Go With the Flow: Fast Diffusion for Gaussian
Mixture Models

George Rapakoulias ! *  Ali Reza Pedram !>  Fengjiao Liu®  Lingjiong Zhu *

Panagiotis Tsiotras !

! Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA
2 School of Computer Science, University of Oklahoma, Norman, OK
3 Department of ECE, FAMU-FSU College of Engineering, Tallahassee, FL
4 Department of Mathematics, Florida State University, Tallahassee, FL

Abstract

Schrodinger Bridges (SBs) are diffusion processes that steer, in finite time, a given
initial distribution to another final one while minimizing a suitable cost functional.
Although various methods for computing SBs have recently been proposed in the
literature, most of these approaches require computationally expensive training
schemes, even for solving low-dimensional problems. In this work, we propose
an analytic parametrization of a set of feasible policies for steering the distribution
of a dynamical system from one Gaussian Mixture Model (GMM) to another. In-
stead of relying on standard non-convex optimization techniques, the optimal pol-
icy within the set can be approximated as the solution of a low-dimensional linear
program whose dimension scales linearly with the number of components in each
mixture. The proposed method generalizes naturally to more general classes of
dynamical systems, such as controllable linear time-varying systems, enabling ef-
ficient solutions to multi-marginal momentum SBs between GMMs, a challenging
distribution interpolation problem. We showcase the potential of this approach in
low-to-moderate dimensional problems such as image-to-image translation in the
latent space of an autoencoder, learning of cellular dynamics using multi-marginal
momentum SBs, and various other examples. The implementation is publicly
available at https://github. com/georgeRapa/GMME low.

1 Introduction and Background

The problem of finding mappings between distributions of data, originally known as the Optimal
Transport (OT) problem in mathematics, has received significant attention in recent years in multiple
research fields, due to its application in problems such as generative Al (Ruthotto & Haber, 2021;
Arjovsky et al., 2017), biology (Bunne et al., 2023b; Bunne & Ritsch, 2023; Tong et al., 2020),
mean field problems (Liu et al., 2022) and control theory (Chen et al., 2015a,b; Rapakoulias &
Tsiotras, 2024) among many others. Despite appearing static in nature, reformulating OT in the
context of dynamical systems imbues it with further structure and unlocks tools from the literature
on dynamical systems that can be employed for its efficient solution (Benamou & Brenier, 2000).

To set the stage, consider two distributions pg, p1, supported on the d-dimensional Euclidean space,
denoted by R%, and consider the regularized version of the static OT optimization problem, known
as the Entropic Optimal Transport (EOT) problem (Peyré & Cuturi, 2019):
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where 7(xo, 1) is the transport plan (also referred to as coupling) between pg, p1, II(po, p1) is
the set of all joint distributions with marginals pg, p1, and H is the differential entropy, defined
by H(p) £ — [ p(z)log p(z)dz. The corresponding dynamic formulation of the EOT problem
is known as the Schrodinger Bridge Problem (SBP) (Léonard, 2014; Chen et al., 2021). When
formulated as a stochastic optimal control problem, the SBP is given by
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where the objective is to find an optimal drift function u;(x), also referred to as the control policy in
the context of control applications, belonging to a set of adapted finite-energy policies U, such that,
when applied to the stochastic dynamical system defined by the first constraint in (2), the marginal
distribution specified in the second constraint is guaranteed, i.e., for initial conditions sampled at
time ¢ = 0 from pg, the state at time ¢ = 1 will be distributed according to p;, and the cost Jsp in
(2) will be minimized.

The increased practical applications of EOT and SBs in multiple machine learning problems, espe-
cially in high-dimensional generative applications where the boundary distributions pg, p1 are only
available through a finite number of samples, have led to the development of a multitude of algo-
rithms over recent years. The state-of-the-art methods for solving SBs leverage the properties of
problem (2), such as the decomposition of the optimal probability flow into conditional problems
that are easier to solve, sometimes even analytically (Chen et al., 2016; Lipman et al., 2023; Liu
et al., 2023). In this category of methods, a recent technique known as Diffusion Schrodinger Bridge
Matching (DSBM) (Shi et al., 2023; Peluchetti, 2023), or its deterministic counterpart, known as
Flow Matching (FM) (Lipman et al., 2023) or Rectified Flow (RF) (Liu et al., 2023), leverages the
decomposition of the optimal probability flow to a mixture of flows conditioned on their respective
endpoints and retrieves an approximation of the optimal solution to (2) as a mixture of conditional
policies that are easy to calculate. Theoretically, one needs to combine an infinite number of condi-
tional flows to retrieve the true flow, due to the continuous support of the boundary distributions. To
overcome this issue, a neural network is usually trained to approximate this infinite mixture.

While the DSBM and the various Flow Matching algorithms have proven very effective in high-
dimensional problems, the efficient solution of SBs in simpler problems is hindered by the lack
of closed-form expressions in all but very few special cases with Gaussian marginal distributions
(Bunne et al., 2023a). To tackle this problem and avoid costly neural network training in smaller
problems, recent methods such as Light-SB (LSB) (Korotin et al., 2024) and Light-SB Matching
(LSBM) (Gushchin et al., 2024) have been proposed to obtain quick and efficient solutions to SBs
within seconds, for problems with low-complexity boundary distributions, such as mixture models.
These methods work by an efficient parametrization of the Schrédinger potentials, a key component
of the SB. Because this parametrization does not lead to closed-form expressions for the boundary
distributions of the SB, the calculation of its parameters is carried out through optimization.

Inspired by the flow decomposition idea behind DSBM and FM methods, and motivated by the
need to obtain light-weight and fast SB solvers for a wide class of SB problems, in this paper,
we solve the problem of finding a policy that can efficiently steer the distribution of a dynamical
system from a Gaussian Mixture Model (GMM) to another one, using a mixture of conditional
policies that can each steer the individual components of the initial mixture to the components of the
terminal mixture. This approach, which is tailored to GMMs, separates the problem of fitting the
boundary distributions to the data and solving the SB, resulting in improved accuracy with regard to
the marginal distribution fitting. More specifically, we claim the following main contributions:

1. We present a computationally efficient, training-free method to solve the Schrodinger
Bridge and the multi-marginal Momentum Schrddinger Bridge problems in the case where
the boundary distributions are Gaussian Mixture Models.

2. In contrast to existing approaches, our method can handle both stochastic and determin-
istic versions of the problem (2). Based on a control-theoretic formulation, our approach
also naturally generalizes to dynamical systems with a general Linear Time-Varying (LTV)
structure, with the control input and stochastic component having different dimensions than
the state, which could be of interest in Mean Field Games (MFG), multi-agent control ap-
plications (Ruthotto et al., 2020; Liu et al., 2022; Chen, 2024), and higher order distribution
interpolation such as Wasserstein splines (Chen et al., 2018).



3. We demonstrate the substantial potential of our algorithm in low-dimensional prob-
lems, moderate-dimensional image-to-image translation tasks, and multi-marginal diffu-
sion learning problems. Specifically, we show that our approach outperforms state-of-the-
art lightweight methods for solving the SB problem both in terms of training speed and
accuracy of the learned boundary distributions, when these are available through samples
(40% better FID scores in the image translation task and one order of magnitude better
MMD scores in the multi-marginal diffusion-learning problems).

4. Finally, we extend our method to problems with continuous GMM marginal distributions,
a wide class of distributions that can capture multiple useful distributions with heavy tails,
and we use our approach to construct upper bounds on the 2-Wasserstein distance and
approximate the displacement interpolation between Student-t distributions.

2 Preliminaries

2.1 Diffusion Schrodinger Bridge Matching and Flow Matching

The composition of diffusion processes as mixtures of processes conditioned on their endpoints was
originally proposed by Peluchetti (2021) as a simulation-free algorithm for generative modeling
applications. The concept was later tailored to solve the SBP in the DSBM algorithm (Shi et al.,
2023), proposed concurrently by Peluchetti (2023). Similar simulation-free methods have also been
proposed to solve variants of the same problem in Albergo & Vanden-Eijnden (2023) and in Liu
et al. (2024); Theodoropoulos et al. (2025) for the stochastic bridge setting, as well as in Liu et al.
(2023) and Lipman et al. (2023) for the deterministic setting. For a more comprehensive overview
along with comparisons with other available methods, we refer the reader to (Shi et al., 2023, Section
5) and (Peluchetti, 2023, Section 5).

Given problem (2), the main idea is to decompose the problem into a sequence of elementary condi-
tional subproblems that are easier to solve, and then express the solution as a mixture of the solutions
of the conditional subproblems. This idea has an intuitive motivation: Informally, finding a policy
that transports the state distribution from an initial density to a target density can be separated into
two problems. First, one needs to figure out a transport plan solving the “who goes where” problem
and then one needs to compute a point-to-point optimal policy, that solves the “how to get there”
problem (Terpin et al., 2024a). In many cases, the two subproblems are decoupled (Chen et al.,
2021, 2016; Terpin et al., 2024a); most importantly, however, computing the point-to-point optimal
policy can be solved analytically for simple dynamical systems, such as the one in (2).

