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ABSTRACT

Machine learning systems may encounter unexpected problems when the data
distribution changes in the deployment environment. A major reason is that certain
combinations of domains and labels are not observed during training but appear
in the test environment. Although various invariance-based algorithms can be
applied, we find that the performance gain is often marginal. To formally analyze
this issue, we provide a unique algebraic formulation of the combination shift
problem based on the concepts of homomorphism, equivariance, and a refined
definition of disentanglement. The algebraic requirements naturally derive a simple
yet effective method, referred to as equivariant disentangled transformation (EDT),
which augments the data based on the algebraic structures of labels and makes
the transformation satisfy the equivariance and disentanglement requirements.
Experimental results demonstrate that invariance may be insufficient, and it is
important to exploit the equivariance structure in the combination shift problem.

1 INTRODUCTION

The way we humans perceive the world is combinatorial — we tend to cognize a complex object
or phenomenon as a combination of simpler factors of variation. Further, we have the ability to
recognize, imagine, and process novel combinations of factors that we have never observed so that
we can survive in this rapidly changing world. Such ability is usually referred to as generalization.
However, despite recent super-human performance on certain tasks, machine learning systems still
lack this generalization ability, especially when only a limited subset of all combinations of factors
are observable (Sagawa et al., 2020; Träuble et al., 2021; Goel et al., 2021; Wiles et al., 2022). In
risk-sensitive applications such as driver-assistance systems (Alcorn et al., 2019; Volk et al., 2019)
and computer-aided medical diagnosis (Castro et al., 2020; Bissoto et al., 2020), performing well
only on a given subset of combinations but not on unobserved combinations may cause unexpected
and catastrophic failures in a deployment environment.

Domain generalization (Wang et al., 2021a) is a problem where we need to deal with combinations
of two factors: domains and labels. Recently, Gulrajani & Lopez-Paz (2021) questioned the progress
of the domain generalization research, claiming that several algorithms are not significantly superior
to an empirical risk minimization (ERM) baseline. In addition to the model selection issue raised
by Gulrajani & Lopez-Paz (2021), we conjecture that this is due to the ambitious goal of the usual
domain generalization setting: generalizing to a completely unknown domain. Is it really possible to
understand art if we have only seen photographs (Li et al., 2017)? Besides, those datasets used for
evaluation usually have almost uniformly distributed domains and classes for training, which may be
unrealistic to expect in real-world applications.

A more practical but still challenging learning problem is to learn all domains and labels, but only
given a limited subset of the domain-label combinations for training. We refer to the usual setting
of domain generalization as domain shift and this new setting as combination shift. An illustration
is given in Fig. 1. Combination shift is more feasible because all domains are at least partially
observable during training but is also more challenging because the distribution of labels can vary
significantly across domains. The learning goal is to improve generalization with as few combinations
as possible.

1



A

B

0

C

1 2 3 4

(a) Domain shift: Y
train
1 = {A,B}, Y test

1 = {C},
Y

train
2 = Y

test
2 = {0, 1, 2, 3, 4}.

A

B

0

C

1 2 3 4
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Figure 1: Domain generalization under domain shift (an unseen domain) and combination shift
(unseen combinations of domains and labels). Domain: color, label: digit, training: , test: .

To solve the combination shift problem, a straightforward way is to apply the methods designed for
domain shift. One approach is based on the idea that the prediction of labels should be invariant to
the change of domains (Ganin et al., 2016; Sun & Saenko, 2016; Arjovsky et al., 2019; Creager et al.,
2021). However, we find that the performance improvement is often marginal. Recent works (Wiles
et al., 2022; Schott et al., 2022) also provided empirical evidence showing that invariance-based
domain generalization methods offer limited improvement. On the other hand, they also showed that
data augmentation and pre-training could be more effective. To analyze this phenomenon, a unified
perspective on different methods is desired.

In this work, we provide an algebraic formulation for both invariance-based methods and data
augmentation methods to investigate why invariance may be insufficient and how we should learn
data augmentations. We also derive a simple yet effective method from the algebraic requirements,
referred to as equivariant disentangled transformation (EDT), to demonstrate its usefulness.

Our main contributions are as follows:

We provide an algebraic formulation for the combination shift problem. We show that invariance
is only half the story and it is important to exploit the equivariance structure. We present a refined
definition of disentanglement beyond the one based on group action (Higgins et al., 2018), which
may be interesting in its own right.

Based on this algebraic formulation, we derive (a) what combinations are needed to effectively
learn augmentations; (b) what augmentations are useful for improving generalization; and (c) what
regularization can be derived from the algebraic constraints, which can serve as a guidance for
designing data augmentation methods.

As a proof of concept, we demonstrate that learning data augmentations based on the algebraic
structures of labels is a promising approach for the combination shift problem.

2 PROBLEM: DOMAIN GENERALIZATION UNDER COMBINATION SHIFT

Throughout the following sections, we study the problem of transforming a set of features X to a
set of targets Y via a function f : X → Y . Here, X can be a set of images, texts, audios, or more
structured data, while Y is the space of outputs. Further, the target Y may have multiple components.
For example, Y1 is the set of domain indices and Y2 is the set of target labels.

Ideally, all combinations of domains and target labels would be uniformly observable. However,
in reality, it may not be the case because of selection bias, uncontrolled variables, or changing
environments (Sagawa et al., 2020; Träuble et al., 2021). Let Y train

i and Y test
i denote the sets of

i-th components (the support of the marginal distributions) observed in the training and test data.
In the usual domain generalization setting (Wang et al., 2021a; Gulrajani & Lopez-Paz, 2021), the
goal is to generalize to a completely unseen domain, i.e., domain shift. We have Y train

2 = Y test
2 but
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Y train
1 ∩ Y test

1 = ∅. However, it is unclear how different domains should relate and why a model
can generalize without the knowledge of the unknown domain (Wiles et al., 2022).

In this work, we focus on a more practical condition, called combination shift and illustrated in Fig. 1,
where all test domains and labels can be observed separately during training, i.e., Y test

i ⊆ Y train
i (i =

1, 2), but not all their combinations. An example is the spurious relationship problem (Torralba &
Efros, 2011), such as the co-occurrence of the objects and their background (Sagawa et al., 2020).
In an extreme case, the combinations in the training and test sets could be disjoint, which requires
completely out-of-distribution generalization. We survey related problems and approaches in more
detail in Appendix D.

3 FORMULATION: EQUIVARIANCE TO PRODUCT ALGEBRA ACTIONS

This section outlines the concepts needed to formally describe the problem and our proposed method.
See Appendices B and C for a more detailed review and concrete examples. Those who are interested
in the proposed method itself may skip this section and directly jump to Section 4.

Because in the domain generalization problem, we have at least two sets, domains and labels, it is
natural to study their product structure, which is manifested as statistical independence or operational
disentanglement. We focus on the latter and use the following definition:

Definition 1. Let {Ai = (Ai, {f
j
i : A

nj

i → Ai}j∈Ji
)}i∈I be algebras indexed by i ∈ I , each of

which consists of the underlying set Ai and a collection of operations f j
i of arity nj indexed by j ∈ Ji.

