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Figure 1. We present GaussianStyle, a novel method designed for high-fidelity volumetric avatar reconstruction from a short monocular
video. Our pipeline can be utilized for portrait reenactment, high-fidelity editing, and novel view synthesis.

Abstract

Existing methods like Neural Radiation Fields (NeRF)
and 3D Gaussian Splatting (3DGS) have made significant
strides in facial attribute control such as facial animation
and components editing, yet they struggle with fine-grained
representation and scalability in dynamic head modeling.
To address these limitations, we propose GaussianStyle, a
novel framework that integrates the volumetric strengths of
3DGS with the powerful implicit representation of Style-
GAN. The GaussianStyle preserves structural information,
such as expressions and poses, using Gaussian points, while
projecting the implicit volumetric representation into Style-
GAN to capture high-frequency details and mitigate the
over-smoothing commonly observed in neural texture ren-
dering. Experimental outcomes indicate that our method
achieves state-of-the-art performance in reenactment, novel
view synthesis, and animation.

1. Introduction
Learning head avatars from a given monocular video has
become popular in recent years. It aims to achieve diver-
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sity control in terms of facial expression and head pose.
Many works incorporate NeRF [7, 9, 36, 56, 58] and
3DGS [44, 48] into head avatar training via tracked para-
metric facial template. Generally, those methods are main-
tain a relatively canonical feature space by the implicit
topology (for NeRF) or explicit topology (for 3DGS), and
enable the queried voxel or Gaussian points to learn the neu-
ral texture features from the movement of head in video.

Though this strategy improve the movement stability, it
overlooks a critical challenge inherent within dynamic 3D
head modeling: the assumption that a fixed 3D coordinate
in the canonical space will always correspond to the same
facial region throughout the entire sequence. In reality, as
the head motion and dynamic expressions, the relative posi-
tions of facial features will shift significantly. For example,
a point that initially corresponds to the corner of the mouth
in a canonical expression will shift toward the cheek when
smiles or lip motions. This movement causes the fixed coor-
dinate canonical template to misalign with the actual facial
regions it is supposed to observe.

This limitation manifests as over-smoothing in dynamic
head and facial movement rendering scenarios. Since the
fixed 3D coordinates do not accurately track the evolving
geometry of the face, the model tends to produce averaged
or blurred features rather than sharp and precise details.



This over-smoothing effect is particularly pronounced in ar-
eas where there is a high degree of motion or expression
variation, resulting in a loss of the fine-grained details nec-
essary for realistic and expressive head avatars. This prob-
lem is further exacerbated during the cross-reenactment sce-
narios when the motion is conditioned on novel expression,
pose, or camera perspectives.

Drawing inspiration from the deferred neural render-
ing [42] (DNR), which first samples the noised UV space
features and then leverages the neural network to translate
the texture space to pixel space, we believe this coarse-to-
fine strategy has the potential to address the over-smoothing
issue. However, this UV-projected texture (or called neural
texture) is difficult to extend to 3D space, leading to limita-
tions in novel-view synthesis and flexible control.

To address these challenges, we propose GaussianStyle,
a novel framework that integrates dynamic neural rendering
with 3DGS. By leveraging the powerful implicit representa-
tion of StyleGAN, GaussianStyle improves the fine-grained
texture quality based on the volumetric representation pro-
vided by 3DGS. Specifically, we first propose a more robust
dynamic Gaussian representation. Inspired by the Triplane-
Gaussian [35], we construct a temporal-aware Tri-plane as
an implicit and low-dimensional Gaussian representation.
This design allows for more effective 4D Gaussian mod-
eling by leveraging cross-attention to learn the correspon-
dence between Gaussian points and motion-control param-
eters. To extend StyleGAN on the 3DGS features, we in-
troduce a multi-view PTI initialization that minimizes dis-
ruptions to pre-trained StyleGAN parameters while person-
alizing the rendering for the target avatar. Additionally, we
propose an optimal method for projecting Gaussian features
into the StyleGAN architecture, informed by a comprehen-
sive analysis of its structure.

We validate the efficacy of our framework through
both quantitative and qualitative experiments on self/cross-
reenactment. Our contributions are summarized as follows:

• We present GaussianStyle, a framework that integrates
3DGS with StyleGAN representations. This integration
enhances the controllability of head pose, facial expres-
sion, and fine-grained facial details, enabling high-quality
volumetric avatar generation from monocular videos.

• We refine the hybrid triplane-Gaussian representation by
introducing a temporal-aware design and an attention-
based deformation module. This improves the deforma-
bility of Gaussian points, leading to more robust and ac-
curate 3D face rendering.

• We design a pipeline that effectively maps dynamic 3D
representations to the latent space of StyleGAN for volu-
metric rendering. This approach requires training only a
small number of parameters, achieving an flexibility ed-
itable neural representation with inference speeds exceed-
ing 30 FPS while maintaining high fidelity.

