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Abstract

Open-vocabulary image segmentation aims to partition an image into semantic
regions according to arbitrary text descriptions. However, complex visual scenes
can be naturally decomposed into simpler parts and abstracted at multiple lev-
els of granularity, introducing inherent segmentation ambiguity. Unlike existing
methods that typically sidestep this ambiguity and treat it as an external factor,
our approach actively incorporates a hierarchical representation encompassing
different semantic-levels into the learning process. We also propose a decoupled
text-image fusion mechanism and representation learning modules for both ªthingsº
and ªstuffº.1 Additionally, we systematically examine the differences that exist
in the textual and visual features between these types of categories. Our resulting
model, named HIPIE, tackles HIerarchical, oPen-vocabulary, and unIvErsal seg-
mentation tasks within a unified framework. Benchmarked on over 40 datasets, e.g.,
ADE20K, COCO, Pascal-VOC Part, RefCOCO/RefCOCOg, ODinW and SeginW,
HIPIE achieves the state-of-the-art results at various levels of image comprehen-
sion, including semantic-level (e.g., semantic segmentation), instance-level (e.g.,
panoptic/referring segmentation and object detection), as well as part-level (e.g.,
part/subpart segmentation) tasks.

1 Introduction

Image segmentation is a fundamental task in computer vision, enabling a wide range of applications
such as object recognition, scene understanding, and image manipulation [50, 14, 42, 7, 37]. Recent
advancements in large language models pave the way for open-vocabulary image segmentation,
where models can handle a wide variety of object classes using text prompts. However, there is no
single ªcorrectº way to segment an image. The inherent ambiguity in segmentation stems from the
fact that the interpretations of boundaries and regions within an image depend on the specific tasks.

Existing methods for open-vocabulary image segmentation typically address the ambiguity in image
segmentation by considering it as an external factor beyond the modeling process. In contrast,
we adopt a different approach by embracing this ambiguity and present HIPIE, as illustrated in
Fig. 1, a novel HIerarchical, oPen-vocabulary and unIvErsal image segmentation and detection
model. This includes semantic-level segmentation, which focuses on segmenting objects based
on their semantic meaning, as well as instance-level segmentation, which involves segmenting
individual instances of objects or groups of objects (e.g., instance and referring segmentation).

1The terms things (countable objects, typically foreground) and stuff (non-object, non-countable, typically
background) [1] are commonly used to distinguish between objects that have a well-defined geometry and are
countable, e.g. people, cars, and animals, and surfaces or regions that lack a fixed geometry and are primarily
identified by their texture and/or material, e.g. the sky, road, and water body.
*: equal contribution
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Figure 1: HIPIE is a unified framework which, given an image and a set of arbitrary text descriptions, provides
hierarchical semantic, instance, part, and subpart-level image segmentations. This includes open-vocabulary
semantic (e.g., crowds and sky), instance/panoptic (e.g., person and cat), part (e.g., head and torso), subpart (e.g.,
ear and nose) and referring expression (e.g., umbrella with a white pole) masks. HIPIE outperforms previous
methods and established new SOTAs on these tasks regardless of their granularity or task specificity. Bottom
images: our method can seamlessly integrate with SAM to enable class-aware image segmentation on SA-1B.
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Figure 2: Noticeable discrepancies exist in the between-
class similarities of visual and textual features between
stuff and thing classes. We propose a decoupled repre-
sentation learning approach that effectively generates
more discriminative visual and textual features. We ex-
tract similarity matrices for the visual features, obtained
through a pretrained MAE [17] or our fine-tuned one,
and for the text features, produced using a pretrained
BERT [6] or fine-tuned one. We report results on COCO-
Panoptic [23] and measure the mean similarity (µ).

Additionally, our model captures finer details by
incorporating part-level segmentation, which in-
volves segmenting object parts/subparts. By en-
compassing different granularity, HIPIE allows
for a more comprehensive and nuanced analysis
of images, enabling a richer understanding of
their contents.

To design HIPIE, we begin by investigating the
design choices for open-vocabulary image seg-
mentation (OIS). Existing methods on OIS typi-
cally adopt a text-image fusion mechanism, and
employ a shared representation learning module
for both stuff and thing classes [4, 62, 58, 10,
56]. Fig. 2 shows the similarity matrics of vi-
sual and textual features between stuff and thing
classes. On this basis, we can derive several
conclusions:

• Noticeable discrepancies exist in the between-
class similarities of textual and visual features
between stuff and thing classes.

• Stuff classes exhibit significantly higher levels
of similarity in text features than things.
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SAM [24] ✗ ✓ ✗ ✗ ✗ ✓ ✗ *

SEEM [67] ✓ ✓ ✓ ✓ ✓ ✗ ✗ *

ODISE [56] ✓ ✓ ✓ ✓ ✗ ✗ ✗ *

UNINEXT [58] ² ✓ ✗ ✗ ✓ ✗ ✗ ✓

X-Decoder [66] ✓ ✓ ✓ ✓ ✓ ✗ ✗ *

G-DINO [36] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

PPS [5] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

HIPIE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

vs. prev. SOTA - +5.1 +2.0 +1.3 +0.5 - +5.2 +3.2

Table 1: Our HIPIE is capable of performing all the listed segmentation and detection tasks and achieves
the state-of-the-art performance using a unified framework. We present performance comparisons with SOTA
methods on a range of benchmark datasets: APmask for instance segmentation on MSCOCO [34], APbox for object
detection on MSCOCO, oIoU for referring segmentation on RefCOCO+ [61], mIoU for semantic segmentation
on Pascal Context[64], and mIoUPartS for part segmentation on Pascal-Panoptic-Parts [5]. The second best
performing method for each task is underlined. ∗: object detection can be conducted via generating bounding
boxes using instance segmentation masks. ‘Seg.’ denotes segmentation. ²: In principle, UNINEXT can take
arbitrary texts as labels, however, the original work focused on close-set performance and did not explore
open-vocabulary inference.

