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Abstract

Practical applications of event extraction sys-
tems have long been hindered by their need
for heavy human annotation. In order to scale
up to new domains and event types, models
must learn to cope with limited supervision,
as in few-shot learning settings. To this end,
the major challenge is to let the model master
the semantic of event types, without requiring
abundant event mention annotations. In our
study, we employ cloze prompts to elicit event-
related knowledge from pretrained language
models and further use event definitions and
keywords to pinpoint the trigger word. By for-
mulating the event detection task as an identify-
then-localize procedure, we minimize the num-
ber of type-specific parameters, enabling our
model to quickly adapt to event detection tasks
for new types. Experiments on three event de-
tection benchmark datasets (ACE, FewEvent,
MAVEN) show that our proposed method per-
forms favorably under fully supervised settings
and surpasses existing few-shot methods by
16% F1 on the FewEvent dataset and 23% on
the MAVEN dataset when only 5 examples are
provided for each event type. !

1 Introduction

Understanding events is central to information ex-
traction, and event detection is an inevitable step in
this process. The task of event detection is to locate
the event trigger (i.e., the minimal lexical unit that
indicates the event) and classify the trigger into one
of the given event types. While steady progress has
been made for event detection given ample supervi-
sion (Wadden et al., 2019; Lin et al., 2020; Lu et al.,
2021), it is hard to replicate these success stories in
new domains and on new event types without large-
scale annotation. Here, to respond to emerging user
needs and cope with limited annotation, we focus
our study on the few-shot learning setting.

'Our model implementations and data preparation scripts
will be made publicly available upon acceptance.
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Figure 1: Event detection requires the model to pro-
duce both event types and trigger locations. Convention-
ally, it is formulated as a token-level sequence labeling
problem. In our PILED (Prompt-guided identify-then-
localize event detection) model, we decompose the task
into two stages of identification and localization.

Recently, prompt-based learning has shown
great success in few-shot learning for a range of
classification and generation tasks. Compared to
the typical supervised learning paradigm, prompt-
based models are not only shaped by the annotated
examples, but can also be guided by the prompt.
Intuitively, in Figure 1, the prompt “The sentence
describes a [MASK] event" makes the masked lan-
guage model prediction resemble the event type
mentioned in the context. Inspired by this approach,
we tailor the cloze-based prompt learning paradigm
for event detection.

Since event detection aims to recognize both the
event type and the trigger location, the cloze-based
prompt learning paradigm (Schick and Schiitze,
2021a) is not directly applicable. In our study, we
propose an identify-then-localize approach, which
detaches the type semantic from the sequence label-
ing and opens the door to prompt learning. Specifi-
cally, we first recognize the event type (the identifi-
cation stage) via a prompt-based multi-label model,
and conduct trigger extraction based on the seman-
tic type description (the localization stage).



Our identification model extends cloze-based
prompt learning (Schick and Schiitze, 2021a) to
event detection. One key ingredient of prompt
learning is the verbalizer: a mapping from the class
label to a token in the language model’s vocabu-
lary. Since a sentence can contain multiple events,
we extend the model to a multi-label classification
setting by designating a special token as the ver-
balizer for the NULL class as well and comparing
it against the predictions for all of the valid event
types (as in Figure 2). In this design, the NULL ver-
balizer effectively serves as the dynamic threshold
for multi-class classification (Zhou et al., 2021).

The localization model is a single-class sequence
tagger that takes one identified event type as input
and aims to recognize the corresponding trigger
(as in Figure 3). Since we narrow the search to
one event type, we employ the filled prompt, event
descriptions, and keywords to augment the input.
In this way, we decouple the model from the event
label by including the event label information on
the input side instead. This makes our localization
model type-free, thus benefitting from the training
examples of all event types.

We test our model on a range of datasets
(ACE 2005, FewEvent (Deng et al., 2020),
MAVEN (Wang et al, 2020)) under fully-
supervised and few-shot event detection set-
tings. Our experiments show that our model
achieves state-of-the-art performance under the
fully-supervised setting and dramatically outper-
forms existing baselines under the few-shot setting.
Our main contributions include:

* We introduce a new identify-then-localize ap-
proach to event detection. By decoupling
the type semantics from the sequence label-
ing task, we bring the benefits of cloze-based
prompt learning to event detection and allow
for flexible injection of event knowledge.

