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Abstract

Practical applications of event extraction sys-001
tems have long been hindered by their need002
for heavy human annotation. In order to scale003
up to new domains and event types, models004
must learn to cope with limited supervision,005
as in few-shot learning settings. To this end,006
the major challenge is to let the model master007
the semantic of event types, without requiring008
abundant event mention annotations. In our009
study, we employ cloze prompts to elicit event-010
related knowledge from pretrained language011
models and further use event definitions and012
keywords to pinpoint the trigger word. By for-013
mulating the event detection task as an identify-014
then-localize procedure, we minimize the num-015
ber of type-specific parameters, enabling our016
model to quickly adapt to event detection tasks017
for new types. Experiments on three event de-018
tection benchmark datasets (ACE, FewEvent,019
MAVEN) show that our proposed method per-020
forms favorably under fully supervised settings021
and surpasses existing few-shot methods by022
16% F1 on the FewEvent dataset and 23% on023
the MAVEN dataset when only 5 examples are024
provided for each event type. 1025

1 Introduction026

Understanding events is central to information ex-027

traction, and event detection is an inevitable step in028

this process. The task of event detection is to locate029

the event trigger (i.e., the minimal lexical unit that030

indicates the event) and classify the trigger into one031

of the given event types. While steady progress has032

been made for event detection given ample supervi-033

sion (Wadden et al., 2019; Lin et al., 2020; Lu et al.,034

2021), it is hard to replicate these success stories in035

new domains and on new event types without large-036

scale annotation. Here, to respond to emerging user037

needs and cope with limited annotation, we focus038

our study on the few-shot learning setting.039

1Our model implementations and data preparation scripts
will be made publicly available upon acceptance.
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Figure 1: Event detection requires the model to pro-
duce both event types and trigger locations. Convention-
ally, it is formulated as a token-level sequence labeling
problem. In our PILED (Prompt-guided identify-then-
localize event detection) model, we decompose the task
into two stages of identification and localization.

Recently, prompt-based learning has shown 040

great success in few-shot learning for a range of 041

classification and generation tasks. Compared to 042

the typical supervised learning paradigm, prompt- 043

based models are not only shaped by the annotated 044

examples, but can also be guided by the prompt. 045

Intuitively, in Figure 1, the prompt “The sentence 046

describes a [MASK] event" makes the masked lan- 047

guage model prediction resemble the event type 048

mentioned in the context. Inspired by this approach, 049

we tailor the cloze-based prompt learning paradigm 050

for event detection. 051

Since event detection aims to recognize both the 052

event type and the trigger location, the cloze-based 053

prompt learning paradigm (Schick and Schütze, 054

2021a) is not directly applicable. In our study, we 055

propose an identify-then-localize approach, which 056

detaches the type semantic from the sequence label- 057

ing and opens the door to prompt learning. Specifi- 058

cally, we first recognize the event type (the identifi- 059

cation stage) via a prompt-based multi-label model, 060

and conduct trigger extraction based on the seman- 061

tic type description (the localization stage). 062
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Our identification model extends cloze-based063