2. Related Work

Video Portrait Animation. Mainstream approaches for fa-
cial reconstruction and animation primarily relied on 3D
Morphable Models(3DMM) [5] or relying on implicit neu-
ral representations [10, 34, 37, 38, 56]. IMAvatar [56]
and INSTA [58] shifted towards using implicit geometry
to overcome the limitations from mesh templates. The
point-cloud based models combine explicit point clouds
with neural networks’ implicit representations to enhance
image quality [57]. Recent works [27, 44] have shifted
the direction towards 3DGS for head modeling, aiming to
leverage the benefits of rapid training and rendering while
still achieving competitive levels of photorealism. Gaus-
sianAvatars [27] reconstructed head avatars through rig-
ging 3D Gaussians on FLAME [19] template. MonoGaus-
sianAvatar [4] learned explicit head avatars by deform-
ing 3D Gaussians from canonical space with Linear Blend
Skinning (LBS) and simultaneously. GaussianHead [44]
adopted a motion deformation field to adapt to facial move-
ments while preserving head geometry. FlashAvatar [47]
initializes 3D Gaussians based on the UV coordinates and
learns the deformation offset conditioned on tracking pa-
rameters. However, none of these methods considers the dy-
namic coordinate change of Gaussian points and thus can-
not present a robust performance towards novel poses and
camera views.
StyleGAN-based Portrait Editing and Rendering Por-
trait animation and rendering have drawn considerable
views recently [32, 35, 38, 41, 54]. With diverse style dis-
tribution, StyleGAN significantly promotes the capabilities
of facial editing [8, 29, 31, 49]. DeformToon3D [53] fur-
ther extends geometry-aware 3D editing. Portrait rendering
techniques also benefited from StyleGAN. StyleHEAT [52]
optimizes latent codes through inversion and leverages au-
dio features for motion, further refined by OTAvatar [22]
that applies EG3D to perform geometry-aware rendering.
Next3D [40] and IDE-3D [39] disentangle semantics and
geometry for 3D-aware controlled avatar rendering. How-
ever, these works mainly focus on aligned faces and are not
applicable to avatars with torso.

3. Method

As depicted in Fig. 2, our framework combines Gaussian
with StyleGAN [14] for Volume Rendering. StyleGAN’s
high-quality generation capability and style control profi-
ciency make it suitable for our objectives. We first present
a temporal-aware hybrid triplane-gaussian representation
with attention-based deformation to achieve robust pose and
expression control. (Sec. 3.1) To counteract the oversmooth
problems, we explored an effective strategy of mapping
Gaussian representation into StyleGAN’s latent (Sec. 3.2).
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Figure 2. The proposed Tri-Stage training strategy includes StyleGAN-based Volumetric Rendering. In Stage 1, we construct static coarse
canonical Gaussians. In Stage 2, Gaussians are queried from a temporal-aware triplane for attention-based deformation. In Stage 3, we
initialize the StyleGAN through multi-view PTI initialization and project dynamic Gaussian prior into StyleGAN for volumetric rendering.

3.1. Deformable Triplane-Gaussian

Temporal-ware Hybrid Representation Recent stud-
ies [44, 59] have demonstrated that hybrid triplane-
Gaussian representations are effective in capturing contin-
uous, structural, and low-dimensional features for 3D mod-
eling. We extend this strategy to develop a deformable hy-
brid representation for 4D head modeling. Our approach
employs a convolutional neural network generator, inspired
by the StyleGAN architecture [16], to synthesize features
within a triplane representation. To incorporate temporal
dynamics, we introduce a frame-specific latent code, de-
noted as ztmp, into the generator for each input frame. For
each 3D Gaussian centered at µ, the coordinates are nor-
malized, and corresponding features are obtained by inter-
polating the position on a regularly spaced 2D grid for each
plane. These features are concatenated

⋃
across dimen-

sions to produce a final feature vector F (µ) or each canon-
ical Gaussian position µc:

F (µ) =
⋃

interp
(
plane,P(µ)

)
(1)

where P(µ) denotes a projection of µ onto the plane and
‘interp’ represents bilinear interpolation on the 2D grid.
Attention-based Deformation Traditional deformable
Gaussian models [46, 47, 51] typically concatenate condi-
tioning parameters with Gaussian points to predict offsets
for dynamic rendering. However, this approach overlooks
a critical challenge inherent in dynamic 3D head modeling:
the assumption that a fixed 3D coordinate in the canoni-
cal space will always correspond to the same facial region
throughout the entire sequence.

To address this limitation and improve the correspon-
dence between Gaussian points and conditioning parame-
ters (such as facial expressions and head poses), we intro-
duce a cross-attention mechanism. This mechanism fuses
the spatial feature embeddings F (µc) of the canonical 3D
Gaussians with the conditioning parameters, capturing how
input expression and other factors influence the movement
of the 3D Gaussians. The cross-attention mechanism layer
CA(·) and MLP layer FFN(·), each connected via skip con-
nections. The process is defined as follows:

F (µ)′ = CA(F (µ), cn) + F (µ), (2)

Z(µ) = FFN(F (µ)′) + F (µ)′, (3)

where the cross-attention is computed between the triplane
feature F (µ) and the conditional feature cn of the n-th im-
age frame. The output feature Z(µ) effectively integrates
the conditioning information with the detailed facial fea-
tures captured by each 3D Gaussian.