* We extend the cloze-based prompt learning
paradigm to multi-label event type classifica-
tion. This enables us to leverage the language
modeling ability of pretrained LMs for the
event identification task and adapt quickly to
new event types. This method can apply to
other multi-label classification tasks.

* We design an attention-enhanced single-class
CREF tagger for event trigger localization. This
attention mechanism allows for the interaction
of predictions over neighboring tokens.

* Our model achieves excellent performance on
the event detection task under both few-shot
and fully-supervised settings. In particular, for
few-shot event detection on FewEvent (Deng
et al., 2020), we surpass the next best baseline
by over 16% F1. On MAVEN, we achieve 8%
F1 gains in the identification stage and present
the first results for few-shot event detection.

2 Methodology

Given a collection of contexts C and a pre-defined
event ontology 7 (a set of target event types), event
detection aims to find all event mentions in the
collection that fall into the given ontology. An
event mention is characterized by a trigger span s
(start index, end index) and an event type t € T.
Here we follow previous work and consider each
sentence as the context of the event.

We divide the event detection task into two
stages: identification and localization. In the iden-
tification stage, for each context c, we find a set of
event types 1’ that have been mentioned. In the lo-
calization stage, we take a pair of context and event
type (¢, t) as input and find a set of spans S that
correspond to the triggers for that event type. Note
that both stages can produce a variable number of
outputs for each input.

2.1 Event Type Identification

The event type identification model follows the idea
of using a cloze-style prompt for few-shot learning
with masked language models (Schick and Schiitze,
2021a). Cloze-style prompt learning transforms
a classification problem into a masked language
modeling using a prompt and a verbalizer function.
The prompt P is a natural language sentence with
a [MASK] token. This prompt can be viewed as a
cloze question, whereas the answer is related to the
desired class label. Figure 2 shows a cloze prompt
that can be used for event detection: “This text
describes a [MASK] event".

The relationship between the class labels £ and
the predicted tokens V' for the [MASK] is defined
by the verbalizer function f,: £ — V. For ex-
ample, we choose the verbalizer function to map
the event type Start-Position to the token
hire. We also refer to hire as the verbalizer for
Start-Position.

During prediction, we use the logit that the
masked language model M assigns to the verbal-
izer f,(l) for label [ as the proxy for predicting .



Context Cloze Prompt

The pro-reform director of Iran's biggest - selling daily newspaper and official
organ of Tehran's municipality has stepped down following the appointment
of a conservative as the city's new mayor, press reports said Sunday.
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Figure 2: The identification model. The context and cloze prompt are concatenated and provided as input to the
masked language model (MLM). The MLM produces scores for every token in the vocabulary as a measure of how
well the token fits into the “blank". Some tokens in the vocabulary can be mapped back to event types, such as
hire — Start-Position. If a token does not map to any event type in the ontology (e.g., report), it will be
ignored. We predict all event types that have a higher score than the NULL label (which maps to the token none).

In the classification task, the probability for label [
can then be computed as shown in Equation 1.

Dt — 1) — P I(F). P)
>vecexp (M (fo(l')|z, P))
For event detection, since each sentence can po-

tentially mention multiple event types, we extend

this approach to handle multi-label classification.

Through the masked language model, we score all

tokens in the vocabulary. After excluding tokens

that do not map back to any event type of interest

(such as the token report in the example), we

obtain a ranking among all event types. The key

becomes finding the cutoff threshold for translat-
ing these scores into outputs. We assign a token
vNuLL to the NULL type2 and use it as an adaptive
threshold. In the inference stage, we predict all
event types that score higher than the NULL type
to be positive. In our example, since hire and
resign both have higher scores than the NULL
verbalizer none, we predict Start-Position
and End-Position as the event types in the con-
text.

During training, for each sentence, we compute
the loss for the positive event types and the negative
event types separately with respect to the NULL

type:
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where 7' is the set of positive event types for the
sentence.
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*In our experiments, we use the token “none" as the NULL
type’s verbalizer.
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Equation 2 effectively pushes the score of each
positive event type above the NULL event type and
Equation 3 lowers the scores for all negative event
types.