Let A =
∏

i∈I Ai be the product algebra whose underlying set is the product set A =
∏

i∈I Ai. Let
A act on sets X and Y via actions actX : A×X → X and actY : A× Y → Y . A transformation
f : X → Y is disentangled if it is equivariant to actX and actY .

In short, a disentangled transformation is a function equivariant to actions by a product algebra.
Note that a definition of disentangled representations based on product group action has been given
in Higgins et al. (2018), which is a special case when {Ai}i∈I are all groups. We emphasize that the
concept of disentanglement is rooted in product, not group nor action. We will unwind this definition
and discuss the reasons for this extension as well as its limitations below.

3.1 HOMOMORPHISM AND EQUIVARIANCE

An algebra consists of one or more sets, a collection of operations on these sets, and a collection of
universally quantified equational axioms that these operations need to satisfy. A homomorphism
between algebras is a function between the underlying sets that preserves the algebraic structure.

A (left) action of a set A on another set X is simply a binary function act : A × X → X . An
action is equivalent to its exponential transpose or currying, a function âct : A → XX from A to
the set of endofunctions XX , also known as a representation of A on X . An action is faithful if all
endofunctions are distinct, and trivial if all elements are mapped to the identity function idX .

Let actX and actY be actions of A on X and Y , respectively. A function f : X → Y is equivariant
to actX and actY if

∀a ∈ A, f ◦ âctX(a) = âctY (a) ◦ f. (1)
Specifically, if actY is trivial, f is called invariant to actX :

∀a ∈ A, f ◦ âctX(a) = f. (2)

In summary, for an underlying set X , an algebra over X describes the structure of the set X itself,
while an action or a representation of another algebraic structure A on X describes the structure of
a subset of the endofunctions XX . Homomorphisms and equivariant functions describe how the
structures of the set and endofunctions are preserved, respectively. An equivariant map can be also
considered as a homomorphism between two algebras whose operations are all unary and indexed
by elements in the set A. Note that only the equivariance — the structure of endofunctions — may
not fully characterizes a learning problem, because not all operations are unary operations. In some
problems, it would be necessary to consider the preservation of the structure of other operations with
the concept of algebra homomorphism. See also Appendices A to C.
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3.2 MONOID AND GROUP

Let us focus on the endofunctions XX for now. A way to describe the structure of a subset of
endofunctions XX is to specify an algebra A and an action of A on X preserving the algebraic
structure. For example, an important operation is the function composition ◦ : XX ×XX → XX ,
which can be described by how an action preserves a binary operation · : A×A → A:

∀a1, a2 ∈ A, âct(a1 · a2) = âct(a1) ◦ âct(a2). (3)

Since the function composition is associative, (A, ·) should be a semigroup. If we also want to include
the identity function idX , then there should exist an identity element e ∈ A (a nullary operation),
which makes (A, ·, e) a monoid.
Remark 1 (Group). If we only consider invertible endofunctions, then A becomes a group (Higgins
et al., 2018). However, only considering groups could be too restrictive. For example, periodic
boundary conditions are required (Higgins et al., 2018; Caselles-Dupré et al., 2019; Quessard et al.,
2020; Painter et al., 2020) for two-dimensional environments (e.g., dSprites (Matthey et al., 2017)),
so that all the movements are invertible and have a cyclic group structure. This is only possible in
synthetic environments such as games, not in the real world. Another example is the 3D Shapes
dataset (Burgess & Kim, 2018), which consists of images of three-dimensional objects with different
shapes, colors, orientations, and sizes. It is acceptable to model the shape, color, and orientation with
permutation groups or cyclic groups. However, it is unreasonable if we increase the size of the largest
object, then it becomes the smallest. This is because we only consider the set of natural numbers,
representing size, count, or price, and of which addition only has a monoid structure. Therefore, it is
important to consider endofunctions in general, not only the invertible ones. In this work, we mainly
focus on monoid actions that only describe the function composition and identity function.

3.3 PRODUCT AND DISENTANGLEMENT

Finally, we are in a position to introduce the concept of disentanglement used in Definition 1. For
two objects Y1 and Y2, we can consider their product Y = Y1 × Y2, which is defined via a pair of
canonical projections p1 : Y1 × Y2 → Y1 and p2 : Y1 × Y2 → Y2. This means that we can divide
the product into parts and process each part separately without losing information. We reiterate that:

Product structure is the core of disentanglement.

Specifically, (a) if Y1 and Y2 are just sets, Y is their Cartesian product; (b) if Y1 and Y2 have algebraic
structures, Y is the product algebra and the operations are defined componentwise; and (c) if A1 and
A2 act on Y1 and Y2, respectively, then the product algebra A = A1 ×A2 can act on Y = Y1 × Y2

componentwise.

Additionally, if we let PY be the set of all measures on Y , then PY1 × PY2 is the set of joint
distributions where two components are statistically independent, while PY = P (Y1 × Y2) is the
set of all possible joint distributions. Product is the common denominator for all the definitions of
disentanglement. In Definition 1, we only considered the product structure of endofunctions.

We can use this definition to formulate the domain generalization problem as follows. We assume that
Y = Y1 × Y2 has two components, where Y1 is the set of domain indices and Y2 is the set of other
target labels. we choose a structure of a subset of the endofunctions Y Y , described by two algebras
A1 and A2 and two actions actY1

and actY2
. Then, we let the product algebra A = A1 ×A2 act on

Y = Y1 × Y2 componentwise via an action actY . We also assume that there is an action actX of A
on X that manipulates the features. After properly choosing the algebras and actions, the problem
can be then formulated as finding a function equivariant to actX and actY .

Note that it is usually unnecessary and sometimes impossible to decompose X into a product, i.e.,
X = X1×X2 may not exist. For example, when X is a set of objects with different shapes and colors,
there does not exist an object without color. In this case, we could only equip the endofunctions XX

with a product structure.
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4 METHOD: EQUIVARIANT DISENTANGLED TRANSFORMATION

In this section, we present our proposed method based on an algebraic formulation of the combination
shift problem. The basic idea is that if we choose the algebra properly, the algebraic requirements of
the transformation naturally lead to useful architectures and regularization.

In the following discussion, we assume that actYi
(ai, yi) = y′i for some ai ∈ Ai and yi, y

′
i ∈ Yi,

i = 1, 2. We denote an instance whose labels are y1 and y2 by xy1,y2
.