Finally, based on the condition-aware feature represen-
tation given the cross-attention, we leverage a deformation
MLP Deform(·) for predicting the spatial dynamic offsets
of Gaussians:

∆c,∆µ,∆r,∆s = Deform(Z(µ)) (4)

3.2. Extended StyleGAN on 3D Gaussian

Pre-trained on the aligned FFHQ dataset, StyleGAN strug-
gles with unaligned avatars commonly found in portrait
videos. We defer a detailed analysis to the Appendix. Ad-
ditionally, the lack of geometric awareness prevents Style-



Block 1-2 Block 1-3 Block 1-5 Block 1-9Block 1-4R1 R2 R3 R4 R3 + R4
Affine

Affine

Affine

Upsample
Block #N

ModConv

ModConv

ModConv

……

w

Affine Layer Conv Layer

tRGB Layer

1

1

1

2

2

2

3

4

Figure 3. Left: Four regions within a single StyleGAN Block for features manipulation. Mid: Integration to R3 performs the best. R3+R4
does not bring improvement. Right: Blocks 1 to 5 are effective for volumetric projection. The upper refers to the block pruning results.

GAN from effectively handling novel view and pose re-
construction, which is essential for video avatar rendering.
To address this limitation, we present a novel methodology
that efficiently retains StyleGAN’s pre-trained generaliza-
tion abilities while encoding animatable 3D Gaussian rep-
resentations into its latent space. This extension enhances
its capability to generate and edit drivable video portraits.
Multi-view PTI initialization First, we employ PTI inver-
sion [29] from multiple images from the training dataset
with extreme head poses to embed the target portrait within
StyleGAN’s latent distribution by subtly modifying the
original model parameters. We first fix StyleGAN’s param-
eters and optimize style code w to minimize the discrepancy
between the generated and target images, indicating that w
closely aligns with our target in the latent space. Subse-
quently, we fix w and fine-tune StyleGAN to enhance the
similarity of the generated image to the target at this w.
Volumetric Projection to StyleGAN Next, we conduct a
comprehensive analysis of StyleGAN’s structure. Directly
leveraging StyleGAN for unaligned 3D presentations is a
non-trivial task. To resolve this issue, we investigate Style-
GAN’s architecture for the integration of dynamic volu-
metric representations from the Gaussians. Inspired by
Pixel2Style2Pixel [28], we designed a Convolutional En-
coder to encode Gaussian priors. However, directly formu-
lating the 3D feature projection through manipulating style
code w presents unwanted results. To explore the effec-
tive strategy of volumetric feature projection to StyleGAN,
we further investigate StyleGAN’s architecture. Fig.3 Left
presents the four regions for 3D projection within a single
StyleGAN Block. R1 refers to style code w manipulation.
We in addition propose R2: Altering the style latent post
Affine-Layer mapping. R3: Integrate the prior volumetric
feature with the Conv-Layer feature. R4: Integrate the prior
volumetric feature with the tRGB-Layer feature. We defer
the details of the model structure in the Appendix.

Volumetric Feature Integration We train StyleGAN with
modification within four regions over 10 epochs. Our analy-
sis, illustrated in Fig. 3 Middle, reveals that R1, R2, and R4
yield imprecise facial details, albeit preserving the general
facial positioning within images. This suggests that modi-
fications at the latent code, Affine-Layer levels, or interme-
diate tRGBs fail to impart adequate texture detail to Style-
GAN. Conversely, we discover that feature integration to
Conv-Layers suffices for embedding volumetric Gaussian
priors into StyleGAN. We in addition explored R3 + R4, re-
sulting in no performance difference. Consequently, we opt
for exclusively modifying only the Conv-Layers.
Effective StyleGAN Blocks Our subsequent investigation
focuses on determining the effective blocks for the modifi-
cation. We adopt two strategies for the investigation. (1)
Integrate projection to a single block (2) Integrate projec-
tions across all StyleGAN blocks during training, and prune
projections during inference. Shown in Fig. 3 Right, our
study for (1) reveals that Blocks 1 to 5 (4×4 to 64×64)
are effective with Block 5 significantly better than others.
In addition, (2) presents that during pruning, Blocks 1 to 4
are instrumental for geometry while Block 5 refines texture.
The others can be pruned with no detrimental impact. We
thus choose the first five blocks for the volumetric feature
projection.

3.3. Training strategy of Volumetric Rendering

Canonical Gaussian We first reconstruct the mean shape
of the talking face, by optimizing the positions of 3D Gaus-
sians and the triplane generator. We initialize the 3D Gaus-
sian center positions by sampling the surface of the mesh
from video tracking. This preserves the shape topology of
the face and landmarks of the target avatar. Unlike con-
ventional Gaussian rendering that only considers RGB, we
render a 32-channel volumetric feature for better 3D rep-
resentation. We employ both L1 loss and LPIPS loss for



aligning synthesized images with ground truth. We focus
on the first three channels I

(1:3)
gs , comparing them against

RGB ground-truth images Igt. Other channels will be de-
ferred to StyleGAN-based rendering.

Lrgb = ||I(1:3)gs − Igt||1 (5)

Deformation We optimize the triplane generator, cross-
attention, and deformer for deformation. In addition to
the previous L1 loss, we additionally focus on the eye and
mouth regions for learning the expression.

Llmk = ||Rn(Igs)−Rn(Igt)||1 (6)

Rn is either the eyes or mouth region extracted using RoI-
align on the bounding boxes calculated using landmarks.
StyleGAN-based Volumetric Synthesis The final stage op-
timizes the triplane generator, the deformer, the encoder,
and the projection layers while freezing the whole Style-
GAN. We employ the LPIPS loss [13] between synthesized
and ground-truth images.