prompt learning (Schick and Schütze, 2021a) to064

event detection. One key ingredient of prompt065

learning is the verbalizer: a mapping from the class066

label to a token in the language model’s vocabu-067

lary. Since a sentence can contain multiple events,068

we extend the model to a multi-label classification069

setting by designating a special token as the ver-070

balizer for the NULL class as well and comparing071

it against the predictions for all of the valid event072

types (as in Figure 2). In this design, the NULL ver-073

balizer effectively serves as the dynamic threshold074

for multi-class classification (Zhou et al., 2021).075

The localization model is a single-class sequence076

tagger that takes one identified event type as input077

and aims to recognize the corresponding trigger078

(as in Figure 3). Since we narrow the search to079

one event type, we employ the filled prompt, event080

descriptions, and keywords to augment the input.081

In this way, we decouple the model from the event082

label by including the event label information on083

the input side instead. This makes our localization084

model type-free, thus benefitting from the training085

examples of all event types.086

We test our model on a range of datasets087

(ACE 2005, FewEvent (Deng et al., 2020),088

MAVEN (Wang et al., 2020)) under fully-089

supervised and few-shot event detection set-090

tings. Our experiments show that our model091

achieves state-of-the-art performance under the092

fully-supervised setting and dramatically outper-093

forms existing baselines under the few-shot setting.094

Our main contributions include:095

• We introduce a new identify-then-localize ap-096

proach to event detection. By decoupling097

the type semantics from the sequence label-098

ing task, we bring the benefits of cloze-based099

prompt learning to event detection and allow100

for flexible injection of event knowledge.101

• We extend the cloze-based prompt learning102

paradigm to multi-label event type classifica-103

tion. This enables us to leverage the language104

modeling ability of pretrained LMs for the105

event identification task and adapt quickly to106

new event types. This method can apply to107

other multi-label classification tasks.108

• We design an attention-enhanced single-class109

CRF tagger for event trigger localization. This110

attention mechanism allows for the interaction111

of predictions over neighboring tokens.112

• Our model achieves excellent performance on 113

the event detection task under both few-shot 114

and fully-supervised settings. In particular, for 115

few-shot event detection on FewEvent (Deng 116

et al., 2020), we surpass the next best baseline 117

by over 16% F1. On MAVEN, we achieve 8% 118

F1 gains in the identification stage and present 119

the first results for few-shot event detection. 120

2 Methodology 121

Given a collection of contexts C and a pre-defined 122

event ontology T (a set of target event types), event 123

detection aims to find all event mentions in the 124

collection that fall into the given ontology. An 125

event mention is characterized by a trigger span s 126

(start index, end index) and an event type t ∈ T . 127

Here we follow previous work and consider each 128

sentence as the context of the event. 129

We divide the event detection task into two 130

stages: identification and localization. In the iden- 131

tification stage, for each context c, we find a set of 132

event types T that have been mentioned. In the lo- 133

calization stage, we take a pair of context and event 134

type (c, t) as input and find a set of spans S that 135

correspond to the triggers for that event type. Note 136

that both stages can produce a variable number of 137

outputs for each input. 138

2.1 Event Type Identification 139

The event type identification model follows the idea 140

of using a cloze-style prompt for few-shot learning 141

with masked language models (Schick and Schütze, 142

2021a). Cloze-style prompt learning transforms 143

a classification problem into a masked language 144

modeling using a prompt and a verbalizer function. 145

The prompt P is a natural language sentence with 146

a [MASK] token. This prompt can be viewed as a 147

cloze question, whereas the answer is related to the 148

desired class label. Figure 2 shows a cloze prompt 149

that can be used for event detection: “This text 150

describes a [MASK] event". 151

The relationship between the class labels L and 152

the predicted tokens V for the [MASK] is defined 153

by the verbalizer function fv: L → V . For ex- 154

ample, we choose the verbalizer function to map 155

the event type Start-Position to the token 156

hire. We also refer to hire as the verbalizer for 157

Start-Position. 158

During prediction, we use the logit that the 159

masked language model M assigns to the verbal- 160

izer fv(l) for label l as the proxy for predicting l. 161
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The pro-reform director of Iran's biggest - selling daily newspaper and official 
organ of Tehran's municipality has stepped down following the appointment 
of a conservative as the city's new mayor, press reports said Sunday. 

This text describes a ___ event.

Masked Language Model

hire 0.6
resign 0.5
report 0.3 
none 0.2 
sell 0.05   

Start-Position 
End-Position

OOV
NULL

Transaction

Context Cloze Prompt

Token Ranking Prediction

Figure 2: The identification model. The context and cloze prompt are concatenated and provided as input to the
masked language model (MLM). The MLM produces scores for every token in the vocabulary as a measure of how
well the token fits into the “blank". Some tokens in the vocabulary can be mapped back to event types, such as
hire→ Start-Position. If a token does not map to any event type in the ontology (e.g., report), it will be
ignored. We predict all event types that have a higher score than the NULL label (which maps to the token none).

In the classification task, the probability for label l162

can then be computed as shown in Equation 1.163

p(t = l) =
exp (M(fv(l)|x, P ))∑

l′∈L exp (M(fv(l′)|x, P ))
(1)164

For event detection, since each sentence can po-165

tentially mention multiple event types, we extend166

this approach to handle multi-label classification.167

Through the masked language model, we score all168

tokens in the vocabulary. After excluding tokens169

that do not map back to any event type of interest170

(such as the token report in the example), we171

obtain a ranking among all event types. The key172

becomes finding the cutoff threshold for translat-173

ing these scores into outputs. We assign a token174

vNULL to the NULL type2 and use it as an adaptive175

threshold. In the inference stage, we predict all176

event types that score higher than the NULL type177

to be positive. In our example, since hire and178

resign both have higher scores than the NULL179

verbalizer none, we predict Start-Position180

and End-Position as the event types in the con-181

text.182

During training, for each sentence, we compute183

the loss for the positive event types and the negative184

event types separately with respect to the NULL185

type:186

Lpos =
1

|T |
∑
t∈T

log
exp(M(fv(t)|x, P ))∑

t′∈NULL∪t

exp(M(fv(t′)|x, P ))
(2)187

where T is the set of positive event types for the188

sentence.189

Lneg = log
exp(M(vNULL|x, P )∑

t′∈NULL∪T̄

exp(M(fv(t′)|x, P ))
(3)190

2In our experiments, we use the token “none" as the NULL
type’s verbalizer.

