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ABSTRACT

We study decentralized policy learning in Markov games where we control a single
agent to play with nonstationary and possibly adversarial opponents. Our goal is to
develop a no-regret online learning algorithm that (i) takes actions based on the
local information observed by the agent and (ii) is able to find the best policy in
hindsight. For such a problem, the nonstationary state transitions due to the varying
opponent pose a significant challenge. In light of a recent hardness result [33],
we focus on the setting where the opponent’s previous policies are revealed to the
agent for decision making. With such an information structure, we propose a new
algorithm, Decentralized Optimistic hypeRpolicy mlrror deScent (DORIS), which
achieves /K -regret in the context of general function approximation, where K is
the number of episodes. Moreover, when all the agents adopt DORIS, we prove
that their mixture policy constitutes an approximate coarse correlated equilibrium.
In particular, DORIS maintains a hyperpolicy which is a distribution over the
policy space. The hyperpolicy is updated via mirror descent, where the update
direction is obtained by an optimistic variant of least-squares policy evaluation.
Furthermore, to illustrate the power of our method, we apply DORIS to constrained
and vector-valued MDPs, which can be formulated as zero-sum Markov games
with a fictitious opponent.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) studies how each agent learns to maximize its cumulative
rewards by interacting with the environment as well as other agents, where the state transitions and
rewards are affected by the actions of all the agents. Equipped with powerful function approximators
such as deep neural networks [31], MARL has achieved significant empirical success in various
domains including the game of Go [47], StarCraft [50], DOTA2 [5], Atari [38], multi-agent robotics
systems [8] and autonomous driving [45]. Compared with the centralized setting where a central
controller collects the information of all agents and coordinates their behaviors, decentralized algo-
rithms [19, 42] where each agent autonomously chooses its action based on its own local information
are often more desirable in MARL applications. In specific, decentralized methods (1) are easier to
implement and enjoy better scalability, (2) are more robust to possible adversaries, and (3) require
less communication overhead [21, 22, 9, 59, 18].

In this work, we aim to design a provably efficient decentralized reinforcement learning (RL)
algorithm in the online setting with function approximation. In the sequel, for the ease of presentation,
we refer to the controllable agent as the player and regard the rest of the agents as a meta-agent,
called the opponent, which specifies its policies arbitrarily. Our goal is to maximize the cumulative
rewards of the player in the face of a possibly adversarial opponent, in the online setting where the
policies of the player and opponent can be based on adaptively gathered local information.

From a theoretical perspective, arguably the most distinctive challenge of the decentralized setting is
nonstationarity. That is, from the perspective of any agent, the states transitions are affected by the
policies of other agents in an unpredictable and potentially adversarial way and are thus nonstationary.
This is in stark contrast to the centralized setting which can be regarded as a standard RL problem for
the central controller which decides the actions for all the players. Furthermore, in the online setting,
as the environment is unknown, to achieve sample efficiency, the player needs to strike a balance
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between exploration and exploitation in the context of function approximation and in the presence of
an adversarial opponent. The dual challenges of nonstationarity and efficient exploration are thus
intertwined, making it challenging to develop provably efficient decentralized MARL algorithms.

Consequently, there seem only limited theoretical understanding of the decentralized MARL setting
with a possibly adversarial opponent. Most of the existing algorithms [7, 53, 49, 27, 23] can only
compete against the Nash value of the Markov game when faced with an arbitrary opponent. This is
a much weaker baseline compared with the results in classic matrix games [17, 1] where the player
is required to compete against the best fixed policy in hindsight. Meanwhile, [33] seems the only
work we know that can achieve no-regret learning in MARL against the best hindsight policy, which
focuses on the policy revealing setting where the player observes the policies played by the opponent
in previous episodes. However, the algorithm and theory in this work are limited to tabular cases and
fail to deal with large or even continuous state and action space. To this end, we would like to answer
the following question:

Can we design a decentralized MARL algorithm that provably achieves no-regret against the
best fixed policy in hindsight in the context of function approximation?

In this work, we provide a positive answer to the above question under the policy revealing setting
with general function approximation. In specific, we propose an actor-critic-type algorithm [29]
called DORIS, which maintains a distribution over the policy space, named hyperpolicy, for decision-
making. To combat the nonstationarity, DORIS updates the hyperpolicy via mirror descent (or
equivalently, Hedge [16]). Furthermore, to encourage exploration, the descent directions of mirror
descent are obtained by solving optimistic variants of policy evaluation subproblems with general
function approximation, which only involve the local information of the player. Under standard
regularity assumptions on the underlying function classes, we prove that DORIS achieves a sublinear
regret in the presence of an adversarial opponent. In addition, when the agents all adopt DORIS
independently, we prove that their average policy constitutes an approximate coarse correlated
equilibrium. At the core of our analysis is a new complexity measure of function classes that is
tailored to the decentralized MARL setting. Furthermore, to demonstrate the power of DORIS,
we adapt it for solving constrained Markov decision process (CMDP) and vector-valued Markov
decision process (VMDP), which can both be formulated as a zero-sum Markov game with a fictitious
opponent.

Our Contributions. Our contributions are four-fold. First, we propose a new decentralized policy
optimization algorithm, DORI S, that provably achieves no-regret in the context of general function
approximation. As a result, when all agents adopt DORIS, their average policy converges to a CCE
of the Markov game. Secondly, we propose a new complexity measure named Bellman Evaluation
Eluder dimension, which generalizes Bellman Eluder dimension [25] for single-agent MDP to
decentralized learning in Markov games, which might be of independent interest. Third, we modify
DORIS for solving CMDP with general function approximation, which is shown to achieve sublinear
regret and constraint violation. Finally, we extend DORIS to solving the approchability task [36]
in vector-valued Markov decision process (VMDP) and attain a near-optimal solution. To our best
knowledge, DORIS seems the first provably efficient decentralized algorithm for achieving no-regret
in MARL with general function approximation.

Notations. In this paper we let [n] = {1,--- ,n} for any integer n. We denote the set of probability
distributions over any set S by Ag or A(S). We also let || - || denote the £3-norm by default.

Related works. Our work is related to the bodies of literature on decentralized learning with an
adversarial opponent, finding equilibria in self-play Markov games, CMDPs and VMDPs. These
works either consider centralized setting or do not have function approximation in decentralized
online setting. Due to the page limit, we compare to these works in Appendix B.

2 PRELIMINARIES

2.1 MARKOV GAMES
Let us consider an n-agent general-sum Markov game (MG) My = (S, {A:}" 1, {Pu}} .
{rn.i hH;’i’i:I, H), where S is the state space, A; is the action space of the i-th agent, P}, : S x

H?=1 A; — A(S) is the transition function at the h-th step, 7,; : S X H?zl A; — Ry is the
reward function of the i-th agent at the h-th step and H is the length of each episode. We assume
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each episode starts at a fixed start state s; and terminates at sg1. At step h € [H], each agent 4
observes the state s;, and takes action ay, ; simultaneously. After that, agent ¢ receives its own reward
rh,i(Sn, ap) where ap, := (ap1,- -+, an,pn) is the joint action and the environment transits to a new
state sp41 ~ Ph(-\sh, ah).

Policy. A policy of the i-th agent j; = {pns : S — Au, bnepm) specifies the action selection
probability of agent ¢ in each state at each step. In the following discussion we will drop the h in
1, when it is clear from the context. We use 7 to represent the joint policy of all agents and p_;
to denote the joint policy of all agents other than i. Further, we assume each agent i chooses its
policy from a policy class II;. Similarly, let IT_; := [] o I1; denote the product of all agents’ policy
classes excluding the i-th agent.

Value functions and Bellman operators. Given any joint policy m, the i-th agent’s value function
VhZ‘ : S — R and action-value (or Q) function Q;{ﬁ ;S H?zl A; — R characterize its expected
cumulative rewards given a state or a state-action pair, which are defined as below:

H
5h = s},Qz,xw = Ex {Zm@haz)

l=h

H
Viri(s) == Ex |:Zrl,i(3la ap)

l=h

sh:s,ah:a},

where the expectation is w.r.t. to the distribution of the trajectory induced by executing the joint
policy 7 in M. Here we suppose the action-value function is bounded:

Q;'Lr,i(sa a) < Vmaxa VS, a, h, ’i, Tr.

Notice that when the reward function is bounded in [0, 1], Vinax = H naturally.

2.2 DECENTRALIZED POLICY LEARNING

In this paper we consider the decentralized learning setting [27, 23, 33] where only one agent is under
our control, which we call player, and the other agents can be adversarial. Without loss of generality,
assume that we can only control agent 1 and view the other agents as a meta opponent. To simplify
writing, we use ap, A, 7, 1, 11, ViT, Q7 to denote ap 1, A1, 75,1, o1, 1, Vi1, QF | respectively. We
also use by, B, v, IT’ to represent the action, the action space, the policy and the policy class of the
meta opponent.

By decentralized we mean during the episode, the player can only observe its own rewards, actions
and some information of the opponent specified by the protocol, i.e., {s,al, 7}, 8}, where
{ jh}hH:1 is the information revealed by the opponent in each episode and we will specify it later. At
the beginning of the ¢-th episode, the player chooses a policy u? from its policy class II based only on
its local information collected from previous episodes, without any coordination from a centralized
controller. Meanwhile, the opponent selects v from II’ secretly and probably adversely.

The learning objective is to minimize the regret of the player by comparing its performance against
the best fixed policy in hindsight as standard in online learning literature [1, 20]:

Definition 1 (Regret). Suppose (ut,vt) are the policies played by the player and the opponent in the
t-th episode. Then the regret for K episodes is defined as

K K
Regret(K) = meaﬁ(Z Vf‘xut(sl) - Z Vfﬁxyt (s1), (D
= t=1

where |1 X v denotes the joint policy where the player and the opponent play |1 and v independently.

We also use ©t to denote ut x vt

Achieving low regrets defined in (1) indicates that if we sample a policy 7 uniformly from {z!}X
at random, the resulting mixture policy will be close to the best fixed policy in hindsight.

Relation between Definition 1 and equilibria. An inspiration for our definition of regrets comes
from the tight connection between low regrets and equilibria in the matrix game [17, 6, 10]. By
viewing each policy in the policy class as a pure strategy in the matrix game, we can generalize the
notion of equilibria in matrix games to Markov games naturally. In particular, a correlated mixed
strategy profile 7 can be defined as a mixture of the joint policy of all agents, i.e., T € A(Hiew IL,).
Suppose the marginal distribution of 7 over the policy of agent ¢ is 7i;, then we can see that 1z, is a
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mixture of the policies in II;. For a correlated profile, the agents might not play their mixed policies
Ti; independently, which means that 77 might not be the product of fz;. A coarse correlated equilibrium
(CCE) is a correlated profile that all the agents have no incentive to deviate from by playing a different
independent policy:

Definition 2 (e-approximate coarse correlated equilibrium (CCE) for n-player MG). A correlated
strategy profile T is an e-approximate coarse correlated equilibrium if we have for all i € |n)

VIi(s1) = max VI (1) — e @)

where [i_; is the marginal distribution of T over the joint policy of all agents other than 1.

Remark 1. Our definition of correlated strategy profile and CCEs is slightly different from [35].
This is because we are considering with policy classes while [35] does not. In fact, our definition is
more strict in the sense that a correlated profile satisfying our definition must also satisfy theirs.

Specially, if a CCE 7 satisfies 7 = Hie[n] [, it is also called a Nash Equilibrium (NE). We will use
our algorithm as an example to show that if a decentralized algorithm can achieve low regrets under
Definition 1, we will be able to find a CCE by running the algorithm independently for each agent
just like in classic matrix games.

2.3 FUNCTION APPROXIMATION

To deal with the potentially large or even infinite state and action space, we consider learning with
general value function approximation in this paper [24, 25]. We assume the player is given a function
class F = Fy X+« X Fy1 (Frn C (S X AX B — [0, Vinax])) to approximate action-value functions.
Since there is no reward in state sy1, we let fyy1(s,a,b) =0foralls € S,ac A,be B, f € F.

To measure the size of 7, we use | F| to denote its cardinality when F is finite. For infinite function
classes, we use e-covering number to measure its size, which is defined as follows:

Definition 3 (e-covering number). The e-covering number of F, denoted by N (¢), is the minimum
integer n such that there exists a subset F' C F with |F'| = n and for any f € F there exists
f" € F' such that maxpe ) || fr — filloo < €

In addition to the size, we also need to impose some complexity assumption on the structure of
the function class to achieve small generalization error. Here we introduce one of such structure
complexity measures called Distributional Eluder (DE) dimension [25], which we will utilize in our
subsequent analysis. First let us define independence between distributions:

Definition 4 (e-independence between distributions). Let W be a function class defined on X, and
Py P1," -, Pn be probability measures over X. We say p is e-independent of {p1,- -+ , pn} with

respect to W if there exists w € W such that /Y, (E,, [w])? < € but [E,[w]| > €.

From the definition we can see that a probability distribution p is independent from {py, - - - , p, } if
there exists a discriminator function in W such that the function values are small at {p1,- - , p,
while large at p. DE dimension is simply the length of the longest sequence of independent probability
measures that the function class can discriminate:

Definition 5 (Distributional Eluder (DE) dimension). Let WV be a function class defined on X, and
Q be a family of probability measures over X. The distributional Eluder dimension dimpg (W, Q, €)
is the length of the longest sequence {p1,--- , pn} C Q such that there exists € > € where p; is
€'-independent of {p1,- - , pi—1} forall i € [n].