Lperp = LPIPS(Igan, Igt). (7)

To further enhance image fidelity, we introduce a condi-
tional discriminator, using UV maps as a condition to com-
pare generated images with ground truth. This method, em-
ploying conditional adversarial loss [24]:

LcGAN (G,D) =EIgt,uv [logD (Igt, uv)]

+ Euv [log (1−D (uv, Igan)]
(8)

where D aims to distinguish between {(Igt, uv)} and
{(Ivr, uv)}, and (·, ·) denotes concatenation.

4. Experiment
Implementation Details We implement our model with
PyTorch and a single A6000 GPU. We use StyleGAN2
distill-version, MobileStyleGAN 1024x1024, pre-trained
on FFHQ as the generator for all studies. For Coarse 3D
Gaussian and Deformation jointly, We train the model for
10,000 iterations. For the StyleGAN-based synthesis stage,
we train the triplane generator, the deformer, the encoder,
and the projection layers while freezing the StyleGAN with
a batch size of 4 for 50,000 iterations. The Adam opti-
mizer [18] is adopted for all learnable parameters with a
learning rate of 1e−4. We present the details of the encoder
and projection layer in the Appendix.

Dataset Our method takes a monocular video as input and
leverages expression parameters from tracking to achieve
video portrait rendering and editing. We primarily con-
duct experiments on data from INSTA [25], NeRFFace [6],

Methods
F-LMD↓ SD↓ PSNR↑ LPIPS↓ MOS1 MOS2 MOS3

Quantitative Results User Study
Dataset A Self-Reenactment

FlashAvatar 2.96 9.43 27.97 29.42 2.26 1.97 2.05
PointAvatar 2.55 8.42 28.39 23.64 3.67 4.03 3.96
SplatAvatar 2.88 4.54 32.53 25.47 3.88 3.76 4.21

Ours 2.42 3.38 34.43 13.14 4.47 4.27 4.73
Dataset B Cross-Reenactment

FlashAvatar 3.82 10.67 25.43 25.35 1.51 2.12 1.13
PointAvatar 2.64 8.24 26.19 21.42 3.31 2.89 3.80
SplatAvatar 3.11 5.23 28.32 19.46 3.45 2.76 3.11

Ours 2.31 2.84 30.44 11.82 4.21 3.83 3.89

Table 1. (1) Left: Quantitative results of FlashAvatar [47], PointA-
vatar [57], SplatAvatar [30]. We bold the best. The values of SD
and LPIPS are multiplied by 10−1 and 102 respectively. (2) Right:
The MOS score for human evaluation. Each one comes from a 5-
point Likert scale (from 1 to 5 are correspond to poor to excellent).
The closer to 5 the better, we bold the best.

NerfBlendShape [9] and Tri2-Plane [37]. Each data sam-
ple captures a diverse range of facial motions in an aver-
age of 5-minute duration. All videos are resized to 10242

for our model. We divide the training set and testing set
from each video to 80% and 20% of all frames, respectively.
We conduct experiments comparing self/cross-reenactment
with the current drivable portrait rendering techniques for
avatar reconstruction and control.

Baseline Methods We benchmark GaussianStyle against
the following methods for monocular video avatar ren-
dering: (1) FlashAvatar [47], (2) PointAvatar [57], (3)
SplatAvatar [30]. We do not include GaussianAvatars [27]
and Gaussian-Head-Avatar [48], which reconstruct hu-
man heads from multi-views, unlike single-view monocu-
lar videos. We defer the comparison with NeRF-based and
StyleGAN-based rendering methods in the Appendix.

4.1. Quantitative Evaluation

Evaluation Metrics We evaluate the effectiveness of our
method on three aspects: (1) F-LMD [3]: The differences
in head pose and facial expression landmark positions cal-
culated via MediaPipe [21]. (2) The Sharpness Difference
(SD) [23]: It is used to evaluate the sharpness difference
between the source and generated images at the pixel level.
(3) Image Spatial Quality: we adopt the PSNR, the Learned
Perceptual Image Patch Similarity (LPIPS) [55], and SSIM
for image generation quality evaluation.
Evaluation Results Table 1 summarizes the quantitative re-
sults, where our method consistently outperforms the base-
lines in terms of image quality (PSNR, LPIPS), sharpness
(SD), and motion accuracy (F-LMD). The significant im-
provement in LPIPS and SD highlights our method’s ability
to enhance detail intensity and perceptual similarity.
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Figure 4. Our model outperforms other monocular avatar rendering methods in detail such as eyes and teeth.

4.2. Qualitative Results

Fig.4 and Fig.5 provide qualitative comparisons for self-
reenactment and cross-reenactment scenarios, respectively.
The highlighted zoomed-in regions of each generated im-
age demonstrate the distinct strengths and weaknesses of
each method. FlashAvatar produces noisy point clouds and
blurred outputs due to inadequate regularization of implicit
pose and expression deformations. SplatAvatar excels in
shape reconstruction but struggles with appearance recov-
ery, particularly in challenging areas like the torso, mouth,
and eyes during cross-reenactment. Point-Avatar manages
to recover specific features such as glasses but delivers
overly smooth facial representations, failing to capture sub-

tle expressions and clear teeth despite significant computa-
tional demands. In cross-reenactment, the baseline methods
generally exhibit blurring and noise due to out-of-domain
expressions and head poses. In contrast, our approach,
leveraging cross-attention for deformation, maintains a ro-
bust representation of 3D points conditioned on tracking pa-
rameters. This enables precise recovery of high-frequency
details and accurate control of head pose and facial expres-
sions, outperforming all comparative baselines across both
self-reenactment and cross-reenactment scenarios.