Lid =
1

|C|
∑
c∈C

(Lpos + Lneg) (4) 191

Equation 2 effectively pushes the score of each 192

positive event type above the NULL event type and 193

Equation 3 lowers the scores for all negative event 194

types. 195

For some event types such as "Business:Lay 196

off", the natural language label “lay off" cannot 197

be mapped to a single token. In this case, we add 198

a new token ⟨lay_off⟩ and initialize its embed- 199

dings as the average of the tokens that compose the 200

original event name. 201

2.2 Trigger Localization 202

Trigger localization is the task of finding the trigger 203

offset given a context c and an event type t. Since 204

we already know the event type, we can construct 205

a more informative input by leveraging external 206

knowledge (for instance, from FrameNet) about the 207

event type. For example, in Figure 3, we use the 208

event description from the annotation guidelines 209

to help define the “Start-Position" event type. We 210

can also use a few keywords (example triggers) to 211

serve as the event knowledge. In our experiments 212

we compare the two forms of event knowledge. 213

Our localization model is a linear chain CRF 214

tagger with only three tags: BIO3. In this way, the 215

model parameters are not tied with any event type 216

and can be easily used for transfer. 217

The probability of a tagged sequence is: 218

p(y|⃗h; θ) =
exp

(∑
i φ(yi|hi) +

∑
i ψ(yi|yi−1)

)
Z

(5) 219

3B stands for the beginning of a span, I stands for the
inside of a span, and O for outside of any span.
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Masked Language 
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Head

The pro-reform director of Iran's biggest - selling daily newspaper and official 
organ of Tehran's municipality has stepped down following the appointment 
of a conservative as the city's new mayor, press reports said Sunday. 

This text describes a hire event.

Context

Filled Prompt

Definition: A hire event happens 
when a person starts a new 
position.
Keywords: hire, employ, appoint

Type-Aware Prompt

Tagged Context

…following the appointment of  a  conservative … 
O O B O O O

25,26Localized Trigger

Figure 3: The localization model. The context, filled prompt (from the identification stage), and a type-aware
prompt are provided as input. The type-aware prompt can be the event definition or event keywords. Our model
outputs type-free BIO tags for the context which can then be converted into trigger locations.

where h⃗ is the contextualized embedding vector of220

the tokens from the masked language model and Z221

is a normalization factor.222

We parameterize the emission scorer φ(yi|hi)223

as:224

φ(yi|hi) = Wlhi +
∑
j

αijWvhj (6)225

Both Wl ∈ R3×m and Wv ∈ R3×m map the em-226

beddings to the tag space, serving as an early pre-227

diction. Then we fuse the predictions for the token228

and the other tokens through an attention mecha-229

nism with the weight αij defined as:230

αij = Softmaxj

(
(Wqhi)

TWkhj√
m

)
(7)231

m is the dimension of the embeddings h and Wq ∈232

Rm×m, Wk ∈ Rm×m are learnable parameters.233

2.3 Joint Training234

In a sense, our identification model captures the235

probability of the event type given the context236

p(t|x) and our localization model captures the prob-237

ability of the token tags given the context and event238

type: p(y|t, x).239

The identification model and the localization240

model share the same masked language model241

backbone. Since these two tasks have slightly242

different inputs, we alternate between sampling243

batches for each task.244

3 Experiments245

In the following experiments, we refer to our246

proposed model as PILED, standing for Prompt-247

guided Identify-then-Localize Event Detection.248

Dataset # Docs # Sents # Event types # Instances

ACE+ 599 20,818 33 5,311
FewEvent - 70,852 100 70,852
MAVEN 4,480 49,873 168 118, 732

Table 1: Dataset statistics.

Datasets We evaluate our model on three 249

datasets, FewEvent (Deng et al., 2020), 250

MAVEN (Wang et al., 2020) and ACE20054. 251

FewEvent is designed to be a few-shot event 252

detection benchmark aggregating data from ACE, 253

TAC-KBP (Ji and Grishman, 2011) and expanding 254

to additional event types related to sports, music, 255

education, etc. from Wikipedia and Freebase. We 256

follow the data split released by (Cong et al., 2021). 257

MAVEN is the largest human annotated event 258

detection dataset to date, covering 4,480 documents 259

and 168 event types. We use MAVEN for the few- 260

shot setting following (Chen et al., 2021). 261

ACE2005 is the most widely used dataset for 262

event extraction. For data preprocessing, we follow 263

(Lin et al., 2020) and keep multi-word triggers and 264

pronouns. We denote this version of ACE2005 as 265

ACE+. Since FewEvent has significant data overlap 266

with ACE2005, we do not further experiment with 267

the few-shot setting on ACE 2005. 268

We present the overall dataset statistics in Table 269

1. Details of the data splits are available in the 270

Appendix. 271

Evaluation Metrics For all experiments, we use 272

the event instance precision, recall and micro-F1 273

score as our major evaluation metrics. An event 274

mention is considered correct if both its type and 275

trigger span are correct. 276

4https://www.ldc.upenn.edu/
collaborations/past-projects/ace
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Implementation Details We use Roberta (Liu277