For some event types such as "Business:Lay
off", the natural language label “lay off" cannot
be mapped to a single token. In this case, we add
anew token (lay_off) and initialize its embed-
dings as the average of the tokens that compose the
original event name.

2.2 Trigger Localization

Trigger localization is the task of finding the trigger
offset given a context c and an event type ¢. Since
we already know the event type, we can construct
a more informative input by leveraging external
knowledge (for instance, from FrameNet) about the
event type. For example, in Figure 3, we use the
event description from the annotation guidelines
to help define the “Start-Position" event type. We
can also use a few keywords (example triggers) to
serve as the event knowledge. In our experiments
we compare the two forms of event knowledge.

Our localization model is a linear chain CRF
tagger with only three tags: BIO>. In this way, the
model parameters are not tied with any event type
and can be easily used for transfer.

The probability of a tagged sequence is:

p(ylh; 0) = =2 (X, ‘p(%"hi); > (yilyi-1))

(&)

3B stands for the beginning of a span, I stands for the
inside of a span, and O for outside of any span.
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The pro-reform director of Iran's biggest - selling daily newspaper and official
organ of Tehran's municipality has stepped down following the appointment
of a conservative as the city's new mayor, press reports said Sunday.
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Figure 3: The localization model. The context, filled prompt (from the identification stage), and a type-aware
prompt are provided as input. The rype-aware prompt can be the event definition or event keywords. Our model
outputs type-free BIO tags for the context which can then be converted into trigger locations.

where £ is the contextualized embedding vector of
the tokens from the masked language model and Z
is a normalization factor.
We parameterize the emission scorer o (y;|h;)
as:
o(yilhi) = Wihi + Zaijwvhj (6)
J

Both W, € R3*™ and W,, € R3*™ map the em-
beddings to the tag space, serving as an early pre-
diction. Then we fuse the predictions for the token
and the other tokens through an attention mecha-
nism with the weight o;; defined as:

Wohi)TWih;
a;j = Softmax; (( ahi) Wi J) (7

N

m is the dimension of the embeddings ~ and W, €
R™*™M Wp, € R™ ™ are learnable parameters.

2.3 Joint Training

In a sense, our identification model captures the
probability of the event type given the context
p(t|x) and our localization model captures the prob-
ability of the token tags given the context and event
type: p(ylt, ).

The identification model and the localization
model share the same masked language model
backbone. Since these two tasks have slightly
different inputs, we alternate between sampling
batches for each task.

3 Experiments

In the following experiments, we refer to our
proposed model as PILED, standing for Prompt-
guided Identify-then-Localize Event Detection.

Dataset \ #Docs #Sents #Eventtypes # Instances
ACE+ 599 20,818 33 5,311
FewEvent - 70,852 100 70,852
MAVEN 4,480 49,873 168 118,732
Table 1: Dataset statistics.
Datasets We evaluate our model on three
datasets, FewEvent (Deng et al.,, 2020),

MAVEN (Wang et al., 2020) and ACE2005%.
FewEvent is designed to be a few-shot event
detection benchmark aggregating data from ACE,
TAC-KBP (Ji and Grishman, 2011) and expanding
to additional event types related to sports, music,
education, etc. from Wikipedia and Freebase. We
follow the data split released by (Cong et al., 2021).
MAVEN is the largest human annotated event
detection dataset to date, covering 4,480 documents
and 168 event types. We use MAVEN for the few-
shot setting following (Chen et al., 2021).
ACE2005 is the most widely used dataset for
event extraction. For data preprocessing, we follow
(Lin et al., 2020) and keep multi-word triggers and
pronouns. We denote this version of ACE2005 as
ACE-+. Since FewEvent has significant data overlap
with ACE2005, we do not further experiment with
the few-shot setting on ACE 2005.
We present the overall dataset statistics in Table
1. Details of the data splits are available in the
Appendix.

Evaluation Metrics For all experiments, we use
the event instance precision, recall and micro-F1
score as our major evaluation metrics. An event
mention is considered correct if both its type and
trigger span are correct.