This observation suggests that integrating textual features may yield more significant benefits in
generating discriminative features for thing classes compared to stuff classes. Consequently, for thing
classes, we adopt an early image-text fusion approach to fully leverage the benefits of discriminative
textual features. Conversely, for stuff classes, we utilize a late image-text fusion strategy to mitigate
the potential negative effects introduced by non-discriminative textual features. Furthermore, the
presence of discrepancies in the visual and textual features between stuff and thing classes, along
with the inherent differences in their characteristics (stuff classes requiring better capture of texture
and materials, while thing classes often having well-defined geometry and requiring better capture
of shape information), indicates the need for decoupling the representation learning modules for
producing masks for stuffs and things.

In addition to instance/semantic-level segmentation, our model is capable of open-vocabulary hierar-
chical segmentation. Instead of treating part classes, like ‘dog leg’, as standard multi-word labels, we
concatenate class names from different granularity as prompts. During training, we supervise the
classification head using both part labels, such as ‘tail’, and instance labels, such as ‘dog’, and we
explicitly contrast a mask embedding with both instance-level and part-level labels. In the inference
stage, we perform two separate forward passes using the same image but different prompts to gen-
erate instance and part segmentation. This design choice empowers open-vocabulary hierarchical
segmentation, allowing us to perform part segmentation on novel part classes by randomly combining
classes from various granularity, such as ‘giraffe’ and ‘leg’, even if they have never been seen during
training. By eliminating the constraints of predefined object classes and granularity, HIPIE offers a
more flexible and adaptable solution for image segmentation.

We extensively benchmark HIPIE on various popular datasets to validate its effectiveness, including
MSCOCO, ADE20K, Pascal Panoptic Part, and RefCOCO/RefCOCOg. HIPIE achieves state-of-the-
art performance across all these datasets that cover a variety of tasks and granularity.

To the best of our knowledge, HIPIE is the first hierarchical, open-vocabulary and universal image
segmentation and detection model (see Table 1). By decoupling representation learning and text-
image fusion mechanisms for things vs. stuff classes, HIPIE overcomes the limitations of existing
approaches and achieves state-of-the-art performance on various benchmarks.

2 Related Works

Open-Vocabulary Semantic Segmentation [2, 53, 26, 16, 44, 32, 54, 55] aims to segment an
image into semantic regions indicated by text descriptions that may not have been seen during
training. ZS3Net [2] combines a deep visual segmentation model with an approach to generate
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visual representations from semantic word embeddings to learn pixel-wise classifiers for novel
categories. LSeg [26] uses CLIP’s text encoder [43] to generate the corresponding semantic class’s
text embedding, which it then aligns with the pixel embeddings. OpenSeg [16] adopts a grouping
strategy for pixels prior to learning visual-semantic alignments. By aligning each word in a caption
to one or a few predicted masks, it can scale-up the dataset and vocabulary sizes. GroupViT [54] is
trained on a large-scale image-text dataset using contrastive losses. With text supervision alone, the
model learns to group semantic regions together. OVSegmentor [55] uses learnable group tokens to
cluster image pixels, aligning them with the corresponding caption embeddings.

Open-Vocabulary Panoptic Segmentation (OPS) unifies semantic and instance segmentation, and
aims to perform these two tasks for arbitrary categories of text-based descriptions during inference
time [10, 56, 66, 67, 58]. MaskCLIP [10] first predicts class-agnostic masks using a mask proposal
network. Then, it refines the mask features through Relative Mask Attention interactions with the
CLIP visual model and integrates the CLIP text embeddings for open-vocabulary classification.
ODISE [56] unifies Stable Diffusion [47], a pre-trained text-image diffusion model, with text-image
discriminative models, e.g. CLIP [43], to perform open-vocabulary panoptic segmentation. X-
Decoder [66] takes two types of queries as input: generic non-semantic queries that aim to decode
segmentation masks for universal segmentation, and textual queries to make the decoder language-
aware for various open-vocabulary vision tasks. UNINEXT [58] unifies diverse instance perception
tasks into an object discovery and retrieval paradigm, enabling flexible perception of open-vocabulary
objects by changing the input prompts.

Referring Segmentation learns valid multimodal features between visual and linguistic modalities to
segment the target object described by a given natural language expression [19, 60, 20, 22, 13, 59, 52,
35, 63]. It can be divided into two main categories: 1) Decoder-fusion based method [8, 51, 63, 35]
first extracts vision features and language features, respectively, and then fuses them with a multi-
modal design. 2) Encoder-fusion based method [13, 59, 30] fuses the language features into the
vision features early in the vision encoder.