et al., 2019) as our masked language model. For278

experiments, we match the model size of our279

baselines for fair comparison: on ACE, we use280

Roberta-large and on FewEvent and MAVEN, we281

use Roberta-base. For Roberta-base, we use a batch282

size of 8 and a learning rate of 2e− 5. For Roberta-283

large, we use a batch size of 16 and a learning284

rate of 1e − 5. We set the maximum sequence285

length to 200 tokens since our predictions are on286

the sentence-level. For more details, we refer the287

readers to the Appendix.288

3.1 Few Shot Event Detection289

For few-shot experiments, instead of following the290

episode-based setup in PA-CRF (Cong et al., 2021),291

we use the more standard setup in StructShot (Yang292

and Katiyar, 2020). In the episode-based setup,293

each time K labeled instances per event are sam-294

pled to form the support set and 1 unlabeled in-295

stance is sampled to form the query set. The model296

is then evaluated on this query set. In our setup, we297

also sample the K-shot support set, but evaluate298

our model on all of the remaining unlabeled in-299

stances. In expectation, both settings should reach300

the same performance. Another difference is that301

since the training set consists of event types that are302

disjoint to the test set, we do not use the training303

set at all.304

We list our results on the FewEvent dataset in305

Table 2 and results on the MAVEN dataset in Table306

4.307

On FewEvent, there is only one event type308

labeled per sentence, so the identification task309

is reduced to classification. We compare our310

identification model to another knowledge-based311

few-shot event classification model (Shen et al.,312

2021)5. The AKE-BML model uses examples from313

FrameNet (Baker et al., 1998) as external knowl-314

edge. Our event knowledge is exemplified in the315

choice of the verbalizer for each event type. They316

also rely on the trigger location for classification317

whereas we perform identification before localiza-318

tion.319

On the localization task, our model can jointly320

learn from annotation of all event types, giving us a321

significant advantage (over 16% F1) over sequence322

labeling models that store “prototype" representa-323

tions of each event type individually.324

5Although the title contains “event detection", in the prob-
lem definition the task is framed as few-shot classification
with known triggers.

On the MAVEN dataset, the increase in event 325

types and the fact that multiple event types can co- 326

occur in the same sentence makes the task more 327

difficult. On the identification task, our prompt- 328

based method can outperform the causal inference 329

enhanced RelNet (Chen et al., 2021; Sung et al., 330

2018) by 8.5% F1 without having access to the trig- 331

ger word location. Instead of linking trigger words 332

to a numerical label, our identification model lever- 333

ages the similarity between the verbalizer and the 334

triggers. For the event detection task (with localiza- 335

tion), since no previous work attempted this task, 336

we compare with a token classification baseline 337

that follows the fine-tuning paradigm and adapt a 338

competitive few-shot name tagging model Struct- 339

Shot (Yang and Katiyar, 2020) to our task. Ad- 340

ditionally, we show some example predictions in 341

Table 3. The Token Classification baseline has poor 342

performance and high variance due to the sampling 343

of the support set. Due to abundance of ’O’ (out- 344

side) tags, this baseline also tends to refrain from 345

predicting any event type. The StructShot model is 346

a token-level k-nearest neighbor model with Viterbi 347

decoding. As KNN models are learning-free, the 348

StructShot model performs relatively well under 349

few-shot settings. However, this KNN backbone 350

also limits the model’s performance when encoun- 351

tering new triggers as in the case for “study" and 352

“authorized". 353

3.2 Supervised Event Detection 354

We report supervised event detection results on 355

the ACE+ dataset in Table 5. We compare with 356

a wide range of existing methods, covering the 357

paradigms of single-task sequence labeling, multi- 358

task learning, question answering and generation. 359

The multitask learning model OneIE enjoys the 360

benefits of joint decoding across related tasks such 361

as entity extraction and relation extraction. Notably, 362

DEGREE (Hsu et al., 2021) also uses event descrip- 363

tions and keywords as a “type-aware prompt" to 364

guide the generation of the trigger word. However, 365

generation using the entire vocabulary is more chal- 366

lenging than our localization task. 367

4 Analysis and Discussion 368

In the previous experiments we showed that our 369

model performs favorably under fully-supervised 370

settings and surpasses previous methods by a large 371

margin under few-shot settings. Here we take a 372

closer look at the design choices in our model. 373
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Task Model 5 way 5 shot 5 way 10 shot 10 way 5 shot 10 way 10 shot