Eluder dimension, another commonly-used complexity measure proposed by [43], is a special case
of DE dimension. If we choose Q = {d,.()|x € X'} where d,(-) is the dirac measure centered at x,
then the Eluder dimension can be formulated as

dimg(W, €) = dimpg(W — W, Q, €),

where W — W = {w; — ws : wy, wy € W}. Many function classes in MDPs are known to have low
Eluder dimension, including linear MDPs [28], generalized linear complete models [52] and kernel
MDPs [25].

We also assume the existence of an auxiliary function class G = G X -+ - X Gy (G, € (Sx AX B —
[0, Vinax])) to capture the results of applying Bellman operators on F as in [25, 27]. When F satisfies
completeness (Assumption 3), we can simply choose G = F.
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3 ALGORITHM: DORIS

Policy revealing setting. Recall that in decentralized policy learning setting, the player is also able
to observe some information of the opponent, denoted by 73, aside from its own actions and rewards.
There have been works studying the case where J;, = 0 [49] and J}, = by, [27, 23] in two-player

zero-sum games. However, their benchmark is the Nash value of the Markov game, i.e., Vl“ R (s1)

where 1* x v* is an NE, which is strictly weaker than our benchmark max,, e ZtK: % X! (s1)in
two-player zero-sum games. In fact, [33] has showed achieving low regrets under Definition 1 is
exponentially hard in tabular cases when the opponent’s policies are not revealed (see Appendix E.2
for details). Therefore in this paper we let 7, = {b, v} just like [33] and call this information
structure policy revealing setting.

That said, even in policy revealing setting, the challenge of nonstationarity still exists because the
opponent’s policy can be adversarial and only gets revealed after the player plays a policy. Thus from
the perspective of the player, the transition kernel P}/ (-|s, a) := Ey,, () Pr(:]s, a, b) still changes
in an unpredictable way across episodes. In addition, the problem of how to balance exploration
and exploitation with general function approximation also remains due to the unknown transition
probability. In this section we propose DORIS, an algorithm that is capable of handling both these
challenges and achieving a v/ K regret upper bound in policy revealing setting.

Remark 2. When the opponent’s policy is not revealed but changes slowly, we indeed can infer
the opponent’s policy approximately via the procedures in [39, 46] and this can be viewed as an
**gpproximate policy revealing condition®* in practice.

DORIS. Intuitively, our algorithm is an actor-critic / mirror descent (Hedge) algorithm where each
policy p in II is regarded as an expert and the performance of each expert at episode ¢ is given by

the value function of V* xv! (s1). We call it Decentralized Optimistic hypeRpolicy mlrror deScent

(DORIS). DORIS possesses three important features, whose details are shown in Algorithm 1:

» Hyperpolicy and Hedge: Motivated from the adversarial bandit literature [1, 20, 30] and no-regret
learning works [33], DORIS maintains a distribution p over the policies in II, which we call
hyperpolicy, to combat the nonstaionarity. The hyperpolicy is updated using Hedge, with the

t
reward of each policy y being an estimation of the value function V}**" (s;). This is equivalent to
t
running mirror ascent algorithm over the policy space II with the gradient being V**" (s;).

* Optimism: However, we do not have access to the exact value function since the transition
probability is unknown, which forces us to deal with the exploration-exploitation tradeoff. Here
we utilize the Optimism in the Face of Uncertainty principle [2, 28, 25, 27, 23] and choose our

Lt N ¢ .
estimation V' (i) to be optimistic with respect to the true value V}**" (s;). In this way DORIS
will prefer policies with more uncertainty and thus encourage exploration in the Markov game.

* Optimistic policy evaluation with general function approximation: Finally we need to design

an efficient method to obtain such optimistic estimation v (1) with general function approximation.
Here we propose Opt LSPE to accomplish this task. In short, Opt LSPE constructs a confidence
set for the target action-value function Q#*" based on the player’s local information and chooses
an optimistic estimation from the confidence set, as shown in Algorithm 2. The construction of the

confidence set utilizes the fact that QZX” satisfies the Bellman equation [41]:
QZXU(& a, b) = (7ZL7VQZi;)(S’ a, b) = Th(sv a, b) + ]ES'NPh("Sva,b) [QZI;(SIa Hy V)]’
where Q‘}fif(sﬂ 1y ) = B o5y ,bmn (15 [ @ty (87 @/, ')]. We call 7" the Bellman operator

induced by p x v at the h-th step. Then the construction rule of Bp(u, v/) is based on least-squares
policy evaluation with slackness 3 as below:

BD(N’7V) — {f € F: ED(fhafh-‘rla,uvy) < ;ggﬁD(ghafh-‘rla,uﬂy) + vah € [H]}7 (3)
where Lp is the empirical Bellman residuals on D:

Lo (&, Chrr, 1, v) = > [€n(5hs ans bn) = Th = Chir (g1, 1, )]

(8h,an,bR,Th,8h1)ED
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Algorithm 1 DORIS

Input: learning rate 7, confidence parameter 5.
Initialize p! € Ay to be uniform over I1.
fort=1,---,K do
Collect samples:
The player samples ut from pt.
The player runs p! against the opponent and collects D, = {s!,al, b}, rt - - sﬁqﬂ}.
Update policy distribution:
The opponent reveals its policy v* to the player.

V( ) < OptLSPE(u, 1, Du 1, F,G,6), Vuell

P () o< pt(p) - exp(n - V' (1), V€L
end for

Algorithm 2 OptLSPE(u, v, D, F, G, §)

Construct Bp(u, v) based on D via (3).
Select V' < max cp,, () f (51, 14, V).
return V.

Decentralized Algorithm. Here we want to highlight that DORIS is a decentralized algorithm
because the player can run DORIS based only on its local information, i.e., {sp, an, Jn,7n}, and we
do not make any assumptions on the policies of the opponent. We also discuss the computational
complexity of DORIS in Appendix E.3.

Comparison with OPMD [33]. The hyperpolicy and Hedge part of DORIS indeed follows OPMD
proposed by [33], which is an algorithm for no-regret learning in tabular MG. The novelty of DORIS
lies in the new policy evaluation algorithm specially designed for the policy revealing setting that
can tackle general function approximation. We also need to propose new techniques to analyze the
performance of DORIS, which is more complicated than tabular cases. See Appendix E.1 for more
detailed comparison.

3.1 DORIS IN SELF-PLAY SETTING

Apart from decentralized learning setting with a possibly adversarial opponent, we are also interested
in the self-play setting where we can control all the agents and need to find an equilibrium for the n-
agent general-sum Markov game. Inspired by the existing relationships between no-regret learning and
CCE:s in matrix games [17, 6, 10], a natural idea is to simply let all agents run DORIS independently.
To achieve this, we assume each agent ¢ is given a value function class F; = Fi; X --- X Fpg; and
an auxiliary function class §; = Gy ; X - - - x G ; as in DORIS, and run DORIS with learning rate 7;
and confidence parameter (3; by viewing the other agents as its opponent. Suppose the policies played
by agent i during K episodes are {;£}X ;, then we output the final joint policy as a uniform mixture:

T~ Unif({Hie[n] :uzla T vHiE[n] M’K})

See Algorithm 3 for more details.

Remark 3. Algorithm 3 is also a decentralized algorithm since every agent runs their local algorithm
independently without coordination. The only step that requires centralized control is the output
process where all the agents need to share the same iteration index, which is also required in the
existing decentralized algorithms [35, 26].

4 THEORETICAL GUARANTEES

In this section we analyze the theoretical performance of DORIS in decentralized policy learning and
self-play setting. We first introduce a new complexity measure for function classes, called Bellman
Evaluation Eluder (BEE) dimension, and then illustrate the regret and sample complexity bounds
based on this new measure.

4.1 BELLMAN EVALUATION ELUDER DIMENSION
Motivated from Bellman Eluder (BE) dimension in classic MDPs and its variants in MGs [25, 27, 23],
we propose a new measure specifically tailored to the decentralized policy learning setting, called
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Bellman Evaluation Eluder (BEE) dimension. First, for any function class F, we define (Z— 7;1H’H/ VF
to be the Bellman residuals induced by the policies in IT and IT':

T —T)F o= {fo = T frsr s f € Fope v € W'},

Then Bellman Evaluation Eluder (BEE) dimension is the DE dimension of the Bellman residuals
induced by the policy class IT and IT’ on function class F:

Definition 6. The e-Bellman Evaluation Eluder dimension of function class F on distribution family
Q with respect to the policy class I1 x Il is defined as follows:

dimpgg(F, 6 ILIT, Q) := ’?61?131(] dimpg((Z — EH,HI)}_’ On.6).

BEE dimension is able to capture the generalization error of evaluating value function V#** where
u € I, v € IT', which is one of the most essential tasks in decentralized policy space optimization as
shown in DORTIS. Similar to [25, 27, 23], we mainly consider two distribution families for Q here:

« Q' = {Q} }rern): the collection of all probability measures over S x A x B at each step when
executing (u,v) € IT x II'.

s 0% = {Qi}he[H]i the collection of all probability measures that put measure 1 on a single
state-action pair (s, a, b) at each step.

We also use dimpgg (F, €, I, IT') to denote min{dimpgg (F, €, I1, IT', Q1), dimpgg (F, ¢, I1, 1T, 92)}
for simplicity in the following discussion.

Relation with Eluder dimension. To illustrate the generality of BEE dimension, we show that all
function classes with low Eluder dimension also have low BEE dimension, as long as completeness
(Assumption 3) is satisfied. More specifically, we have the following proposition and its proof is
deferred to Appendix F:

Proposition 1. Assume F satisfies completeness, i.e., T} fr11 € Fp,Vf € FouellveIl',h e
[H]. Then for all € > 0, we have

dimpgg(F, 6 I, 1) < max dimg(Fp, €). 4

he[H]

Inequality (4) shows that BEE dimension is always upper bounded by Eluder dimension when
completeness is satisfied. With Proposition 1, Appendix H validates that kernel Markov games
(including tabular Markov games and linear Markov games) and generalized linear complete models
all have small Bellman Evaluation Eluder Dimension. Furthermore, in this case the upper bound of
BEE dimension does not depend on IT and II’, which is a desirable property when IT and IT is large.

Comparison with multi-agent BE dimension. Jin et al. [27], Huang et al. [23] also propose a variant
of BE dimension for Markov games called multi-agent BE dimension. However, this complexity
measure and its analysis techniques are not applicable in our setting because DORIS is different from
their algorithms in terms of confidence set construction and optimism. See Appendix E.1 for details.

4.2 DECENTRALIZED POLICY LEARNING REGRET
Next we present the regret analysis for DORIS in decentralized policy learning setting. For simplicity,
we focus on finite II here:

Assumption 1 (Finite player’s policy class). We assume 11 is finite.

We consider two cases, the oblivious opponent (i.e., the opponent determines {v*}X | secretly before
the game starts) and the adaptive opponent (i.e., the opponent determines its policy adaptively as the
game goes on) separately. The difference between these two cases lies in the policy evaluation step
in DORIS. The policy v of an oblivious opponent does not depend on the collected dataset Dy.;_1
and thus V" is easier to evaluate. However, for an adaptive opponent, ¢ will be chosen adaptively
based on Dp.;_1 and we need to introduce an additional union bound over II’ when analyzing the
evaluation error of V4"

Oblivious opponent. To attain accurate value function estimation, we first need to introduce two
standard assumptions, realizability and generalized completeness, on F and G [25, 27]. Here
realizability refers to that all the true action value functions belong to F and generalized completeness
means that G contains all the results of applying Bellman operator to the functions in F.
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Assumption 2 (Realizability and generalized completeness). Assume that for any h € [H],u €
v e {vh -, vEY, foy1 € Frar, we have Q1" € Fr, T frg1 € Gh.

Remark 4. Some existing works [57, 23] assume the completeness assumption, which can also be
generalized to our setting:

Assumption 3. Assume for any h € [H), € IL,v € Il', foq1 € Fpg1, we have T/ fri1 € F.

We want to clarify that Assumption 3 is stronger than generalized completeness in Assumption 2 since
if Assumption 3 holds, we can simply let G = F to satisfy generalized completeness.

Appendix G shows that realizability and generalized completeness are satisfied in many examples
including tabular MGs, linear MGs and kernel MGs. With the above assumptions, we have Theorem 1
to characterize the regret of DORIS when the opponent is oblivious, whose proof sketch is deferred
to Appendix . To simplify writing, we use the following notations in Theorem 1:

dpgg = dimggg (F, /1/K,ILT),  Neoy := Nrug(Vinax/K) K H.

Theorem 1 (Regret of Oblivious Adversary). Under Assumption 1,2, there exists an absolute
constant c such that for any § € (0,1], K € N, if we choose 3 = cV2, log(Neoy|l|/3) and

n = +/log 11| /(KV2,.) in DORIS, then with probability at least 1 — 0, we have:

Regret(K) < O(vaax\/KdBEE log (Neov|T1]/8)). o)

The v/ K regret bound in Theorem 1 is consistent with the rate in tabular case [33] and suggests that
the uniform mixture of the output policies {x!}££ | is an e-approximate best policy in hindsight when

K = O(1/¢€?). The complexity of the problem affects the regret through the covering number and the
BEE dimension, implying that BEE dimension indeed captures the essence of this problem. Further,
in oblivious setting, the regret bound in (5) does not depend on IT’ directly (the upper bound of the
BEE dimension is also independent of IT’ in some special cases as shown in Proposition 1) and thus
Theorem 1 can still hold when IT' is infinite, as long as Assumptions 2 is satisfied.