4.1 MONOID STRUCTURE

First, we discuss how to choose the algebra that is suitable for our problem and derive the algebraic
requirements. As discussed in Section 3.2, we only require that algebras A1 and A2 are monoids,
which means that there exist associative binary operations ·i : Ai ×Ai → Ai and identity elements
ei ∈ Ai for i = 1, 2. Then, according to Eq. (3) (action commutes with composition), we can derive
that a product action âct(a1, a2) on X or Y can be decomposed in two ways:

âct(a1, a2) = âct(a1, e2) ◦ âct(e1, a2) = âct(e1, a2) ◦ âct(a1, e2). (4)
Or equivalently, the following diagram commutes (when the action is on Y = Y1 × Y2):

(y1, y2) (y1, y
′
2)

(y′1, y2) (y′1, y
′
2)

âct(a1,a2)

âct(e1,a2)

âct(a1,e2) âct(a1,e2)

âct(e1,a2)

(5)

Thus, we can focus on the endofunctions of the form âct(a1, e2) and âct(e1, a2), whose compositions
constitute all endofunctions of interest.
Remark 2 (Size). Denoting the cardinality of a set A by |A| and the image of a function f on a
set X by f [X], i.e., a set defined by {f(x) | x ∈ X}, we can prove that |âct([A1], e2)| ≤ |A1|,
|âct(e1, [A2])| ≤ |A2|, and |âct([A1], [A2])| = |âct([A1], e2)| × |âct(e1, [A2])| ≤ |A1| × |A2|.
The equality holds when the actions are faithful. Thanks to the monoid structure and the product
structure, we can reduce the number of endofunctions that we need to deal with from |A1| × |A2|
to at most |A1|+ |A2|. We can further reduce the number if A1 or A2 has a smaller generator. For
example, although the monoid (N,+) of natural numbers under addition has infinite elements, it can
be generated from a singleton {1}. In this case, we can focus on a single endofunction that increases
the value by a unit, and all other endofunctions are compositions of this special endofunction.

4.2 EQUIVARIANCE REQUIREMENT

Then, consider a function f : X → Y that extracts only necessary information and preserves
the algebraic structure of interest. We require it to be equivariant to two actions actX and actY .
Recall that we can consider endofunctions only of the form âct(a1, e2) and âct(e1, a2). Based on
Eq. (1) (action commutes with transformation), we can derive the algebraic requirement shown in the
following commutative diagram:

xy1,y2
(y1, y2) y1

y2

xy
′
1,y2

(y′1, y2) y′1

f

âctX(a1,e2)

p1

p2

âctY (a1,e2) âctY1
(a1)idY2

f p1

p2

(6)

With the projections p1 and p2, we can see that this requirement results in the following four
conditions: (a) f1 = p1◦f is equivariant to âctX(−, e2) and âctY1

; (b) f1 is invariant to âctX(e1,−);
and dually, (c) f2 = p2 ◦f is equivariant to âctX(e1,−) and âctY2

; (d) f2 is invariant to âctX(−, e2).
The symbol − is a placeholder, into which arguments can be inserted.
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(R, 1)

(R, 0)

(B, 1)

(B, 0)

Notation:
component 1 âct(a1, e2)

component 2 âct(e1, a2)

augmentation âct(a1, a2)

prediction f : X → Y1 × Y2

Training:
Select suitable data pairs and learn component
augmentations separately (Eq. (7));
Regularize augmentations (Eqs. (8) and (9)),
simultaneously or alternatively;
Train a prediction model (Eq. (10)).

Figure 2: Equivariant Disentangled Transformation (EDT). All diagrams commute.

4.3 ALGORITHM

Finally, we present a method directly derived from the algebraic requirements of the transformation,
referred to as equivariant disentangled transformation (EDT) and illustrated in Fig. 2. Since the
formulation above naturally generalizes to the case of multiple factors Y = Y1×· · ·×Yn, we present
the method in the general form.

Architecture Since the output space Y and the selected endofunctions on it are manually designed,
the action actY on Y is known and fixed. However, the action actX on X is usually not available. So
our first goal is to learn a set of endofunctions αj

i : X → X representing âctX(e1, . . . , a
j
i , . . . , en)

indexed by aji ∈ Ai, i = 1, . . . , n. These endofunctions can be considered as learned augmentations
of data that only modify a single factor while keeping other factors fixed. Second, we need to
approximate the equivariant function f using a trainable function ϕ : X → Y . Due to the property
of product, any function to a product arises from component functions ϕi : X → Yi, i = 1, . . . , n.
Therefore, we can train a model for each component and make these models satisfy the algebraic
requirements specified bellow.

Data selection and augmentation To train an augmentation αj
i , we need to collect pairs of instances

x and x′ such that actX((e1, . . . , a
j
i , . . . , en), x) = x′, in other words, pairs of the form xy1,...,yi,...,yn

and xy1,...,y
′
i,...,yn

, where actYi
(aji , yi) = y′i. Then, denoting the set of all measures on X by PX ,

we can learn the augmentations by minimizing a statistical distance d : PX × PX → R≥0:

ℓ0(α
j
i ) = d(αj

i (x), x
′). (7)

With a slight abuse of notation, here x and x′ also represent the empirical distribution. Choices of the
statistical distance d include the expected pairwise distance (Kingma & Welling, 2014), maximum
mean discrepancy (Li et al., 2015; Dziugaite et al., 2015; Muandet et al., 2017), Jensen–Shannon
divergence (Goodfellow et al., 2014), and Wasserstein metric (Arjovsky et al., 2017; Gulrajani et al.,
2017; Miyato et al., 2018).

Remark 3 (Cycle consistency). It is possible to use all pairs of the form xy1,...,yi,...,yn
and

xy
′
1,...,y

′
i,...,y

′
n

, i.e., pairs of instances whose i-th labels correspond to the action, but other labels could
be different. For example, if Ai is a group, we can simultaneously train two models that are the
inverse of each other with a cycle consistency constraint (Zhu et al., 2017; Goel et al., 2021). With
this constraint, the learned augmentation is likely an approximation of âctX(e1, . . . , a

j
i , . . . , en).

However, it is still possible to obtain approximations of âctX(q1, . . . , a
j
i , . . . , qn) and its inverse

where q1, . . . , qn are not necessarily the identity elements. This happens especially when there are
more than two factors and not all combinations are available, which is demonstrated in Section 5.
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(a) Compositionality of multi-scale augmentations (b) Commutativity of two disentangled augmentations

Figure 3: Regularizing compositionality and commutativity (and other algebraic structures) of
augmentations is a way to introduce inductive biases and exploit the relationships between training
examples, which is useful especially when the combinations of factors are scarce in the training data.

The rich algebraic structure yields various constraints, which can be used as regularization for
augmentations. Next, we present three regularization techniques derived from the basic product
monoid structure. Note that we can introduce more constraints if we choose a richer algebra.

Regularization 1 (Compositionality of augmentations) According to Eq. (3), if αj·k
i is the

approximated action of aji ·i a
k
i , we can simply define it as αj·k

i = αj
i ◦α

k
i . If we need to approximate

it directly, the algebraic requirement leads to the following regularization:

ℓ1(α
j
i , α

k
i , α

j·k
i ) = d(αj

i (α
k
i (x)), α

j·k
i (x)). (8)

A special case is when we know the composition is the identity function αj·k
i = idX , i.e., aji is the

inverse of aki . This regularization is then equivalent to the “cycle consistency loss” in the CycleGAN
model (Zhu et al., 2017) or the “isomorphism loss” in the GroupifiedVAE model (Yang et al., 2022).
Another example is for modifying instances with real-valued targets. We could use multi-scale
augmentations (e.g., α1 increases the value by 1 unit and α5 increases the value by 5 units) to
reduce the cumulative error and gradient computation, and this regularization ensures that these
augmentations are consistent with each other (e.g., (α1)5 ≈ α5).