Identification AKE-BML (Shen et al., 2021) 88.99 90.10 84.55 86.03
PILED 92.69 ± 3.60 92.18 ± 2.85 89.60 ± 2.17 92.72 ± 1.14

Id + Localization DMBPN (Deng et al., 2020) 37.51 38.14 34.21 35.51
ProtoNet (Snell et al., 2017) 58.82 61.01 55.04 58.78
Collapsed CRF (Hou et al., 2020) 59.30 62.77 56.41 59.44
PA-CRF (Cong et al., 2021) 62.25 64.45 58.48 61.64
PILED 79.24 ± 2.61 81.22 ± 2.30 81.14 ± 1.93 83.02 ± 1.35

Table 2: Few-shot event detection results (%) on FewEvent. All results are micro-F1 scores. We report the average
and standard deviation across 10 runs.

Context Model

Token Classification StructShot PILED

The results of a separate study[Research] indicated that it
may have been a larger event, placing the shock in the North
Cascades,...

NULL NULL Research: study

It was led by the U.S. Marines and U.S Army against the Iraqi
insurgents in the city of Fallujah and was authorized[Ratify]
by the U.S.-appointed Iraqi Interim Government.

NULL NULL Ratify: authorized

With the commencement of the Virgin Tour, a wide-ranging
audience, especially young women, thronged to attend,
attired[Wearing] in Madonna-inspired clothing.

NULL Wearing: attired;
Wearing: inspired Wearing: attired

In June 2010, seven Indian nationals who were UCIL em-
ployees in 1984, including the former UCIL chairman, were
convicted in Bhopal of causing death by negligence and
sentenced[Punishments] to two years imprisonment and a
fine of about $2,000 each, the maximum punishment allowed
by Indian law.

Prison: imprisonment Punishments: fine
Prison: imprisonment;

Punishments:
punishment

Table 3: Case studies on the few-shot event detection task. The annotations are marked in the context: the trigger is
underlined and the corresponding event name is provided in the bracket. In the last example, we believe that the
given annotation is not complete.

Task Model Micro F1

Identification RelNet* 56.0 ± 1.4
RelNet + Causal* 57.0 ± 0.9
PILED 65.5 ± 1.1

Id + Localization Token Classification 16.3 ± 4.7
StructShot 40.4 ± 1.0
PILED 63.1 ± 1.1

Table 4: Few-shot event detection results (%) on
MAVEN. We follow the 45 way 5 shot setting in (Chen
et al., 2021) and report the average and standard devia-
tion for 10 runs. Results marked with * are also taken
from the aforementioned paper.

4.1 Injecting Event Knowledge374

In our model, event knowledge is present in the375

verbalizer in the identification stage and the type-376

aware prompt in the localization stage.377

In the previous experiments, we use one man-378

ually selected verbalizer per event type. A natu-379

ral question is whether more verbalizers will help.380

We use MAVEN for this set of experiments since381

MAVEN provides alignments between its event382

types and FrameNet frames. The FrameNet6 def- 383

initions and lexical units can then serve as event 384

knowledge. 385

When more than one verbalizer is used, we 386

need to aggregate the scores over the verbalizer 387

set. We experiment with 4 different types of 388

aggregation operators: avg, max, logsumexp, 389

weighted-avg. The logsumexp operator can 390

be seen as a smoothed version of the max opera- 391

tor. In the weighted-avg operator, the weights 392

of the verbalizers are additional learnable param- 393

eters (Hu et al., 2021). As shown in Table 6, in 394

the few-shot setting, using multiple verbalizers can 395

provide 1.5-2% F1 improvement on identification 396

which translates to 1.6-2.2% F1 improvement on 397

the event detection task. In terms of aggregation 398

methods, the avg operator is a simple and reli- 399

able choice with the best performance and lowest 400

variance. Although the wavg operator is more ex- 401

pressive, it is hard to learn good weights with only 402

6https://framenet.icsi.berkeley.edu/
fndrupal/frameIndex
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Category Model Prec Recall F1

Sequence labeling Token Classification 67.1 72.3 69.6
Sequence labeling Token Classification+CRF 67.8 76.6 71.9
Multitask OneIE* (Lin et al., 2020) - - 72.8
QA EEQA* (Du and Cardie, 2020) 71.1 73.7 72.4
Generation Text2Event* (Lu et al., 2021) 71.2 72.5 71.8
Generation DEGREE* (Hsu et al., 2021) - - 72.7
Prompt-based PILED 70.9 76.1 73.4

Table 5: Supervised event detection results (%) on ACE+. The best results are in boldface and the next best results
are underlined.* indicates results cited from the original paper.