Parts Segmentation learns to segment instances into more fine-grained masks. PPP [5] established a
baseline of hierarchical understanding of images by combining a scene-level panoptic segmentation
model and part-level segmentation model. JPPF [21] improved this baseline by introducing joint
Panoptic-Part Fusion module that achieves comparable performance with significantly smaller models.

Promptable Segmentation. The Segment Anything Model (SAM) [24] is an approach for building a
fully automatic promptable image segmentation model that can incorporate various types of human
interventions, such as texts, masks, and points. SEEM [67] proposes a unified prompting scheme that
encodes user intents into prompts in a joint visual-semantic space. This approach enables SEEM to
generalize to unseen prompts for segmentation, achieving open-vocabulary and zero-shot capabilities.
Referring segmentation can also be considered as promptable segmentation with text prompts.

Comparison with Previous Work. Table 1 compares our HIPIE method with previous work in
terms of key properties. Notably, HIPIE is the only method that supports open-vocabulary universal
image segmentation and detection, enabling the object detection, instance-, semantic-, panoptic-,
hierarchical-(whole instance, part, subpart), and referring-segmentation tasks, all within a single
unified framework.

3 Method

We consider all relevant tasks under the unified framework of language-guided segmentation, which
performs open-vocabulary segmentation and detection tasks for arbitrary text-based descriptions.

3.1 Overall Framework

The proposed HIPIE model comprises three main components, as illustrated in Fig. 3:

1) Text-image feature extraction and information fusion (detailed in Secs. 3.2 to 3.4): We first generate
a text prompt T from labels or referring expressions. Then, we extract image (I) and text (T ) features
Fv = Encv(I), Ft = Enct(T ) using image encoder Encv and text encoder Enct, respectively. We
then perform feature fusion and obtain fused features F ′

v, F
′

t = FeatureFusion(Fv, Ft).
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Figure 3: Diagram of HIPIE for hierarchical, universal and open-vocabulary image segmentation and detection.
The image and text prompts are first passed to the image and text decoder to obtain visual features Fv and
text features Ft. Early fusion is then applied to merge image and text features to get F ′

v, F
′
t . Two independent

decoders are used for things (foreground) classes and stuff (background) classes.

2) Foreground (referred to as things) and background (referred to as stuffs) mask generation (detailed
in Sec. 3.5): Each of the decoders takes in a set of image features and text features and returns sets
of masks, bounding boxes, and object embeddings (M,B,E). We compute the foreground and
background proposals and concatenate them to obtain the final proposals and masks as follows:

Stuff : (M2, B2, E2) = StuffDecoder(Fv, Ft)
Thing : (M1, B1, E1) = ThingDecoder(FeatureFusion(Fv, Ft))

Overall : (M,B,E) = (M1 ⊕M2, B1 ⊕B2, E1 ⊕ E2)
(1)

where ⊕ denotes the concatenation operation.

3) Proposal and mask retrieval using text prompts (detailed in Sec. 3.6): To assign class labels to these
proposals, we compute the cosine similarity between object embedding E and the corresponding
embedding E′

i of class i ∈ {1, 2..., c}. For a set of category names, the expression is a concatenated
string containing all categories. We obtain E′

i by pooling tokens corresponding to each label from the
encoded sequence Ft. For referring expressions, we taken the [CLS] token from BERT output as E′

i.

3.2 Text Prompts

Text prompting is a common approach used in open-vocabulary segmentation models [19, 60, 57, 58].

For open-vocabualry instance segmentation, panoptic segmentation, and semantic segmentation, the
set of all labels C is concatenated into a single text prompt Ti using a ª.º delimiter. Given an image I
and a set of text prompts T , the model aims to classify N masks in the label space C ∪ {“other”},
where N is the maximum number of mask proposals generated by the model.

For referring expressions, the text prompt is simply the sentence itself. The goal is to locate one mask
in the image corresponding to the language expression.

3.3 Image and Text Feature Extraction

We employ a pretrained BERT model [6] to extract features for text prompts. Because the BERT-base
model can only process input sequences up to 512 tokens, we divide longer sequences into segments
of 512 tokens and encode each segment individually. The resulting features are then concatenated to
obtain features of the original sequence length.

We utilize ResNet-50 [18] and Vision Transformer (ViT) [11] as base architectures for image encoding.
In the case of ResNet-50, we extract multiscale features from the last three blocks and denote them as
Fv . For ViT, we use the output features from blocks 8, 16, and 32 as the multiscale features Fv .
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Figure 4: Various design choices for generating thing and stuff masks with arbitrary text descriptions. In version
a), We use a single decoder for all masks. Early fusion is applied. In version b), two independent decoders are
used for things and stuff classes. Early fusion is adopted for both decoders. Version c) is identical to version b)
with the only difference being that the stuff decoder do not make use of early fusion.

3.4 Text-Image Feature Fusion

We explored several design choices for text-image feature fusion and mask generation modules
as shown in Fig. 4 and Table 5, and discovered that Fig. 4c) can give us the optimal performance.
We adopt bi-directional cross-attention (Bi-Xattn) to extract text-guided visual features Ft2v and
image-guided text features Fv2t. These attentive features are then integrated with the vanilla text
features Ft and image features Fv through residual connections, as shown below:

Ft2v, Fv2t = Bi-Xattn(Fv, Ft)
(F ′

v, F
′

t ) = (Fv + Ft2v, Ft + Fv2t)
(2)

where Fv and Ft represent the visual and text-prompt features, respectively.