More precisely, the optimal probability flow p; of Problem (2) is known (Follmer, 1988; Chen et al.,
2021) to admit the decomposition

pi(x) = / Wian.er () dr (0, 21), 3)
R4 xR

where Wy, o, () is the probability density of the unforced dynamics dx; = V€ dw, namely the
Brownian motion kernel, pinned at z( for t = 0 and at x; for ¢ = 1, and 7} (20, x1) is the entropic
optimal transport plan between po, p1 solving (1). Dai Pra (1991) showed that Wy, o, (z) solves
the following optimal control problem

i dzy = uyjo,1(z¢) dt + Vedw,
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where 6, ,d,, are Dirac delta functions centered on o and 1, respectively. Assuming pyo,1 ()
and 0,1 () solve (4), one can construct a feasible solution for the original problem (2) using any
transport plan g(xg,x1) € I(po, p1), i.e., any joint distribution between the desired boundaries
Po, P1, using the mixtures

pe(x) = / ptj0,1(2)q(x0, 1) dzo da1, (5a)
R4 xRd
Pt\o,l(x)Q(ﬂfo,ﬂh)
uy(z) = ugj0,1() dzodw;. (5b)
R4 xR pi()

Showing that the flow (5a) is a feasible solution to (2) for any valid coupling ¢(zg, 1) amounts to
verifying that the flow p;(z) satisfies the boundary distributions pg, p; at times ¢ = 0 and ¢ = 1,



respectively. To prove that the policy (5b) produces (5a), it suffices to show that the pair (5a), (5b)
satisfies the FPK PDE (Lipman et al., 2023; Liu et al., 2024). When ¢(zg, z1) = 7 (zg, 1), (52)
reduces to (3), and (5b) recovers the optimal solution to (2) (Shi et al., 2023; Peluchetti, 2023).

2.2 Schrodinger Bridges with Gaussian Marginals

The SBP with Gaussian Marginals, henceforth referred to as the Gaussian SB (GSB), has been
extensively studied in the literature and can be solved either analytically for simple choices of prior
dynamics (Bunne et al., 2023a) or as a convex semidefinite optimization problem for general linear
dynamical systems both for continuous and discrete time cases (Chen et al., 2015b; Liu et al., 2025).
Because we use the GSB as a building block to construct a policy that works with general GMM
boundary distributions, we briefly review the available methods for its solution here. To this end,
consider the optimization problem with Gaussian marginals

1
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where pg, 2o, (11, 21 are the means and covariances of the initial and final Gaussian boundary dis-
tributions, respectively.

Proposition 1. (Bunne et al., 2023a, Theorem 3) The optimal solution to Problem (6) is given by
up(x) = Ki(x — pe) + vp with g = (1 — ) o + tpa, ve = p1 — pio, and Ky = ST, where

Y= (1 -2 + 2% + (1 — )t(Ce + CT + €I),
Si =11 —C) — (1= 1) (2o — C) — et
with C. = L(S3 DXy % — el) and D, = (AS3 3158 + ¢21)*.
Furthermore, the optimal value of the cost Jggp in (6) is given by the following proposition.
Proposition 2. Consider Problem (6) with € > 0. Then, the optimal value for the cost Jgsp is
Jass = |l — pol)® + tr(Xo) + tr(B1) — € (trMy — logdet My, +logdet 1) +¢,  (8)
where Mc = T+ (I + gEoﬂl)%, and c is a constant independent of the boundary distributions.

In the limit of ¢ — 0, (8) reduces to the well known Bures-Wasserstein distance (Bhatia et al., 2019),
defined by

Nl

(€))

o=

BW (N (pt0, S0) [N (11, 31)) £ (1 — poll* + tr(So) + tr(E1) — 2tr(21%202

)

2.3 Momentum Schrodinger Bridges with multiple Gaussian marginals

Other than Problem (6), we will also make use of the solution to the corresponding Gaussian multi-
marginal Momentum SB (GMSB) (Chen et al., 2019), which is a variation of Problem (6) where the
dynamics include a momentum term, while the goal is to match multiple marginal distributions at
regular time intervals. More specifically, the GMSB problem reads

1
in E Zat 10
min UO [[ue (e, ve) | } ; (10a)
st. dzy =vedt, duvg = ug(xy, vy) dt + e dw, (10b)
T, NN(ﬂti,Eti), 7;:17...,N, (IOC)

where [V is the number of marginal constraints and the joint space of position and velocity, namely
x¢,v; € RY, is referred to as the phase space. Compared to the standard SB problem, and apart from
having multiple marginal distributions, the GMSB problem only constrains the position component
of the phase space, namely x;. Even when the marginals are Gaussian, a closed-form solution to (10)
is unknown; however, the problem can be solved efficiently using semidefinite programming. In the
special case where the noise parameter ¢ is zero, the problem is known as the Gaussian Wasserstein
spline Problem (Chen et al., 2018), and an efficient semidefinite formulation for solving it is given
in Chen et al. (2018). Since the semidefinite formulation for solving (10) is a well-studied problem,
due to space considerations, we defer it to Appendix D. Finally, we note that a generalization of the



Problems (6) and (10) is achieved by a Linear Time Varying (LTV) structure in the prior dynamics
of the bridge, i.e., replacing the first constraint in (6) with

dxt = Atht dt+ Btut dt-'- .Dt dw, (11)

where z; € R?, A, € R4 4, € R™, By € R¥™™ D, € R¥4 4, € R?. Bridges with prior
dynamics of the form (11) have been extensively studied in the context of control theory, with the
corresponding literature known as Covariance Steering (CS) (Chen et al., 2015a,b; Bakolas, 2018;
Liu et al., 2025). CS problems can be formulated as convex programs for both continuous and
discrete-time cases (Chen et al., 2015b; Liu et al., 2025), and therefore attain an efficient and exact
calculation, which we will exploit in the sequel.

3 Fast Diffusion for Mixture Models

3.1 Gaussian Mixture Schrodinger Bridge

Equation (5b) expresses the policy of Problem (2) as an infinite mixture of conditional, point-to-point
policies. In this section, we extend this idea to construct a mixture policy, consisting of conditional
policies each solving a Gaussian bridge sub-problem of the form (6). To this end, consider the
problem

1

min Joym = E {/ Hut(a:t)||2 dt] , (12a)

ueld 0

st dzy = wg(my) dt + Vedw, (12b)
zo ~ Y Qb (b D), w1~ 0 N (1, B) (12¢)

The main result is summarized in the following theorem.

Theorem 1. Consider problem (12), with Ny components in the initial mixture and N1 components
in the terminal mixture. Assume that uy;; is the conditional policy that solves the (i,4)-GSB prob-
lem, that is, the bridge from the i-th component of the initial mixture, to the j-th component of the
terminal mixture and let the resulting probability flow be py;;. Furthermore, let \;j > 0 such that,

forallj € {1,2,..., N1}, Y ", \ij = a{ and such that, for all i € {1,2,... Ny}, Zj Nij = o
Then, the policy
t ij(ﬂﬁ))\i*
w(z) = Zi,j utlij(x) E:Tj‘/)t\ij("]";/\ij ’ (13)
is a feasible policy for Problem (12), and the corresponding probability flow is

pe(x) = 32, 5 Pl (T) i (14)

The mixture policy (13) is a weighted average of conditional policies, weighted according to
Aijpujij(x), while the denominator ), ; py|;;(2)Ai; is just a normalizing constant. Since py;;(x) is
a Gaussian distribution centered at the mean of the (¢, j)-Gaussian bridge at time ¢, this weighting
scheme prioritizes the conditional policies whose mean is closer to the value of x at the time ¢.

Equation (13) provides a set feasible of solutions to Problem (12), for all values of A;; satisfying
the conditions of Theorem 1. Obtaining the optimal policy within this set is challenging, in general.
Alternatively, we can formulate a tractable problem by minimizing an upper bound to the original
minimum effort cost function (12a), which is linear with respect to the transport plan \;;. More
formally, we have the following theorem.

Theorem 2. Let J;; be the optimal cost of solving the (i, j)-Gaussian bridge subproblem of the
form (6) with marginal distributions the i-th component of the initial and the j-th component of the
terminal mixture. Then, the cost function of the linear optimization problem

min - Jor = 35, 5 ijJig (15a)

s.t. Zj )‘ij = 0[6 Vi € {1,2, .. .,No}, and Zz >\ij = Oéjl, Vj € {1,2,. .. ,Nl}, (15b)

provides an upper bound for (12a), i.e., Jomm < Jor, for all positive values of \;; satisfying (15b).



For clarity of exposition, we defer the proofs of Theorems 1, 2 to Appendix A, along with an
optimality analysis of the upper bound of Theorem 2.

In practice, to use policy (13) in problems where the boundary distributions are available only
through samples, GMMs are first fitted in the samples of pg, p; using the Expectation Maximization
(EM) algorithm (Bishop & Nasrabadi, 2006), and then (13) is calculated using Theorems 1, 2. For
clarity of exposition, we present an overview of this approach in Algorithms 1, 2 for both training
and inference, accompanied by the corresponding theoretical complexity analysis in Appendix A.6.

Algorithm 1 GMMflow training
Input: Samples from boundary distributions pg, p1; number of GMM components Ny and Vq,

noise level € > 0.