Agg method Id F1 Id+Loc F1

avg 67.5 ± 1.6 65.3 ± 1.4
max 67.0 ± 2.2 64.7 ± 2.2
logsumexp 67.0 ± 1.9 64.7 ± 1.9
wavg 67.4 ± 1.6 64.9 ± 1.7

Table 6: Using multiple verbalizers for the 45-way-5-
shot event detection on the MAVEN dataset. To balance
between frames that have different number of lexical
units, we use at most 3 verbalizers. wavg stands for
weighted-avg.

5 examples per event type.403

For the type-aware prompt, we consider using404

the event definition or event keywords and compare405

it against the baseline of using the filled prompt406

from the identification stage. As seen in Table 7,407

the event name alone is relatively informative and408

adding event keywords can provide an additional409

0.8% F1 gain. The definitions from FrameNet are410

highly abstract, which may undermine their value411

in assisting event detection.412

Event knowledge Id F1 Loc F1

Event name 64.8 ± 1.3 62.0 ± 1.5
Name + Definition 64.8 ± 1.3 62.3 ± 1.5
Name + Keywords 65.5 ± 1.1 63.1 ± 1.1

Table 7: Comparison of using different types of event
knowledge to construct the type-aware prompt for local-
ization. The event name is present in the filled prompt.
We use at most 3 keywords per event type.

Id Model Loc Model Prec Recall F1

✓ Full model 70.9 76.1 73.4
✓ Single class CRF 68.3 74.9 71.5
✓ QA 72.5 69.0 70.7
✓ Span Classifier 63.5 78.3 70.1
Enumerate Full model 54.5 81.3 65.3

Table 8: Model ablations on ACE+.

4.2 Model Design Choices 413

We design our localization model as an attention- 414

enhanced single-class CRF tagger. However, there 415

are many alternative modeling choices for detecting 416

the trigger offset. Here, we experiment with other 417

common models including the question answering 418

(QA) formulation (Du and Cardie, 2020; Liu et al., 419

2020) , the span classification formulation (Span 420

Classifier) and the vanilla CRF model as shown 421

in Table 8. For the single-class CRF model, we 422

remove the attention based early-interaction term 423

in Equation 7. In the question answering formu- 424

lation, we compute the scores of the token being 425

first token in the answer (the answer head) and be- 426

ing the last token in the answer (the answer tail) 427

separately. This simple QA model cannot handle 428

multiple “answers" per sentence, so we extend it 429

to a span classification model where each span is 430

scored independently and assigned a binary label. 431

Although the span classifier can handle multi- 432

ple triggers in the same sentence, it suffers from 433

low precision. Compared to the QA model and the 434

span classifier model which score candidate trig- 435

gers independently, the vanilla CRF model explic- 436

itly models the correlation between neighboring 437

tokens, leading to better performance. Addition- 438

ally, our attention-enhanced CRF layer can further 439

improve upon the vanilla CRF model by 1.9 % F1 440

points. 441

One alternative to the identify-then-localize 442

framework is to simply enumerate all possible 443

event types and attempt to localize the trigger for 444

them. To verify if the identification step is truly 445

necessary, we compare our two-stage model with a 446

localization-only model that enumerates all possi- 447

ble event types. As shown in the last row of Table 448

8, this model has high recall at the cost of low 449

precision. Additionally, with N event types in the 450

ontology, this model requires N times training time 451

and inference time. 452
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5 Related Work453