*https://www.ldc.upenn.edu/
collaborations/past-projects/ace


https://www.ldc.upenn.edu/collaborations/past-projects/ace
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Implementation Details We use Roberta (Liu
et al., 2019) as our masked language model. For
experiments, we match the model size of our
baselines for fair comparison: on ACE, we use
Roberta-large and on FewEvent and MAVEN, we
use Roberta-base. For Roberta-base, we use a batch
size of 8 and a learning rate of 2e — 5. For Roberta-
large, we use a batch size of 16 and a learning
rate of 1le — 5. We set the maximum sequence
length to 200 tokens since our predictions are on
the sentence-level. For more details, we refer the
readers to the Appendix.

3.1 Few Shot Event Detection

For few-shot experiments, instead of following the
episode-based setup in PA-CRF (Cong et al., 2021),
we use the more standard setup in StructShot (Yang
and Katiyar, 2020). In the episode-based setup,
each time K labeled instances per event are sam-
pled to form the support set and 1 unlabeled in-
stance is sampled to form the query set. The model
is then evaluated on this query set. In our setup, we
also sample the K-shot support set, but evaluate
our model on all of the remaining unlabeled in-
stances. In expectation, both settings should reach
the same performance. Another difference is that
since the training set consists of event types that are
disjoint to the test set, we do not use the training
set at all.

We list our results on the FewEvent dataset in
Table 2 and results on the MAVEN dataset in Table
4.

On FewEvent, there is only one event type
labeled per sentence, so the identification task
is reduced to classification. We compare our
identification model to another knowledge-based
few-shot event classification model (Shen et al.,
2021)°. The AKE-BML model uses examples from
FrameNet (Baker et al., 1998) as external knowl-
edge. Our event knowledge is exemplified in the
choice of the verbalizer for each event type. They
also rely on the trigger location for classification
whereas we perform identification before localiza-
tion.

On the localization task, our model can jointly
learn from annotation of all event types, giving us a
significant advantage (over 16% F1) over sequence
labeling models that store “prototype" representa-
tions of each event type individually.

3 Although the title contains “event detection", in the prob-
lem definition the task is framed as few-shot classification
with known triggers.

On the MAVEN dataset, the increase in event
types and the fact that multiple event types can co-
occur in the same sentence makes the task more
difficult. On the identification task, our prompt-
based method can outperform the causal inference
enhanced RelNet (Chen et al., 2021; Sung et al.,
2018) by 8.5% F1 without having access to the trig-
ger word location. Instead of linking trigger words
to a numerical label, our identification model lever-
ages the similarity between the verbalizer and the
triggers. For the event detection task (with localiza-
tion), since no previous work attempted this task,
we compare with a token classification baseline
that follows the fine-tuning paradigm and adapt a
competitive few-shot name tagging model Struct-
Shot (Yang and Katiyar, 2020) to our task. Ad-
ditionally, we show some example predictions in
Table 3. The Token Classification baseline has poor
performance and high variance due to the sampling
of the support set. Due to abundance of O’ (out-
side) tags, this baseline also tends to refrain from
predicting any event type. The StructShot model is
a token-level k-nearest neighbor model with Viterbi
decoding. As KNN models are learning-free, the
StructShot model performs relatively well under
few-shot settings. However, this KNN backbone
also limits the model’s performance when encoun-
tering new triggers as in the case for “study” and
“authorized".

3.2 Supervised Event Detection

We report supervised event detection results on
the ACE+ dataset in Table 5. We compare with
a wide range of existing methods, covering the
paradigms of single-task sequence labeling, multi-
task learning, question answering and generation.
The multitask learning model OnelE enjoys the
benefits of joint decoding across related tasks such
as entity extraction and relation extraction. Notably,
DEGREE (Hsu et al., 2021) also uses event descrip-
tions and keywords as a “type-aware prompt" to
guide the generation of the trigger word. However,
generation using the entire vocabulary is more chal-
lenging than our localization task.

4 Analysis and Discussion

In the previous experiments we showed that our
model performs favorably under fully-supervised
settings and surpasses previous methods by a large
margin under few-shot settings. Here we take a
closer look at the design choices in our model.