{ad, ub, S ﬁV:ol +—EM(pg, No) // fits a GMM io initial dataset

{ad, ], };V:ll +—EM(p1, N1) //fits a GMM to final dataset

for (i,7) € {1,...,No} x {1,..., Nl} dQ //compute in parallel

{usjizy prjij, Jis ¥ < CS(uh, B, p1, ¥7) /solves the (i, j)-th conditional GSB

end for o

Aij <= SOLVE (15) USING {J;;, o), }

return ug;;, Pefij, Aij

R

Algorithm 2 GMMflow inference
Input: Component-level solutions w;|;;, ps|j, transport plan A;;, Initial condition xo ~ po, SDE
integrator sde_int().
u¢(z) + Compute (13)
x; + sde_int((12b), zq,t € [0,1])
return x|

3.2 Multi-Marginal Problems

In this section, we generalize the results of Section 3.1 to solve the multi-marginal momentum SBs
problem (Chen et al., 2023, 2019) with GMM marginal distributions. That is, we solve

1
min  Joum £ E U ||ut(xt,vt)||2dt} (16a)
weU 0
s.t. dxt = V¢ dt, dvt = Ut(ﬂft, Ut) dt + \/Edwt, (16b)
T, ~ S oFN (b ), =1, M, (16¢)

where the ¢-th marginal mixture is assumed to have N; components. Similarly to Theorem 1, we
will combine conditional GMSBs of the form (10) to build a feasible set of policies solving (16).
To facilitate notation, we denote by i = (41, ...,45s) the index of the conditional multi-marginal
GMSB and use the notation {i|i; = k} to denote the set of all values of i such that i; = k. With this
notation in mind, we provide the following generalizations of Theorems 1 and 2:

Theorem 3. Consider problem (16), with M marginal mixture distributions, each having N; Gaus-
sian components, where i = 1,... M. Leti = (i1 ...ipr) be an M-dimensional index, wuy; be the
conditional policy that solves the i-GMSB problem, that is, the Gaussian multi-marginal momentum
Schrodinger Bridge going through the (iy, . .., iy ) components of the marginal mixture models, and
let the resulting probability flow be py;. Furthermore, let \; > 0 be such that, forall j = 1,..., M
andforallk=1,...,N

j;

2 liy=ky M = 0 (17
Then, the policy
ug(z,v) = Ziut‘i(m, v)%, (18)
is a feasible policy for Problem (12), and the corresponding probability flow is
pe(z,v) = 5 pei(,v) As. (19)

To approximate the optimal multi-marginal transport plan \;, we use the following upper bound.



Theorem 4. Let J; be the optimal cost of solving the i-GMSB subproblem of the form (10) with
marginal distributions (i1, . . . ,ipr) components of the marginal mixtures. Then, the cost function of
the linear optimization problem

i A T
Jnin, Jor = Y i Midi (20a)
s.t. Z{i‘ij:k}/\i:a?, Viji=1,...,M k=1,...,N; (20b)

provides an upper bound for (16a), that is, Jonm < Jo, for all values of A\ satisfying (20b).

In practice, in order to use policy (18) for inference, the initial conditions for the SDE (16b) must be
defined. Specifically, to fully define the initial conditions in the state space [z, vo], given an initial
position sample x, the corresponding velocity vy must be estimated. To this end, note that given J;,
the state distribution p;(z¢, v) is a fully defined GMM given by Equation (19). It is easy to show
that the conditional distribution p;(v¢|x¢) is also a GMM, whose parameters can be easily computed.
Since this calculation is trivial, we defer it to Appendix C.3. For completeness, we provide the multi-
marginal inference algorithm in Algorithm 3. The multi-marginal training algorithm is omitted due
to its similarity to (2).

Algorithm 3 Multi-marginal GMMflow inference
Input: Component-level solutions u;;, py|;, multi-marginal transport plan \;, sample from zg ~
po(zo), SDE integrator sde_int().
u¢(z) + Compute (18)
Sample vy ~ po(vo|zo) using Equation (B.19d)
[4; v¢] < sde_int(Equation (16b), [zo; vo],t € [0,1])
return x;

3.3 Continuous Gaussian Mixtures

The results of Section 3.1 can be extended to problems with continuous GMM boundary distribu-
tions. Specifically, we consider a bridge of the form

1
min  E [ /O ||ut(xt)||2dt] : (21a)
st dzy = ue(ay) dt, (21b)
T ~ N (pi(wg), Bi(w;)) dPy(w;), i =0,1, (210)

R’"L

where the boundary distributions (21c) are continuous GMMs with mixing measures P(wy), P(w1)
respectively. We keep the dynamics (21b) deterministic to simplify the analysis, although all the
results carry over to the general case of stochastic dynamics as well. This more general formulation
specializes to problem (12) when P(wyg), P(w1) have discrete support; however, it includes many
other scenarios where the mixing distributions are continuous. Specifically, the generalization of
Theorem 1 is as follows.

Theorem 5. Consider Problem (21) and assume that wy|., ., IS the conditional policy that solves
the (wo, w1)-GSB problem, that is the bridge from the initial Gaussian distribution with parameter
wy to the terminal Gaussian distribution with parameter wy and let the resulting probability flow
be pijwy,w,- Furthermore, let A(wo, w1) be any coupling such that its marginal distributions are Py
and Pj respectively. Then, the policy

pt\wo,wl (1.) dA(’LU(), wl)
w(x) = Ut |y a0q (T (22)
t( ) ~/]Rm><Rm t‘ o ( )meX]Rm pt|w0,w1 (ZL') dA(w07w1)
is a feasible policy for Problem (21) and the corresponding probability flow is
ple) = [ s (@) A w0, (23)
R™ xR™

Furthermore, Theorem 2 generalizes to the following.



Theorem 6. Let J(wy, w1 ) be the optimal cost of solving the (wg, w1 )-Gaussian bridge subproblem.
Then, the optimal transport problem:

Jor £ min / J(wg, wy) dA(wo, wr), (24)
A€I(Py,P1) R™ xR™

provides an upper bound for Problem (21), that is, Joym < Jot, where II( Py, Py) represents the
set of all couplings with marginals Py and P;.

Problem (24) is challenging to solve in general. However, in many practical cases, such as for
Student-t boundary distributions, the parameter spaces for wg, w; are one-dimensional and (24) can
be solved in closed form. We explore this interesting direction in Appendix B to approximate the
Wasserstein-2 distance and the displacement interpolation between heavy-tail distributions.

4 Related Work

Although the idea of creating a mixture policy from elementary point-to-point policies is at the
heart of flow-matching, to the best of our knowledge, its benefits for solving problems with mixture
models with a finite number of components have not been explored. In an early work, Chen et al.
(2016) developed an upper bound on the 2-Wasserstein distance between Gaussian mixture models,
i.e., the static, deterministic version of Problem (12), that matches the upper bound of Theorem 2.
However, the problem of finding a policy that solves the dynamic problem was not explored. Fo-
cusing on works concerning dynamic problems, the concept of constructing stochastic differential
equations (SDEs) as mixtures of Gaussian probability flows can be traced back to mathematical fi-
nance applications (Brigo, 2002; Brigo et al., 2002). More recently, and in the context of generative
applications, Albergo & Vanden-Eijnden (2023) developed similar expressions for finding a policy
for steering between mixture models using an alternative conditional solution for the Gaussian-to-
Gaussian bridge, focused on the case of deterministic, fully observable dynamical systems with no
prior dynamics, and the component-level transport plan was not optimized.

Our work reveals some similarities in scope and structure with LSB (Korotin et al., 2024) and LSBM
(Gushchin et al., 2024). Similarly to LSB and LSBM, we aim to provide numerically inexpensive
tools to solve the SBP in low-to-moderate dimensional scenarios. Moreover, our feedback policy
in Equation (13) is a mixture of affine feedback terms weighted with exponential kernels; this is
also the case in LSB and LSBM (Korotin et al., 2024, Proposition 3.3). The formulations, however,
are otherwise quite distinct. Specifically, LSB/LSBM works by modeling the so-called Schrédinger
potentials using a GMM. This results in flows with boundary distributions that have a mixture-
like structure and are optimal by construction, but whose marginals are neither amenable to exact
calculation, nor are GMMs, in general. Finally, to approximate the optimal flows for boundary
distributions available only through samples, both works solve non-linear optimization problems,
which are prone to converging to locally optimal solutions. In contrast, our approach works by first
pre-fitting GMMs to the data using the Expectation Maximization (EM) (Pedregosa et al., 2011),
and then computing an optimal policy by solving exactly a linear program. Finally, being based on
a control-theoretic framework, our method generalizes effectively to partially observable and multi-
marginal distribution matching problems as shown in Section 3.2, while extending LSB and LSBM
to handle such problems is non-trivial.

5 Experiments

2D Problems and Benchmarks. We first test the algorithm in various 2D “toy” problems as
shown, for example, in Figure 1 for a Gaussian-to-Gaussian Mixture problem for various noise
levels. To assess optimality, we evaluate the resulting transport cost for policy (13) for each noise
level and compare it with the upper bound from (15a). We also run a series of EOT benchmarks
and compare them with state-of-the-art neural approaches such as the DSB (De Bortoli et al., 2021)
and DSBM (Shi et al., 2023) algorithms. Due to space considerations, we defer their discussion to
Appendix C, along with further experiments studying training and inference time scaling with re-
spect to the problem dimension and the number of GMM components. To evaluate the performance
on problems with many GMM components, we tested the algorithm on the distributions depicted in
Figure 2, where we first pre-fit 500-component GMMs in the initial and terminal samples.

Image-to-Image Translation. Following Korotin et al. (2024), we use our algorithm in the latent
space of an autoencoder to perform a man-to-woman and adult-to-child image translation task. We
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Figure 3: Adult to Child (left) and Man to Woman (right) image translation task.

use the pre-trained ALAE autoencoder (Pidhorskyi et al., 2020), trained on the FFHQ dataset (Kar-
ras et al., 2021). The latent space of the autoencoder is 512-dimensional. We start by fitting a
10-component mixture model to the embeddings of each image class, with diagonal covariance ma-
trices to facilitate matrix inversions in the Gaussian-to-Gaussian policy calculations summarized in
Proposition 1, and then apply Algorithms 1, 2 for e = 0.01. The results are illustrated in Figure 3.

To test how well the generated images match the features of the given target distribution, we calculate
the Fréchet inception distance (FID) scores (Heusel et al., 2017) between the actual and the generated
images of a given class, using 10,000 samples from each distribution. The FID scores correspond
to the empirical Bures-Wasserstein distance between the images of the two classes, evaluated in the
latent space of the Inception network. To further test how close the transformed images are to the
target class, we also calculate the empirical Bures-Wasserstein distance between the transformed
images and the real images of the target class, directly in the latent space of the ALAE autoencoder
and report it as ALAE-BW. We compare against two state-of-the-art lightweight SB solvers, namely,
LSB and LSBM, with results shown in Tables 1 and 2.