5.1 Prompt-Tuning454

The pioneer of prompt-tuning is the concept of455

in-context learning introduced by GPT-3 (Brown456

et al., 2020), demonstrating the few-shot capabil-457

ity of large pretrained language models. What458

sets prompt-tuning apart from the widely used459

fine-tuning approach is that the task specifications460

(task description or examples) are provided as part461

of the input. Depending on the format of the462

prompt, prompt-tuning methods can be divided into463

cloze-style prompts for classification (Schick and464

Schütze, 2021a,b) and open-ended prompts for gen-465

eration (Li and Liang, 2021). Based on the human466

readability of the prompts, they can be either dis-467

crete (Shin et al., 2020), or continuous (Qin and468

Eisner, 2021). For a more comprehensive view on469

the work in prompt-tuning, we refer readers to (Liu470

et al., 2021).471

Application-wise, prompt-tuning has been472

shown to be very successful for classification and473

generation tasks. There have been some recent474

attempts to apply prompt-tuning to informative475

extraction tasks such as named entity recogni-476

tion (Ding et al., 2021) and relation extraction (Han477

et al., 2021) but they largely focus on the classi-478

fication component of these tasks after locating479

the target spans. To date, we are the first to tailor480

prompt-learning for the event detection task.481

5.2 Low Resource Event Detection482

Due to the high cost of annotating event instances,483

low resource event detection has received much484

attention in recent years. There are a variety of set-485

tings explored, including zero-shot transfer learn-486

ing (Lyu et al., 2021; Huang et al., 2018), cross-487

lingual transfer (Subburathinam et al., 2019), in-488

ducing event types (Huang et al., 2016; Wang et al.,489

2021; Huang and Ji, 2020), keyword-based super-490

vision (Zhang et al., 2021) and few-shot learn-491

ing (Peng et al., 2016; Lai et al., 2020; Shen et al.,492

2021; Cong et al., 2021; Chen et al., 2021).493

Methodology-wise, prototype-based meth-494

ods (Deng et al., 2020; Zhang et al., 2021; Cong495

et al., 2021; Shen et al., 2021) have been a popular496

choice since they were originally developed497

for few-shot learning. Either starting from key-498

words (Zhang et al., 2021), definitions (Shen et al.,499

2021) or examples (Deng et al., 2020; Cong et al.,500

2021), the key is to learn a good representation501

for each event type (often referred to as the class502

prototype) and then predict the event type of the 503

new example using a certain proximity metric to 504

the “prototype". 505

Another idea is to transfer knowledge from se- 506

mantic parsers, such as AMR (Wang et al., 2021; 507

Huang et al., 2018) or SRL (Zhang et al., 2021; 508

Lyu et al., 2021) parsers. The event detection task 509

is then converted into the task of finding a mapping 510

between the predicates detected by the semantic 511

parser to event types in the target ontology. Such 512

methods are dependent on the performance of the 513

semantic parsers. 514

QA-based (Du and Cardie, 2020; Liu et al., 2020) 515

and generation-based methods (Li et al., 2021; Hsu 516

et al., 2021) can also be adapted to the problem 517

since event type information can be incorporated 518

into the input. However, with this flexibility comes 519

a drawback: if a general question such as “What 520

is the trigger?" is asked, the model cannot quickly 521

adapt to new types; if a type-specific question such 522

as “What is the trigger for attack?" is used, the 523

model has to be queried once per possible event 524

type to reach the final answer. For the sake of ef- 525

ficiency, we formulate the identification step as a 526

multi-class classification problem. We also com- 527

pare our two-stage model’s performance with this 528

enumerative approach in Section 4.2. 529

6 Conclusions and Future Work 530

In this paper we study event detection under few- 531

shot learning settings. Inspired by cloze prompts 532

that can bridge the gap between pretrained masked 533

language models and a target task through a task 534

description, we extend this idea to event detection 535

by formulating the problem as an identify-then- 536

localize procedure. Specifically, we first identify 537

the event types present in the context and then find 538

the trigger location based on type-specific event 539

knowledge. We show that this approach signifi- 540

cantly outperforms existing methods for few-shot 541

event detection, achieving a 16% absolute F1 score 542

gain on FewEvent and 23% gain on MAVEN. 543

In the process of performing this study, we also 544

realized some caveats in the current few-shot learn- 545

ing evaluation and we hope that more realistic eval- 546

uations of few-shot event detection models can be 547

designed in future work. Another interesting exten- 548

sion would be to develop interactive systems where 549

the user can constantly provide feedback to assist 550

the extraction of new event types, especially when 551

the initial examples carry ambiguity. 552
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A Dataset Details816

For FewEvent, we use the data split from (Cong817

et al., 2021) and use 80 event types as the training818

set, 10 event types as the dev set and the remaining819

10 event types as the test set. In the data provided,820

sentences are organized by event type and each821

sentence only has one event mention annotation.822

Train Dev Test

# Types 80 10 10
# Sents 67,982 2,173 697

Table 9: Data split for FewEvent.

In the N-way K-shot experiments, we randomly823

sample N event types from the test set and then824

sample K labeled instances of that event type for 825

training. 826

For MAVEN, we follow the data split by (Chen 827

et al., 2021) and use the sentences containing the 828

most frequent 120 event types as the training set. 829

The sentences containing the remaining 45 event 830

type are then split into half as the dev and test set. 831

We use the same random seed as (Chen et al., 2021) 832

to ensure the same split.

Train Dev Test

# Types 125 45 45
# Sents 86, 551 1,532 1,555
# Events 287, 516 1,741 1,806

Table 10: Data split for MAVEN.