Task Model \ 5Sway 5shot 5way 10shot 10 way 5shot 10 way 10 shot

Identification AKE-BML (Shen et al., 2021) 88.99 90.10 84.55 86.03
PILED 92.69 £3.60 92.18£2.85 89.60 +2.17 9272 £ 1.14

Id + Localization = DMBPN (Deng et al., 2020) 37.51 38.14 34.21 35.51
ProtoNet (Snell et al., 2017) 58.82 61.01 55.04 58.78
Collapsed CRF (Hou et al., 2020) 59.30 62.77 56.41 59.44
PA-CRF (Cong et al., 2021) 62.25 64.45 58.48 61.64
PILED 7924 £2.61 81.22+230 81.14+1.93 83.02 +1.35

Table 2: Few-shot event detection results (%) on FewEvent. All results are micro-F1 scores. We report the average

and standard deviation across 10 runs.

Context | Model
\ Token Classification StructShot PILED
The results of a separate study[Research] indicated that it
may have been a larger event, placing the shock in the North NULL NULL Research: study
Cascades,...
It was led by the U.S. Marines and U.S Army against the Iraqi
insurgents in the city of Fallujah and was authorized[Ratify] NULL NULL Ratify: authorized
by the U.S.-appointed Iraqi Interim Government.
With the commencement of the Virgin Tour, a wide-ranging Wearine: attired:
audience, especially young women, thronged to attend, NULL & ’ Wearing: attired

attired[ Wearing] in Madonna-inspired clothing.

Wearing: inspired

In June 2010, seven Indian nationals who were UCIL em-
ployees in 1984, including the former UCIL chairman, were
convicted in Bhopal of causing death by negligence and
sentenced[Punishments] to two years imprisonment and a
fine of about $2,000 each, the maximum punishment allowed
by Indian law.

Prison: imprisonment

Prison: imprisonment;
Punishments:
punishment

Punishments: fine

Table 3: Case studies on the few-shot event detection task. The annotations are marked in the context: the trigger is
underlined and the corresponding event name is provided in the bracket. In the last example, we believe that the

given annotation is not complete.

Task | Model Micro F1
Identification RelNet* 560+ 14
RelNet + Causal* 57.0 £ 09
PILED 655+ 1.1
Id + Localization | Token Classification 16.3 4= 4.7
StructShot 404 £1.0
PILED 63.1+1.1

Table 4: Few-shot event detection results (%) on
MAVEN. We follow the 45 way 5 shot setting in (Chen
et al., 2021) and report the average and standard devia-
tion for 10 runs. Results marked with * are also taken
from the aforementioned paper.

4.1 Injecting Event Knowledge

In our model, event knowledge is present in the
verbalizer in the identification stage and the type-
aware prompt in the localization stage.

In the previous experiments, we use one man-
ually selected verbalizer per event type. A natu-
ral question is whether more verbalizers will help.
We use MAVEN for this set of experiments since
MAVEN provides alignments between its event

types and FrameNet frames. The FrameNet® def-
initions and lexical units can then serve as event
knowledge.

When more than one verbalizer is used, we
need to aggregate the scores over the verbalizer
set. We experiment with 4 different types of
aggregation operators: avg, max, logsumexp,
weighted-avg. The logsumexp operator can
be seen as a smoothed version of the max opera-
tor. In the weighted-avg operator, the weights
of the verbalizers are additional learnable param-
eters (Hu et al., 2021). As shown in Table 6, in
the few-shot setting, using multiple verbalizers can
provide 1.5-2% F1 improvement on identification
which translates to 1.6-2.2% F1 improvement on
the event detection task. In terms of aggregation
methods, the avg operator is a simple and reli-
able choice with the best performance and lowest
variance. Although the wavg operator is more ex-
pressive, it is hard to learn good weights with only

®https://framenet.icsi.berkeley.edu/
fndrupal/frameIndex
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Category | Model | Prec  Recall Fl

Sequence labeling | Token Classification 67.1 72.3 69.6
Sequence labeling | Token Classification+CRF 67.8 76.6 719
Multitask OnelE* (Lin et al., 2020) - - 72.8
QA EEQA* (Du and Cardie, 2020) | 71.1 737 724
Generation Text2Event* (Lu et al., 2021) 71.2 72.5 71.8
Generation DEGREE* (Hsu et al., 2021) 72.7

Prompt-based PILED

709  76.1 734

Table 5: Supervised event detection results (%) on ACE+. The best results are in boldface and the next best results
are underlined.* indicates results cited from the original paper.