User Study We conducted a user study to evaluate the
visual quality of our method, following the protocols es-
tablished in Deep Video Portrait [17]. The study in-
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Figure 5. Other methods are not robust to novel views, expressions, or head poses and thus exhibit noisy point clouds and blurred results.

random one image four extreme poses

sideview GT

w/o Discri

Full-tunew/o ADA 
aug

ours

w/o Triplane w/o cross-atten

w/o 𝒛𝒕𝒎𝒑 full

Multi-view inversion with extreme poses Gaussian Features for rendering StyleGAN modules for training

Figure 6. Ablations for multi-view PTI inversion, gaussian-feature contribution, and StyleGAN training.

cluded 40 videos—20 for self-reenactment and 20 for cross-
reenactment. We recruited 20 participants via Amazon Web
Services (AWS) to assess the quality based on several cri-
teria, using the Mean Opinion Scores (MOS) rating sys-
tem. Participants rated the videos on: (1) MOS1: “How
is the image quality in the video?”, (2) MOS2: “How re-
alistic does the video appear?”, and (3) MOS3: “Are the
facial motions synchronized between the two videos?”. The
videos were presented in random order to capture partici-
pants’ initial impressions. As shown in the right section of

Table 1, our method outperformed others across all criteria,
demonstrating superior video quality, realism, and motion
synchronization.

4.3. Ablation Studies
Multi-view PTI Inversion We investigate strategies of PTI
inversion for StyleGAN initialization: (1) a single random
image, (2) multiple random images, and (3) multiple images
depicting extreme poses. In Fig. 6, PTI with a single image
produces blurred results for side views. However, initializ-
ing with four images capturing extreme poses along the x
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Portrait Editing

Figure 7. Left: We apply -30 to +30 degree rotation to the camera. The visualized results are consistent over multi-views. Right: 200
images are sampled for fine-tuning. IN2N is applied for text-driven editing guidance and takes about 10 minutes for each subject.

View Init. LPIPS↓ PSNR↑ SSIM↑

1 random 18.51 32.47 0.842
4 random 16.42 33.36 0.839
2 extreme 15.63 34.02 0.847
8 extreme 14.57 34.21 0.873

Ours 13.14 34.43 0.886

(a) The effect of multi-view PTI Inversion

Gauss Feats. PSNR↑ SSIM↑ Train↓

w/o triplane 30.32 0.818 15 min
w/o cross-atten 32.38 0.834 15 min

w/o ztmp 33.15 0.857 15 min
w/o init 28.14 0.764 25 min

Ours 34.43 0.886 15 min

(b) The effect of different types of features.

StyleGAN feats. PSNR↑ Train↓ In-Speed↑

StyleGAN2 35.53 3.5h 18fps
w/o ADA-aug 30.62 2.5h 30fps

w/o Discri 30.44 2h 30fps
full-tune 34.32 5.5h 30fps

MobileStyleGAN 34.43 2.5h 30fps

(c) The effect of StyleGAN training.

Table 2. Ablations of our method. We vary views for initialization, feature types, and StyleGAN training to investigate their effectiveness.

and y axes effectively addresses this issue, shown in Tab 2a.
Inversion with additional images lowers the performance.
Rendering Features To assess the contribution of each
component, we design the following variations (1) w/o tri-
plane: Pure Gaussian representation without triplane. (2)
w/o cross-atten: No cross-attention but only MLP for de-
formation used in DeformableGaussian [51] and FlashA-
vatar [47] for Gaussian offsets. (3) w/o triplane genera-
tor: triplane not generated by a Stylegan-like generator but
learned as in GaussianHead [44] and 4DGaussian [46] (4)
w/o init: No Gaussian initialization based on mesh but op-
timized from scratch. As detailed in Tab. 2b and Fig. 6, our
design of Deformable Hybrid Triplane-Gaussian represen-
tation significantly improves the rendering quality.
StyleGAN Features To assess the contribution of each
component, we design the following variations (1) Style-
GAN: all other modules remain the same except replac-
ing MobileStyleGAN with StyleGAN2 (2) w/o ADA-aug:
no data augmentation used in StyleGAN-ADA [15] applied
during training (3) w/o Discri: No distriminator used dur-
ing training. (4) full-tune: No PTI inversion and fully fine-
tuned StyleGAN without freezing. As detailed in Tab. 2b
and Fig. 6, our strategy that preserves StyleGAN’s latent
distribution helps reduce the training time while improving
quality. In addition, the data augmentation significantly im-
proves the performance in the monocular video setting. Mo-
bileStyleGAN achieves a compatible performance but much
faster than StyleGAN2. We thus take MobileStyleGAN as
the final generator.