Table 1: Man-to-Woman FID comparison Table 2: Adult-to-Child FID comparison
M—W | FID ALAE-BW T. Cost A—C | FID ALAE-BW T. Cost
LSB 4.94 28.9 8.23 LSB 6.62 31.00 8.18
LSBM 4.98 28.3 8.18 LSBM 6.61 30.99 8.19
GMMflow | 3.04 9.3 9.05 GMMflow | 3.50 8.54 9.33

Qualitatively, our algorithm performs more aggressive feature changes compared to the baseline
method, as illustrated in Figure 3. Quantitatively, the features of the transformed images better



capture the true distribution of the features of a given target class, given the almost 40% better FID
scores and 65% better ALAE-BW scores provided in Tables 1 and 2. We note that the improvement
in the FID and ALAE-BW scores comes with a slight increase in the average transport cost, which

we measure by \/E|zo — x1||2, as reported in the last columns of Tables 1 and 2. We attribute this
significant performance gain to our use of the EM algorithm for the GMM pre-fitting, which is less
prone to converge to locally optimal values, compared to LightSB’s maximum likelihood objective,
or the LSBM’s bridge matching objective. We further remark that our approach takes 63% less time
to train, as noted in Table 5 in Appendix C.2.

Multi-Marginal Problems. A key challenge in SBs is learning a system’s underlying diffusion
process, given samples from partial observations of the distribution of its state, measured at regular
time intervals (Chen et al., 2023). This challenge arises, for example, in learning the dynamics
of large cell populations throughout their different developmental stages (Bunne et al., 2022; Tong
et al., 2020; Terpin et al., 2024b). To showcase the effectiveness of our approach in such problems,
we consider the scRNA-seq dataset from (Moon et al., 2019), with the pre-processing detailed in
Tong et al. (2020). The dataset contains samples from the first 100 Principal Components (PC) of
individual cell proteins, grouped at 5 regular time intervals, denoted by ¢1, ..., 5.

For our setup, we keep the first 5 PCs from the 5 marginal distributions, and prefit 5-component
GMMs in each marginal. We use the second-order model (16b) to capture the prior dynamics and the
structure of the system; however, we note that any LTV model with structure of the form (11) would
be applicable. To solve the resulting multi-marginal momentum SBs, we first compute the cost of
each GMSB and then solve (20). Computing the GMSB cost for all the combinations of components
is the most computationally expensive part of our approach. By parallelizing this computation, the
total training time is approximately 8 minutes on an i7-12700 CPU.

We visualize the data generated by our method in Figure 4, and provide standard performance met-
rics in Table 3. Specifically, following Chen et al. (2023), we use the Sliced Wasserstein Dis-
tance (SWD) and Maximum Mean Discrepancy (MMD) metrics averaged over the 4 predicted time
marginals of the dataset. Although there are no light-weight solvers for second-order multi-marginal
problems, we compare our method against DMSB (Chen et al., 2023), NSBL (Koshizuka & Sato,
2023), and MIOFlow (Tong et al., 2020). Even though our method requires minutes to compute
on a CPU while neural methods take an hour to train on a high-end GPU, the proposed approach
outperforms the baselines by one order of magnitude in the MMD metric due to the accurate fitting
of the GMMs. The SWD metric, although acceptable, is bounded by the expressivity of the GMMs
to capture the higher-order distribution structure. The metrics for MIOFlow, NSBL, and DMSB in
Table 3 are taken from (Chen et al., 2023).

Real Data Generated Data Real Data Generated Data

Table 3: SWD and MMD indices averaged over the 4
1 time steps
~ Method \ SWD MMD
£ MIOFlow 0.38 0.28
NSBL 0.24 0.10
] DMSB 0.22 0.06

GMMflow | 0.37 £4E-3 0.0038 +7E-4

Figure 4: GMM momentum multimagrinal
SB: Real vs Generated data.

6 Conclusion and Limitations

This paper introduces a novel, efficient method for solving SB problems with GMM boundary distri-
butions by utilizing a mixture of conditional policies, each solving a Gaussian bridge subproblem. In
the same way that low-dimensional methods such as Gaussian distributions and mixture models are
highly used in statistics and machine learning, we believe that our approach will be a valuable tool in
many useful practical problems related to optimal transport, distribution interpolation, distributional
control, and related applications, given its very low computational complexity, and excellent empir-
ical performance in complicated statistical problems. The main limitation of our work stems from
its dependence on GMM marginal distributions. Since this class of distributions is not designed for
use in very high-dimensional problems, we do not expect our method to be applicable in such areas,
but rather to work as an efficient tool for obtaining rapid SB solutions to smaller problems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: An accurate overview of the method, along with all the main claims about of
the proposed approach are clearly stated in the abstract.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitations of the paper stemming from the applicability of Gaus-
sian mixtures to high-dimensional problems have been well discussed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: All proofs are provided in the Appendices.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide extensive details about all the experiments we conducted in the
Appendices.

Guidelines:
* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide a link to a public implementation of our method in the abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide enough details in the experiments section of our paper, as well as
in the Appendices.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in the appendix, or as supple-
mental material.
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ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide confidence intervals for the SWD and MMD indices in Table 3.
We argue that the FID scores in Tables 1 and 2 do not need a confidence interval because
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* If error bars are reported in tables or plots, The authors should explain in the text how
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8. Experiments compute resources
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the experiments?

Answer: [Yes]

Justification: We provide details about the computational resources used to conduct the
experiments.
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Answer: [Yes]

Justification: We have read and comply with the NeurIPS Code of Ethics.
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of the method at the end of our paper.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not include pretrained Large Language Models or large
datasets.
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The answer NA means that the paper poses no such risks.
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Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
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Datasets that have been scraped from the Internet could pose safety risks. The authors
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Answer: [Yes]
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Guidelines:
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asset is used.
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Go With the Flow: Fast Diffusion for Gaussian Mixture Models
Supplementary Material

The supplementary document is organized as follows.

* In Appendix A, we provide the technical proofs of the results in the main paper, an opti-
mality analysis of Theorem 2, and the complexity analysis of Algorithm 1.

* In Appendix B, we discuss continuous mixtures and applications to heavy-tailed distribu-
tions.

* In Appendix C, we provide additional numerical experiments and some details for the ex-
periments of Section 5 in the main paper.

* In Appendix D, we provide technical background for the Gaussian Schrodinger Bridges

with LTV prior dynamics.
A Proofs
All proofs are carried out for a stochastic Linear Time-Varying (LTV) system
dxt = Atﬂft dt + Btu(a:t) dt + Dt dw, (Al)

where z; € R%, A; € R4 o, € R™, B, € R>*™, D, € R¥¥9 and dw is the ¢g-dimensional
Brownian increment having the properties E[dw] = E[dwdt] = 0 and E[dw dw'] = Idt. The
dynamical system (12b) is just a special case of (A.1) with A, = 0, B, = I, D; = /e I, while the
second order model (16b) can be captured by

a=lo o m={)]. pi=vell]. (A2)

A.1 The Fokker-Planck-Kolmogorov Equation

The equation describing the propagation of the distribution of the state of the dynamical system
(A.1), known as the Fokker—Planck—Kolmogorov (FPK) equation (Séarkkd & Solin, 2019) is:

8pt + Z (pt Atl’ + Btut ) Z a.’E O tDI]ijt) = O7 (A3)
10T

where, for simplicity, we write p; = p(t,x). This equation can be written more compactly using
standard vector notation as follows

o 1
% +V- (pt (Ayz + Btut(x))) - §tr (D:D{V?p;) =0, (A4)

where V2p; denotes the Hessian of the density with respect to the state z at time t. In the specific
case where D; = /e I, equation (A.4) reduces to the well-known equation

s,
% +V- <Pt(14t$ + Btut(ﬂf))) - %Apt =0, (A.5)

where A denotes the Laplacian operator.

A.2  Proof of Proposition 2

Let po ~ N (po, o), p1 ~ N (p1, 1) be two multivariate Gaussian measures in R<, and consider
the entropy regularized 2-Wasserstein distance problem between pg and p1, defined by

Wilpolp) 2 _min [ o~ ylPdnoy) + Diaelme ). (4

where Dk, denotes the KL-divergence operator.

In (Mallasto et al., 2022, Theorem 2), it is shown that (A.6) admits the following closed-form solu-
tion

€
WS(pollp1) = Il — mol)* + tr(Xo) + tr(X;) — 3 (trM,. —logdet M + dlog2 — 2d), (A.7)
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where M, = I + (I + (4/€)?20%1 ).

Returning to Problem (6), let P, YW be the path measures corresponding to the controlled SDE
of (6) (expressed as the first constraint) and the Brownian motion with covariance el respectively,
with initial conditions sampled from pg. Let D(pg, p1) denote the set of all path measures with
marginals pg, p1 attimes ¢t = 0 and ¢t = 1. Then, the SB problem (6) admits the following equivalent
representations:

IIJU—yII2 d }
inf D PlIwe inf / ————dn(zx, +H + — log(2me
ot D (PIW) = ﬂenw){ (@.9) — H(x) + H{po) + & log(2rc)
(A.8a)
1
= inf E[/ 1||ut(xt)||2dt}:1JGSB (A.8b)
PED(po,p1) 0 2€ 2¢ ’

where (A.8a) is due to the disintegration of the path measures, and (A.8b) is due to Girsanov’s
Theorem. We refer the reader to Chen et al. (2021) for a detailed derivation. Solving (A.8b) for
Jasg, we obtain

Jasp = inf {/ llz — y||*dn(z,y) — 2¢H (1) — 26H(p1)} , (A.9)

up to a constant independent of the parameters of pg, p;. Using the closed form solution for (A.7),
and noting that

DKL(TF”po@pl):—H(W)+H(po)+H(p1), (AIO)

and that the differential entropy of the multivariate Gaussian distribution is

d
H(p) = log det ¥ + = log 2re, (A.11)

we conclude that the optimal cost of Problem (6) is equal to
Jass = W3 (pollp1) — 2¢H (p1)
= |lp1 — poll® + tr(Xo) + tr(S1) — € (trMy, — logdet My, + logdet 1),  (A.12a)
up to a numerical constant independent of pg, p1, which concludes the proof.