Regularization 2 (Commutativity of augmentations) According to the diagram in Eq. (5), we
can derive the following regularization, which means that the order of augmentations for different
factors should not matter:

ℓ2(α
k
i , α

l
j) = d(αl

j(α
k
i (x)), α

k
i (α

l
j(x))). (9)

This can be interpreted as a commutativity requirement: the augmentations are grouped by the factors
they modify, and augmentations from different groups should commute, but augmentations within the
same group are usually not commutative. Again, we point out that this is only based on the product
monoid structure and is nothing group-specific.

In Fig. 4, we illustrate a concrete example of compositionality and commutativity regularization
based on the dSprites dataset (Matthey et al., 2017). The movement of position can be modeled
via the additive monoid of natural numbers; while the change of shape can be formulated by a
permutation/cyclic group. Suitable training example pairs can be used for learning augmentations
directly (ℓ0), but such pairs may be limited. Algebraic regularization terms (e.g., ℓ1 and ℓ2) introduce
inductive biases so that more relationships between training examples can be used as supervision.

Regularization 3 (Equivariance of transformation) According to the diagram in Eq. (6), we can
derive the following equivariance and invariance regularization:

ℓ3(α
j
i , ϕk) =

{
d(ϕi(α

j
i (x)), actYi

(aji , ϕi(x))) i = k,

d(ϕk(α
j
i (x)), ϕk(x)) i ̸= k.

(10)

It is a good strategy to learn the augmentations first and then use them to improve the transformation
(Goel et al., 2021). However, we can see from this regularization that if the transformation is well
trained, it can be used for improving the augmentations too.
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Table 1: The classification accuracy (%, “mean (standard deviation)” of 5 trials) on the colored
MNIST data. For each setting (column), the method with the highest mean accuracy and those
methods that are not statistically significantly different from the best one (via one-tailed t-tests with a
significance level of 0.05), if any, are highlighted in boldface.

AXIS STEP RAND-0.5 RAND-0.7 RAND-0.9
(train/test) (14/36) (15/35) (25/25) (35/15) (45/5)

ERM 56.74(12.40) 47.09(8.29) 91.13(3.70) 97.18(0.98) 98.61(0.29)
IRM 55.40(7.23) 39.54(7.78) 87.61(5.37) 96.89(2.44) 98.20(0.57)
CORAL 72.47(17.33) 49.72(10.53) 83.48(5.83) 94.61(3.62) 98.21(0.75)
DANN 82.33(12.76) 45.02(3.79) 91.76(2.67) 97.99(0.32) 98.54(0.20)
Fish 69.06(14.50) 45.18(3.36) 79.93(5.12) 96.29(1.33) 98.13(0.43)
Mixup 63.59(11.98) 36.30(4.42) 92.56(1.81) 97.62(0.99) 98.20(0.65)
MixStyle 97.10(1.36) 95.73(1.83) 95.25(1.83) 97.57(1.11) 98.13(0.76)
EDT 97.58(0.17) 98.13(0.15) 96.70(1.36) 98.55(0.13) 98.21(0.42)

5 EXPERIMENTS

As a proof of concept, we conduct experiments to support the following claims:

Learning data augmentation is a promising approach for the combination shift problem.
Cycle consistency may be insufficient, and additional constraints need to be considered.
We should regularize the data augmentations so that they satisfy the algebraic requirements.

5.1 COMBINATION SHIFT

First, we experimentally demonstrate the insufficiency of the invariance-based approach and the
potential of the augmentation-based approach for the combination shift problem.

Data We colored the grayscale images from the MNIST dataset (LeCun et al., 1998) with 5 colors
to create a semi-synthetic setting. Therefore, there are 5 domains (colors) and 10 classes (digits).
We tested the methods in the most extreme case where the combinations of domains and classes
of the training and test sets are disjoint. We selected five types of combinations as the training set:
AXIS: all red digits and zeros of all colors; STEP: three digits for each color (shown in Fig. 6 in
Appendix E); RAND-0.5/-0.7/-0.9: combinations randomly selected with a fixed ratio.

Method In addition to an ERM baseline, we evaluated four invariance-based methods: IRM
(Arjovsky et al., 2019), CORAL (Sun & Saenko, 2016), DANN (Ganin et al., 2016), and Fish (Shi
et al., 2022); and two augmentation-based methods: Mixup (Zhang et al., 2018) and MixStyle (Zhou
et al., 2021). Model architectures and hyperparameters are given in Appendix E.

Results We can see from Table 1 that the ERM baseline and invariance-based methods perform
poorly if only limited combinations of domains and classes are observable. The high variance
indicates that the learned representation may still depend on the domains. As more combinations
become observable in training, the differences in performance of all methods become less statistically
significant. On the other hand, the augmentation-based methods usually provide higher performance
improvements, although the mixup method may deteriorate performance depending on the setting.
MixStyle performs consistently well, partially because it is specifically designed for image styles and
thus lends itself well to this setting. With the algebraic constraints, EDT may capture the underlying
distribution better and offer larger improvements.

5.2 DATA AUGMENTATION

Next, we discuss potential issues of the augmentation-based method (Goel et al., 2021) based on
CycleGAN (Zhu et al., 2017), which matches the bidirectionally transformed distributions and
regularizes the composition to be the identity functions. There are two major issues of this approach.
Firstly, it is designed only for two domains (e.g., female and male). Secondly and more importantly,
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Table 2: The misclassification rate (%) of shape and mean squared errors (×100) of scale, orientation,
and positions on the dSprites dataset (“mean (standard deviation)” of 5 trials).

Shape Scale Orientation Position X Position Y

ERM 60.84(2.24) 3.76(0.24) 13.13(0.72) 1.97(0.69) 1.87(0.25)
MixStyle 59.92(2.00) 6.73(1.07) 13.04(0.54) 0.20(0.10) 0.21(0.06)
EDT (ℓ0, ℓ3) 14.36(0.75) 1.30(0.06) 2.09(0.07) 0.04(0.01) 0.04(0.01)
EDT (ℓ0, ℓ1, ℓ2, ℓ3) 4.55(0.21) 0.59(0.01) 2.01(0.07) 0.02(0.00) 0.02(0.00)

(a) Without compositionality regularization, the
error may accumulate after a few compositions.

(b) Without commutativity regularization, pairs for
learning augmentations may be insufficient.