Aggmethod | IdFl1 Id+Loc F1
avg 67.5+16 653+14
max 67.0+22 647422
logsumexp | 67.0+£19 647+19
wavg 674+16 649417

Table 6: Using multiple verbalizers for the 45-way-5-
shot event detection on the MAVEN dataset. To balance
between frames that have different number of lexical
units, we use at most 3 verbalizers. wavg stands for
weighted-avg.

5 examples per event type.

For the type-aware prompt, we consider using
the event definition or event keywords and compare
it against the baseline of using the filled prompt
from the identification stage. As seen in Table 7,
the event name alone is relatively informative and
adding event keywords can provide an additional
0.8% F1 gain. The definitions from FrameNet are
highly abstract, which may undermine their value
in assisting event detection.

Event knowledge | IdFl Loc F1

Event name 648 +13 620x£1.5
Name + Definition | 64.8 £1.3 623+ 1.5
Name + Keywords | 655+ 1.1 63.1+1.1

Table 7: Comparison of using different types of event
knowledge to construct the type-aware prompt for local-
ization. The event name is present in the filled prompt.
We use at most 3 keywords per event type.

Id Model Loc Model | Prec  Recall Fl

v Full model 70.9 76.1 73.4
v Single class CRF | 68.3 749 715
v QA 72.5 69.0 70.7
v Span Classifier 635 783 70.1
Enumerate  Full model 54.5 81.3 65.3

Table 8: Model ablations on ACE+.

4.2 Model Design Choices

We design our localization model as an attention-
enhanced single-class CRF tagger. However, there
are many alternative modeling choices for detecting
the trigger offset. Here, we experiment with other
common models including the question answering
(QA) formulation (Du and Cardie, 2020; Liu et al.,
2020) , the span classification formulation (Span
Classifier) and the vanilla CRF model as shown
in Table 8. For the single-class CRF model, we
remove the attention based early-interaction term
in Equation 7. In the question answering formu-
lation, we compute the scores of the token being
first token in the answer (the answer head) and be-
ing the last token in the answer (the answer tail)
separately. This simple QA model cannot handle
multiple “answers” per sentence, so we extend it
to a span classification model where each span is
scored independently and assigned a binary label.

Although the span classifier can handle multi-
ple triggers in the same sentence, it suffers from
low precision. Compared to the QA model and the
span classifier model which score candidate trig-
gers independently, the vanilla CRF model explic-
itly models the correlation between neighboring
tokens, leading to better performance. Addition-
ally, our attention-enhanced CRF layer can further
improve upon the vanilla CRF model by 1.9 % F1
points.

One alternative to the identify-then-localize
framework is to simply enumerate all possible
event types and attempt to localize the trigger for
them. To verify if the identification step is truly
necessary, we compare our two-stage model with a
localization-only model that enumerates all possi-
ble event types. As shown in the last row of Table
8, this model has high recall at the cost of low
precision. Additionally, with NV event types in the
ontology, this model requires N times training time
and inference time.



5 Related Work
5.1 Prompt-Tuning

The pioneer of prompt-tuning is the concept of
in-context learning introduced by GPT-3 (Brown
et al., 2020), demonstrating the few-shot capabil-
ity of large pretrained language models. What
sets prompt-tuning apart from the widely used
fine-tuning approach is that the task specifications
(task description or examples) are provided as part
of the input. Depending on the format of the
prompt, prompt-tuning methods can be divided into
cloze-style prompts for classification (Schick and
Schiitze, 2021a,b) and open-ended prompts for gen-
eration (Li and Liang, 2021). Based on the human
readability of the prompts, they can be either dis-
crete (Shin et al., 2020), or continuous (Qin and
Eisner, 2021). For a more comprehensive view on
the work in prompt-tuning, we refer readers to (Liu
etal., 2021).