A.3 Proof of Theorem 1

First, notice that the probability flow (14) satisfies the constraints (12c) for all feasible values of \;;,
since

Po = Zpo\ij)‘w ZN NOaZl ij ZN Uo;zz)am (A~13a)
2 2

P11 = Zpl\ij/\w ZN /—llazl ij ZN U1a27 (A13b)
2 2

Therefore, it suffices to show that the policy (13) produces the probability flow (14). Following the
approach of Lipman et al. (2023) and Liu et al. (2024), we show that the pair (13), (14) satisfies
the FPK equation. We start from the FPK equation describing a conditional flow and sum over
all conditional variables to retrieve the unconditional flow. Specifically, given that the individual
policies w,;; solve the Gaussian Bridge subproblems (6), the pair (py;;, uq|;;) satisfies the FPK
equation for the dynamical system (A.1), that is,

apt\ij
ot

Multiplying equation (A.14) by \;; and summing over , j, we obtain

1

0Py 1
ZM[ P05 LY (puy (Aew + Bigyij)) = Str (DeD{VZ(pyig)) | = 0, (A.15)
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which implies that

0
En Z priighij | +V - | A Z prijAij + Bt Z Ui Pt]ij Nij
2%

(2] 2%
1
- 5t D,D]V? Zpﬂij,\ij =0. (A.16)
This can be further simplified as
Ipi Pt|ij )‘ZJ 1 T2
— + V- A B i — —tr (D:D;V =0, A.17
N G o | I LA R
which yields that
0 1
a/: +V. <Pt(At5U + Btut)) —tr (DyD{V?(py)) = 0. (A.18)

This completes the proof.

A.4 Proof of Theorem 2

It suffices to show that the cost (12a) is upper bounded by the cost of (15a). Substituting policy (13)
to the cost (12a) we obtain

2

1
pt\zj(xt))\zj
Ja =K., ~p, / U4 (T dt (A.19a)
MM P 0 Z tla t Z”Ptm(xt)
2
1
D)5 () A
= pe(x) g (0) =———————1|| dxdt (A.19b)
/0/ ol ; ol )Zi,jpt\ij(f))\ij
' S i @I priis ()05
< pi (1) =2 dz dt (A.19¢)
/o/t( Zi,jptuj(x))\ij
1
:/ /ZHut‘ij(.%‘)Hthw(w))\ij dadt (A.19d)
0 7
1
:ZAMEIMW UO ||utij(xt)Hth] (A.19%)
—ZA”J” Jor, (A.19f)

where (A.19b) is due to Fubini’s theorem (Wheeden & Zygmund, 1977, Theorem 6.1) and (A.19¢)
makes use of the discrete version of Jensen’s inequality (Wheeden & Zygmund, 1977, Theo-
rem 7.35).

A.5 Optimality of the Upper Bound of Theorem 2.

To assess the optimality of the upper bound introduced in Theorem 2, we study the gap between
Jot and Jgymv in the following theorem.

Theorem 7. In the setting of Theorem 2, let py);;(x), uy)i;(x) be the solution of the (i, j)-GSB and
us(x), pt(x) as defined in (13), (14). Then, the following bound holds for JoT, Joym.

<o —dom < [ | 3 s -
i’ #£i

J?é]

where the dependence on x is omitted for notational convenience.

szt|zja/\z']'pt\2] }dl‘dt (A.20)
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Proof. We first express u;(x) as an expectation, i.e.,

Zut‘lj pt‘”t( ))/\ = E[wt(x)]’

where w;(z) follows a discrete distribution defined by {w; () = wuy;;(x) W.p. pyjij(x)Nij/pe()}.
Note that for a random variable 2 € R?, the variance decomposition yields
IE2][* = Efll«]*] - Elllz — Efz]|?]-

Using the last equation and the expression u;(z) above, written as an expectation, we obtain

1
Jeam £ / / pu (o) ()| et

-/ / > N s d -/ / > N ) — (o) da
= Jor —/O /RdZ Nijprji l[wegss — | de dt.
i,

The fact that the second term in the last equation is non-negative justifies the upper bound in The-
orem 2. Next, we show that when the conditional densities are well separated, the second term in
the last equation becomes arbitrarily small, and the bound becomes tight. Expanding the term in-
side the norm in the integral of the last equation, and dropping the dependence on x for notational
convenience, we obtain

Nors 2
2 i’ Pt|i’§
leaggi g — well® = {Juggiy =D :“t\i'j’ip
— t
Z/j,
‘ Ui Pr = Dlirgs Wil Aty P
Pt
2
Air J pt\i J’ SR 1
< E |55 — )iy || —————] (due to Jensen’s inequality)
1//]/
Nir it Pl it
2 Ni'j' Pt|i’j
< z :Hutﬁd - utﬁ’j'” -
7 Pt
_ 2 AV P
= ”Utli,j - Ut|i’j’|| P .
¢
i/ #i
J'#i

Substituting this upper bound in the expression for Jgy and rearranging, we get

0 < Jot — Jamm

1
g/ / > Nigpoejig i (@) — we(x)|* da dt
0 JRYY
1
<[ [ S s o
0 JRE 5 oy

i'#i

<[ [ S5 o

0] i'#i
J'#i

|2 Airjr Nij Pelit ! Ptlij de dt
Pt

2 .
|” min{\; pejij, Aivje prjir o da dt,

where the last inequality comes from the inequality < Z o < min(a;, a;) for all positive numbers
{a;}_,. This completes the proof. O
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Letting

~ Jmin{ i pepizs Airgpeer g b dt

S mind i oy, Airjr pejir ey dac dt

that is, the normalized distribution of the minimum of the densities p¢|;;, p¢|i7;, and assuming that
Eq[llugij(x) — ugar jo(2)][?] < oo, since the policies uy;; are affine with respect to x, we conclude
that

Q

JOT _JGMM —0 as Tv(pt\ijvptﬁ’j’) —1 Viajvi/ajlv(ivj) 7& (i/aj,)7 (Azl)
where TV (u, v) denotes the total variation between two probability measures.

A.6 Training and Inference complexity of GMMflow

In this section, we provide a computational complexity analysis of Algorithm 1 with respect to the
number of components in each mixture and the problem dimension. The computational complexity
of fitting a GMM using the EM algorithm scales as O(INK (D + D?)) (Pedregosa et al., 2011),
where I is the number of EM iterations, N is the number of data points, K is the number of Gaussian
components (modes), and D is the dimensionality of the data. Once the GMMs are fitted, solving
a linear program with Ny x N; variables, where Ny and N; denote the number of modes in the
input and output distributions, respectively. Modern solvers such as MOSEK (Mosek, 2020) effi-
ciently solve LP problems using interior-point methods, which have a computational complexity of

O(VIN?) (Boyd & Vandenberghe, 2004), where [ represents the number of constraints.

Regarding the computational complexity of inference, each evaluation of the GMMflow policy, i.e.,
equation (13), scales linearly with the number of components in each mixture and the SDE integra-
tion also scales linearly with the number of discretization time steps. In practice, when implementing
the GMMflow policy, only a small number of GSB policies are computed since the component level
transport plan );; is sparse. Moreover, this computation is done in parallel for all conditional policies
together. This results in very fast, practically constant-time inference regardless of the component
number or problem dimension.

A.7 Proof of Theorem 3
We start by noting that we can write the dynamical system (16b) in the form of (A.1) with

0 I 0 0
Ay = [0 0} , By = [I] , Dy = [\/EI] . (A.22)
Due to (19) the joint density of the phase space (z¢, v¢) is given by
_ ) I VA Y PI¥ D IH
i =S (][] [ S ) (a.23
We now note that for all j =1, ..., M, the position marginal x;, at time ¢; is distributed as

Nj N;
2o~ Y NN B0 =)0 Y AN @R T =Y afN (i, 55, (A24)
i k=1

k=1 {izi;=k} =

and therefore the flow (19) satisfies the constraint (16¢). Using a similar approach to the proof of
Theorem 1, we will show that (18) produces the probability flow (19) by summing over all con-
ditional GMSB flows. To facilitate notation, we will denote the phase space by z € R2? je.,
z = [x;v]. Given that the individual policies uy); solve the GMSB subproblems (10), the pair
(,Ot|i, ut\i) satisfies the FPK equation for the dynamical system (A.1), that is,

8p i 1
a: + V- (pyi (A2 + Buy)) — Str (DDV?(py3)) = 0. (A.25)
Multiplying equation (A.25) by \; and summing over i, we obtain
Ipuji 1 T2 _
> 5 Vo (i (Az + Buys)) — St (DDTV2(pys)) | =0, (A.26)
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which implies that

0
9t (Z pti)\i> +V- (Az Z pyidi+ B Z Utipt|i/\i>
- ltr .D.DTV2 Zp ‘)\~ — 0
2 g tliM .
1
This can be further simplified as

Ope PriAi 1 T _
which yields that
Opt

1
StV (pt(Az ¥ But)) ~ 5t (DD'V3(p)) = 0.

This completes the proof.
A.8 Proof of Theorem 4

(A.27)

(A.28)

(A.29)

The proof is similar to that of Theorem 2. Substituting policy (18) to the cost (16a) we obtain

2
Peli(Ze) A
Janm =Kz / 2 (e z% (L) @
)A i
Pt|
o U dzdt
//t Z t‘ Pt\ 2)Ai

> ||z || peji(2) A
< dzdt
*/o J ) Soomn

= [ S e teraeazas

1
=3 AE.ep,, [/O Hut|i(2t)H2 dt}
= ZA;Ji = Jor,

(A.30a)

(A.30b)

(A.30c)

(A.30d)

(A.30e)

(A.30f)

where (A.30b) is due to Fubini’s theorem (Wheeden & Zygmund, 1977, Theorem 6.1) and (A.30c)
makes use of the discrete version of Jensen’s inequality (Wheeden & Zygmund, 1977, Theo-

rem 7.35).