Figure 4: Randomly selected 5 images (top row) in the dSprites dataset (Matthey et al., 2017) and
augmented images (bottom 4 rows) of position (Fig. 4a, left⇝ right) and shape (Fig. 4b, square⇝
ellipse⇝ heart⇝ square), without (left) and with (right) regularization.

as discussed in Remark 3, when there are more than two factors, cycle consistency alone may not
guarantee the identity of non-transformed factors. The comparison on the 3D Shapes dataset (Burgess
& Kim, 2018) is shown in Fig. 8 in Appendix E. We can observe that although the floor hue is
transformed as desired and the reconstructed images are almost identical to the original ones, other
factors such as the object/wall hues are also changed. In contrast, the algebraic requirements of EDT
ensure the approximated augmentations are consistent with the desired actions.

5.3 ALGEBRAIC REGULARIZATION

Finally, we further compare heuristic and learned data augmentations and demonstrate the usefulness
of algebraic regularization. We used the dSprites dataset (Matthey et al., 2017) and considered
one factor as target label and the others as domains. Some methods are no longer applicable
because of the continuous or even periodic values of factors and the multiplicatively increasing
number of combinations. In Table 2, we can see that MixStyle provides no significant performance
gain in this setting because the heuristic augmentation does not match the underlying mechanism
anymore (See also Fig. 10 in Appendix E). In Fig. 4, we provide the results of an ablation study of
the compositionality (ℓ1) and commutativity (ℓ2) regularization, showing that these regularization
terms can reduce errors accumulated by compositions of augmentations and increase the number of
supervision signals for learning augmentations, as illustrated in Fig. 3.

6 CONCLUSION

Unlike the usual goal of generalizing to an unseen domain, we formulated the problem of combination
shift as learning the knowledge of each factor (domains and labels) and generalizing to unseen
combinations of factors, which makes deployment more feasible but training more challenging.
We found that invariance-based methods may not work well in this setting, but augmentation-
based methods usually excel. To formally analyze data augmentations and provide a guideline on
augmentation design, we presented an algebraic formulation of the problem, which also leads to a
refined definition of disentanglement. We demonstrated the usefulness of constraints derived from
algebraic requirements, discussed potential issues of the existing augmentation method based on
cycle consistency, and showed the importance of algebraic regularization. We then pointed out several
promising research directions, such as incorporating algebra homomorphism and multi-sorted algebra
to discuss a wider range of data augmentation operations. We hope that our algebraic formulation
can be used to derive practical algorithms in applications and inspire further studies in this direction.
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Lukas Schott, Julius Von Kügelgen, Frederik Träuble, Peter Vincent Gehler, Chris Russell, Matthias
Bethge, Bernhard Schölkopf, Francesco Locatello, and Wieland Brendel. Visual representation
learning does not generalize strongly within the same domain. In International Conference on
Learning Representations, 2022. 1

Yuge Shi, Jeffrey Seely, Philip Torr, Siddharth N, Awni Hannun, Nicolas Usunier, and Gabriel
Synnaeve. Gradient matching for domain generalization. In International Conference on Learning
Representations, 2022. 5.1, D

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019. D

Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised
disentanglement with guarantees. In International Conference on Learning Representations, 2020.
C.4, D

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022. D

Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary environments:
Introduction to covariate shift adaptation. MIT press, 2012. D

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, and Motoaki Kawanabe.
Direct importance estimation with model selection and its application to covariate shift adaptation.
Neural Information Processing Systems, 20, 2007. D

Baochen Sun and Kate Saenko. Deep CORAL: Correlation alignment for deep domain adaptation.
In European conference on computer vision, pp. 443–450. Springer, 2016. 1, 5.1, D

Raphael Suter, Djordje Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Robustly disentangled
causal mechanisms: Validating deep representations for interventional robustness. In International
Conference on Machine Learning, 2019. C.4, D

Seiya Tokui and Issei Sato. Disentanglement analysis with partial information decomposition. In
International Conference on Learning Representations, 2022. C.4, D

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In Computer Vision and Pattern
Recognition, 2011. 2
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Figure 5: A homomorphism preserving binary operations ⊕ and p1 × p2.

A LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of this work and potential future work directions.

A.1 ALGEBRA HOMOMORPHISM

In this work, we only formulated data augmentations of the endofunction form α : X → X , i.e.,
modifications of only one input. However, there are other operations that do not fall into this form.
We suggest using algebra homomorphisms to capture their relations. Here we give three examples:

Component combination If the instance can be divided into multiple components, then we can
recombine the components from multiple instances to generate a new instance: α : Xn → X . This is
especially useful when there are many factors and the combinations in the training set are sparse.

Style transfer Another example is when we cannot divide the instances but can combine their
characteristics, such as style transfer (Gatys et al., 2016). An example is given in Fig. 5, where
⊕ : X ×X → X is the binary operation that takes the “style” of the first image and the “content”
of the second image, and p1 × p2 : Y × Y → Y is the corresponding operation in the label space
Y . Then, we need to ensure that this binary operation is compatible with other augmentations. For
example, if the object in the content image changes, the object in the generated image should change
accordingly; while the generated image should not change regardless of the object in the style image.

Crowd counting Counting the number of objects or people in an image is an example where we
can exploit the structure of natural numbers N. In addition to the monotone function requirement
induced by the total order of natural numbers N (Liu et al., 2018), the free monoid structure (N,+)
may induce other useful constraints. For example, the count of two parts should be the sum of the
counts of each part. This requirement can be formulated as an algebra homomorphism.

A.2 STATISTICS AND APPROXIMATION

Similarly to previous work (Higgins et al., 2018), we focused more on the algebraic aspect. We
admit that there is still a gap between formulation and practice, because algebra only describes exact
equality (=), but sometimes we are more interested in approximate equality (≈). It would be useful
to define concepts such as commutativity over a metric space, so that we can analyze errors and
introduce statistical tools, to get the best of both worlds.

A.3 STATE AND MULTI-SORTED ALGEBRA

Another issue is that we only considered endofunctions X → X so all data augmentations are
applicable to all instances in a “stateless” way, which may not hold true in more complex situations.
As a future work, we may consider general functions Xi → Xj and define which functions are
composable and which are not.

Also, it could be useful to discuss operations on multiple sets based on multi-sorted algebra, such as
graphs (de Haan et al., 2020).
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B A BRIEF REVIEW OF ALGEBRA

In this section, we review the algebraic concepts used in this work. We refer the readers to Dummit &
Foote (1991) (abstract algebra), Bergman (2015) (universal algebra), and Awodey (2010) (category
theory) for further readings.

B.1 ALGEBRA

Definition 2 (Algebra). A (single-sorted) algebra consists of

a set A, called the underlying set of the algebra,

a collection of operations {f i : Ani → A}i∈I , and

a collection of universally quantified equational axioms that those operations satisfy.

For example, elementary algebra is the study of the set of numbers with arithmetic operations such as
addition, subtraction, multiplication, division, and exponentiation. Linear algebra is the study of the
set of vectors with operations of vector addition and scalar multiplication.

Some algebras with only one binary operation are listed below.

Definition 3 (Magma). A magma is a set A equipped with a binary operation · : A×A → A.