Adaptive Opponent. In the adaptive setting, we first need to modify Assumption 2 to hold for all
v € I’ since vt depends on the collected data (recall that II is the player’s policy class and IT is the
opponent’s policy class):

Assumption 4 (Uniform realizability and generalized completeness). Assume that for any h €
[H],p €L, v €I, foi1 € Frgr, we have Q1" € Fp, T frs1 € Gn.

Further, as we have mentioned before, we need to introduce a union bound over the policies in II” in
our analysis and thus we also assume IT’ to be finite for simplicity.

Assumption 5 (Finite opponent’s policy class). We assume Il is finite.

Remark 5. [t is straightforward to generalize our analysis to infinite II' by replacing |Il'| with the
covering number of 1I'. However, the regret still depends on the size of I, which is not the case
in tabular setting [33]. This dependency originates from our model-free type of policy evaluation
algorithm (Algorithm 2) and is inevitable for DORIS in general. That said, when the Markov game
has special structures (e.g., the Markov games in Appendix C and D), we can avoid this dependency.

With the above assumptions, we have Theorem 2 to show that DORIS can still achieve sublinear
regret in adaptive setting, whose proof is deferred to Section I:

Theorem 2 (Regret of Adaptive Adversary). Under Assumption 1,4,5, there exists an absolute
constant c such that for any § € (0,1], K € N, choosing B = cV2,. log(Neoy|IT||TI'|/§) and

n = +/log |I1|/(KV_2,.) in DORIS, then with probability at least 1 — 6 we have:

Regret(K) < O(HVipax/Kdpgg log (Neov [TI[|TI'] /3)). (6)

We can see that in adaptive setting the regret also scales with v/, implying that DORTS can still find
an e-approximate best policy in hindsight with O(1/€?) episodes even when the opponent is adaptive.
Compared to Theorem 1, Theorem 2 has an additional log |IT’| in the upper bound (6), which comes
from the union bound over I’ in the analysis.

Intuitions on the regret bounds. The regrets in Theorem 1 and Theorem 2 can be decomposed to
two parts, the online learning error incurred by Hedge and the cumulative value function estimation
error incurred by Opt LSPE. From the online learning literature [20], the online learning error is
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O(Vinax/ K log |T1]) by viewing the policies in IT as experts and Vt(u) as the reward function of
expert . For the estimation error, we utilize BEE dimensions to bridge Vt(/f) — V7 (s1) with

the function’s empirical Bellman residuals on Dy.;_1. This further incurs O(Vipaxv/ Kdpgg) in the
results. Our technical contribution mainly lies in bounding the cumulative value function estimation
error with the newly proposed BEE dimensions, which is different from [25] where they focus on
bounding the cumulative distance from the optimal value function.

Comparison with existing works. There have been works studying decentralized policy learning.
However, most of them [7, 53, 49, 27, 23] only competes against the Nash value in a two-player
zero-sum games, which is a much weaker baseline than ours. [33] can achieve VK regret under
Definition 1, but they are restricted in tabular cases and the bound becomes vacuous with more
complicated cases like linear MGs and kernel MGs in Appendix H. DORIS is the first algorithm that
can achieve v/K regret under Definition | with general function approximation and is capable of
tackling all models with low BEE dimension, including linear MGs, kernel MGs and generalized
linear complete models. More details are deferred to Appendix E.1.

4.3 SELF-PLAY SAMPLE COMPLEXITY

Our previous discussion assumes the opponent is arbitrary or even adversary. A natural question is to
ask whether there are any additional guarantees if the player and opponent run DORIS simultaneously,
which is exactly the self-play setting. The following corollary answers this question affirmatively and
shows that Algorithm 3 can find an approximate CCE 7 efficiently:

Corollary 1. Suppose Assumption 1,4 hold for all the agents i and its corresponding F;, G;, 11;, T1_,.
Then for any 6 € (0,1],¢ > 0, if we choose

K> O(HQVrﬁaX : m%p]({dBEEJ . (1og/\/cov7i + Y log [TI;| + log(n/§)> }/8), (7)
€N
j=1
where dggg,; and Ncow are defined respectively as
dpeg,i = dimpge (Fi, V1/K, 1L, 112),  Neovi == Nr,ug, (Vinax/K)KH,

and set B3; = V2, 1og(Neovi IL||I1_;|n/8),m; = \/log [IL;|/(KV;2,y), then with probability at
least 1 — 0, T is e-approximate CCE.

The proof is deferred to Appendix K. Corollary 1 shows that if we run DORIS independently for each

agent, we are able to find an e-approximate CCE with O(1/¢?) samples. This can be regarded as a
counterpart in Markov games to the classic connection between no-regret learning algorithms and
equilibria in matrix games. However, this guarantee does not hold if an algorithm can only achieve
low regrets with respect to the Nash values.

Avoiding curse of multiagents. The sample complexity in (7) avoids exponential scaling with
the number of agents n and only scales with max;c[,) dBEE,i» MaX;e[n] Neov,i and Z?:l log |11,
suggesting that statistically Algorithm 3 is able to escape the curse-of-multiagents problem in the
literature [26]. Nevertheless, the input dimension of functions in F; and G; may scale with the
number of agents, leading to the computational inefficiency of Opt LSPE. We comment that finding
computational efficient algorithms is beyond the scope of this paper and we leave it to future works.

Comparison with existing algorithms. There have been many works studying how to find equi-
libria in Markov games. However, most of them are focused on centralized two-player zero-sum
games [3, 56, 27, 23] rather than decentralized algorithms. For decentralized algorithms, existing
literature mainly handle with potential Markov games [60, 32, 12] and two-player zero-sum games
[11, 44, 54]. [35, 26] are able to tackle decentralized multi-agent general-sum Markov games while
their algorithms are restricted to tabular cases. Algorithm 3 can deal with more general cases with
function approximation and policy classes in multi-agent general-sum games. Furthermore, compared
to the above works, DORIS has an additional advantage of robustness to adversaries since all the
benign agents can exploit the opponents and achieve no-regret learning.

Extensions. Although Theorem 1, Theorem 2 and Corollary | are aimed at Markov games, DORIS
can be applied to a much larger scope of problems. Two such problems are finding the optimal
policy in constrained MDPs and vector-valued MDPs. We will investigate these two problems in
Appendix C and D, where we demonstrate how to convert such problems into Markov games with a
fictitious opponent by duality so that DORIS is ready to use.
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A DORIS IN SELF-PLAY SETTING

Here we present the pseudocode of Algorithm 3.

Algorithm 3 DORIS in self-play setting

Input: learning rate {n; }?_,, confidence parameter {3;}7_.
Initialize p} € A, to be uniform over I1; for all i € [n].
fort=1,--- K do
Collect samples:
Agent i samples p! from pt.
Run y* = [T:_, p; and collect D, ; = {sf,af,r] ;- ,s%,} for each agent i.
Update policy distribution:
All agents reveal their policies yf.
V(i) < OPELSPE(us, i’ ;. Dy 1.1, Fir s Bi), Vps € iy i € [n].
—t .
P (i) oc (i) - exo(ni - Vi), Vi € Wi € [n].
end for

B RELATED WORKS
In this section we supplement the related literature.

Decentralized learning with an adversarial opponent. There have been a few works studying
decentralized policy learning in the presence of a possibly adversarial opponent. [7] proposes R-max
and is able to attain an average game value close to the Nash value in tabular MGs. More recently,
[53, 49] improve the regret bounds in tabular cases and [27, 23] extend the results to general function
approximation setting. However, these works only compete against the Nash value of the game and
are unable to exploit the opponent. A more related paper is [33], which develops a provably efficient
algorithm that achieves a sublinear regret against the best fixed policy in hindsight. But there results
are only limited to the tabular case. Our work extends the results in [33] to the setting with general
function approximation, which requires novel technical analysis.

Finding equilibria in self-play Markov games. Our work is closely related to the recent literature
on finding equilibria in Markov games via reinforcement learning. Most of the existing works
focus on two-player zero-sum games and consider centralized algorithms with unknown model
dynamics. For example, [53, 3] utilize optimism to tackle the exploration-expoitation tradeoff
and find Nash equilibria in tabular cases, and [56, 27, 23] extend the results to linear and general
function approximation setting. Furthermore, under the decentralized setting with well-explored
data, [11, 60, 44, 54, 32, 12] utilize independent policy gradient algorithms to deal with potential
Markov games and two-player zero-sum games. Meanwhile, under the online setting, [4, 35, 26]
have designed algorithms named V-learning, which are able to find CCE in multi-agent general-sum
games. However, there results are only limited to the tabular case.

Constrained Markov decision process. [15, 13] propose a series of primal-dual algorithms for
CMDPs which achieve v/ K bound on regrets and constraint violations in tabular and linear approxi-
mation cases. [34] reduces the constraint violation to 5(1) by adding slackness to the algorithm and
achieves zero violation when a strictly safe policy is known; [55] further avoids such requirement
with the price of worsened regrets. Nevertheless, these improvements are only discussed in the tabular
case.

Approchability for vector-valued Markov decision process. [36] first introduces the approacha-
bility task for VMDPs but does not provide an algorithm with polynomial sample complexity. Then

[58] proposes a couple of primal-dual algorithms to solve this task and achieves a O(e~2) sample
complexity in the tabular case. More recently, [37] utilizes reward-free reinforcement learning to
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tackle the problem and studies both the tabular and linear approximation cases, achieving roughly the
same sample complexity as [58].

C EXTENSION: CONSTRAINED MARKOV DECISION PROCESS

Although DORIS is designed to solve Markov games, there are quite a lot of other problems which
DORIS can tackle with small adaptation. In this section we investigate an important scenario in
practice called constrained Markov decision process (CMDP). By converting CMDPs into a maximin
problem via Lagrangian multiplier, we will be able to view it as a zero-sum Markov game and apply
DORIS readily.

Constrained Markov decision process. Consider the Constrained Markov Decision Process
(CMDP) [13] Mcmpp = (S, A, {Py}L {rn} . {gn}}_,, H) where S is the state space, A
is the action space, H is the length of each episode, P, : S x A — A(S) is the transition function
at the h-th step, 7, : S X A — Ry is the reward function and g, : S x A — [0, 1] is the utility
function at the h-th step. We assume the reward r}, is also bounded in [0, 1] for simplicity and thus
Vinax = H. Then given a policy p1 = {1, : S — Aa}ne(a), we can define the value function V),

and action-value function Q*', with respect to the reward function  as follows:

H
Sp = s],fo’h(s,a) =E, {Zrl(sl,al)

I=h

H
Vi(s) =E, [Zrl(sl»al)

I=h

shzs,ah:a].

The value function V', and action-value function @} ;, with respect to the utility function g can be

defined similarly. Another related concept is the state action visitation distribution, which can be
defined as

d), (s,a) = Pr,[(sn, an) = (s,a)],

where Pr,, denotes the distribution of the trajectory induced by executing policy x in Mcmpp.

Learning objective. In CMDPs, the player aims to solve a constrained problem where the objective
function is the expected total rewards and the constraint is on the expected total utilities:

Problem 1: Optimization problem of CMDP

max V¥ (s1) subjectto V) (s1) >0, 3)

where b € (0, H] to avoid triviality.

Denote the optimal policy for (8) by pé&ypp. then the regret can be defined as the performance gap
with respect to (& pp:

K
Regret(K) = Y (V“CMDP ) —VH (31)). 9)

t=1

However, since utility information is only revealed after a policy is decided, it is impossible for each
policy to satisfy the constraints. Therefore, like [13], we allow each policy to violate the constraint in
each episode and focus on minimizing total constraint violations over K episodes:

K
Violation(K) = [Z (b— ngﬁ(sl))} . (10)
+

t=1

Achieving sublinear violations in (10) implies that if we sample a policy uniformly from {u}X | its
constraint violation can be arbitrarily small given large enough K. Therefore, if an algorithm can
achieve sublinear regret in (9) and sublinear violations in (10) at the same time, this algorithm will be
able to find a good approximate policy to fi&ypp-
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C.1 ALGORITHM: DORIS-C

To solve Problem 1 with DORIS, we first need to convert it into a Markov game. A natural idea is to
apply the Lagrangian multiplier Y € R to Problem 1, which brings about the equivalent maximin
problem below:

I;lgﬁ(l}rpé% Lempp (1, Y) ==V (51) + Y (V) (s1) = b). (11)

Although Problem 1 is non-concave in p, there have been works indicating that strong duality still
holds for Problem 1 when the policy class is described by a good parametrization [40]. Therefore,
here we assume strong duality holds and it is straightforward to generalize our analysis to the case
where there exists a duality gap:

Assumption 6 (Strong duality). Assume strong duality holds for Problem 1, i.e.,

max min Lompe (1, Y) = min max Lcnvpp (1Y) (12)

Remark 6. One example case where strong duality (12) holds is when policy class 11 satisfies global
realizability. Let u;lg denote the solution to max,, (|s)ea, MiNy>q Lcempp(p,Y). [13] shows

that MAaX, g(A ,)ISIH miny > LcMpp (1, Y) satisfies strong duality, and thus as long as /,L;,() e 11,
Problem 1 also has strong duality.

Further, let D(Y') := max,ert Lompp (14, Y') denote the dual function and suppose the optimal dual
variable is Y* = argminy>¢ D(Y). To ensure Y* is bounded, we need to assume the standard
Slater’s Condition holds:

Assumption 7. There exists Ag1, > 0 and i € 11 such that Vgﬁ 1(51) > b+ Agla-

Then the following lemma shows that Assumption 7 implies bounded optimal dual variable, whose
proof is deferred to Appendix L.1:

Lemma 1. Suppose Assumption 6,7 hold, then we have 0 < Y* < H /..