833
For ACE, we use the data split in (Lin et al., 834

2020). The same 33 event types are shared in the 835

training, dev and test set.

Train Dev Test

# Sents 19, 240 902 676
# Events 4,419 468 424

Table 11: Data split for ACE+.

836

B Additional Case Studies 837

We show some additional case studies in Table 838

12. In the first case, our model can differenti- 839

ate between similar event types such as “Com- 840

merce_pay" and “Cost" while StructShot identifies 841

both as “Cost". In the second case, we show an 842

event type that is very specific: “Bearing_arms" is 843

almost always triggered by the word “armed" and 844

our model handles it well. The “Filling" event type, 845

on the contrary, is very general, and according to 846

FrameNet, can describe “filling containers and cov- 847

ering areas with some thing, things or substance". 848

This shows that our model can generalize to rare 849

triggers like “inundated". In the last example, we 850

show a failure case of our model. As the event 851

“Cost" is often triggered by verbs, the model fails 852

to recognize that “prices" is also contained in the 853

event type. 854

C Model Hyperparameters 855

For the experiments on ACE+, we used the settings 856

and hyperparameters as shown in Table 13. 857

11

https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2021.acl-long.491
https://doi.org/10.18653/v1/2021.acl-long.491
https://doi.org/10.18653/v1/2021.acl-long.491
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2021.findings-acl.114
https://doi.org/10.18653/v1/2021.findings-acl.114
https://doi.org/10.18653/v1/2021.findings-acl.114


Context Model

Token Classification StructShot PILED

Kuwait and Saudi Arabia paid[Commerce_pay] around
US$32 billion of the US$60 billion cost[Cost].

NULL Cost: paid; Cost:
cost

Commerce_pay:
paid; Cost: cost

The conflict has lasted for over 39 years, making it the second
longest internal conflict in the history of Latin America, after
the Colombian armed[Bearing_arms] conflict.

NULL NULL Bearing_arms:
armed

Strong winds and heavy rainfall inundated[Filling] streets,
residences, and fields, and also toppled chimneys, fences, and
cracked windows across the region.

NULL NULL Filling: inundated

Official ticket prices[Cost] through Ticketmaster ranged from
$71.70 to $439.90.

NULL NULL NULL

Table 12: Extra case studies on the few-shot event detection task. The annotations are marked in the context: the
trigger is underlined and the corresponding event name is provided in the bracket.

Parameter Value

Encoder Roberta-large
Max seq len 200
Batch size 16
Learning rate 1e− 5
Learning rate schedule Linear
Weight decay 1e− 5
Warmup steps 1000
Epochs 10
Adam ϵ 1e− 8
Gradient clipping 1.0

Table 13: ACE+ hyperparameters

For all few-shot experiments, we use the param-858

eters listed in Table 14.859

Parameter Value

Encoder Roberta-base
Max seq len 200
Batch size 8
Learning rate 2e− 5
Learning rate schedule Linear
Weight decay 1e− 5
Warmup steps 0
Epochs 20
Adam ϵ 1e− 8
Gradient clipping 1.0

Table 14: Few-shot experiment hyperparameters.

D Discussion on Few-shot Learning860

Datasets861

Few-shot learning for event detection was largely862

inspired by the few-shot classification work in com-863

puter vision literature (Vinyals et al., 2016; Snell864

et al., 2017; Sung et al., 2018) which assumes that865

images are sampled independently under the N-way866

K-shot setting. However, this assumption does not867

directly transfer to context-dependent tasks such868

as event detection: the distribution of event types869

heavily depends on the document and is far from 870

i.i.d. in practice. This sampling procedure also 871

leads to the absence of the NULL class (sentences 872

without any event mentions), which is often abun- 873

dant in real documents. 874

This data discrepancy has received some atten- 875

tion in other tasks such as relation extraction (Gao 876

et al., 2019; Sabo et al., 2021) but is under-explored 877

for event detection. For example, FewEvent in- 878

stances only contain one event type per sentence 879

and do not include NULL class examples. Sen- 880

tences from MAVEN may contain multiple event 881

types but also exclude the case of NULL. Thus, 882

many previous works in few-shot event detection 883

simply design their model to be a K-way classifier. 884

ACE, the dataset which we use for supervised event 885

detection, contains all these cases and the events 886

follow a natural distribution but the small number 887

of event types makes it less attractive to use as a 888

few-shot benchmark. Our model PILED is capa- 889

ble of handling these cases, as exemplified by our 890

performance on ACE, but such abilities were not 891

put to test on the current few-shot datasets. As a 892

result, we would like to remind readers of the pos- 893

sible inflation of few-shot performance on current 894

benchmarks and call for future research on setting 895

up better evaluation. 896
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