3.5 Thing and Stuff Mask Generation

We then generate masks and proposals for the thing and stuff classes by utilizing F ′

v and F ′

t that we
obtained in Sec. 3.4.

Model Architecture. While architectures such as Mask2Former and MaskDINO [4, 28] can perform
instance, semantic and panoptic segmentation simultaneously, models trained jointly show inferior
performance compared with the same model trained for a specific task (e.g. instance segmentation
only). We hypothesize that this may result from the different distribution of spatial location and
geometry of foreground instance masks and background semantic masks. For example, instance
masks are more likely to be connected, convex shapes constrained by a bounding box, whereas
semantic masks may be disjoint, irregular shapes spanning across the whole image.

To address this issue, in a stark contrast to previous approaches [58, 36, 57] that use a unified
decoder all both stuffs and things, we decouple the stuff and thing mask prediction using two separate
decoders. For the thing decoder, we adopt Deformable DETR [65] with a mask head following the
UNINEXT [58] architecture and incorporate denoising procedures proposed by DINO [62]. For the
stuff decoder, we use the architecture of MaskDINO [28].

Proposal and Ground-Truth Matching Mechanisms. We make the following distinctions between
the two heads. For thing decoder, we adopt simOTA [15] to perform many-to-one matching between
box proposals and ground truth when calculating the loss. We also use box-iou-based NMS to
remove duplicate predictions. For the stuff decoder, we adopt one-to-one Hungarian matching [25].
Additionally, we disable the box loss for stuff masks. We set the number of queries to 900 for the
things and 300 for the stuffs.

Loss Functions. For both decoders, we calculate the class logits as the normalized dot product
between mask embeddings (M ) and text embeddings (F ′

t ). We adopt Focal Loss [33] for classification
outputs, L1 loss, and GIoU loss [45] for box predictions, pixel-wise binary classification loss and
DICE loss [49] for mask predictions. Given predictions (M1, B1, E1), (M2, B2, E2), groundtruth
labels (M ′, B′, C) and its foreground and background subset (M ′

f , B
′

f , Cf ) and (M ′

b, B
′

b, Cb), The

final Loss is computed as

Lthing = λclsLcls(E1, C
′

f ) + λmaskLmask(M1,M
′

f ) + λboxLbox(B1, B
′

f )
Lstuff = λclsLcls(E2, C

′) + λmaskLmask(M2,M
′) + λboxLbox(B2, B

′

b)
L = Lthing + Lstuff

(3)

where Lbox = λL1LL1 + λgiouLgiou, Lmask = λceLce + λdiceLdice, and Lcls = Lfocal. Note that while
we do not use the stuff decoder for thing prediction, we still match its predictions with things and

6



person

head

torso

upper arm

hair

face

eye

nose

mouth

eyebrow

ear

HIPIE

T1 T2 T3 … TN

h
e
a
d

e
ye

n
o
se … ta
il

T1 T2 T3 … TN

p
e
rso

n

ca
t

w
a
ll

…

ce
ilin

g

Figure 5: Hierarchical segmentation pipeline. We concatenate the instance class names and part class names
as labels. During the training process, we supervise the classification head using both part labels and instance
labels. During inference, we perform two separate forward passes using the same image but different prompts to
generate instance and part segmentations. By combining the part segmentation and instance segmentation of the
same image, we obtain hierarchical segmentation results on the right side.

compute the class and box losses in the training. We find such auxiliary loss setup make the stuff
decoder aware of the thing distribution and imporves the final performance.

3.6 Open-Vocabulary Universal Segmentation

In closed set setting, we simply merge the output of two decoders and perform the standard postpro-
cessing of UNINEXT [58] and MaskDINO [28] to obtain the final output.

In zero-shot open vocabulary setting, we follow ODISE [56] and combining our classification logits
with a text-image discriminative model, e.g., CLIP [43]. Specially, given the a mask M on image I ,
its features E and test classes Ctest, we first compute the probability p1(E,Ctest) = P(Ctest|E) in the
standard way as mentioned before. We additionally compute mask-pooled features of M from the
vision encoder V of CLIP as ECLIP = MaskPooling(M,V(I)). Then we compute the CLIP logits
p2(E,Ctest) = P(Ctest|ECLIP) as the similarity between the CLIP text features and the ECLIP. Finally
we combine the final prediction as

pfinal(E,Ctest) ∝ p1(E,Ctest)
λp2(E,Ctest)

1−λ (4)

Where λ is a balancing factor. Emprically, we found such setting leads to better performance than
naively relying completely on CLIP features only or close-set logits.

3.7 Hierarchical segmentation

In addition to the instance-level segmentation, we can also perform part-aware hierarchical segmenta-
tion. We concatenate the instance class names and part class names as labels. Some examples are
"human ear", and "cat head". In the training process, we supervise the classification head with both
part labels and instance labels. Specifically, we replace Lcls with LclsPart+LclsThing in Eq. (3). We
combine parts segmentation and instance segmentation of the same image to get part-aware instance
segmentation. Additionally, layers of hierarchy is obtained by grouping the parts. For example, the
"head" consists of ears, hair, eyes, nose, etc. Fig. 5 illustrates this process. Fig. A1 highlights the
difference of our approach with other methods.