Definition 4 (Semigroup). A semigroup is a magma (S, ·) whose binary operation is associative:

∀s1, s2, s3 ∈ S, (s1 · s2) · s3 = s1 · (s2 · s3). (11)

Definition 5 (Monoid). A monoid is a semigroup (M, ·) that has an identity element e ∈ M (a
nullary operation e : 1 → M ):

∀m ∈ M, e ·m = m · e = m. (12)

Definition 6 (Group). A group is a monoid (G, ·, e), and every element has an inverse (a unary
operation (−)−1 : G → G):

∀g ∈ G, g · g−1 = g−1 · g = e. (13)

Definition 7 (Abelian group). An Abelian group is a group (G, ·, e, (−)−1) whose binary operation
is commutative:

∀g1, g2 ∈ G, g1 · g2 = g2 · g1. (14)

B.2 HOMOMORPHISM

Definition 8 (Homomorphism). A homomorphism between two algebras (A, {f i
A}i∈I) and

(B, {f i
B}i∈I) of the same type is a function between the underlying sets h : A → B such that

∀a1, . . . , ani
∈ A, h(f i

A(a1, . . . , ani
)) = f i

B(h(a1), . . . , h(ani
)) (15)

holds for all corresponding operations f i
A : Ani → A and f i

B : Bni → B.

In other words, the following diagram commutes for all i ∈ I:

Ani Bni

A B

h
ni

f
i
A f

i
B

h

(16)

An invertible homomorphism is called an isomorphism. For example, exp and log functions form
a pair of isomorphisms between (R,+) and (R+,×) because exp(x+ y) = exp(x)× exp(y) and
log(x× y) = log(x) + log(y).

15



B.3 EXPONENTIAL

Definition 9 (Exponential). Given sets A and B, the function set BA is the set of all functions from
A to B. Given a set A and a function set BA, there exists an evaluation map ϵ : BA ×A → B that
sends a function f : A → B and a value a ∈ A to the evaluation ϵ(f, a) = f(a) ∈ B.
Definition 10 (Exponential transpose). For a binary function f : A × B → C, its exponential
transpose (also known as currying) is a function f̂ : A → CB such that

∀a ∈ A,∀b ∈ B, f(a, b) = f̂(a)(b). (17)

B.4 ACTION

Definition 11 (Action). A (left) action of a set A on a set X is a binary function act : A×X → X .

Definition 12 (Representation). A representation of a set A on a set X is a function âct : A → XX .

Definition 13 (Algebra preservation). A representation âct : A → XX preserves an algebra over A
if it is a homomorphism from A to XX .

A magma/semigroup action preserves composition (a binary operation):

∀a1, a2 ∈ A,∀x ∈ X, act(a1 · a2, x) = act(a1, act(a2, x)). (18)

A×A×X A×X

A×X X

idA × act

·×idX act

act

(19)

Or equivalently,
∀a1, a2 ∈ A, âct(a1 · a2) = âct(a1) ◦ âct(a2). (20)

A×A XX ×XX

A XX

âct×âct

· ◦

âct

(21)

A monoid action preserves identity (a nullary operation):

∀x ∈ X, act(e, x) = x. (22)

âct(e) = idX . (23)

1 1

A XX

e idX

âct

(24)

A group action preserves inverse (a unary operation):

∀a ∈ A,∀x ∈ X, act(a−1, act(a, x)) = x. (25)

∀a ∈ A, âct(a−1) = âct(a)−1. (26)

A XX

A XX

âct

(−)
−1 (−)

−1

âct

(27)
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B.5 EQUIVARIANCE

Definition 14 (Equivariance). A function f : X → Y is equivariant to two actions actX : A×X →
X and actY : A× Y → Y if

∀a ∈ A,∀x ∈ X, f(actX(a, x)) = actY (a, f(x)). (28)

A×X A× Y

X Y

idA ×f

actX actY

f

(29)

Or equivalently,
∀a ∈ A, f ◦ âctX(a) = âctY (a) ◦ f. (30)

X Y

X Y

f

âctX(a) âctY (a)

f

(31)

commutes for all a ∈ A. This justifies that an equivariant map is a homomorphism between two
algebras whose operations are all unary and indexed by elements in the set A.

B.6 PRODUCT

Definition 15 (Product). A product A×B of two objects A and B and the corresponding projections
p1 : A×B → A and p2 : A×B → B satisfy that for any object C and morphisms f1 : C → A and
f2 : C → B, there is a unique morphism f : C → A×B, such that f1 = p1 ◦ f and f2 = p2 ◦ f , as
indicated in

C

A A×B B

f1
f

f2

p1 p2

(32)

Consider two morphisms f : C → A and g : D → B. Based on the universal property of A × B,
there exists a unique morphism f × g : C ×D → A×B such that the following diagram commutes:

C C ×D D

A A×B B

f

p1 p2

f×g g

p1 p2

(33)

For example, let both C and D be Y1 × Y2, f = p1, and g = p2. Then, the following diagram
represents “recombination of components”:

Y1 × Y2 (Y1 × Y2)× (Y1 × Y2) Y1 × Y2

Y1 Y1 × Y2 Y2

p1

p1 p2

p1×p2 p2

p1 p2

(34)
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C ALGEBRA IN SUPERVISED LEARNING

In this section, we look ahead to the application of algebraic theory to supervised learning.

C.1 SUPERVISED LEARNING

Let X be the set of inputs and Y the set of outputs. In supervised learning, we want to find a function
f : X → Y that satisfies some properties. Generally, this is achieved by collecting a set of pairs
{(xi, yi) ∈ X × Y }i∈I as training examples and defining a measure of “goodness” of functions. For
example, for a pair (xi, yi), we expect f to map xi to yi.

Let us consider this procedure from an algebraic perspective.

Nullary operation First, we point out that identifying an element x from a set X can be considered
as a nullary operation x : 1 → X , and evaluating a function f : X → Y at an element x is simply
function composition f ◦ x : 1 → Y . Then, requiring

f(x) = y (35)

is equivalent to say that f should be an algebra homomorphism:

1 1

X Y

x y

f

(36)

Therefore, a function that can predict all training examples perfectly is simply a homomorphism from
algebra (X, {xi : 1 → X}i∈I) to algebra (Y, {yi : 1 → Y }i∈I) where all operations are nullary.

This perspective frames direct supervision as an algebraic requirement. However, it is still not
practically useful, because the training examples are usually finite and cannot enumerate the set of
inputs, but we need machine learning only when the inputs in a test environment are not exactly
the same as the inputs for training. Two things are missing: first, we need an assumption to relate
training and test data; second, we need not only “yes or no” but also “how much”. As discussed
in Appendix A, pure algebra only deals with exact equality, so integrating algebra and statistical
learning is an important research direction.

Unary operation Many works introducing algebraic theory, especially group theory, into machine
learning, including this work, have focused on unary operations and their relations. A unary operation
or an endofunction αX : X → X transforms a set of states to itself. A homomorphism between
(X,αX) and (Y, αY ) just relates these unary operations:

X Y

X Y

f

αX αY

f

(37)

Usually, there are multiple unary operations, which themselves form an algebra. Magma/semigroup
describes composition, monoid describes identity, and group describes invertibility. An invertible
unary operation/endofunction is also called a symmetry. The structure of these unary operations can
be described by an action preserving the algebraic structure, which was extensively used in this work.