Now we are ready to adapt DORIS into a primal-dual algorithm to solve Problem 1. Notice that the
maximin problem (11) can be viewed as a zero-sum Markov game where the player’s policy is y and
the reward function for the player is 74 (s, a) + Y gn (s, a). The opponent’s action is Y € R which
remains the same throughout a single episode. With this formulation, we can simply run DORIS on
the player, assuming the player is given function classes { F”,G"} and {9, G9} to approximate Q"' ,
and Qgﬁ ;, respectively. In the meanwhile, we run online projected gradient descent on the opponent
so that its action Y can capture the total violation so far.

This new algorithm is called DORIS-C and shown in Algorithm 4. It consists of the three steps below
in each iteration. For the policy evaluation task in the second step, DORIS—-C runs a single-agent
version of Opt LSPE to estimate V', (s1) and V", (s, ) separately, which is essential for DORTS~C
to deal with the infinity of the opponent’s policy class, i.e., R..

e The player plays a policy u! sampled from its hyperpolicy pt and collects a trajectory.

* The player runs Opt LSPE—C to obtain optimistic value function estimations Vﬁ(u) , VZ () for all

u € II and updates the hyperpolicy using Hedge with the rewards being Vf_(,u) + YtV;( u). The
construction rule for Bp () is still based on relaxed least-squares policy evaluation:

BD(/J’) — {f SV ‘CD(fhafh-ﬁ-lau) S ;Ielg ‘cD(gh7fh+17/J’) + /67Vh S [H]}7 (13)
where Lp is the empirical Bellman residuals on D:

Lp(&n, Chrr, 1) = > [ (shyan) — 2 — Chra (st )]

(8h,an,Th,8h+1)ED

* The dual variable is updated using online projected gradient descent.
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Algorithm 4 DORIS-C

Input: learning rate 7, o, confidence parameter j3,, 34, projection length X.
Initialize p! € RIM to be uniform over IL, Y; + 0.
fort=1,--- , Kdo

Collect samples:

The player samples p* from p’.

Run ! and collect D = {s{,al, 7}, -, sy 1 }. D! = {s{,al, g1, - sy 1}

Update policy distribution:

V(1) < OPtLSPE~C(1, Df,_y, F',G",3,), V€L

VZ(H’) A optLSPE-C(Ma Df;t—l? ‘Fga gga /6_11)7 v,u eIl

—t —t
P () ocpt(p) - exp(n - (V. (0) + iV (1), Vpell
Update dual variable:
. =t

Yig1 ¢ Projjg (Ve + (b = Vg (uh))).

end for

Algorithm 5 Opt LSPE-C(u, D, F, G, )

Construct Bp(u) based on D via (13).
Select V' < maxcp,, () f(51, 1)
return V.

C.2 THEORETICAL GUARANTEES

Next we provide the regret and constraint violation bounds for DORIS~-C. Here we also consider
the case where II is finite, i.e., Assumption | is true. However, we can see that here the opponent
is adaptive and its policy class is infinite, suggesting that Assumption 5 is violated. Fortunately,
since the opponent only affects the reward function, the player can simply first estimate Vr‘fl (s1)
and V;’” 1(s1) respectively and then use their weighted sum to approximate the target value function
Vi (s1) +Y -V} (s1). In this way, DORTS~C circumvents introducing a union bound on Y and
thus can work even when the number of possible values for Y is infinite.

We also need to introduce the realizability and general completeness assumptions on the function
classes as before:

Assumption 8 (Realizability and generalized completeness in CMDP). Assume that for any h €
[H],p € 1L, f7 1 € Fj o1, [y € F9, we have

QL € Fh QL € FLT fiy € G T i, € Gl (14)

Here 7" is the Bellman operator at step h with respect to 7:

(7;#7Tfh+1)(57 a) = Th(S, CL) + Es’~P(-|sﬁa)fh+1(S/a U)7

where fi,11(s", 1) = Eqrop(1s)[fus1 (s, a")]. T;F9 is defined similarly. We can see that (14) simply
says that all the action value functions with respect to r (g) belong to F" (F9) and G" (GY) contains
all the results of applying Bellman operator with respect to r (g) to the functions in F" (F9).

In addition, as a simplified case of Definition 6, BEE dimension for single-agent setting can be
defined as follows:

Definition 7. The single-agent e-Bellman Evaluation Eluder dimension of function class F on
distribution family Q with respect to the policy class 11 and the reward function r is defined as
follows:

dimBEE(]:7 €, Ha T, Q) = ]zn[a[}{(] dlmDE((I - 7;7,1-[77));7 Qh7 €)a
€

where (T — TA")VF = {fn = T/ fus1: f € F,p € ).

We also let dimpgg(F, ¢, II,7) denote min{dimpgg(F, ¢, II,7, Q'), dimpgg(F, €, 11,7, @)} as

before. dimpgg(F, ¢, II, g, Q) and dimpgg (F, €,I1, g) are defined similarly but with respect to the
utility function g.

16



Under review as a conference paper at ICLR 2023

Now we can present Theorem 3 which shows that DORIS—-C is capable of achieving sublinear regret
and constraint violation for Problem 1. We also use the following notations to simplify writing:

dBEE,T = dimBEE(‘FT) V 1/KaH7T)a NCOV,T = N’}—TUQT(H/K)KH)

dgeE,g := dimpge (F?, V1/K,11,g), Neov,r := Nrsugs (H/K)KH.
Theorem 3. Under Assumption 6,7,1,8, there exists an absolute constant c such that for any § € (0, 1],
K € N, if we choose B, = cH?log(Neoy|11|/8), By = cH?log(Neoy ¢|11|/6), o = 1/VK,

X = 2H /A\sia and 1 = +/log 11|/ (K (X + 1)2H?2) in DORIS~C, then with probability at least 1 — §,
we have:

H2
Regret(K) < O((H2 + . >\/KdBEE,T log (/\/CO\,W|1'[/6)>7 (15)

H
Violation(K) < O ( <H2 + \
sla

)@) (16)

where

€ppp = Max {dBEE,T 10g (Nooy o [T11/8) , dpgE, 10g (Nooy.oT1]/0) }

The bounds in (15) and (16) show that both the regret and constraint violation of DORT S—C~scale with
VK. This implies that for any € > 0, if i is sampled uniformly from {x*}/<, and K > O(1/€?), i
will be an e near-optimal policy with high probability in the sense that

VE(s1) 2 VIO (s1) —e,  VP(s1) 2b—e.

In addition, compared to the results in Theorem 1 and Theorem 2, (15) and (16) have an extra term
scaling with 1/\g),. This is because DORIS—C is a primal-dual algorithm and A4, characterizes the
regularity of this constrained optimization problem.

The proof of the regret bound is similar to Theorem 1 and Theorem 2 by viewing VT“ 1(s1)+ YVg‘f 1(s1)
as the target value function and decomposing the regret into cumulative estimation error and online
learning error. To bound the constraint violation, we need to utilize the strong duality and the property
of online projected gradient descent. See Appendix L for more details.

Comparison with existing algorithms. There has been a line of works studying the exploration
and exploitation in CMDPs. [15, 13] propose a series of algorithms which can achieve v/K bound
on regrets and constraint violations. However, they focus on tabular cases or linear function ap-
proximation and do not consider policy classes while DORIS~-C can deal with nonlinear function
approximation and policy classes. As an interesting follow-up, [34] reduces the constraint violation
to O(1) by adding slackness to the algorithm and achieves zero violation when a strictly safe policy
is known; [55] further avoids such requirement with the price of worsened regrets. However, these
improvements are all limited in tabular cases and we leave the consideration of their general function
approximation counterpart to future works.

D EXTENSION: VECTOR-VALUED MARKOV DECISION PROCESS

Another setting where DORIS can play a role is the approachability task for vector-valued Markov
decision process (VMDP) [36, 58, 37]. Similar to CMDP, we convert it into a zero-sum Markov
game by Fenchel’s duality and then adapt DORIS properly to solve it.

Vector-valued Markov decision process. Consider the Vector-valued Markov decision process
(VMDP) [58] Mympp = (S, A, {P L, v, H) where r = {r, : S x A — [0,1]%}L | isa
collection of d-dimensional reward functions and the rest of the components are defined the same
as in Section C. Then given a policy ¢ € II, we can define the corresponding d-dimensional value
function V}/ : § — [0, H|? and action-value function @/, : S x A — [0, H]* as follows:

H

Sh_s}a ﬁ(s’a)_Eu{Z”’z(sl,al)

l=h

Sp = S,ap, —a].

H
V/i(s) =E, {Zrl(sl, ar)
I=h
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Learning objective. In this paper we study the approachability task [36] in VMDP where the
player needs to learn a policy whose expected cumulative reward vector lies in a convex target set C.
We consider a more general agnostic version [58, 37] where we do not assume the existence of such
policies and the player learns to minimize the Euclidean distance between expected reward and the
target set C:

Problem 2: Approachability for VMDP

min dist(V{(s1),C),

pell

where dist(a, C) is the Euclidean distance between point  and set C.

The approachability for VMDP is a natural objective in multi-task reinforcement learning where each
dimension of the reward can be regarded as a task. It is important in many practical domains such as
robotics, autonomous vehicles and recommendation systems [58]. Therefore, finding the optimal
policy for Problem 2 efficiently is of great significance in modern reinforcement learning.

D.1 ALGORITHM: DORIS-V

To deal with Probelm 2, we first convert Problem 2 into a Markov game as we have done in
Appendix C. By Fenchel’s duality of the distance function, we know Problem 2 is equivalent to the
following minimax problem:

: . M _
min meoc Lvmop (1, 0) == (0, Vi"(51)) — max(8, ),

where B(r) is the d-dimensional Euclidean ball of radius r centered at the origin. Regarding p as the
player’s policy and @ as the opponent, we can again view this minimax problem as a Markov game
where the reward function for the player is (8, 7}, (s, a)). Consider the general function approximation
case where the player is given function classes F := {fi}{i’jil, Gg:= {g{b}fﬂ:l to approximate
Q) (Fj and Gj are the j-th dimension of 7}, and Gj), we can run DORIS for the player while the
opponent will update 8 via online projected gradient ascent just like DORIS—-C.

We call this new algorithm DORIS-V, which is shown in Algorithm 6 and also consists of three
steps in each iteration. For the policy evaluation task here, we apply Opt LSPE-V and construct a
confidence set for each dimension of the function class separately, and let the final confidence set be
their intersection. Therefore the construction rule for Bp () is given as:

Bo(i) < {f € F s Los(fis figas 1) < 10f Los (g7, flqo0) + B,V E [H],j € [}, (7)
where for any j € [d] and h € [H],
‘CDJ (gia Ci+1a ,LL) = Z [gib(Sh, ah) - Tib - C}J;+1 (Sh-‘rla :u)]27
(Shﬂahﬂ‘i,syrkl)ep

and ri is the j-the dimension of r;. In addition, since here we want to minimize the distance,
OptLSPE-V will output a pessimistic estimation of the target value function instead of an optimistic
one.

* The player plays a policy ! sampled from its hyperpolicy pt and collects a trajectory.

* The player runs Opt LSPE-V to obtain pessimistic value function estimations (8%, V'* (1)) for all
w1 € II and updates the hyperpolicy using Hedge.

* The dual variable is updated using online projected gradient ascent.

D.2 THEORETICAL GUARANTEES

We still consider finite policy class II here. Notice that in the fictitious MG of VMDP, the opponent’s
policy class is also infinite, i.e., B(1). However, since the player only needs to estimate V/*(sy),
which is independent of 6, DORIS-V can also circumvent the union bound on 8 just like DORIS-C.
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Algorithm 6 DORIS-V

Input: learning rate 7, o¢, confidence parameter [3.
Initialize p' € RI™ to be uniform over IT, ; « 0.
fort=1,---,Kdo
Collect samples:
The learner samples u! from pt.
Run ! and collect Dy = {s{,af, 7, -+, sh, }.
Update policy distribution:
Kt (M) A oPtLSPE_V(M7 Dl:t717 ]:7 g7 6) 0t)7 VM €Il
P (k) o p!(n) - exp(—n(V' (1), 0%)), Vu eIl
Update dual variable:
0111+ Projgp) (0 + (V! (1) — arg maxgec(6:, x))).
end for

Output: i uniformly sampled from p!, - - | u*.

Algorithm 7 Opt LSPE-V(u, D, F, G, 3,0)

Construct Bp (1) based on D via (17).

Select V' <— fi(s1, 1), where f = argmin gy cg,, () (f1 (51, 14), 0).
return V.

In addition, we need to introduce the realizability and generalized completeness assumptions in this
specific setting, which is simply a vectorized version as before:

Assumption 9 (Realizability and generalized completeness in VMDP). Assume that for any h €
[H],j € [d],p €11, foi1 € Fhy1, we have Q17 € Fy, ;, T fi+1 € G, where Q" is the j-the
dimension of Q) and T} is the j-th dimensional Bellman operator at step h defined in (18).

Here T,/ 7 is defined as:
(ﬁ#’]f}]b+1)(sv a) = T’fl(& a) + Es/NP(~\s,a)f}]L+1(5/a /~L) (18)
In addition, the BEE dimension for VMDP can be defined as the maximum BEE dimension among

all d dimensions:

Definition 8. The d-dimensional e-Bellman Evaluation Eluder dimension of function class F on
distribution family Q with respect to the policy class 11 is defined as follows:

. . 5\ )
dimpgg(F, €11, Q) := je[ﬁgé[m dimpg((Z = 7,7)F?, Qn,€),

where (If’ThH"j)fj = {f}z 7771%]']0;31'“ :feF,nelll

We also use dimpgg (F, €, II) to denote min{dimpgg(F, ¢, I1, Q'), dimprgr(F, €, I1, %)} as be-
fore.