3.8 Class-aware part segmentation with SAM

We can also perform the class-aware hierarchical segmentation by combining our semantic output
with class-agnostic masks produced by SAM [24]. Specifically, given semantic masks M , their class
probability PM , and SAM-generated part masks S, we compute the class probability of mask Si ∈ S
with respect to class j as

PS(Si, j) ∝
∑

Mk∈M

PM (Mk, j)|Mk ∩ Si| (5)

Where |Mk ∩ Si| is the area of intersection between mask Mk and Si. We combine our semantic
output with SAM because our pretraining datasets only contains object-centric masks, whereas the
SA-1B dataset used by SAM contains many local segments and object parts.
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Figure 6: Qualitative Analysis of Open Vocabulary Hierarchal Segmentation. Because of our hierarchal
design, our model produces better-quality masks. In particular, our model can generalize to novel hierarchies
that do not exist in part segmentation datasets.

Method Backbone
COCO ADE20K PAS-P

PQ APmask APbox mIoU PQ APmask APbox mIoU mIoUPartS

MaskCLIP [10] ViT16 - - - - 15.1 6.0 - 23.7 -
X-Decoder [66] FocalT 52.6 41.3 - 62.4 18.8 9.8 - 25.0 -
X-Decoder DaViT-B 56.2 45.8 - 66.0 21.1 11.7 - 27.2 -
SEEM [67] FocalT 50.6 39.5 - 61.2 - - - - -
SEEM DaViT-B 56.2 46.8 - 65.3 - - - - -
ODISE [56] ViT-H+SD 55.4 46.0 46.1 65.2 22.6 14.4 15.8 29.9 -
JPPF [21] EffNet-b5 - - - - - - - - 54.4
PPS [5] RNST269 - - - - - - - - 58.6
HIPIE RN50 52.7 45.9 53.9 59.5 18.4 13.0 16.2 26.8 57.2
HIPIE ViT-H 58.0 51.9 61.3 66.8 20.6 15.0 18.7 29.0 63.8

Table 2: Open-vocabulary panoptic segmentation (PQ), instance segmentation (APmask), semantic segmentation
(mIoU), part segmentation (mIoUPartS), and object detection (APbox). N/A: not applicable. -: not reported.

4 Experiments

We comprehensively evaluate HIPIE through quantitative and qualitative analyses to demonstrate its
effectiveness in performing various types of open-vocabulary segmentation and detection tasks. The
implementation details of HIPIE are explained in Sec. 4.1. Sec. 4.2 presents the evaluation results of
HIPIE. Additionally, we conduct an ablation study of various design choices in Sec. 4.3.

4.1 Implementation Details

Model Learning Settings can be found in our appendix materials.

Evaluation Metrics. Semantic Segmentation performance is evaluated using the mean Intersection-
Over-Union (mIoU) metric. For Part segmentation, we report mIoUPartS, which is the mean IoU
for part segmentation on grouped part classes [5]. Object Detection and Instance Segmentation
results are measured using the COCO-style evaluation metric - mean average precision (AP) [34].
Panoptic Segmentation is evaluated using the Panoptic Quality (PQ) metric [23]. Referring Image
Segmentation (RIS) [19, 60] is evaluated with overall IoU (oIoU).

4.2 Results

Panoptic Segmentation. We examine Panoptic Quality (PQ) performance across MSCOCO [34] for
closed-set and ADE20K [64] for open-set zero shot transfer learning. Based on Table 3 our model is
able to outperform the previous close-set state-of-the-art using a ViT-H backbone by +1.8. In addition,
we match the best open-set PQ results, while being able to run on more tasks and having a simpler
backbone than ODISE [56]. Semantic Segmentation. The evaluation of our model’s performance
on various open-vocabulary semantic segmentation datasets is presented in Table 4. These datasets
include: 1) A-150: This dataset comprises 150 common classes from ADE20K [64]. 2) A-847: This
dataset includes all 847 classes from ADE20K [64]. 3) PC-59: It consists of 59 common classes from
Pascal Context [39]. 4) PC-459: This dataset encompasses the full 459 classes of Pascal Context [39].
5) PAS-21: The vanilla Pascal VOC dataset [12], containing 20 foreground classes and 1 background
class. These diverse datasets enable a comprehensive evaluation of our model’s performance across
different settings, such as varying class sizes and dataset complexities. Table 4 provides insights into
how our model performs in handling open-vocabulary semantic segmentation tasks, demonstrating
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Method Data
A-150 A-847 CTX459 SeginW

PQ APmask APbox mIoU mIoU mIoU APmask

OpenSeed O365,COCO 19.7 15.0 17.7 23.4 - - 36.1
X-Decoder COCO,CC3M,SBU-C,VG,COCO-Caption,(Florence) 21.8 13.1 - 29.6 9.2 16.1 32.2
UNINEXT O365,COCO,RefCOCO 8.9 14.9 11.9 6.4 1.8 5.8 42.1
HIPIE w/o CLIP O365,COCO,RefCOCO,PACO 18.1 16.7 20.2 19.8 4.8 12.2 41.0
HIPIE w/ CLIP + (CLIP) 22.9 19.0 22.9 29.0 9.7 14.4 41.6

Table 3: Open-Vocabulary Universal Segmentation. We compare against other universal multi-task segmentation
models. (*) denotes pretraining dataset of representations.