Application-wise, prompt-tuning has been
shown to be very successful for classification and
generation tasks. There have been some recent
attempts to apply prompt-tuning to informative
extraction tasks such as named entity recogni-
tion (Ding et al., 2021) and relation extraction (Han
et al., 2021) but they largely focus on the classi-
fication component of these tasks after locating
the target spans. To date, we are the first to tailor
prompt-learning for the event detection task.

5.2 Low Resource Event Detection

Due to the high cost of annotating event instances,
low resource event detection has received much
attention in recent years. There are a variety of set-
tings explored, including zero-shot transfer learn-
ing (Lyu et al., 2021; Huang et al., 2018), cross-
lingual transfer (Subburathinam et al., 2019), in-
ducing event types (Huang et al., 2016; Wang et al.,
2021; Huang and Ji, 2020), keyword-based super-
vision (Zhang et al., 2021) and few-shot learn-
ing (Peng et al., 2016; Lai et al., 2020; Shen et al.,
2021; Cong et al., 2021; Chen et al., 2021).
Methodology-wise, prototype-based meth-
ods (Deng et al., 2020; Zhang et al., 2021; Cong
et al., 2021; Shen et al., 2021) have been a popular
choice since they were originally developed
for few-shot learning. Either starting from key-
words (Zhang et al., 2021), definitions (Shen et al.,
2021) or examples (Deng et al., 2020; Cong et al.,
2021), the key is to learn a good representation
for each event type (often referred to as the class

prototype) and then predict the event type of the
new example using a certain proximity metric to
the “prototype".

Another idea is to transfer knowledge from se-
mantic parsers, such as AMR (Wang et al., 2021;
Huang et al., 2018) or SRL (Zhang et al., 2021;
Lyu et al., 2021) parsers. The event detection task
is then converted into the task of finding a mapping
between the predicates detected by the semantic
parser to event types in the target ontology. Such
methods are dependent on the performance of the
semantic parsers.

QA-based (Du and Cardie, 2020; Liu et al., 2020)
and generation-based methods (Li et al., 2021; Hsu
et al., 2021) can also be adapted to the problem
since event type information can be incorporated
into the input. However, with this flexibility comes
a drawback: if a general question such as “What
is the trigger?" is asked, the model cannot quickly
adapt to new types; if a type-specific question such
as “What is the trigger for attack?" is used, the
model has to be queried once per possible event
type to reach the final answer. For the sake of ef-
ficiency, we formulate the identification step as a
multi-class classification problem. We also com-
pare our two-stage model’s performance with this
enumerative approach in Section 4.2.

6 Conclusions and Future Work

In this paper we study event detection under few-
shot learning settings. Inspired by cloze prompts
that can bridge the gap between pretrained masked
language models and a target task through a task
description, we extend this idea to event detection
by formulating the problem as an identify-then-
localize procedure. Specifically, we first identify
the event types present in the context and then find
the trigger location based on type-specific event
knowledge. We show that this approach signifi-
cantly outperforms existing methods for few-shot
event detection, achieving a 16% absolute F1 score
gain on FewEvent and 23% gain on MAVEN.

In the process of performing this study, we also
realized some caveats in the current few-shot learn-
ing evaluation and we hope that more realistic eval-
uations of few-shot event detection models can be
designed in future work. Another interesting exten-
sion would be to develop interactive systems where
the user can constantly provide feedback to assist
the extraction of new event types, especially when
the initial examples carry ambiguity.
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A Dataset Details

For FewEvent, we use the data split from (Cong
et al., 2021) and use 80 event types as the training
set, 10 event types as the dev set and the remaining
10 event types as the test set. In the data provided,
sentences are organized by event type and each
sentence only has one event mention annotation.

‘ Train Dev  Test
# Types 80 10 10
# Sents | 67,982 2,173 697

Table 9: Data split for FewEvent.

In the N-way K-shot experiments, we randomly
sample N event types from the test set and then
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sample K labeled instances of that event type for
training.

For MAVEN, we follow the data split by (Chen
et al., 2021) and use the sentences containing the
most frequent 120 event types as the training set.
The sentences containing the remaining 45 event
type are then split into half as the dev and test set.
We use the same random seed as (Chen et al., 2021)
to ensure the same split.