Binary and n-ary operations As also covered in Appendix A, not all operations are unary opera-
tions. It would be useful to include n-ary operations and their relations as algebraic requirements for
f :

Xn Y n

X Y

f
n

αX αY

f

(38)
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Specifically, operad theory could be useful for analyzing a collection of finitary operations obeying
equational axioms.

Moreover, future research could continue to explore n-ary functions from an algebraic perspective.
For example, f : X → Y and g : A → B may relate two binary functions αX : X ×X → A and
αY : Y × Y → B in the following sense:

X ×X Y × Y

A B

f×f

αX αY

g

(39)

which could be used for formulating relation-preserving functions, such as equality (learning from
similarity) and order (learning to rank), or metrics, such as isometry, contraction, and Lipschitz
continuous function.

C.2 BINARY CLASSIFICATION

Now, let us consider a concrete example, binary classification. Let n̄ be a set whose cardinality is
n, 1̄ a singleton (a set of a single element), + the disjoint union of sets (union of labeled/indexed
elements), ∼= the isomorphism between two sets (a bijective function). In binary classification, Y is
simply a set of two elements 2̄ ∼= 1̄ + 1̄.

In other words, we only have a space with the concept of sameness or equality and no other operations.
The learning process is to find a function f : X → 2̄, which decomposes into a pair of functions
f = f1 + f2, where fi : Xi → 1̄(i = 1, 2). This results in a decomposition of X into two sets
X ∼= X1 +X2, i.e., classification of elements in X .

Let us examine the unary operations (endofunctions) on 2̄. There are in total four endofunctions on 2̄,
which forms a monoid. There are only two invertible ones: the identity and the one that swaps two
elements, which constitute a representation of the symmetric group S2 on 2̄.

C.3 REGRESSION

To formulate regression, we usually let Y be the set of real numbers R. However, from an algebraic
perspective, many operations of real numbers are not needed in the learning process. For example,
we rarely consider the product or ratio of two target values. On the other hand, the order, scale, and
zero point are of our central interest. Thus, if there exist a minimal value and a unit interval of targets,
we can isomorphically transform the target and let Y be the set of natural numbers N. If we cannot
determine a minimal value but we are still able to quantize the target values, we can take a step further
and consider the algebra of integers Z and the negation operation.

There are two important operations of natural numbers: 0 : 1 → N as a nullary operation that
identifies the number zero and the successor function S : N → N as a unary operation that maps a
number n to the next number S(n).

Let xn ∈ X be an instance whose label is n. If X also has the structure of natural numbers, then
there exist an element x0 that has the minimal value and a unary operation T : X → X that takes
an instance as input and outputs another instance whose label is one unit higher. The requirement
of f being a homomorphism means that the instance with the minimal value is mapped to 0, i.e.,
f(x0) = 0, and the operation T corresponds to the successor function S in the following way:

xn n

xS(n) S(n)

f

T S

f

(40)

Given the number zero 0 and the successor function S of natural numbers N, we can define a
commutative monoid with 0 as the identity element and a monoid operation + defined recursively:
a+ S(b) := S(a+ b). This is the free monoid (N,+) generated from a generator {1 := S(0)}.
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Then, we can consider the case when the free monoid (N,+) acts on X and N itself. A function
equivariant to free monoid actions is a function f : X → N such that the following diagram
commutes:

(m,xn) (m,n)

xn+m n+m

idN ×f

actX +

f

(41)

Note that when m is the generator 1, this diagram can be reduced to Eq. (40).

The crowd counting example in Appendix A can be illustrated in the following diagram:

(xm, xn) (m,n)

xm+n m+ n

f×f

⊕ +

f

(42)

which means that the count of two parts should be the sum of the counts of each part. This requirement
is formulated as a homomorphism of binary operations ⊕ : X ×X → X and + : N× N → N.

C.4 DISCUSSION

As discussed in Section 3.1, the equivariance alone may not fully characterizes a learning problem.
For example, in binary classification, if we only require the transformation f : X → Y to be
equivariant to actions by the symmetric group S2, then f is only unique up to permutation; Similarly,
in regression, f is only unique up to shift by a natural number or an integer. This may not cause a
problem, but we still need some information to determine the optimal solution, for example, the zero
point (a nullary operation) in regression.

Similarly to Higgins et al. (2018), we focused on the algebraic aspect of disentanglement. It is worth
noting that this formulation is not yet compatible with some definitions of disentanglement based on
statistical independence, probability metric, or causal mechanisms (Higgins et al., 2017; Suter et al.,
2019; Locatello et al., 2019; Shu et al., 2020; Tokui & Sato, 2022). In statistical learning, we usually
want to find a conditional distribution f̄ : X → PY , where PY denotes all probability measures
on Y , instead of merely a deterministic transformation f : X → Y . To extend this framework and
fully capture the statistical aspect of disentanglement, we need to further incorporate the structure of
probability measures, which is left for future work.
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D LITERATURE REVIEW: DISTRIBUTION SHIFT

In this section, we review related work in distribution shift in a broader sense.

The difference between the training and test data in supervised learning is an important problem and
has been studied for years. The distribution shift problem (Quiñonero-Candela et al., 2008) refers to
the general case where the training and test data are drawn from related but different distributions:

ptrain(X,Y ) ̸= ptest(X,Y )

The difference can be measured by some distribution divergence (Ben-David et al., 2010; Albuquerque
et al., 2019). Distribution shift can be subcategorized by the distribution assumptions:

Covariate shift: ptrain(Y | X) = ptest(Y | X) (Sugiyama et al., 2007; Sugiyama & Kawanabe,
2012)

Label shift: ptrain(X | Y ) = ptest(X | Y ), e.g., class imbalance (Johnson & Khoshgoftaar, 2019)
and long-tailed class distribution (Zhang et al., 2021)

Concept shift: ptrain(X) = ptest(X), e.g., noisy labels (Song et al., 2022)

Distribution shift is also closely related to robust optimization (Ben-Tal & Nemirovski, 2002) and
fairness in machine learning (Barocas et al., 2019).

Domain adaptation/generalization (Wang et al., 2021a) is a special distribution shift problem
(Quiñonero-Candela et al., 2008), implying that the tasks are indexed by a categorical (Blanchard
et al., 2011) or continuous (Wang et al., 2020) domain variable. All three types of distribution shift
mentioned above may happen when there are multiple domains. To solve this problem, domain-
invariant representation learning (Ganin et al., 2016; Sun & Saenko, 2016; Arjovsky et al., 2019;
Creager et al., 2021; Shi et al., 2022) has been widely used, which aims to extract features invariant
to domain change. In this work, we showed the limitations of invariance-based methods in the
combination shift problem.