Method A-150 PC-59 PAS-21 COCO

ZS3Net [2] - 19.4 38.3 -
LSeg+ [26, 16] 18.0 46.5 - 55.1
HIPIE 26.8 53.6 75.7 59.5
vs. prev. SOTA +7.1 +10.7 +28.3 +4.4

GroupViT [54] 10.6 25.9 50.7 21.1
OpenSeg [16] 21.1 42.1 - 36.1
MaskCLIP [10] 23.7 45.9 - -
ODISE [56] 29.9 57.3 84.6 65.2
HIPIE 29.0 59.3 83.3 66.8
vs. prev. SOTA -0.9 +2.0 -1.3 +1.6

Table 4: Comparison on open-vocabulary semantic
segmentation. Baseline results are copied from [56].

Decoder
Fusion
(things)

Fusion
(stuff)

PQ APmask oIOU

Unified 45.1 42.9 67.1
Decoupled 50.6 43.6 67.6
Unified (Fig. 4a) ✓ ✓ 44.6 42.5 66.8
Decoupled (Fig. 4b) ✓ ✓ 50.0 44.4 77.1
Decoupled (Fig. 4c) ✓ 51.3 44.4 77.3

Table 5: An ablation study on different decoder and text-
image fusion designs, as depicted in Fig. 4. We report
PQ for panoptic segmentation on MSCOCO, APmask for
instance segmentation on MSCOCO, and oIoU for refer-
ring segmentation on RefCOCO’s validation set. Our final
choice is highlighted in gray .

its effectiveness and versatility in detecting and segmenting a wide range of object categories in
real-world scenarios.

Part Segmentation. We evaluate our models performance on Pascal-Panoptic-Parts dataset [5] and
report mIoUpartS in Table 3. We followed the standard grouping from [5]. Our model outperforms
state-of-the-art by +5.2 in this metric. We also provide qualitative comparisons with Grounding DINO
+ SAM in Fig. 7. Our findings reveal that the results of Grounding SAM are heavily constrained by
the detection performance of Grounding DINO. As a result, they are unable to fully leverage the
benefits of SAM in producing accurate and fine-grained part segmentation masks.

Raw Image SAM Mask GDINO+SAM HIPIE+SAM

Figure 7: Results of merging HIPIE with SAM for class-aware image segmentation on SA-1B dataset. Grounded-
SAM (Grounding DINO + SAM) [29, 24] cannot fully leverage the benefits of SAM in producing accurate and
fine-grained part segmentation masks. Our method demonstrates fewer misclassifications and overlooked masks
across the SA-1B dataset compared to the Grounded-SAM approach.
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Method Backbone
Object Detection

AP APS APM APL

Deform. DETR [65] RN50 46.9 29.6 50.1 61.6
DN-DETR [27] RN50 48.6 31.0 52.0 63.7
UNINEXT [58] RN50 51.3 32.6 55.7 66.5
HIPIE RN50 53.9 37.5 58.0 68.0
vs. prev. SOTA +2.6 +4.9 +2.3 +1.5

Cas. Mask-RCNN [3] CNeXtL 54.8 - - -
ViTDet-H [31] ViT-H 58.7 - - -
UNINEXT [58] ViT-H 58.1 40.7 62.5 73.6
HIPIE ViT-H 61.3 45.8 65.7 75.9
vs. prev. SOTA +3.2 +5.1 +3.2 +2.3

Table 6: Comparisons on the instance segmentation and
object detection tasks. We evaluate model performance
on the validation set of MSCOCO.

Method Backbone
COCO COCO+ COCOg
oIoU oIoU oIoU

MAttNet [60] RN101 56.5 46.7 47.6
VLT [9] Dark56 65.7 55.5 53.0
RefTR [40] RN101 74.3 66.8 64.7
UNINEXT [58]RN50 77.9 66.2 70.0
UNINEXT [58]ViT-H 82.2 72.5 74.7
HIPIE RN50 78.3 66.2 69.8
HIPIE ViT-H 82.6 73.0 75.3
vs. prev. SOTA +0.4 +0.5 +0.6

Table 7: Comparison on the referring image segmen-
tation (RIS) task. We evaluate the model performance
on the validation sets of RefCOCO, RefCOCO+, and
RefCOCOg datasets using overall IoU (oIoU) metrics.

Object Detection and Instance Segmentation. We evaluate our model’s object detection and
instance segmentation capabilities following previous works [28, 67, 56]. On MSCOCO [34] and
ADE20K [64] datasets, HIPIE achieves an increase of +5.1 and +0.6 APmask respectively. Detailed
comparisons are provided in Sec. 4.2 which demonstrate state-of-the-art results on ResNet and ViT
architectures consistently across all Average Precision metrics.

Referring Segmentation. Referring image segmentation (RIS) tasks are examined using the Ref-
COCO, RefCOCO+, and RefCOCOg datasets. Our model outperforms all the other alternatives by
an average of +0.5 in overall IoU (oIoU).