Train Dev Test
# Types 125 45 45
# Sents 86,551 1,532 1,555
# Events | 287,516 1,741 1,806

Table 10: Data split for MAVEN.

For ACE, we use the data split in (Lin et al.,
2020). The same 33 event types are shared in the
training, dev and test set.

‘ Train Dev Test
# Sents 19,240 902 676
#Events | 4,419 468 424

Table 11: Data split for ACE+.

B Additional Case Studies

We show some additional case studies in Table
12. In the first case, our model can differenti-
ate between similar event types such as “Com-
merce_pay" and “Cost" while StructShot identifies
both as “Cost". In the second case, we show an
event type that is very specific: “Bearing_arms" is
almost always triggered by the word “armed" and
our model handles it well. The “Filling" event type,
on the contrary, is very general, and according to
FrameNet, can describe “filling containers and cov-
ering areas with some thing, things or substance".
This shows that our model can generalize to rare
triggers like “inundated”. In the last example, we
show a failure case of our model. As the event
“Cost" is often triggered by verbs, the model fails
to recognize that “prices" is also contained in the
event type.

C Model Hyperparameters

For the experiments on ACE+, we used the settings
and hyperparameters as shown in Table 13.
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Context | Model
‘ Token Classification  StructShot PILED

Kuwait and Saudi Arabia paid[Commerce_pay] around NULL Cost: paid; Cost: Commerce_pay:
US$32 billion of the US$60 billion cost[Cost]. cost paid; Cost: cost
The conflict has lasted for over 39 years, making it the second Bearing arms:
longest internal conflict in the history of Latin America, after | NULL NULL & ’

. . . armed
the Colombian armed[Bearing_arms] conflict.
Strong winds and heavy rainfall inundated[Filling] streets,
residences, and fields, and also toppled chimneys, fences, and | NULL NULL Filling: inundated
cracked windows across the region.
Official ticket prices[Cost] through Ticketmaster ranged from NULL NULL NULL

$71.70 to $439.90.

Table 12: Extra case studies on the few-shot event detection task. The annotations are marked in the context: the
trigger is underlined and the corresponding event name is provided in the bracket.

Parameter | Value
Encoder Roberta-large
Max seq len 200
Batch size 16
Learning rate le—5
Learning rate schedule Linear
Weight decay le—5
Warmup steps 1000
Epochs 10
Adam € le—8
Gradient clipping 1.0

Table 13: ACE+ hyperparameters

For all few-shot experiments, we use the param-
eters listed in Table 14.

Parameter | Value
Encoder Roberta-base
Max seq len 200
Batch size 8
Learning rate 2e -5
Learning rate schedule Linear
Weight decay le—5
Warmup steps 0
Epochs 20
Adam € le —8
Gradient clipping 1.0

Table 14: Few-shot experiment hyperparameters.

D Discussion on Few-shot Learning
Datasets

Few-shot learning for event detection was largely
inspired by the few-shot classification work in com-
puter vision literature (Vinyals et al., 2016; Snell
et al., 2017; Sung et al., 2018) which assumes that
images are sampled independently under the N-way
K-shot setting. However, this assumption does not
directly transfer to context-dependent tasks such
as event detection: the distribution of event types

12

heavily depends on the document and is far from
i.i.d. in practice. This sampling procedure also
leads to the absence of the NULL class (sentences
without any event mentions), which is often abun-
dant in real documents.

This data discrepancy has received some atten-
tion in other tasks such as relation extraction (Gao
et al., 2019; Sabo et al., 2021) but is under-explored
for event detection. For example, FewEvent in-
stances only contain one event type per sentence
and do not include NULL class examples. Sen-
tences from MAVEN may contain multiple event
types but also exclude the case of NULL. Thus,
many previous works in few-shot event detection
simply design their model to be a K-way classifier.
ACE, the dataset which we use for supervised event
detection, contains all these cases and the events
follow a natural distribution but the small number
of event types makes it less attractive to use as a
few-shot benchmark. Our model PILED is capa-
ble of handling these cases, as exemplified by our
performance on ACE, but such abilities were not
put to test on the current few-shot datasets. As a
result, we would like to remind readers of the pos-
sible inflation of few-shot performance on current
benchmarks and call for future research on setting
up better evaluation.