A closely related concept is disentanglement (Bengio et al., 2013), which can be defined via statistical
independence (Suter et al., 2019; Locatello et al., 2019; Shu et al., 2020; Tokui & Sato, 2022) or
product group action (Higgins et al., 2018; Caselles-Dupré et al., 2019; Quessard et al., 2020; Painter
et al., 2020; Wang et al., 2021b; Yang et al., 2022). Our work follows the latter direction. We
provided a refined definition of disentanglement based on algebra in Definition 1, which can be seen
as an extension of Higgins et al. (2018). We also discussed potential directions for further extension
in Appendix A, including algebra homomorphism, statistics, non-endofunctions, and multi-sorted
algebra.

Various methods have been developed based on the concept of disentanglement. On approach is based
on variants of the variational autoencoder (VAE) (Kingma & Welling, 2014; Higgins et al., 2017).
Another promising approach is based on either heuristic (Zhang et al., 2018; Shorten & Khoshgoftaar,
2019; Chen et al., 2020; Zhou et al., 2021) or learned (Ratner et al., 2017; Volpi et al., 2018; Wang
et al., 2021c; Goel et al., 2021) data augmentation. Learning data augmentation is the central interest
of our work.
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Figure 6: A set of combinations of the colored MNIST data with only 15/50 = 30% data for training.
Shaded combinations are used for testing.

E EXPERIMENTS

E.1 MNIST

Data The MNIST1 dataset contains grayscale hand-written digit images of size 28 × 28 in 10
classes. The size of the training set is 60 000 and the size of the test set is 10 000. We only used the
images in the training set and colored them with five colors (red, yellow, green, blue, and purple)
with equal probabilities. The images were resized to 32 × 32 to fit the model. No manual data
augmentation was used.

Data split We selected five types of combinations as the training set:

AXIS: all red digits and zeros of all colors
STEP: three digits for each color, shown in Fig. 6
RAND-0.5/-0.7/-0.9: combinations randomly selected with a fixed ratio 0.5, 0.7, or 0.9. All
domains and classes were ensured to appear at least once.

The remaining combinations were used as the test set.

Model We used U-Net (Ronneberger et al., 2015) for the image-to-image data augmentations with
3 layers of downscale/upscale modules and a sigmoid as the last layer. We used a convolutional
neural network with spectral norm (Miyato et al., 2018) as the discriminator for distribution matching
(Goodfellow et al., 2014) between images (ℓ0, ℓ1, and ℓ2). To reduce the number of models, the
discriminator was conditioned on the factors via additive embedding. We use the same architecture
of the discriminator for the classifier except the dimension of output was set to 10. The learning
objective for the classifier (ℓ3) is the cross-entropy/negative log-likelihood.

Optimization We used an Adam optimizer (Kingma & Ba, 2015) with batch size of 32, learning
rate of 1 × 10−3 for the augmentations and 1 × 10−4 for the discriminator and the classifier. The
model was trained for 10 000 iterations.

Infrastructure The experiments were conducted on an NVIDIA Tesla V100 GPU.

1MNIST (LeCun et al., 1998) http://yann.lecun.com/exdb/mnist/
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Figure 7: A path of transformations of data (left to right, top to bottom) of the 3D Shapes dataset.
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Figure 8: (top row) 10 images from the 3D Shapes dataset (Burgess & Kim, 2018) with red floor;
(middle rows) augmented data (red to orange) and reconstructed data (orange to red) transformed by
a CycleGAN model (Zhu et al., 2017; Goel et al., 2021); (bottom row) augmented data transformed
by EDT, which satisfies the algebraic constraints.
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E.2 3D SHAPES

Data The 3D Shapes2 dataset contains images of three-dimensional objects with 6 factors (floor
hue, wall hue, object hue, scale, shape, and orientation), whose dimensions are 10, 10, 10, 8, 4, and
15. The size of the dataset is 480 000.

Data selection Since the goal is to improve generalization using as few combinations as possible,
we used a set of properly selected combinations of factors. Concretely, we first randomly select an
instance, and then randomly change a factor at a time. An example of a path of transformations is
shown in Fig. 7. We used 10 random paths so there are at most 570 training examples (only around
0.1% of all data).

Model and optimization Because there is only one image for each combination of factors, there
is no need to use distribution matching. We used pixel-wise binary cross-entropy as the learning
objective for ℓ0, ℓ1, and ℓ2. Other hyperparameters are the same as those used above.

E.3 DSPRITES

Data The dSprites3 dataset contains images of 2D shapes generated from 6 ground truth independent
latent factors: color, shape, scale, rotation, x and y positions of a sprite, whose dimensions are 1, 3, 6,
40, 32, and 32. The size of the dataset is 737 280.

Data selection Note that there is no bijection between the factors and the images because of the
intrinsic symmetries of the shapes, e.g., C4 of the square and C2 of the ellipse. To this end, we only
considered a subset of the original dataset where the orientation only ranges from 0◦ to 90◦, which
resulted in a dataset of size 184 320. The split of training and test data was similar to the above. Thus,
we used only 830/184 320 ≈ 0.5% data for learning augmentations.

Model and optimization We used a simple 3-layer MLP (64 × 64 → 256 → 64 → output)
with ReLU activation as the prediction model, cross-entropy (classification) or mean squared error
(regression) as the learning objectives, and an Adam optimizer (Kingma & Ba, 2015) with batch size
of 32 and learning rate of 1× 10−4.

Results Additionally, we show the augmented images in Fig. 9. We can see that these augmentations
are not equally easy to learn: the shape and position augmentations perform relatively well, but
modifying the scale and orientation may cause shape distortion.

23D Shapes (Burgess & Kim, 2018) https://github.com/deepmind/3d-shapesApache License
2.0

3dSprites (Matthey et al., 2017) https://github.com/deepmind/dsprites-dataset Apache
License 2.0
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(a) Shape: square, ellipse, heart

(b) Scale: 6 values linearly spaced in [0.5, 1]

(c) Orientation: 10 values in [0
◦
, 90

◦
]
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(d) Position X: 32 values in [0, 1]

(e) Position Y: 32 values in [0, 1]

Figure 9: Augmented training examples of the dSprites dataset
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Figure 10: Mixup (Zhang et al., 2018) and MixStyle (Zhou et al., 2021) augmentations on the colored
MNIST, 3D Shapes, and dSprites datasets.

E.4 HEURISTIC AUGMENTATION

Fig. 10 shows the images from the colored MNIST, 3D Shapes, and dSprites datasets augmented
by Mixup (Zhang et al., 2018) and MixStyle (Zhou et al., 2021). We can observe that MixStyle
actually modifies the colors of the images in the colored MNIST dataset, which may explain why
its performance is good in Table 1. Thus, our results also support the claim “heuristic augmentation
improves generalization if the augmentation describes an attribute” from the empirical study of Wiles
et al. (2022). When it is hard to design augmentations by hand, learning augmentations from data and
regularizing these augmentations based on the algebraic constraints is a promising way to improve
generalization, which is the main claim of our paper.
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