4.3 Ablation Study

To demonstrate the effectiveness of our design choices for text-image fusion mechanisms and
representation learning modules for stuff and thing classes, we conduct an ablation study (depicted in
Fig. 4) and present the results in Table 5. From this study, we draw several important conclusions:
1) Text-image fusion plays a critical role in achieving accurate referring segmentation results. 2)
The early text-image fusion approach for stuff classes negatively impacts the model’s performance
on panoptic segmentation. This finding validates our analysis in the introduction section, where we
highlighted the challenges introduced by the high levels of confusion in stuff’s textual features, which
can adversely affect the quality of representation learning. 3) Our design choices significantly improve
the performance of panoptic segmentation, instance segmentation, and referring segmentation tasks.
These conclusions underscore the importance of our proposed design choices in achieving improved
results across multiple segmentation tasks.

5 Conclusions

This paper presents HIPIE, an open-vocabulary, universal, and hierarchical image segmentation model
that is capable of performing various detection and segmentation tasks using a unified framework,
inculding object detection, instance-, semantic-, panoptic-, hierarchical-(whole instance, part, subpart),
and referring-segmentation tasks. Our key insight is that we should decouple the representation
learning modules and text-image fusion mechanisms for background (i.e., referred to as stuff) and
foreground (i.e., referred to as things) classes. Extensive experiments demonstrate that HIPIE
achieves state-of-the-art performance on diverse datasets, spanning across a wide range of tasks and
segmentation granularity.

Acknowledgement Trevor Darrell and XuDong Wang were funded by DoD including DARPA LwLL
and the Berkeley AI Research (BAIR) Commons.
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Appendix

A.1 List of Datasets

semantic instance panoptic grounding part training # images

ADE-150 ✓ ✓ ✓ 2000
Pascal VOC ✓ 1449

Pascal Context-59 ✓ 5105
Pascal-Panoptic-Parts ✓ ✓ ✓ ✓ * 10103

COCO ✓ ✓ ✓ ✓ 121408
RefCOCO ✓ ✓ 19994

RefCOCO+ ✓ ✓ 19992
RefCOCOg ✓ ✓ 26711

Table A1: List of the dataset used. The checkmarks denote whether a dataset has a particular type of annotation
and whether the dataset is used in the training process. * Because of a data leak between Pascal-Panoptic-Parts
and other Pascal datasets, we use weights trained without Pascal-Panoptic-Parts in those evaluations unless
otherwise specified.

We report the statistics of datasets used in training and evaluation in table Table A1. Additionally, we
further evaluate our model on 35 object detection datasets and 25 segmentation datasets in Sec. A.4.2.
In total, we benchmarked our model on around 70 datasets. These benchmarks show our model can
adapt to many different scenarios and retain a reasonable performance in a zero-shot manner.

A.2 Hierarchical Segmentation

Figure A1: Hierarchal Design of HIPIE compared with other methods.

Fig. A1 highlights the difference of our approach with other methods for hierarchical segmentation.
We concatenate class names of different hierarchies as prompts. During the training, we uniquely
contrast a mask embedding with both scene-level and part-level labels explicitly. Previous works such
as UNINEXT and ODISE only treat these classes as normal multi-word labels. While UNINEXT
allows contrasting different words individually because of the design of BERT encoder, it leads to
suboptimal signals. In the example above, "person head" has both positive and negative target for
"person".

A.3 Experiment Setup

A.3.1 Model Learning Settings

HIPIE is first pre-trained on Objects365 [48] for 340k iterations, using a batch size of 64 and a
learning rate of 0.0002, and the learning rate is dropped by a factor of 10 after the 90th percentile of
the schedule. After the pre-training stage, we finetune HIPIE on COCO [34], RefCOCO, RefCOCOg,
and RefCOCO+ [41, 61] jointly for 120k iterations, using a batch size of 32 and a learning rate
of 0.0002. For both stages, we resize the original images so that the shortest side is at least 800
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pixels and at most 1024 pixels, while the longest side is at most 1333 pixels. For part segmentation,
we train additionally train our model jointly on Pascal-Panoptic-Parts [5] dataset and all previously
mentioned datasets. Because of potential data leaks between Pascal-Panoptic-Parts and other Pascal
datasets used in the open-vocabulary segmentation evaluation, we report those numbers with weights
not trained on Pascal-Panoptic-Part dataset. Because of our hierarchal design, our model produces
better-quality masks. In particular, our model can generalize to novel hierarchies that do not exist in
part segmentation datasets. In Fig. 6, we provide visualization of such results.

A.3.2 Implementation Details

For loss functions in Eq. (3), we have λcls = 2.0, λmask = 5.0, λbox = 5.0, λce = 1.0, λdice =
1.0, λL1 = 1.0, λgiou = 0.2. For λ in Eq. (4), we use λ = 0.2 for seen classes during the training
and λ = 0.45 for novel classes. In close-set evaluation, we set λ = 0.0 and do not use CLIP. We also
do not use CLIP for PAS-21 evaluation (whose classes are mostly covered by COCO) because we
find it degrades the performance. We use 800 and 1024-resolution images during the training. For
evaluations, we use 1024-resolution images.