4.4. Applications: 3D Editing and Novel View
GaussainStyle is a general representation of volumetric
head avatars and can be easily extended for novel view syn-
thesis and portrait editing.
Novel View Synthesis We fix the control parameters and
apply -30 to +30 degree rotation to the camera. Fig. 7 shows
our model is robust in novel view synthesis.
Portrait Editing Following TextToon [35], we use Instruc-
tionPixel2Pixel [1] for guidance. After training on realistic
faces, we randomly select 200 images from the dataset for
iterative dataset update. We freeze the Gaussian, deforma-
tion modules, and StyleGAN, with only the projection layer
trainable. All other settings remain the same as in IN2N.
The typical editing time is around 10 minutes per subject
on a single GPU.

5. Conclusion
In this work, we present GaussianStyle, a novel frame-
work that combines 3D Gaussian splatting with Style-
GAN for high-fidelity volumetric avatar generation. Our
temporal-aware tri-plane and attention-based deformation
module refine the Gaussian representation for robust dy-
namic face rendering. By mapping dynamic 3D repre-
sentations to StyleGAN’s latent space, we retain the pre-
trained model’s generalization abilities while enabling ed-
itable neural representations. We achieve an inference
speed of over 30 FPS while maintaining high fidelity
across novel-view and self/cross-reenact synthesis scenar-
ios
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Nießner. Dynamic neural radiance fields for monocular 4d
facial avatar reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8649–8658, 2021. 5

[7] Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias
Nießner. Dynamic neural radiance fields for monocular 4d
facial avatar reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8649–8658, 2021. 1

[8] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022. 2, 4

[9] Xuan Gao, Chenglai Zhong, Jun Xiang, Yang Hong,
Yudong Guo, and Juyong Zhang. Reconstructing person-
alized semantic facial nerf models from monocular video.
ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia), 41(6), 2022. 1, 5

[10] Xuan Gao, Chenglai Zhong, Jun Xiang, Yang Hong, Yudong
Guo, and Juyong Zhang. Reconstructing personalized se-
mantic facial nerf models from monocular video. ACM
Transactions on Graphics (TOG), 41(6):1–12, 2022. 2

[11] Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel.
Tokenflow: Consistent diffusion features for consistent video
editing. arXiv preprint arxiv:2307.10373, 2023. 1, 4

[12] Ayaan Haque, Matthew Tancik, Alexei A Efros, Alek-
sander Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf:
Editing 3d scenes with instructions. arXiv preprint
arXiv:2303.12789, 2023. 1, 5

[13] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Percep-
tual losses for real-time style transfer and super-resolution.

In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14, pages 694–711. Springer, 2016. 5

[14] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 2

[15] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In Proc. NeurIPS, 2020.
8

[16] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020. 3

[17] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng
Xu, Justus Thies, Matthias Nießner, Patrick Pérez, Christian
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GaussianStyle: Gaussian Head Avatar via StyleGAN

Supplementary Material

5.1. Model Structure

Transformer for Gaussian Deformation We use 2-layers
of transformer blocks, each with a cross-attention layer and
a Feed-Forward layer. Unlike the vanilla transformer [43],
we use gated MLP [20] for the Feed-Forward layer.
Encoder The encoder is purely convolutional. It accepts
both our modified 32-dimensional Gaussian representa-
tions. We obtain the projection layer features from the en-
coder and the initial input to StyleGAN, as seen in Fig. 8
Volumetric Projection Volumetric Projections utilize only
two convolutions to fuse the 3D feature with the StyleGAN
intermediate features. Please see Fig. 8 for more informa-
tion.
Triplane Generator We use a lightweight StyleGAN to
generate the Triplane for Gaussian representation. The
structure is similar to EG3D [2]. The latent dimension is
64 as the embedding for the frame index. During the self-
reenactment or cross-reenactment, we fixed the frame index
to 0 for inference.

5.2. Training details

Training Strategy We applied StyleGAN-ADA’s geomet-
ric transformation during the training to improve the robust-
ness. Fig. 9 shows the effectiveness of geometric transfor-
mation applied to UV maps during training, which allows
the model to learn the relative position between the facial
and the torso regions based on the UV map. This strategy
significantly improves the self/cross-reenactment during ex-
treme poses. For unseen poses, without geometric trans-
formation, the generated portrait always contains a wrong
facial shape.
Training/Inference Time To present a fair comparison be-
tween our methods and others, we present the training time
and inference time in Tab. 3 for volumetric rendering and
editing separately.

5.3. Editing details

We applied Instruct-Pixel2Pixel [1] (IP2P) as the guidance
tool for editing following TextToon [35]. We discover that
the raw IP2P model does not present consistency for differ-
ent views. To address this problem, we first take the novel
view synthesis based on our model and feed these data with
sampled 200 images to IP2P for finetuning. The finetuning
process significantly improves the editing quality. During
editing, we freeze all other parameters except the projection
layers to the StyleGAN module.

Method Training Time Inference Time
Reconstruction

IM-Avatar [56] 48h 0.1 fps
PointAvatar [56] 4h 15fps

INSTA [58] 2h 20fps
DVP [17] 12h 25fps

StyleAvatar [45] 6h 25fps
FlashAvatar [47] 0.5h 300 fps

SplattingAvatar [30] 0.5h 80fps
Next3D [40] 10h 20fps

StyleHeat [52] 8h 30fps
OTAvatar [22] 8h 20fps

Ours 2.5h 35fps
Editing

TokenFlow [11] 30 min 0.5 fps
RAV [50] 30 min 0.8 fps

CoDeF [26] 30 min 40fps
IN2N[12] + GaussianStyle 10 min 35 fps

Table 3. Training/Inference Time Comparison for Avatar Render-
ing Methods and editing methods

6. Analysis of StyleGAN
We evaluate StyleGAN’s ability to generate animatable
video portraits, which involves capturing varying expres-
sions, continuous facial motions, and cohesive upper body
movement during head rotations. Unlike the aligned im-
ages in the pre-trained FFHQ dataset, animatable portraits
are often unaligned and captured in diverse settings, with a
variety of head positions and orientations.