The next theorem shows that DORIS-V is able to find a near optimal policy for Problem 2 with
polynomial samples, where we use the following notations to simplify writing:

dBEE,V := dimpgg (I7 1/Ka H)a NCOV,V = I_Iéa[‘;]{N]:jUQJ (H/K)KH
J

Theorem 4. Under Assumption 1,9, there exists an absolute constant ¢ such that for any ¢ € (0, 1],
K €N, ifwe choose 3 = cH? 1og(Neov v |T1|d/6), oy = 2/(Hdt), and ) = /log |T| /(K H2d)
in DORIS-V, then with probability at least 1 — §, we have:

dist(V{*(s1),C) < mindist(V{"(s1),C) + o(m*Vi- /b,y log (Neowv[Td/0)/K ). (19)
nw

The bound in (19) shows that for any € > 0, if K > O(d/€?), i will be an € near-optimal policy with
high probability. Compared to the results in Theorem 1 and Theorem 2, there is an additional term d.
This is because the reward is d-dimensional and we are indeed evaluating d scalar value functions in
OptLSPE-V.

The proof is similar to that of Theorem 3 and utilizes the fact that both x and @ are updated via
no-regret online learning algorithms (Hedge for x and online projected gradient ascent for 8). See
Appendix M for more details.
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Paper Setting Decentralized? Baseline Optimism
Tian et al. [49] Tabular Yes Nash Value | Local, w.r.t. V,*(s),Vh, s
Liu et al. [33] Tabular Yes Best policy | Local, W.LL Vh,s,a,b,
in hindsight QY (s,a,b)
Jin et al. [27] X
Huang et al. [23] General FA Yes Nash value Global, w.r.t. V;*(s1)
. ,u,uk
This work General FA Yes .Bes.t po!ncy Global, w.r.t. V" (s1)
in hindsight

Table 1: Comparison with related works on decentralized learning with an adversarial opponent. Here
General FA means general function approximation setting. From the table we can see that Tian et al.
[49] focuses on tabular cases and can only compete agasint the Nash value of the game. Liu et al.
[33] also works on tabular cases but the baseline is much stronger, i.e., the best policy in hindsight.
Jin et al. [27], Huang et al. [23] are able to deal with general function approximation, but they can
only compete against Nash value. In contrast, our work considers general function approximation
and the baseline is the strongest (the same as Liu et al. [33]).

Number of

Paper Setting Decentralized? Optimism
players
Jin et al. [26] Tabular Yes > 9 Local, w.r.t.f/Vh7 s
Mao et al. [35] - max,, V" (s)
Jinetal [27] | Goperal FA No 2 Global, w.rt. Vi*(s1)
Huang et al. [23] P AL
This work | General FA Yes >2 | Global, wrt. V (s1)

Table 2: Comparison with related works on finding equilibria in self-play Markov games. Here
General FA means general function approximation setting. We can see that Jin et al. [26], Mao
et al. [35] studies tabular cases. Their algorithms are decentralized and can still work when the
number of players is larger than 2. Jin et al. [27], Huang et al. [23] works on general function
approximation setting but their algorithms are centralized and limited to two-player zero-sum games.
In comparison, our work can handle multi-agent (> 2 players) general-sum games with general
function approximation and the algorithm is decentralized.

Comparison with existing algorithms. [58] has also proposed algorithms for approachability
tasks in tabular cases and achieve the same sub-optimality gap with respect to d and K as Theorem 4.
[37] studies the tabular and linear approximation cases, achieving v/K regret as well. Their sample
complexity does not scale with d because they have normalized the reward vector to lie in B(1)
in tabular cases and B(+/dyy) in djin-dimensional linear VMDPs. Compared to the above works,
DORIS-V is able to tackle the more general cases with nonlinear function approximation and policy
classes while retaining the sample efficiency.

E DIScussioN

E.1 COMPARISON WITH CLOSELY-RELATED WORKS

In this section we provide a more detailed comparison between DORIS and some closely-related
works in this section. First we would like to summarize the comparison with decentralized learning
literature and self-play literature in Table 1 and 2. Next we will clarify the novelty of our work given
some relarted works.

Novelty given Liu et al. [33]. The idea of maintaining a hyperpolicy and utilizing Hedge to update
it in DORIS is inspired from OPMD proposed in Liu et al. [33]. However, the policy evaluation
algorithm in Liu et al. [33] can only work in tabular cases and our novelty lies in the new optimism
and policy evaluation step (Algorithm 2) specially designed for the policy revealing setting. Note
that the extension to the setting of general function approximation is not trivial. Combining existing
techniques on reinforcement learning with general function approxiamtion (for example, Bellman
Eluder dimension in Jin et al. [25]) with Liu et al. [33] does not lead to our work because the
optimism in DORIS is (i) global (in the sense that optimism is only true for s;, which differs from

20



Under review as a conference paper at ICLR 2023

Liu et al. [33]) and (ii) policy-pair specific (that is, our confidence set is only optimistic with respect
k
to V{""" (s1), which differs from Jin et al. [25]).

More specifically, Liu et al. [33] attains optimism via adding a bonus term /[ for each step h and
state-action pair (s, a, b) in value iteration as follows:

- — Lk
QZ7 (S’ a, b) = I}—<“s’~l?—ﬁ’(-|s,a) [V}ﬂl (SI)] + T(S, a, b) + 8,
_ .k

— l/k v
th” (S) = EGNMh(S)7bNV}]§(S)[QZ7 (S7a7b)].

_ k k
This guarantees that V" (s, a, b) is optimistic with respect to the true value function V""" (s, a, b)
for each h, s,a,b. However, DORIS picks the most optimistic estimation from the constructed
confidence set directly:

_ k
VY = max 1, 1, V0).
feB(p,,uk)f( 1, 1 V")

This can only guarantee that Vet s optimistic with respect to V}* v* (s1). Thus bounding the regret
will be harder in our case with only global optimism.

In addition, although Jin et al. [25] also uses global optimism, it is optimistic with respect to the fixed
optimal value function V;*(s1) and only needs to construct one confidence set of it. Nevertheless,
to tackle the non-stationary optimal policy in the decentralized setting which keeps changing across

k
episodes due to the adversarial opponent, DORIS needs to construct a confidence set of V""" (s1) for

each policy 1 in the policy class and the estimation Vit s only optimistic with respect to V}* v* (s1)
for each p respectively. Therefore, the analysis techniques in Jin et al. [25] cannot be applied directly
here. We need to decompose the regret in a different way and propose a new complexity measure
(i.e., BEE dimension) to bound the regret.

Novelty given Jin et al. [27], Huang et al. [23]. Jin et al. [23], Huang et al. [23] also design
algorithms and utilize analysis techniques based on Bellman-eluder-type complexity (i.e., multi-agent
BE dimension [27, 23]) in Markov games. Here we want to clarify that although the BEE dimension
is also inspired from Bellman Eluder dimension proposed in Jin et al. [25], DORIS is very different
from Jin et al. [27], Huang et al. [23] in terms of confidence set construction and optimism, which
makes their analysis techniques not applicable here either.

Jin et al. [27], Huang et al. [23] consider zero-sum Markov games in the centralized setting with gen-
eral function approximation. The algorithms in these works are based on (i) constructing confidence
regions of the optimal value function (i.e., Nash value function in zero-sum games) or model
and (ii) solving the Nash equilibrium with respect to the optimistic function/model. As a result, their
algorithms can be regarded as running optimistic greedy policies in games and the estimated value
functions are always optimistic estimates of the optimal value function V;*(s1) of the underlying
game.

In contrast, in the decentralized setting, one unique challenge faced by DORIS is that the optimal
policy is indeed changing across the episodes because we cannot control the opponent and the
opponent can be adversarially adjusting its own policy. Therefore, there does not exist such a fixed
optimal value function that we can run optimism with respect to. More importantly, from the view of
the single agent, the environment is adversarially changing due to the opponent. Such nonstationarity
does not appear in these works. To deal with this challenge, DORIS is based on (i) constructing the
confidence region for policy evaluation problems, (ii) running mirror descent over the space of
policies. As a result, DORIS is more like a decentralized policy optimization algorithm and the
value functions maintained by the DORIS are only optimistic with respect to the value functions
associated with the current policy pair (j, v*), which changes at each iteration.

More importantly, such a different version of optimism leads to a different regret decomposi-
tion. Specifically, in (22), we show that the regret is upper bounded by the policy evaluation
error Y"1 (V*(u) — V{7 (s1)) and online learning error induced "1, (V*(1*) — V*(u')) by
mirror descent. Bounding the evaluation error ZtK: L(Vi(ut) — V7™ (s1)) incurred by achiev-

ing optimism in policy evaluation has not been considered in Jin et al. [27], Huang et al.
[23]. Multi-agent BE dimension [27, 23] cannot be applied here either because it measures
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the Bellman residuals f,(s,a,b) — rp41(s,a,b) — min, fr41(s, 1, v) and can only help bound
Zf{: (V') — min, Vl”t’”(sl)) when the policy v* played by the opponent is a pessimistic best
response of ut. In our case 1! is arbitrary (typically not the best response of ;') and the value we
want to bound is also different, therefore multi-agent BE dimension is not applicable and we have to
propose BEE dimension to evaluate the complexity of policy evaluation tasks with general function
approximation. Along with the new measure, we have also identified common function classes with
low BEE dimension in the paper to illustrate the capacity of BEE dimension.

E.2 LOWER BOUND IN LIU ET AL. [33]

Here we present a lower bound from Liu et al. [33]:

Theorem 5 (Liu et al. [33, Theorem 4]). There exists a Markov game with S, A = O(H) and an
opponent who chooses policy uniformly at random from an unknown set of H Markov policies in

each episode, such that when the opponent’s policy is not revealed, the regret for competing with the
best fixed Markov policy in hindsight is Q(min{ K, 2%} /H).

The above lower bound shows that if the opponent’s policy is not revealed, even when the opponent
only plays a finite number of Markov policies, the exponential regret lower bound for competing with
the best Markov policy in hindsight is inevitable, which validates the necessity of policy revealing
condition.

E.3 COMPUTATIONAL COMPLEXITY OF DORIS

There are mainly two steps in DORIS that require computation, optimistic policy evaluation via
OptLSPE and hyperpolicy update via Hedge. Assuming the policy class is finite facilitates the
second step, but even with finite policy class, Opt LSPE is still computationally inefficient. This is
due to the global optimism step in Opt LSPE, i.e., constructing the confidence set (Equation (3)) and
finding the most optimistic estimation. This is a common issue of algorithms with general function
approximation even in single-agent MDPs. For example, the global optimism step of the algorithms
in [24, 25, 14, 23, 27] are all computationally inefficient and hard to implement. However, if we
only consider linear MGs, computationally efficient algorithms are possible since we can use local
optimism and implement Opt LSPE by an analog of LSVI-UCB [28], which is computationally
efficient. In addition, if there is a computationally efficient solver for optimistic policy evaluation
with general function approximation in single-agent MDPs, we believe that we can also utilize it
here since the confidence set update rule (Equation (3)) is similar to single-agent MDPs. That said,
in this work we mainly focus on the statistical complexity of learning the Markov game and thus
computationally efficient algorithms are left as future works.

F PROOFS OF PROPOSITION 1

From the completeness assumption, we know that there exists g, € Fj, such that g, = ’771“ Y fhats
which implies that

o =T foyr € Fo—Fp,Vf e Fopellvell.

In other words, (I — EH’H’)]-' C Fp — Fp. Therefore, from the definition of dimpgg(F, €,
IT, IT') we have

dimpgg(F, €, IL 1) < dimpgg(F, €, 1,17, Q%) = max dimpg((I — n“»“’)f, Q7€)

< di Fn—Fn), Qpr€) = dimg (Fp, €),
< mnax impg ((Fr — Fn), O, €) max imp (Fp, €)

where the last step comes from the definition of dimg and Q}% is the dirac distribution family. This
concludes our proof.
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G EXAMPLES FOR REALIZABILITY, GENERALIZED COMPLETENESS AND
COVERING NUMBER

In this section we illustrate practical examples where realizability and generalized completeness hold
and the covering number is upper bounded at the same time. In specific, we will consider tabular
MGs, linear MGs and kernel MGs.

G.1 TABULAR MGS

For tabular MGs, we let Fj, = {f|f : S X A X B — [0, Vinax|} and G, = F}, for all h € [H]. Then

it is obvious that Q" € Fy, and TH" f11 € Gy, forany f € F, h € [H], u, v, which implies that
realizability and generalized completeness are satisfied. In addition, notice that in this case we have

log N7, (€) = log Ng, (€) < |S||Al|B|10g(Vinax/€)-

This suggests that the size of F and G is also not too large.

G.2 LINEAR MGs

In this subsection we consider linear MGs. Here we generalize the definition of linear MDPs in
classic MDPs [28] to Markov games:

Definition 9 (Linear MGs). We say an MG is linear of dimension d if for each h € [H), there exists a

feature mapping ¢, : S x Ax B — R® and d unknown signed measures 1, = ( ,(Ll), ceey ;Ld)) over

S and an unknown vector 0), € R® such that Py,(-|s,a,b) = én(s,a,b) "n(-) and ry,(s,a,b) =
bn(s,a,b) "0y, forall (s,a,b) € S x A x B.

