123

ZCP design process, lowering its reliance on a single evaluation metric. 124
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