To assess StyleGAN’s effectiveness, we applied the
GAN inversion method on both aligned and unaligned por-
traits, comparing the rendering results. This was crucial
to determine if StyleGAN could accurately represent a dy-
namic portrait video. Our evaluation focused on frames
showing extreme left and right head poses from videos
as inputs for GAN inversion. This approach tested Style-
GAN’s limits in rendering realistic, continuous motion and
its ability to capture the nuanced changes in facial orien-
tation and expression. The insights gained from this as-
sessment were instrumental in shaping the GaussianStyle
framework, enhancing our understanding of the capabilities
and limitations of StyleGAN in animatable portrait genera-
tion.
Inability for Unaligned portrait generation In Figure 10,
the linear interpolation of latent codes for extreme poses
is presented in two rows: the first for aligned and the sec-
ond for unaligned inversion. With aligned inversion, inter-
polating between two style codes yields images that main-
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Figure 8. Both encoder and projections are purely convolutional. We obtain intermediate features from the encoder providing StyleGAN
with dynamic Gaussian representations

Figure 9. Geometric transformation helps improve the perfor-
mance of unseen novel views for self/cross-reenactment settings.

tain texture quality and exhibit consistent, smooth transi-
tions in facial expressions and poses. This demonstrates
StyleGAN’s capability in handling aligned facial data. In
contrast, the unaligned inversion results reveal StyleGAN’s
limitations. When processing unaligned faces, particularly
in the animatable portrait domain, the model struggles, lead-
ing to blurred images. This blurring highlights its difficulty
in accurately reconstructing the complex, varied aspects of
unaligned faces, including nuanced head movements and
expressions. This comparison underlines a key finding:
while pre-trained StyleGAN is effective for aligned facial

Left Pose Right PoseLinear Interpola-on

Figure 10. Interpolation of GAN inversion: Latent code inter-
polation between extreme pose parameters along the x-axis for
aligned (upper) and unaligned (lower) video portraits.

portraits, it falls short in encoding complete portraits with
upper body information, unable to capture the full range of
portrait dynamics.
StyleGAN’s latent Space In addition, we discover that
StyleGAN can obtain a consistent neural representation of
the target avatar. From the first line in Figure 10, we ob-
serve that even though only two images from extreme poses
in the left and right directions are used for GAN inversion,
StyleGAN is still capable of rendering relatively good in-
termediate images when interpolating the latent codes. This
suggests that after GAN Inversion, the latent space encoded
in StyleGAN remains continuous, motion-aware, and can
be effectively sampled. Therefore, we can sample a small
number of images from the video to perform GAN inver-
sion, thereby obtaining the video’s neural representation
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Figure 11. Upper: Comparison with monocular video portrait rendering methods. Lower: Comparison with StyleGAN-based reenactment
methods. The comparison suggests that existing methods are unable to deal with unaligned faces and extreme poses.

model.

7. Additional Experiments
In this section, we mainly present the comparison with
the NeRF-based or 2D or StyleGAN based models for
self/cross-reenactment.

7.1. Self/cross-reenactment

We further compared our method with the existing monoc-
ular video portrait rendering techniques, including Deep
Video Portrait (DVP) [17], INSTA [58], IM-Avatar [56]
and StyleGAN-based reenactment models, including Style-

HEAT [52], OTAvatar [22] and StyleAvatar [45]. Specif-
ically, OTAvatar and StyleHEAT are designed for aligned
one-shot reenactment. To adapt them to unaligned situa-
tions and for a fair comparison, we finetuned their models
on our video for 10 epochs. It takes about 1 day on a single
A6000 to finish fine-tuning.

Fig. 11 shows the comparison between our methods with
the existing NeRF-based and StyleGAN-based reenactment
methods. INSTA has bad predictions for the non-facial ar-
eas. IM-Avatar presents over-smoothing results. DVP uti-
lizs PNCC to Image translation, but struggles with the fine-
grained details. StyleHeat cannot deal with unaligned faces



Source Ours Next3D

Figure 12. Next3D, after fine-tuning on target person video, is
deficient in domain transfer, as visualized by the artifact for mouth
regions.
and thus generates explicit artifacts during both self/cross-
reenactment. OTAvatar utilized a Triplane [2] for geometry-
aware 3D modeling of the target portrait. It cannot disentan-
gle the movement of heads from the torso area. StyleAvatar
stands out in cross-reenactment, while not as robust as our
methods in dealing with extreme poses.

7.2. Editing

For editing comparison, we further include Next3D [40].
Since it cannot deal with unaligned data, we crop the images
from videos. We fine-tuned Next3D on the cropped aligned
videos for a fair comparison.