Without loss of generality, we assume ||¢n (s, a,b)|| < 1foralls € S,a € A,b € Band ||¢p(S)]] <
Vd, 0, < Vdforall h. Let Fj, = Gy, = {én (") Tww € R, Jw|| < (H—h+1)vVd, 0 < ¢p(-)Tw <
H—h+1}.
Realizability. We have for any i, v,

QZXV(S7 a, b) = ’f’h(87 a, b) + ]ES’NP(~|s,a,b) [V,fflu(s/)]

=<¢h@,mb»em-+<¢hw,mb»jngff@wdwhww>

= <¢h(57aab)79h +[8fo1y(8/)d¢h(8')>
= <¢h(sa a, b)7 wZXV>a

where w} " = 0 + [¢ V" (s')don(s') and thus [Jw},"|| < (H — h+ 1)V/d. Therefore, Q)" €
Fn, which means that realizability holds.

Generalized completeness. For any f, 1 € Fj, 1, we have
Tmuchrl(sv a, b) = ’rh(sv a, b) + Es/wP('\s,a,b) [chrl(S/v 1, V)]

=<%@mW%+LhHWwMMMﬂ>

Since || fut1llc < H — h, we have [|0), + [g frr1 (s, p,v)dipn(s")|| < (H — h + 1)v/d, which
indicates 7" f5+1 € Gy, and thus generalized completeness is satisfied.

Covering number. First notice that from the literature [51], the covering number of a lo-norm
ball can be bounded as logNB((H_hH)\/a)(e) < dlog(3H+/d/e). Therefore, there exists W C

B((H — h 4 1)v/d) where log |W| < dlog(3H+/d/€) such that for any w € B((H — h + 1)V/d),
there exists w' € W satisfying ||w’ — w|| < e. Now let F, = {¢n(-)"w|w € W}. For any
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fn € Fn, suppose fr(-) = ¢n(-) "wy,. Then we know there exists f;(-) = ¢h(')Tw}h € 7/ where
Hw}h —wy, H < ¢, which implies

[fn(s,a,0) = f(s,a,0)| < [|on(s, a, D) [[|wh, —wp, | <e.
Therefore log N7, (¢) < log|F}| = log |W| < dlog(3HV/d/¢).

G.3 KERNEL MGs

In this subsection we show that kernel MGs also satisfy realizability and generalized completeness
naturally. In addition, when a kernel MG has a bounded effective dimension, its covering number
will also be bounded. First we generalize the definition of kernel MDPs [25] to MGs as follows.

Definition 10 (Kernel MGs). In a kernel MDP, for each step h € [H), there exist feature mapping
on : SXAX B — Handy, : S — H where H is a separable Hilbert space such that
P (s'|s,a,b) = (dn(s,a,b),¥n(s"))y forall s € S,a € A,b € B,s' € S. Besides, the reward
Sunction os linear in ¢, i.e., rp(s,a,b) = (n(s,a,b), 04 for some 0y, € H. Moreover, a kernel
MG satisfies the following regularization conditions:

o [|0nll% < 1,][on(s,a,b)|l3 < 1, foralls € S,a € A,be B, h € [H].

o |2 ses V(S)Un(s)lla < 1, for all function V : S + [0,1], h € [H].

Remark 7. It can be observed that tabular and linear MGs are special cases of kernel MGs.
Therefore, the following discussion applies to tabular and linear MGs as well.

Then we let 5, = G, = {¢n(-) Tw|w € By (H — h + 1)} where By, (r) is a ball with radius  in
‘H. Following the same arguments in linear MGs, we can validate that realizability and generalized
completeness are satisfied in kernel MGs.

Covering number. Before bounding the covering number of F;,, we need introduce a new measure
to evaluate the complexity of a Hilbert space since  might be infinite dimensional. Here we use the
effective dimension [14, 25], which is defined as follows:

Definition 11 (e-effective dimension of a set). The e-effective dimension of a set X is the minimum
integer dog (X, €) = n such that

1 1 —
sup — log det <I+ ) wa?) <e L
i=1

T1,0,wn€X T

Remark 8. When X is finite dimensional, suppose its dimension is d. Then its effective dimension
can be upper bounded by O(d log (1 + R2/e)) where R is the norm bound of X [14]. In addition,
even when X is infinite dimensional, if the eigenspectrum of the covariance matrices concentrates in
a low-dimension subspace, the effective dimension of X can still be small [48].

We call a kernel MG is of effective dimension d(¢) if deg(Xh,€) < d(e) for all h and € where
Xn ={én(s,a,b) : (s,a,b) € S x A x B}. Then the following proposition shows that the covering
number of F}, is upper bounded by the effective dimension of the kernel MG:

Proposition 2. If the kernel MG has effective dimension d(¢), then
log N7, (€) < O(d(e/2H) log(1 + Hd(e/2H)/e)).

Proof. Suppose dimg(Fp,e) = n. Then by the definition of Eluder dimension, there exists a
sequence {¢; }7; such that for any wy, wy € By (H—h+1),¢ € Xy, if > ({(¢s, w1 —we))? < €2,
then |{¢, w1 — wa)| < e. Therefore, the covering number of kernel MGs can be reduced to covering
the projection of By (H — h + 1) onto the space spanned by {¢; } ;, whose dimension is at most n.
From the literature [51], the covering number of such space is O (nlog (1 + nH /¢)), which implies

log N7, (€) < O(nlog(l +nH/e)).

Finally, by the proof of Proposition 3, we know n < d(e/2H ), which concludes the proof.

24



Under review as a conference paper at ICLR 2023

H EXAMPLES FOR BEE DIMENSION

In this section we will show that kernel MGs (including tabular MGs and linear MGs) and generalized
linear complete models have low BEE dimensions.

H.1 KERNEL MGsS

Consider the kernel MG defined in Definition 10 and 7, = {¢y,(-) Tw|w € By (H — h + 1)}, then
we have the following proposition showing that the BEE dimension of a kernel MG is upper bounded
by its effective dimension (Definition 11):

Proposition 3. If the kernel MG has effective dimension d(¢), then for any policy classes 11 and TT',
we have dpgg(F, €, ILI") < d(¢/2H).

Proof. First in Appendix G we have showed that F satisfies completeness. By Proposition 1, we have
dpeg(F, €, ILII") < maxyepy) dimg(Fp, €). Therefore we only need to bound dimg(Fp, €) for
each h € [H]. Suppose dimg(Fy, €) = k > d(e¢/2H). Then by the definition of Eluder dimension,
there exists a sequence ¢y, -+, ¢r and {wy;}X | {ws;}F_ | where ¢; € X, = {dn(s,a,b) :
(s,a,b) € S x A x B}, wy 4, we; € By (H — h+ 1) for all i such that for any ¢ € [k]:

t—1

(<¢u Wi, — wz,t>)2 < (6/)2, (20
=1
|<¢taw1,t - w2,t>| Z 6/7 (21)
where € > €. Let X; denote Zz;i big; + 46;2 - I. Then we have for any ¢ € [k]

lwie — wael3, < () + €2
On the other hand, by Cauchy-Schwartz inequality we know
bellg-llwre —warlls, > [(br, w1 —wae)] > €
This implies for all ¢ € [k]
1

/2 + (€)2 2 V2

Therefore, applying elliptical potential lemma (e.g., Lemma 5.6 and Lemma F.3 in [14]), we have for
any t € [k]

H¢tHz;1 =

4H? < ¢ 3
T _ 2
log det (I +— ;:1 bid; > = ;:1 log(1 +[|¢ill5-1) = ¢ -log 5.

However, by the definition of effective dimension, we know when n = deg (X, ﬁ),

AH? & T -1
sup logdet | I+ —— Z 0id; | <me .
1, €

¢ \bn i=1

This is a contradiction since n < d(¢/2H) < k and log 3 > e~!. Therefore we have dimg (7}, €) <
d(e/2H) for all h € [H], which implies

dBEE(-Fa €, H, H/) § d(E/QH)
This concludes our proof. O

Tabular MGs. Tabular MGs are a special case of kernel MGs where the feature vectors are
|S||.A||B|-dimensional one-hot vectors. From the standard elliptical potential lemma, we know

d(e) = O(|S||A||B]) for tabular MDPs, suggesting their BEE dimension is also upper bounded
O(IS|AllB]).
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Linear MGs. When the feature vectors are d-dimensional, we can recover linear MGs. Similarly,
by the standard elliptical potential lemma, we have the BEE dimension of linear MGs is upper

bounded O(d).

H.2 GENERALIZED LINEAR COMPLETE MODELS

An important variant of linear MDPs is the generalized linear complete models proposed by [52].
Here we also generalize it into Markov games:

Definition 12 (Generalized linear complete models). In d-dimensional generalized linear complete
models, for each step h € [H), there exists a feature mapping ¢5, : S x A x B +— R? and a link
function o such that:

o for the generalized linear function class Fi, = {o(¢n(-) Tw)|w € W} where W C RY, realizability
and completeness are both satisfied;

* the link function is strictly monotone, i.e., there exist 0 < ¢ < co < 00 such that o’ € [c1, ca).

o ¢, w satisfy the regularization conditions: ||¢n(s,a,b)|| < R, ||w| < R forall s,a,b, h where
R > 0 s a constant.

When the link function is o(z) = z, the generalized linear complete models reduce to the linear
complete models, which contain instances such as linear MGs and LQRs. The following proposition
shows that generalized linear complete models also have low BEE dimensions:

Proposition 4. If a generalized linear complete model has dimension d, then for any policy classes
1T and 1T, its BEE dimension can be bounded as follows:

dpee(F, €, IL1T) < O(de3/c}).

Proof. The proof is similar to Proposition 3, except (20) and (21) become
t—1 t—1

Z@(WMU/M —wy))? < Z(U(@T’wl,t) — o] wa))? < (€7,
i=1

i=1
cal( e, w1 — way)| > |0(¢2—w1,t) - 0(¢;rw2,t)\ > €.

Then repeat the arguments in the proof of Proposition 3, we have dimg (Fy,, €) < O(dc2/c2) for all
h € [H]. Since F satisfies completeness, we can use Proposition 1 and obtain

dppe(F, 6, ILIT) < O(dc3/c3).

I PROOF OF THEOREM 1 AND THEOREM 2

In this section we present the proof for Theorem | and Theorem 2. We first consider the oblivious

t
setting. Let u* = arg max,,cm ZtK: L VI (s1) and we can decompose the regret into the following
terms:

K K K K
e YV o) = SO o) = (Ve = SV ) )
t=1 t=1 t=1

t=1

M
+ (év%m - §;<vf,pt>> + (évt,pw - évt(,ﬂ))
- @) - - (3) -
+<Z t(ﬂt)—éVft(sl)) (22)

4

<l

~+
_
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Our proof bounds these terms separately and mainly consists of three steps:

« Prove V' (u) is an optimistic estimation of Vl"x”t (s1) forall t € [K] and p € TI, which implies
that term (1) < 0.

. N —t . .
* Bound term (4), the cumulative estimation error ZtK: V() - Vi (s1). In this step we utilize
the newly proposed complexity measure BEE dimension to bridge the cumulative estimation error
and the empirical Bellman residuals occurred in Opt LSPE.

* Bound term (2) using the existing results of online learning error induced by Hedge and bound (3)
by noticing that it is a martingale difference sequence.

1.1 STEP 1: PROVE OPTIMISM

First we can show that the constructed set Bp, ., , (i, ') is not vacuous in the sense that the true
action-value function Q“”’t belongs to it with high probability

Lemma 2. With probability at least 1 — /4, we have forallt € [K], i € II, Q“*" € Bp,,_, (1, ").

Proof. See Appendix J.1. O

Then since Vt(u) =maxXsepy, | | (uot) [ (5154 v'), we know for all ¢t € [K] and p € II,
—¢ Ut Ut
Vi(u) = Q" (s1,p,0") = VI (s1).

In particular, we have for all ¢ € [K],

t

Vi) = Vi (s9). (23)

1.2 STEP 2: BOUND ESTIMATION ERROR

Next we need to show the estimation error Y r Vi(ut) — Vi (s1) is small. Let ft# =
argmaxfepy  (uwt) f(s1, 1, V). Then using standard concentration inequalities, we can have
the following lemma which says that empirical Bellman residuals are indeed close to true residuals
with high probability. Recall that here 7% = pF x ¥,

Lemma 3. With probability at least 1 — § /4, we have for all t € [K], h € [H] and p € 1],

t—1 . 2
(@) > En [(f,i’ﬂ(sh,ah,bm — (T Fit ) (snsans b)) } <0(B), (24)
k=1
t—1 . 2
() Y (Fr(shoahibh) = (T fitt) ko ak o)) < O(8). 25)
k=1
Proof. See Appendix J.2. O

Besides, using performance difference lemma we can easily bridge Vt(/f) - V{‘t (s1) with Bellman
residuals, whose proof is deferred to Appendix J.3:
Lemma 4. For anyt € [K], we have

H
ﬂ,_t , t t,l/t , t
V(') = Vi (s1) = ZETH [ =T Ft) (sny anbn)].-
h=1
Therefore, from Lemma 4 we can obtain

K H K
th(ﬂt) ~ Vi (s1) = Z Z]Ewt [( fj”t - E#t’ytf;if;)(sh, an, b)) (26)
t=1

h=1t=1
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Notice that in (26) we need to bound the Bellman residuals of f,tl’“t weighted by policy 7f. However,
in Lemma 3, we can only bound the Bellman residuals weighted by 7'*~!. Fortunately, we can
utilize the inherent low BEE dimension to bridge these two values with the help of the following
technical lemma:

Lemma 5 ([25]). Given a function class ® defined on X with ¢(x) < C forall (¢, x) € & x X,
and a family of probability measures Q over X. Suppose sequence {¢;}1£| C ® and {p;}5, C Q
satisfy that for all t € [K], 2;11 (Epi[04])? < B. Then forall t € [K] and w > 0,

t

Z o [O1]] < O(\/dlmDE (®, Q, w)pt + min{t, dimpg(P, Q, w)}C’—i—tw)

Invoking Lemma 5 with Q = Q}L, o= (I- 7;LH’H/)]-' and w = y/1/K, conditioning on the event
(24) in Lemma 3 holds true, we have

K
S B [0 T F) (sns an.bn)]

<c9(\/ maXKdlmBEE(]: /K, 11,11, Ql) log(N;Ug(Vmax/K)KHH|/6)>. 27)

Similarly, invoking Lemma 5 with Q = 92, & = (I — EH’H/)}" and w = y/1/K, conditioning on
the event (25) in Lemma 3 holds true, we have with probability at least 1 — /4,

K
ZEﬂ.t [( 7-# D fh+1)(sh’ ah.bh)]

K
S (1 (omsansbn) = (T 1) (shah, 1)) + O(V/K Tog(K/3)

=1

< o(\/ V2 Kdimpgg (]-" 1/K, 1L 1T, Q2> 1og(NFug (Vi /K ) K HI|TI| /5)), (28)

IN

where the first inequality comes from standard martingale difference concentration. Therefore,
combining (27) and (28),we have:

ZEﬂt t” T/L i fh+1)(3h>ah-bh)]

<O(\/ deKdlmBEE( , 1/K,H,H’> log(./\/;ug(VmaX/K)KH|H|/6)).