A.9 Proof of Theorem 5
The proof is similar to the (discrete) GMM case. First, notice that

po = / P0jwo,wi AN (wo, w1) = N (o (wo), Lo (wo))dPo(wo),
R™ xR™ R™
p1= / P1jwo,ws AN (wo, w1) = | N (p1(w1), ¥1(wr))d Py (wy).
R’V‘I’L XRm R’V‘I’L
Next, notice that oy, and Ugjw,,w, satisfy the FPK equation:
6pt\wo,w1

ot
By taking the expectation with respect to the distribution A(wyp, w1) in (A.33), we get

fore

8pt\w0 K1

ot +V. (pt|wg,w1 (Atxt + Btut\wo,wl))

1
- §tI‘ (DtDIVQ(pﬂwg,wl)) dA(wOa U)l) = Oa
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1
+ V- (Ptwo,wr (Art + By, ) — 5“ (DyDIV? (ptjwo,uwr)) = 0.

(A31)

(A.32)

(A.33)

(A.34)



which implies that

0
= A
at /RmXRnl ptl’IUo,’wld (w07w1)

R (Atxt/ pt|w0,w1 dA(wOa wl) + Bt/ ut\wo,wlpﬂwo,wl dA(w07 ’LU1)>
R""L XR"YL RT’L XR’"‘L

1
— —tr (DtDIV2 </ pt|w07w1dA(w0,w1))> =0, (A.35)
2 R™ xR™
which yields that
8pt / pt|'wo w1 dA('l,UO, wl)
+V- Awxy + B u L :
ot ( ( o t Rm xR™ thoosw f]Rm R™ pt|wo7w1dA(w07w1)
1
—5tr (D:D{V?(ps)) = 0. (A.36)
Hence, we conclude that
0 1
(;;t + V- (pt(AtIEt + Btut)) — itr (DtDtTvz(pt)) =0. (A37)

A.10 Proof of Theorem 6
The proof is similar to the (discrete) GMM case. We can compute that
2

1
pt|wg,w1($)dA(w07w1)
JoamMm = Eqg,np, / / Utjwgwr (T dt (A.38)
P 0 R™ xR™ t| ’ 1( )f]R"”XR"" pt|w0’w1(l‘)dA(w0,wl)
2
pt\wo,wl(x)dA(wmwl)
p / Ut w dzdt (A.39)
/ /n ! R™ XR™ theo, 1( )meX]Rm Pt\wo,wl(l”)df\(wo,wﬂ
mseom || Ut wo w1 L(@)dA(wp, w
S/ ptfR e Wtwo,w ()12 Pt 0, (2)dA (wo 1)dxdt (A40)
meme pt|w07w1( )dA(wOawl)

/ / / tgn s (@) 2Pt (2)dA (w0, w1 )t (A41)
n RWLXRTN

- / Eomprung oy { / [ (m)||2dt] dA(wo, wy). (A.42)
Rm xR™ 0
Hence, for any A € II(Py, P),
JGMM S / J(’U}o, wl)dA(wo, U}l). (A43)
R™ xR™
By taking the infimum over A € TI( Py, P) in (A.43), we conclude that Joym < JorT.

B Continuous Gaussian Mixtures

Theorem 6 reduces the high-dimensional dynamic optimal transport problem (21) to the simpler,
static OT problem (24) in the space of couplings between the parameter distributions, i.e., [1( Py, P ).
Although in general, problem (24) is still difficult to solve, in many practical applications the pa-
rameter spaces wp, wy are one-dimensional and J(wg, w1 ) has a tractable closed form. Under these
conditions, and provided the distributions Py, P; admit positive densities pg, p1, (24) can be solved
in almost closed form (Santambrogio, 2015).

Our motivation for the extension to continuous mixtures stems from the fact that many heavy-tail
distributions, such as the multivariate Student-t distribution and the alpha-stable distribution, can
be expressed in the form of continuous Gaussian mixtures. In this context, one can use a general-
ized version of Theorems 1 and 2 to create tractable upper bounds on the 2-Wasserstein distance
between such distributions and approximate the corresponding optimal transport map, displacement
interpolation, and flow fields, respectively.
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B.1 Multivariate ¢-Distribution

The Student-t distribution has been used as a heavy-tailed alternative to the Gaussian distribution, as
a generative prior distribution in diffusion models and related generative models in the recent litera-
ture; see e.g., Kim et al. (2024); Pandey et al. (2025); Cordero-Encinar et al. (2025). In this section,
we will explore the use cases of Theorems 5 and 6 to the case of Student-t boundary distributions.

To this end, let zg, z; follow d-dimensional multivariate ¢-distributions with parameters v, j1g, >
and vy, ju1, $1 respectively.?

A multivariate ¢-distribution can be viewed as a generalized Gaussian mixture model; see, for ex-
ample, Andrews & Mallows (1974). More specifically, let ug, u; follow a gamma distribution,’
ie.,

ug ~ Gamma(rg /2,19 /2), uy ~ Gamma(vy /2,v1/2), (B.2)

and conditional on ug, uy, g ~ N (pg, ungo) and 1 ~ N (1, uy " 3) respectively. Then, w3 =

uy ! follows the distribution InverseGamma(vy/2, 1/2) and w? = u; " follows the distribution
InverseGamma(v; /2, v /2), that is, w3 has the probability density function

2/1y)"0/? vo g — -2

(F/(u?))/z)ﬂ/x) B+l s, (B.3)
and w? has the probability density function

2/ )v/? v _ 2

(F/(vll)/z)(l/w)f“e (B.4)

Let Py, P, po, p1 the CDFs and PDFs of wg, wy respectively. Starting with the CDF of w, we have

2
* 2/1/0)1/0/2 ro -2 1“(1’70’1’702)
Po(e) = P(wo < 2) = Bui <a?) = [ L7 s wsg, = Hhat) g
b(a) = Plu < ) =P <o) = [ By e Sy = SAES @5)
which implies that wy ~ Py has the probability density function
d (2/vp)Po/? v ——25  2(2/yg)e/? 2
= —P(wg < x) = 2--——(1 2 e v = 2L (1 /)0t e voe?
po(x) e (wo < x) =2 T(0/2) (1/2%) e vo T(0/2) (1/x) e vo
(B.6)
Similarly, w; ~ P; has a CDF given by
L(%. 25)
Pi(z) = =22, (B.7)
F(?vo)
and a PDF given by
2(2/vy)1/2 2
pi(z) = (r{ml}m (1/z) e me (B.8)

With equations (B.5)-(B.8) in mind, consider Problem (21) with Student-t distributions with param-
eters vy, o, 2o and v, p1, 21, that is, continuous mixtures of the form

po(z) = /N(x;uo,wSEo)po(wo)dwo, (B.9a)

pi(z) = /N(%Hl,w%zl)pl(wl)dwh (B.9b)

The density of a multivariate t-distribution with v degrees of freedom, and scale and location parameters
1, 2 respectively, is given by

I((v+4d)/2)
I'(v/2)vd/2md/2|5[1/2

1 Te —(v+d)/2
[1—&-;(:&—;0 ST (T — ) . (B.1)

*Here Gamma(a,b) denotes a gamma distribution with probability density functional proportional to

2% Le™% where a is the shape parameter and b is the inverse scale parameter.
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where po(wy), p1(wy) are given by (B.6) and (B.8) respectively.

Considering noise-free dynamics to simplify the respective formulas, as in (21b), the (wp-w1)-GSB
for the boundary distribution parametrization (B.9), admits the following closed form

Ehjwoun = (1 — 12w o + t2wisy + (1 — t)twow; (C + CT), (B.10a)
Hitfwo,uwn = (1 —)po + tpa, (B.10b)
Kijuwgw, = 5157 (B.10¢)
Vtlwe,wy — M1 — Mo, (B.10d)
Stwouwn =t (21 = CT) = (1= )(Zo — O), (B.10¢)

where C = 52 DX, 2, D = (S2%,52)%. Equations (B.10) yield

Pt|wo, w1 (Z‘) =N (x;,ut\wowpzﬂwg,wl) 5 (B.11a)
Ut|wg,w (:L’) = Kt|w0,w1 (.’E - /~Lt|w0,w1) + 1 — Ho- (B.11b)

Furthermore, the optimal cost J(wg, w1) in (24) can be calculated using (9) and equals

J(wo,w1) = |[po — p1||* + witr(Xo) + witr(Sy) — 2wow;tr(D). (B.12)

Focusing on problem (24), it is known that when the transport cost has the form J(wg,w;) =
h(wo — w1) where h is a convex function, the corresponding optimal transport plan is given by
(Santambrogio, 2015, Theorem 2.9)

A*(wo,wy) = (Po_l(x),Pfl(x))#Unif([O, 1)), (B.13)
where Unif ([0, 1]) is the uniform measure over the set [0, 1], and P, ', P, are the corresponding
inverse CDFs of (B.5), (B.7). The cost function (B.12), does not satisfy this condition, since it

cannot be written as a perfect square for general scaling matrices Yo, 1. We resolve this issue
through the following proposition.