In Fig.12, we apply StyleGAN-NADA[8] to Next3D fol-
lowing fine-tuning on the aligned target portrait videos. Un-
like Diffusion, the use of CLIP in Next3D does not ensure
consistent intensity for editing. Furthermore, in contrast to
our approach, which preserves StyleGAN’s domain gener-
alization capability by training only the projection layers
while keeping StyleGAN frozen, our fine-tuning on Next3D
diminishes its ability to render normal mouth areas, as evi-
denced by explicit artifacts in these regions.

7.3. Novel View Synthesis

We present the novel view results for 3D geometry evalua-
tions. In case our method is trained on a short monocular
portrait video without multi-view inputs, we range the re-
constructed results under the viewpoints ranging from -30◦

to +30◦, as shown in Fig. 13, the novel views maintain good
visual quality within the range.

8. Baseline Details
8.1. Self/cross-reenactment

To demonstrate the fairness of our comparison with the
baselines, we provide specific details on the various base-

Reconstruction

Turn him into WhiteWalker

-30° -15° 30°+15°0°

Turn him into pencil sketch

Reconstruction

Figure 13. Our reconstruction and editing is consistent for novel
views under various conditions.

lines and indicate how they differ from the original reports.
Since part of the methods do not release source code, we
reproduce them by ourselves with fairness.
FlashAvatar We adopt tracking parameters given by the
authors and implement the training following the official
GitHub repo.
PointAvatar and IM-Avatar The Point-Avatar [57] and
IM-Avatar [56] shares the same data preprocessing. We fol-
low the official report to perform the reconstruction.
SplattingAvatar This work adopts the same data prepro-
cessing as in the previous two, we follow the official GitHub
repo to reimplement the code.
INSTA We follow the provided official pipeline in the re-
port.
StyleAvatar We reprocess our data via the FaceVerse in
StyleAvatar and retrain it from the code in the official repo.

8.2. Portrait Editing

We compared our method with both guidance-based and
video-based editing methods. Given the limitations of
CoDEF and TokenFlow in handling long video sequences
and the increasing GPU memory requirements with video
length, respectively, we standardized our evaluation on 3-
second video segments, roughly comprising 75 frames for a
balanced comparison.
TokenFlow It first did inversion and then editing. We fol-
lowed the official code provided by TokenFlow [11] for data
preprocessing and editing.
Rerender-A-Video We apply the same prompt as that used



in TokenFlow for video-based editing following the offi-
cially released code by RAV [50]
CoDeF CoDeF’s editing process involves modifying a
canonical image via Instruct-Pix2Pix and generating the fi-
nal edited video according to the deformation field. For the
other procedures, we follow the officially released code by
CoDeF [26] for data processing, training, and editing.
Insturct-NeRF2NeRF Compared with the original setting
in IN2N [12], instead of training the model from scratch and
iteratively updating the dataset. We selected a subset con-
taining 200 images with our novel view synthesis as psue-
duo ground-truth for the model to finetune the model. It
takes about 10 epochs to converge.

9. Metrics Detail
Peak Signal-to-Noise Ratio (PSNR). The PSNR is used to
eval the generated image quality with ground truth. It is
widely used in the field of evaluation image generation
Learned Perceptual Image Patch Similarity (LPIPS).
The LPIPS is to apply the perceptual function at the patch
level to calculate the feature distance between the generated
image and ground truth.
Structural Similarity Index (SSIM). SSIM evaluates the
visual impact of three key components: luminance, con-
trast, and structure.
Blind Image Spatial Quality Evaluator (BIQ). It is a met-
ric to evaluate the generated images without ground truth.

10. Limitations
Although GaussianStyle is able to synthesize photo-realistic
and fully animatable head avatars with editing capabilities,
there are still areas for improvement:

(1) GaussianStyle relies on video tracking parameters.
Inaccurate tracking of landmarks and expressions might in-
troduce potential errors into our model, leading to artifacts
and degraded facial details. Our method could benefit from
a more accurate video tracking estimation method or cor-
rective operations.

(2) GaussianStyle utilizes tracking parameters for Gaus-
sian Point Deformation, which could introduce errors due
to a lack of explicit regularization for landmark matching.
In addition, the tracking always present the average expres-
sion but cannot capture the extreme expressions. Exploring
more robust and accurate techniques could open new direc-
tions for future work.

(3) GaussianStyle is still sensitive to extreme views and
poses. For out-of-domain camera views and head poses,
our methods show degradation in rendering, as illustrated
in Fig. 13.

11. Ethical Consideration
Our research primarily focuses on simulating high-fidelity
facial avatars. However, due to its photo-realistic facial ren-

dering capabilities, there exists a potential for misuse. For
example, creating speech videos of public figures portray-
ing events or statements that never occurred. The risk of
such abuses is a longstanding concern in the field of AI-
synthesized photo-realistic humans, evident in phenomena
like deepfake swapping and talking head generation.

While it is challenging to completely prevent the mis-
use of this technology, our paper contributes by providing
a technical analysis of facial synthesis. This insight allows
users to better understand the field and recognize the limi-
tations of AI synthesis to a certain extent, including aspects
like tooth detail and temporal consistency [32, 33].

Furthermore, we advocate for responsible usage prac-
tices. These include measures like embedding watermarks
in generated videos and employing synthetic face detection
technologies for photo-realistic portraits. Such steps are
crucial in mitigating the risks associated with this technol-
ogy.
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