Substitute the above bounds into (26) and we have:
X
D V() =V (s1)
t=1

<0 (vaax\/ Kdimpgg (;E, VI/K, I, H’) 10g(Nrug (Vinax /K ) K HI|TI| /5)) . (29

1.3 STEP 3: BOUND THE REGRET

Now we only need to bound the online learning error. Notice that p! is updated using Hedge with

reward V'. Since 0 < V' < Vi, and there are ITT| policies, we have from the online learning
literature [20] that

K K
SV ) = SV 95 < Vinaxv/K log [TI1. (30)

t=1 t=1
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In addition, suppose F denotes the filtration induced by {'} U (UX_, {*, D;, v**1}). Then we can

observe that <Vt, pty — Vt(ut) € F:. In addition, we have Ve F:—1 since the estimation of v
only utilizes D;.;—1, which implies

—t —t
E[(V',p") =V (1")[§e-1] = 0.

Therefore (3) is a martingale difference sequence and by Azuma-Hoeffding’s inequality we have

with probability at least 1 — /4,

K K
STV = SV () < O(Vinax VK log(1/5)) 31)

t=1 t=1

Substituting (23), (29), (30), and (31) into (22) concludes our proof for Theorem 1. For the adaptive
setting, we can simply repeat the above arguments. The only difference is that now ! can depend on
D1.+—1 and thus we need to introduce a union bound over II” when proving Lemma 2 and Lemma 3.
This will incur an additional log |TI'| in /5 and thus also in the regret bound. This concludes our
proof.

J PROOFS OF LEMMAS IN APPENDIX I

J.1 PROOF OF LEMMA 2

Let V, be a p-cover of G with respect to || - ||c. Consider an arbitrary fixed tuple (x,t,h,g) €
IT x [K] x [H] x G. Define W, ;. (h, g, u) as follows:

- - - t -
Wt,k(hagnu) ::(gh(sfwafw bk) - ,’,k - Q’}i:l (82+17/’L7 Vt))Z
, k k vk
— Q" (Shaamb )= = QY (ks V)2,
and . 5, be the filtration induced by {v*,--- , vE}U{si, al,b%, ri, -, 3H+1}k u{sk, ak ok rk,

, 8%, ak bk}, Then we have for all k < t -1,

EWe i (. g. )] = [(gn — Q1" ) (s, al, b2,
and

Var[Wi i, (h, g, 10)[8k,n] < AViaxEIWe i (s g, 10) 8 n)-
By Freedman’s inequality, with probability at least 1 — §/4, we have

t—1 t—1
S Winlh, g, m) = > [lgn — Q) (sk, af,0f)]?
k=1 k=1

t—1
1 1
< O( max IOg 5 E [(gh - th )(Sh’ ah7 bk)] + Vn21ax log 5) .

k=1

By taking union bound over IT x [K] x [H] x V, and the non-negativity of Zz;ll[(gh — QZ’”t)
(sk,ak, bF)]2, we have with probability at least 1 — &/4, for all (11, k, h, g) € Il x [K] x [H] x V,,
t—1

- ZWt,k(haghu) < O(‘/rr%ax )
k=1
where ¢ = log(H K|V, |[II|/§). This implies for all (1, t,h,g) € Il x [K] x [H] x G,

t—1
Z(QHV ( h’ahabk) _Ql}ti’i(sz+1vﬂvljt))2
k=1

t—1
Z 9n( Shv ahv bh 2 l}zﬁl (Sh-i-lv ) + O(VHZldXL + Vinaxtp).-
k=1

Choose p = Vipax/K and we know that with probability at least 1 — ¢ for all x € IT and ¢t € [K],
Q""" € Bp,,_, (1, ). This concludes our proof.
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J.2 PROOF OF LEMMA 3

Let Z, be a p-cover of F with respect to || - ||o. Consider an arbitrary fixed tuple (p,t, h, f) €
IT x [K] x [H] x F. Let

Xt,k(h7 ) ::(fh(sfw a']fcw bl}i) - TZ - fh+1(52+1a My Vt))Q
— (T fa1)(shy @i, b)) = 7 = faga (shars V'),

and §yj, be the filtration induced by {12, - -+ , vE U{st, ad, bi, rl, -+, sty Mo U{sk, af b, 0,
, 8%, ak bk}, Then we have for all k < t -1,

E[X o k(s £, 10)[Fwn] = [(fr = T8 frgr) (s, af, 0%,

and

Var[Xe i (h, f, 1) [8k.n] < AVRaELX e (R, £, 10)[8k.n)-
By Freedman’s inequality, with probability at least 1 — 9,

t—1 t—1
3" Xoalho fom) = SO0(Fn = T fran)(sh, afy, 05))?
k=1 k=1

1 2 i 1
< O( max IOgS'Z[(fh_ﬁz% fh+1)(slfi?a’ﬁvb2)]2+V1121ax10g 5)

k=1

By taking union bound over II x [K| x [H] x Z,, we have with probability at least 1 — 4, for all
(.t h, f) e I x [K] x [H] x 2,

t—1
U1 = T far) (55, af b))
k=1

t—1
= O( max | L Z[(fh - EH}thh+1)(SZ’ G’Z’ bﬁ)}Z + VanaxL> . (32)
k=1

where ¢ = log(HK|Z,||I1|/9).

Conditioned on the above event being true, we consider an arbitrary pair (h,¢, u) € [H]| x [K] x IL
By the definition of Bp,,, , (1, v*) and Assumption 2, we have:

t—1 t—1
Z Xt’k(hﬂ ft7u7 /1‘) = (fh(sga a§7 bﬁ) - rilj - fh+1(82+17 122 Vt))2
k=1 k=1
((7-M7 fh+1)(8h7ah7bk) - fh+1(8§+17:u/7yt))2
t—1

S (fh(sﬁ,aﬁ,bﬁ)—rﬁ _fh+1(82+17/1“a Vt))2

- ;Ielfg.(gh(szﬂ a’;ﬂw bﬁ) - rlli - chrl(sferl? 122 Vt))2
<p.

Let [V* = arg mine z, maxye[q] ||f;tj“ - ZZ’MHQO- By the definition of Z,, we have

e
—

> Xk (h, 17, 1) < O(Vinaxtp + ). (33)

By (32), we know:

1 t—1
S Xewlh 100, w) = SN = T 1k ) sk, af, b))
k=1
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t—1
<0 (Vmax o I = T (sE af BR)2 + Vriaxa> : (34)
k=1
Combining (33) and (34), we obtain
t—1
Z[(l;’# Tﬂ v lh+1)(5h7 aha bk)] < O(Vr?laxL + Vmaxtp + B)
k=1

This implies that

t—1

Z[(f}tz,u TH v fh+1)(8h> ah7 bk)] < O(Vnzlaxl’ + Vmaxtp + 6)
k=1

Choose p = Viax/K and we can obtain (b). For (a) simply let § 5 be the filtration induced
by {vt, - vEYU (i, st al, bl rd, sty T U and repeat the above arguments, which
concludes our proof.

J.3 PROOF OF LEMMA 4

First notice that V' (ut) = fi* t (s1, u*, ). Therefore, we have

t

V(') = Vi (51) = Byt (o)t Clsn) L2 (51,a1,b1) = QF (51,01, b1))]

=Eaympt(f51),b1~0t (51) [ EsamPr (-[51,01.01) [F2 (52, p, 11)] — Eapmpy (10060 V3" (52)]
+ anm(.|sl),b1~ut(-\sl)[(ff’“t - 7—1”t’ytf2t’“t)(51, ai,by)]

= Byt [ (52,18, 01) = VE (52)] + Bt [ = T 154" ) (51, 00, b1))-

Repeat the above procedures and we can obtain Lemma 4. This concludes our proof.

K PROOF OF COROLLARY 1

From Theorem 2, we have with probability at least 1 — 4, for all i € [n]

i Xt pixput
max — Vi )< — Vii + €.
max - Z Z
By the definition of 7, this is equivalent to

max Vfl “(s1) < Vi(s1) + 6,
wi €1l '

where 7i_; is uniformly sampled from {u® ;}X | and thus is the marginal distribution of 7 over
the agents other than i. Therefore, by the definition of CCE in (2), 7 is e-approximate CCE with
probability at least 1 — &, which concludes our proof.

L PROOF OF THEOREM 3

In this section we present the proof for Theorem 3. Our proof mainly consists of four steps:

* Prove VZ(H) and V_f] (1) are optimistic estimations of V"', (s1) and V", (s) for all t € [K] and
we Il

« Bound the total estimation error 31 Vi (ut) — Vr“lt(sl) and S1° Vtg(ut) - Vq“;(sl)

* Bound the regret by decomposing it into estimation error and online learning error induced by
Hedge.

* Bound the constraint violation by strong duality.
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Step 1: Prove optimism.  First we can show that the constructed set Bpy, (1) (Bps  (n)) is not
vacuous in the sense that the true action-value function Q! (@) belongs to it with high probability:

Lemma 6. With probability at least 1 — §/4, we have for all t € [K] and p € 11,
Q) € Bpy, (1),Qy € Bps, (1)

Proof. The proof is almost the same as Lemma 2 and thus is omitted here. O

Then since V:(,u) =maxses,, () f(51,4), weknow forall z € [K]and p € 11,

t

V(1) 2 Qf (s1, 1) = V¥ (s1).
Similarly, we know V;(ﬂ) > V)i (s1).

. . . . —t
Step 2: Bound estimation error. Next we need to show the estimation error Ef: Vet —

Vr"lt(sl) and ZtK:l V;(/,Lt) - Vg’f;(sl) are small. Let f&*7 = arg Maxfepy,.  (u) f(s1,p) and

ft,,u,g = arg maXfEBDQ. () f(sl’ ,u,). Then we have

Lemma 7. With probability at least 1 — 6 /4, we have for all t € [K], h € [H] and p € 1],

(@) ZEk{(fwsh,ah) T ) | < O

S (7o) - Tt o)) | < 005,

t—1

) S (5 (s o) — (T ok ) < O(5,),

k=1
t—1 2

> (79 (shyak) = (T2 frt0) (s ah)) < O(8,).
k=1

Proof. The proof is almost the same as Lemma 3 and thus is omitted here. O

Besides, using performance difference lemma we can easily bridge VZ (u') =Vt 1t (s1) and VZ (ut) —
Vg“; (s1) with Bellman residuals, whose proof is also omitted:
Lemma 8. Foranyt € [K], we have

Vr(/j‘) Vul 81 =

f Lt _ut Tfh’” ) (s an)],

Mm

H
Vg(,ut) Z 7u 9 Th ’gffifl’g)(smah)}
Therefore, from Lemma 8 we can obtain for any ¢ € [K],

Vo (u) = Vi (s1) ZE ST = T T (sns )],

which implies

K t H K
>V ~ VM (51 )=> > Eul( L T T (5 ). (35)
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Similar to Section I, from Lemma 5, conditioning on the event in Lemma 7 holds true, we have with
probability at least 1 — 6/4

ZE LT T PR (51, an)]

<0 <\/ H2K dimpgg ( 1/K,1I 7’) log(Nrrogr (H/K)K HT| /5)>
Substitute the above bounds into (35) and we have:

K )
D Velu) = Vi (s1)
t=1

<0 <H2 \/ Kdimpes (]—‘ VI/K 11, r) log(Nrrugr (H/K)K HIT| /5)) . (36)

Similarly, we have
K ., .
> Volu) = Vyia(sy)
t=1

<0 (H2 ¢ Kdimpgg (]—'9, V1/KE,1I, g) log(NFsugs (H/K)K HI|TI| /5)). 37)

Step 3: Bound the regret. Now we can bound the regret. We first decompose the fictitious total
regret 31 1(V”CMD"(81) + Y}V (tEvpp)) — Zthl(VT‘fl (s1) + thtg(/f)) to the following terms:

K K
Tpe —t * t —t
D V(1) + ViV (uéwioe)) — Y _(ViE (s1) + YiV o (1))
t=1 t=1
K . K
= (Z VrlffMDP ZV HCnvpp )
t=1 t=1