Proposition 3. When solving the OT problem (24), the transport cost (B.12) and the cost function
J(wo,w1) = |wg — w1 |? are equivalent, i.e., they result in the same optimal coupling A*.
Proof. Equation (B.12) can be written in the form:

J(wo,w1) = ||po — pa ||* + wE tr(Se — D) + witr(Sy — D) + |wo — wy [* tr(D).  (B.14)

In (B.14), the terms ||po — 11 ||?, w3tr(Xo — D), witr(3X; — D) do not contribute to the optimization
problem in (24), since they are constant for any feasible transport plan A € II(pg, p1) due to the
fixed boundary distributions. By dropping these terms, as well as the positive scaling constant tr(D),
we obtain the desired result. O

Equation (B.13) implies that the optimal value for Problem (24) is given by

1
JgT:/ J(Py(w), Py (w))dw, (B.15)
0

while the optimal control policy u; (x) and the respective density p; (z) resulting from substituting
to the optimal transport plan A* to the formulas (22) and (5) of Theorem 5 are given by

1
p:(:ﬂ):/ ptIPO—l(w)ypl—l(w)(.’E)dw, (B16a)
0
and

1
\ Pepy (w), Py (w) (@)
Ut(fl?):/O Ut|P(;1(w),P;1(w)(I) : p;‘(a;)

Since equations (B.15)-(B.17) involve only one-dimensional integrals, they can be easily computed
numerically using a quadrature. Although P, L P1_1 are not available in closed form, they can be

duw. (B.17)
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obtained in most scientific computing packages such as scipy (Virtanen et al., 2020) by properly
scaling the quantile function of the inverse gamma distribution.

To illustrate this approach, we calculate the upper bound (B.15) and the true Wasserstein-2 distance
for a one-dimensional problem between two Student-t distributions with parameters p; = po =
0,%; =1,3% ={0.25,1,4}, v, = 3 for various values of v, € [2.5,10] and report the results in
Figure 5. We note that our approach works for arbitrary Student-t distributions in any dimension,
however, we study the 1D case in this example to be able to calculate the exact Wasserstein distance
and quantify the tightness of our upper bound. Although rigorously studying the tightness of the
bound (B.15) remains an open problem, as evident in Figure 5, it closely approximates the true
Wasserstein distance, at-least in this simple 1D scenario.

51=1,%=025 I1=115=1 . 1=1%I=4

0.6 4

0.4 4

0.2 4

0.0 4

Figure 5: Comparison between true Wasserstein distance and upper bound (B.15) for 1D Student-t
distributions.

We believe this result, along with the policy (B.17) and the interpolation (B.16), could be useful
tools in developing simulation-free methods for training diffusion models with heavy-tail prior dis-
tributions, or for creating tractable OT flows between mixtures of Student-t distributions. We leave
these interesting directions as future work, since they are not immediately related to computationally
inexpensive diffusion model training, which is the main theme of the rest of this paper.

C Additional Experiments and Implementation Details
C.1 Additional Details on 2D Problems

To compare our approach for the problem of Figure 1 with state-of-the-art neural SB solvers we
used the original implementations of the DSB* (De Bortoli et al., 2021) and DSBM? (Shi et al.,
2023). The network architecture used for both algorithms is the fully connected DNN of De Bortoli
et al. (2021) with 128-dimensional sinusoidal temporal encodings, 256 neurons in the encoder layer,
{256,256} neurons in the decoder layers, and SiLU activation functions (Hendrycks & Gimpel,
2016). We run all algorithms and report the results in Table 4. For the zero noise case, i.e., € = 0,
DSB and DSBM are not applicable, so we approximate the true OT cost using discrete optimal
transport, calculated using the POT library (Flamary et al., 2021), using 10,000 samples from each
distribution. As evident from Table 4, although the DSB and DSBM algorithms can approximate the
true SB cost, they fail to retrieve the true optimal solution for larger values of the noise parameter,
due to their non-convex loss functions.

Table 4: Transport cost comparison for the problem in Figure 1
€ | Jor (12a) | Jgmm (152) [ DSBM | DSB | OT

0 | 100.06 89.45 - - 84.87
0.1| 100.15 89.32 84.26 | 98.62 -
1 102.28 89.28 131.50100.82| -

10| 162.13 116.60 133.04 | 244.31| -

Furthermore, regarding the example problem in Figure 2, we provide additional details about the
approximation of the boundary distributions as mixture models in Figure 6.
C.2 Image-to-Image Translation Details

To better evaluate the performance of the proposed approach in the Image-to-Image translation task,
we provide further examples in Figures 9 and 10 as well as approximate training and inference times

*https://github.com/JTT94/diffusion_schrodinger_bridge
*https://github.com/yuyang-shi/dsbm-pytorch
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Figure 6: GT to distribution steering details.

for our approach, and compare them with the training and inference times of LightSB in Table 5. For
our approach, training time consists of the time required to fit the GMMSs in the latents of the FFHQ
dataset for the two boundary distributions, and the solution of the linear program (15). As inference
time, we consider the time taken for the integration of the SDE (or ODE for ¢ = 0) (12b) with the
mixture policy (13). We observe that while inference time is small for solving the deterministic
(optimal transport) problem, i.e., for ¢ = 0, integrating the stochastic dynamical system for positive
values of e requires more time due to the small time step required for SDE integration. The quality
of the produced images was not found to be affected by this parameter, implying that € = 0 could
be used for fast, deterministic inference, while a positive value of ¢ will allow for some randomness
in the generated images. We also note that the faster training time for our approach is mainly due to
the very fast convergence of the EM algorithm, which is also less likely to converge to local minima,
compared to the standard maximum likelihood method for fitting distribution to data. All tests were
conducted on a desktop computer with an RTX 3070 GPU.

Table 5: Training and inference time comparison with state of the art. Inference time is measured
for a batch of 10 images and uses GPU parallelization for calculating the elementary GSB policies
of the mixture policy (13).

Training [s] | Inference (e = 0) [s], | Inference (¢ = 0.1) [s]
LightSB® 57 - 0.02
Ours 17 0.06 0.2

C.3 Multi-Marginal Problems Details

ty tz f3
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Figure 7: Additional visualization of results in 5-d scRNA problem: predicted vs true distributions
for all time-marginals overlayed with the 3-sigma bound for each Gaussian component of the pre-
fitted GMMs.

SKorotin et al. (2024)
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Solution times. To solve each multi-marginal GMSB we use the semidefinite formulation detailed
in Section D and used Mosek (2020) to solve the resulting semidefinite program. Specifically, we
assume the GMMs between the five temporal marginals are spaced 1 time unit apart, resulting in a
problem horizon of 4 time units. We use a coarse temporal discretization with time-step At = 0.1
(i.e., 10 time steps between [t;,t;11]) to evaluate the cost tensor for the optimization problem (20)
and a fine resolution discretization of At = 0.01 for the final policy calculation, solving only for the
GMSBs with non-zero transport parameter A;. There are a total of 3, 125 combinations of GMSBs
for this problem, and the computation of each one using the coarse time grid takes roughly 0.35 s
on an Intel i7 12-th generation CPU with 32 GB of RAM memory, giving a total of 18.5 minutes of
calculations, if all GMSBs are solved serially. This computational overhead can be greatly decreased
if the GMSBs are solved in parallel. In our setup, we parallelized the calculation using MOSEK’s
built-in capabilities and solved them in batches of 12, using 2 CPU threads per problem. This
brought down the total calculation time under 6 minutes. For the final policy calculation, there are
only 21 active GMSBs in the mixture policy (18), each taking 6 seconds to compute. The total run
time for our algorithm for this problem, adds up to 8 minutes for this problem, which is considerably
lower than the corresponding neural methods (24 minutes on GPU for the DMSB algorithm (Chen
et al., 2023)).

Velocity inference. After calculating the conditional GMSBs and solving (4), the marginal mix-
ture distribution for the entire phase-space is fully defined for the entire time horizon of the problem
through Equation (19). Given a position sample z at time ¢ = 0, the corresponding velocity com-
ponent can be inferred using conditional GMM sampling. Specifically, considering that the joint
distribution of the phase space at time ¢ is

_ . x| [HEs DI TED M
pt(x,v) = Z)\l-/\/ <|:’U] ; |:u;)|i:| , |:2;1910 Eglli} s (B.18)

it is easy to show that the density of p;(v|z) is also a Gaussian Mixture Model, since

pt(xav)
or(ola) = @) (B.19a)
t( | ) pt(fﬁ)
oo (3158 )
_ G ti Tt (B.19b)
SN (o i S
SN (s s Sl )N (a3 s =)
_ (B.19¢)
Zi )\iN (x§ /~Lf|iv E?\f)
/\iN <:C7 Mﬁi? Efﬁ) vz v|x
_ Z N (1}; :ut|i , Et\i ) s (B.19d)

TN (o g i)
where Equation (B.19a) is due to the Bayes rule, with (Bishop & Nasrabadi, 2006)
-1
=+ (Sa) (- )
and
v|z VU vT T -1 v
Zt\i = Zt|i — i ( t\i) t]i-

For our problem, we use Equation (B.19d) to sample the initial velocity of a new sample given its
initial position, and then use the joint position-velocity initial conditions to calculate the sample’s
trajectory by integrating (12b).

Visualization of results. To better visualize our results, we provide more information about the
predicted distributions in Figure 7, overlaid with the pre-fitted GMMs at each time step. It is easy to
visually confirm that the 5-component mixtures capture the marginal distributions in all time-steps
accurately, and since our method is exact, there is minimal distribution mismatch in the predicted
marginals, as confirmed quantitatively by the indices in Table 3.
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C.4 Performance on EOT Benchmarks

To further evaluate the optimality of the proposed approach, we tested the algorithm on the Entropic
Optimal Transport benchmark detailed in Gushchin et al. (2023). The benchmark provides a pair of
boundary test distributions pg, p1, where pg is a scaled Gaussian distribution and p; is a mixture-like
distribution that is easy to sample from, and an optimal conditional transport plan 7*(x1|x), which
is a Gaussian Mixture Model and is known in closed form. For the pair pg, p1, the optimal policy
solving (2) can be calculated explicitly, allowing direct comparisons with our approach. The metric
we use to measure the optimality of our approach is the Bures-Wasserstein Unexplained Variance
Percentage (cBW-UVP) (Gushchin et al., 2023), defined by

100%

BW-UVP(#,7) & 020 _
3 Var(p1)

/BW%(ﬁ(x1|xo)||7r*(x1|x0))p0(ﬂc0)dmo, (B.20)

which measures the distance between conditional transport plans, evaluated using the Bures-
Wasserstein metric.