€]

K K
(Z »(HEmpp) + Y2V /U'CMDP Z V + YV g)p>)
t=1

t=1

From Lemma 6, we know (1) < 0. Since p’ is updated using Hedge with loss function Vt,
we have (2) < H(1 4 X)/Klog|II|. (3) is a martingale difference sequence, which implies
(3) < O(H(1+ X)y/Klog(1/6)) with probability at least 1 — §/4. Finally, Step 2 has bounded
term (4) in (36), which implies

K

K
Z(VMCMDP(SI)‘i'Yt (Hémpe)) Z V” (s1) +Y;V, ( ")
t=1 t=1
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ol

Now we only need to bound — Zt 1 Yt(V (HEvpp) — V; (ut)) if we want to bound the regret

Zt 1 (V”CMDP( 1) — Vr’fl (s1)). In fact, updating the dual variable Y'* with projected gradient descent
guarantees us the following lemma:

H2
+ )\‘1 )\/KdBEE,r IOg (Ncov,r|H|/5)>. (38)

Lemma 9. Suppose the events in Lemma 6 hold true, we have

—t oH’K  H?*VK
- Z Y, (V MCMDP Vg(,“t)) < 5 T 9

Proof. See Appendix L.2. O

Substituting Lemma 9 into (38), we can obtain the bound on Regret(K):

i(vrlflémp(ﬁ) - Vr‘ﬁ(sl)) < O(<H2

t=1

H2
: > \/KdBEE,r log (Ncov,r|H|/5)) :

Step 4: Constraint Violation Analysis. Next we need to bound the constraint violation. First

notice that S Y (b — V;(ut)) is indeed not far from "1, Y (b — Vg(ut)) forany Y € [0, X], as
shown in the following lemma whose proof is deferred to Appendix L.3:

Lemma 10. ForanyY € [0, X], we have

K
—t, (H2+X2)\/?
S — ¥ (b - Ty < LAWK

t=1

Substituting Lemma 10 into (38) and notice that b < Vg‘f‘lﬁMD"(sl) < V4 (1¢ppp)» we have for any
Y € [0, x],

K K
DoV (s1) = Vi (s1) + Y30 Vy(u!
t=1
<O(< )\/KdBEErlog( COVT|H|/6))
ala

Combining the above inequality with (37), we have

K K 2 3
S o) = Vi o)+ Y o= Vo) <O (53 + 5 ) V),
where )
€BEE = INax {dimBEE (-7:7'7 \/1/771_[77") log(NFrugr(H/K)KH|I|/3),
i (57, VIR L) o(Noescgo (/KK HIT5) .
Choose Y as

v {o it S0 (b= VY (1) <0,

X otherwise.

then we can bound the summation of regret and constraint violation as follows:

o) o], <o( (i ) veme)

—1 sla
(39)
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Further, when Assumption 6 and Assumption 7 hold, we have the following lemma showing that
an upper bound on (V,'{™"" (s1) — 4 Zfil VI (s1)) + X[b— 4 Zfil Vit (s1)]+ implies an upper
K it
bound on [b — & >, Vo' (s1)]4:
Lemma 11. Suppose Assumption 6 and Assumption 7 hold and 2Y* < C*. If {u*} £, C U satisfies
K

* 1 t
(foMDP(Sl) K Vi (51)> +C* b— - E V“ (51 } <9,
=1

Then

K -
1 ¢ 20
n
b vae)| <2
t=1 4+
See Appendix L.4 for the proof. Combining Lemma 11, Lemma 1 and (39), we have

{i(bv;ji(sl))Lgo«Hz+ H >\/ﬁm>

=1 sla

This concludes our proof.

L.1 PROOF OF LEMMA |
Notice that D(Y™) = VrlfléMDp (s1), which suggests:
VIR (s1) = D(Y™) = Lempp (1, YY)
= Vrﬁ1(51) + Y*(Vfl(sl) —b) > Vfl(sl) + Y Ala-
This implies that
VI (s1) = Vi) H

Y* S ) ) S
)\sla /\sla ’

which concludes our proof.

L.2 PROOF OF LEMMA 9

Notice that we have:

1/ 2 2
= Vy(u') + o*KH?,

where the last step is due to optimism and V/ ffMDP (s1) > b. This implies that

—t aH?’K  H*VK
- Z Y, (V MCMDP Vg(,“t)) < 5 5

This concludes our proof.
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L.3 PROOF OF LEMMA 10
Notice that we have for any ¢ € [K]and Y € [0, X]:
—t
Yer1 = YP <[Vt ald— V(') - Y
= (Y~ Y)? +2a(b -V, (u))(Ys = V) + o*H?.

Repeating the above expansion procedures, we have
0<|Yks1 —Y]P<(1} —|—2az b-V —~Y) +a’H?K,

which is equivalent to
K
1

D=V —¥) < 5o (Vi =Y+ GHK <

(H? + X*)WWK
5 SRR
t=1

2

This concludes our proof.

L.4 PROOF OF LEMMA 11

First we extend II in a reasonable way to make the policy class more structured while not changing
its optimal policy. Define the set of state-action visitation distributions induced by the policy II as
follows:

Pri = {(d},(s,a))ne(m),ses,aea € (Asixja)? + p €11}

Let conv(Pr) denote the convex hull of Pr, i.e., for any d € conv(Pr), there exists {w,, },ermr > 0
such that for any h € [H], s € S.a € A, we have

a) = Z w,dh(s,a), Z w, = 1.

pell pell

As a special case, there exists dj, (s, a) € conv(Pr) such that for any h € [H],s € S.a € A,
d},(s,a) Zd” s, a)

Notice that there exists a one-to-one mapping from state-action visitation distributions to policies
[41]. Let conv(IT) denote the policy class that induces conv(Pry), and then there exists ' such that

d' = d*', which implies

,u
E Vrl 31, g1$1

Therefore, the condition of this lemma says

HMN

(VI (s1) = Vit (s0)) + O b= Vi (s))+ < 6. (40)
Next we show that péypp is still the optimal policy in conv(II) when Assumption 6, i.e., strong
duality, holds. First notice that
max min ECMDP(Ma Y)<min max Lcmpp(p,Y)=min max Lcupp(d,Y).

peEconv(Il) Y> Y >0 p€conv(II) Y >0 deconv(Prr)
(4D

However, given Y > 0,Lcumpp(d, Y) is linear in d, which means the maximum is always attained at
the vertices of conv(Pr), i.e., Pr. Therefore we know

max _ Lovpp(p,Y) = D(Y),
p€Econv (II)
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which suggests

P2 ety Comor (1) =yl gt Lonor(d ) = iy Lomor (6 1) (42

By strong duality, we have

L Y) = in L Y) < L Y 43
ryn;%max cmpp (14, Y) iy ompp (1, ),Melcggg(mrynm cmpp (i, Y).  (43)

Combining (41),(42) and (43), we know all the inequalities have to take equality, which implies

= L Y)Y = L ,Y).
HEMpP = arguegg\in)l}}lm cvpp (1, Y), argm;%ueglgin) ompp (1, Y)

Besides, strong duality also holds for max,,cconv(rry miny >0 Lompp (14, Y).

Now let v(7) := max,cconv(m { V,i1 (51)|V}'1 (51) > b+ 7}, then we have for any 1 € conv(II),

Lovpp(p,Y™) < max Lowmpp(p,Y") =D(Y™) = VTL,LEMDP(Sl)a

peconv (II)

where the third step comes from strong duality. Therefore, for any i € conv(IT) and 7 € R which
satisfies Vg*fl(sl) > b+ 1, we have

Wf“m(ﬁ) —7Y" > Lompp(p, Y7) — 7Y
= V(1) + Y (Vi (s1) =b—7) > VIi(s1).

This implies that for any 7 € R, VT’?‘MDP(sl) —7Y* > v(r). Pick T =7 :=—[b— Vg’f;(sl)]Jr, then
we have

VI (s1) = VI (s1) < =7V
On the other hand, (40) is equivalent to
VI (s1) = Vi (s1) = CF < 4.
Thus we have (C* — Y*)|7| < d, which means that

4] 20

[biv (81)] C*_Y* SC*

Recall that Vg’f; (s1) =% S Vg”; (s1), which concludes our proof.

M PROOF OF THEOREM 4

In this section we present the proof for Theorem 4. Our proof mainly consists of four steps:
s Prove (V*(11), 8;) is a pessimistic estimations of (V}*(s1), ;) for all t € [K] and p € TI.
* Bound the total estimation error ||+ Zthl Vi) - Vf‘t (s1)]-

* Bound dist(Vlﬁ(sﬁ, C).

Step 1: Prove pessimism. First we can show that the true action-value function Q* belongs to the
constructed set Bp,,, , (i) with high probability:

Lemma 12. With probability at least 1 — § /4, we have forall t € [K]| and € 11, Q" € Bp,,,_, (11).

Proof. Repeat the arguments in the proof of Lemma 2 for each dimension j € [d] and the lemma
follows directly. U

Then since V(1) = fi(s1, 1) where f = arg mingepy () (fi(s1, 1), 6:), we know for all
t€[K]and p €11,

(Vi (), 0:) < (QY (51, 1), 8:) = (V/'(51), 00).
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Step 2: Bound estimation error. Next we need to show the estimation error ||+ Zf: Vit -
‘G”t(sl)H is small. Let f** = argmingep, () (fi(s1,1),0:). Let f*7 denotes the j-the
dimension of f%*. Then we have

Lemma 13. With probability at least 1 — § /4, we have for allt € [K], h € [H], j € [d] and pn € T],

t—1

@ B | (£ nan) = (12 nan) | < 006),

o+~
|
LI

. . . 2
() 2 (£ (shoah) = (T £t (shah)) < O(B),

=
Il
—

Proof. Repeat the arguments in the proof of Lemma 3 for each dimension j € [d] and the lemma
follows directly. O

Besides, using performance difference lemma we have:

Lemma 14. Foranyt € [K] and j € [d], we have
Kt,j(u) V“ ] 51 ZE t,u 2J T“t’jf;ifll'j)(«smah)],

where V"7 () is the j-th dimension of V' (u?).

Therefore, from Lemma 14 we can obtain for any ¢ € [K] and j € [d]
va V“ ] (s1) = ZZ tu J ’T“ ]fh+1 )(Sh,ah)]- (44)

Similar to Section I, from Lemma 5, conditioning on the event in Lemma 13 holds true, with
probability at least 1 — 6/4, we have for any j € [d] and h € [H],

KW”T”MW%MFWWWMMMWWWW)

Substitute the above bounds into (44) and we have for any j € [d]:

va — V(s )‘ <O(H \/KdBEEvlog( Neovv [T d/3)),

which implies if the event in Lemma 13 is true,

K
1 .
&> vi - v
t=1

‘ < O(HQ\/;i . \/dBEE,V 1Og(Ncov,V|H‘d/6)/K)'

Step 3: Bound the distance. Now we can bound the distance dist(V#(s),C). First since i is
sampled uniformly from {u!}% |, we know

dist(V{"(s1),C —dlst( Zvl (s1), )

By Fenchel’s duality, we know
1 K t 1 K t
. w _ w
dlst(K ;:1 Vi (51),C> = gnax, KB, i ;:1 \Zi (81)> — max(6, w>}
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K
1 t
< t " oyt t
< 9%115?(}1( KG E Vi > magc(@ :c>} —|-9Iél]§()§) <0, I ;:1 VI (s1) = Vi(u )>,
where the second step is due to max[f; + f2] < max f; + max fo.

Notice by Cauchy-Schwartz inequality and Step 2, we have
RS 1 & :
0,—> VI'(s1)=Viph)) <||=) Vi)-v
g (0 oV o0 = ) = e v v )

Now we only need to bound maxgep(1) {(0, + Zfil V(1)) — maxgec (0, z)|. Recall that we

<0 (HQ\/g . \/dBEE,V log (N,

update 8, using online gradient descent. Using the conclusions from the online learning literature

[20], we know
max [<
0eB(1)

1
K

(<et,zt<ut>> — max (6, @) ) + O(HVA/VE),

€

M= N\

Further, notice that pt is updated via Hedge with loss function being (8, V' (1)), similarly to the
analysis in Section I, we have with probability at least 1 — 4,

K
- Z 0, V' (1 Z(et» "(wnine)) + O(HVd - \/log(|TT]/6) / K),
K=
where pypp = argming,endist(Vy*(s1),C). Let P(Vfﬁ’MDP (s1)) denote the projection of

VMR (51 onto C.

Conditioning on the event of Lemma 12 holds, we have
K

Z<0t, (#mpp)) 29 VWMDP (s1))-

t=1
Therefore we have

% Z < (00, V! (")) — max(y, x >>

< }.1(; (<0t7 ‘/1#\*/MDP (51)> _ Iilgé(<0t’x>) + O(H\/g 10g(|H|/5)/K)

K
< o 3 (100 VI (51)) — (80, POVSr (51)))) + O(H Vi - /iog [T /6)/K)
t=1

< H‘/YK/MDP(Sl) _P(‘/IN:/MDP(SI))H +O(H\/E log(\H|/5)/K)
= mindist(V}*(s1),C) + O(HVd - /log(|T|/8)/K),

pell

where the second step is due to P(V/ {ﬂ’MDP(sl)) € C, the third step is from Cauchy-Schwartz
inequality, and the last step is from the definition of ;i3 pp-

In conclusion, we have with probability at least 1 — 4,

dist(V{*(s1),€) < min dist(V{"(s1),C) + O(H2Vd- Vv 108 (Neow v[T1|d/6)/K).
w

This concludes our proof.
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