To use the method of Gushchin et al. (2023), we first obtain samples from the two boundary test
distributions and then fit mixture models on them using EM. We then deploy policy (13), and report
the values of the cBW-UVP index between the known optimal conditional transport plan 7* (z1|zg),
and the conditional transport plan resulting from the integration of the policy (13), denoted 7 (z1|xo).
We use 1,000 initial condition samples z(, and for each sample, we draw 1,000 x; samples from
the distributions 7*(x1|xo) and & (z1|z¢) to compute the empirical Bures-Wasserstein distance in
(B.20). The results are reported in Table 6 for problems of various dimensions and noise levels,
along with many other available methods for solving the same problem (Gushchin et al., 2023, Table
5). We note that although our approach requires virtually no training compared to computationally
expensive neural OT and SB approaches, it outperforms many of these algorithms, outlining its
excellent performance in problems where GMMs accurately capture the marginal distributions of
the problem.

Table 6: Comparisons of cBW2-UVP | (%) between the optimal plan 7* and the learned

plan 7. Colors indicate the ratio of the metric to the independent baseline metric:
ratio < 0.2, ratio € , ratio > 0.5.
e=0.1 e=1 e=10

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

|LSOT] - - - - -
|SCONES] - - - - 136.44 5084 6044  52.11
|NOT] 194 1367 1174 114 477 41.75 286 457 34l 6.56
|EgNOT] 129.8 804 744 638 532 414 264 236 131
|ENOT] 364 22 13.6 126 104 94 48 2.4 19.6 30
|MLE-SB] 457 1612 16.1 1781 413 9.08 127 3.9 12.9
| DiffSB] 13864 1683.6 7086 5342 15646 - - - -
| FB-SDE-A] 86.4 1156.82  1566.44 63.48 131.72
[FB-SDE-J| 11932 173.96 692 155.14 17752 - - - -
[DSBM] 52 168 03 1.1 9.7 3 37 105 3557 15000
|SF? M-Sink| 054 37 95 10.9 02 1.1 9 031 49 319 819
| LightSB] 003 008 028 060 005 009 024 062 007 011 021 037
|LightSB-M (MB)]  0.005 007 027 063 0002 004  0.12 036 004 007 0.1 023
[GMMflow (ours)] 1035 1468 1115 112 578 720 693 638 016 028 143 277

Independent coupling 166.0 152.0 126.0 110.0 86.0 80.0 72.0 60.0 4.2 2.52 2.26 2.4

To further benchmark our algorithm with respect to run-times, we provide wall-clock times for both
training and inference with respect to the number of components and the problem dimensionality
for the boundary distributions provided in the EOT benchmark. We report these values in Table 7
below.

Table 7: Training time for for EOT benchmark.

Dim\ # comp | 5 10 20 50 100

2 0.209 | 0.0595 | 0.1083 | 0.2303 | 1.0256
16 0.0567 | 0.0948 | 0.1413 | 0.4218 | 3.3918
64 0.182 | 0.2228 | 0.7217 | 1.2875 | 2.1431
128 0.2802 | 0.4562 | 0.7713 | 1.6164 | 3.4101
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Table 8: Inference time for for EOT benchmark.

Dim\ #comp | 5 10 20 50 100
2 0.037 | 0.031 | 0.031 | 0.032 | 0.030
16 0.032 | 0.032 | 0.032 | 0.033 | 0.032
64 0.032 | 0.032 | 0.032 | 0.032 | 0.039
128 0.032 | 0.033 | 0.036 | 0.032 | 0.082
£=0.00 £=0.10 £=5.00

1o s 0 5 1 -0 5 0 5 10 -0 -5 0 5 10
Figure 8: Gaussian to with LTI prior dynamics.

We note that because the EOT benchmark uses an initial Gaussian distribution and a GMM terminal
distribution, there is no point in reporting metrics such as marginal distribution accuracy or transport
plan optimality, since these will perform best when the number of components used in GMMflow
matches the setting of EOT benchmark. Furthermore, exploring how well a GMM approximates
a general distribution as the number of components increases is a well-studied problem and goes
beyond the scope of our work; therefore, we do not provide experiments that explore this issue.

C.5 Problems with LTI Prior Dynamics

To test the algorithm on more complicated dynamical systems, we use the 4-dimensional Linear
Time-Invariant (LTT) system

dxy = Axy dt + Bugdt + D dw, (B.21)
with
I R
and boundary distributions
8
po = Z é/\f ([10 cos(km/4); 10sin(kn/4);0;0],0.414) , (B.22a)
p1= .];\7(204, 0.414) . (B.22b)

We note that solving problem (12) with the dynamical system (B.21) in place of (12b) is not currently
solvable using any mainstream neural SB solvers because the stochastic disturbance dw in (B.21)
does not enter through the same channels as the control signal u; and the state ;. The only available
method to solve this problem is detailed in Chen et al. (2016), which, however, assumes access to
the solution of the static EOT problem (1) with boundary distributions (B.22), and a closed form of
the probability density transition kernel included by the dynamical system (B.21) for u; = 0. The
results of our approach are illustrated in Figure 8.

To solve the Gaussian Bridge sub-problems with a dynamical system of the form (B.21) we use
the discrete-time convex formulation of Rapakoulias & Tsiotras (2023). We also include a brief
overview of the method in Appendix D. Each continuous-time Gaussian Bridge is discretized (in
the temporal dimension) into 101 steps over uniform intervals of size At = 0.01. We used MOSEK
(Mosek, 2020) to solve the resulting semidefinite programs.
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D Gaussian Bridge for Linear Time-Varying Systems

In this section, we briefly review the available methods in the literature to solve the Gaussian Bridge
problem with general LTV dynamics of the form (A.1). That is, we consider the problem

1
in E 2 1
mig B | [ o) Par). (€12
d]?t = Atl‘t dt + Btu(l‘t) dt + Dt dw, (Clb)
xo ~ N(po, Xo), 21 ~N(p1,%1). (C.10)

The solution of problem (C.1) is used to solve the Gaussian Bridge problem for the example in
Section C.5 and is relevant to applications with prior dynamics of more general structure such as
mean field games (Bensoussan et al., 2016) and large multi-agent control applications (Saravanos
et al., 2023) or higher-order distribution interpolation problems (Chen et al., 2018, 2019). The
existence and uniqueness of solutions for problem (C.1) are studied in Chen et al. (2015a); Liu
et al. (2025); Liu & Tsiotras (2024). Since the state of (C.1b) remains Gaussian throughout the
steering horizon, i.e., z; ~ N (u, X¢), the problem simplifies to that of the control of the first two
statistical moments of the state, namely the mean p; and the covariance ;. Using a control policy
parametrization of the form

u(z) = K(x — pg) + v, (C2)
allows for the decoupling of the propagation equations for the mean and covariance of the state.
More specifically, applying (C.2) to (C.1b), the equations describing the propagation of u; and X
yield (Sarkkd & Solin, 2019, Section 5.5)

Zt = (At + Bth)Et + Et(At + Bth)T + DtD;r, (C3a)
fiy = Agpig + Broy. (C.3b)

Expanding the expression (C.3a) and performing the change of variables U; = K;3J;, we obtain
Yy =AYy + %4 A] 4 ByUy + Ul B + D:DJ, (C.4)

which is linear in Uy, ¥;. Furthermore, substituting (C.2) into the cost function (C.1a) and using the
cyclic property of the trace operator along with the standard properties of the expectation yields

1 1 1
E {/ e ()] dt} = / vjvg + tr (KtZthT) dt = / vivg + tr (UtEt_lUtT) dt. (C.5)
0 0 0
Equations (C.3b), (C.4), (C.5) can be used to reformulate problem (C.1) to a simpler optimization
problem in the space of affine feedback policies, parameterized by U; and v;. To be more precise,
problem (C.1) reduces to

1
‘mggﬂié vjvy + tr (U2 TU]) dt, (C.6a)
¥ = A%y + A} + BU, + U B} + DDy, (C.6b)
iy = Agpis + By, (C.6¢)

which can be further relaxed to a convex semi-definite program using the lossless convex relax-
ation (Chen et al., 2015b)

ut,gl,izr:,Ut /01 vjvg + tr(Y;) dt, (C.7a)
U U = Y (C.7b)
¥, = AX + A + B,U, + U] B] + D, D], (C.7¢)
f1e = Ay + By, (C.7d)

after noting that the constraint (C.7b) can be cast as a Linear Matrix Inequality (LMI) using Schur’s
complement as

U Y

Problem (C.7) is still infinite dimensional since the decision variables are functions of time ¢ € [0, 1];
however, it can be discretized, approximately using a first-order approximation of the derivatives in
(C.7¢), (C.7d) (Chen et al., 2015b) or exactly using a zero-order hold (Liu et al., 2025; Rapakoulias
& Tsiotras, 2023), and solved to global optimality using a semidefinite programming solver such as
MOSEK (Mosek, 2020).

[Et UtT] = 0.
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Figure 9: Further examples for the man-to-woman Image-to-Image translation task.
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Figure 10: Further examples for the adult-to-child Image-to-Image translation task.
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