A.3.3 Training Process

Stage Task Dataset Batch Size Max Iter Step

I OD&IS Objects365 64 340741 312346

II
OD&IS COCO 32

91990 76658
REC&RIS RefCOCO/g/+ 32

III
PanoS COCO 32

150000 100000,135000REC&RIS RefCOCO/g/+ 32
PartS Pascal-Panoptic-Parts 32

Table A2: Training Process. Following UNINEXT [58], We first pretrain our model for object detection on Ob-
ject365 for 340k iteration (Stage I). Then we fine-tune our model jointly on COCO for object detection, instance
segmentation, referring expression comprehension (REC), and referring segmentation (RIS) for 92k iteration
(Stage II). We further jointly train our model on Panoptic Segmentation, REC, RIS, and Part Segmentation for
150k iteration (Stage III)

We train all our models on NVIDIA-A100 GPUs with a batch size of 2 per GPU using AdamW [38]
optimizer. We use a base learning rate of 0.0001 and a weight decay of 0.01. The learning rate of
the backbone is further multiplied by 0.1. Following UNINEXT [58], We first pretrain our model
for object detection on Object365 for 340k iteration (Stage I). Then we fine-tune our model jointly
on COCO for object detection, instance segmentation, referring expression comprehension (REC),
and referring segmentation (RIS) for 91k iteration (Stage II). We further jointly train our model on
Panoptic Segmentation, REC, RIS, and Part Segmentation for 150k iteration (Stage III). In Stage I,
the learning rate is dropped by a factor of 10 after 312k iterations. In stage II, the learning rate is
dropped by a factor of 10 after 77k iterations. In Stage III, the learning rate is dropped by a factor of
10 after 100k and 135k iterations. In all stages, we sample uniformly across datasets when there are
multiple datasets. The global batch size is 64 in Stage I and 32 in Stage II and III. Notably, our stage
I and II is identical to the setup of UNINEXT. For ablation studies, we train stage III only and reduce
the schedule to 90k iterations. The learning rate schedule is also scaled accordingly. The details of
training recipe is shown in Table A2.

A.4 Additional Evaluations

A.4.1 Referring Expression Comprehension

In addition to Referring Segmentation reported in Table 7, we further report results on Referring
Expression Comprehension (REC), which aims to locate a target object in an image at the pixel-level,
given a referring expression as input. We establish new state-of-the-art performance by an average of
+0.3 P@0.5 and +0.5 oIoU across three datasets.
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Method Backbone
RefCOCO RefCOCO+ RefCOCOg

oIoU P@0.5 oIoU P@0.5 oIoU P@0.5

MAttNet [60] RN101 56.5 76.7 46.7 65.3 47.6 66.6
VLT [9] Dark56 65.7 76.2 55.5 64.2 53.0 61.0
RefTR [40] RN101 74.3 85.7 66.8 77.6 64.7 82.7
UNINEXT [58] RN50 77.9 89.7 66.2 79.7 70.0 84.0
UNINEXT [58] ViT-H 82.2 92.6 72.5 85.2 74.7 88.7
HIPIE RN50 78.3 90.1 66.2 80.0 69.8 83.6
HIPIE ViT-H 82.6 93.0 73.0 85.5 75.3 88.9
vs. prev. SOTA +0.4 +0.4 +0.5 +0.3 +0.6 +0.2

Table A3: Comparison on the referring expression comprehension (REC), and referring image segmentation
(RIS) tasks. The evaluation is carried out on the validation sets of RefCOCO, RefCOCO+, and RefCOCOg
datasets using Precision@0.5 and overall IoU (oIoU) metrics for REC and RIS, respectively.
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Table A4: We present the object detection results in the OdinW benchmark. We report mAP and mean results
averaged over 35 datasets. Notably, our ResNet-50 baseline surpasses GLIP-T by +3.1. We use the notation
HIPIE † and HIPIE ‡ to denote our method with ResNet-50 and ViT-H backbones, respectively.
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X-Decoder(L) 32.3 22.3 13.1 42.1 2.2 8.6 44.9 7.5 66.0 79.2 33.0 11.6 75.9 42.1 7.0 53.0 68.4 15.6 20.1 59.0 2.3 19.0 67.1 22.5 9.9 22.3 13.8

HIPIE (H) 41.2 45.1 14.0 45.1 1.9 46.5 50.1 76.1 68.6 61.1 31.2 24.3 94.2 64.0 6.8 53.4 79.7 7.0 6.7 64.6 2.2 41.8 81.5 8.8 17.9 31.2 50.6

Table A5: Segmentation Result on SeginW benchmark across 25 datasets. We report mAP. We outperform
X-Decoder by a large margin (+8.9)

A.4.2 Object Detection and Segmentation in the Wild

To further examine the open-vocabulary capability of our model, we evaluate it on the Segmentation
in the Wild (SeginW) [66] consisting of 25 diverse segmentation datasets and Object Detection
in the Wild (OdinW) [29] Benchmark consisting of 35 diverse detection datasets. Since OdinW
benchmark contains Pascal VOC and some of the classes in SeginW benchmark are covered by
Pascal-Panoptic-Parts, we use a version of our model that is not trained on Pascal-Panoptic-Parts for
both benchmarks for a fair comparison.

We report the results in Table A5 and Table A4. Notably, our method establishes a new state-of-the-art
of SeginW benchmark by an average of +8.9 mAP across 25 datasets. We achieve comparable
performance under similar settings. In particular, our ResNet-50 baseline outperforms GLIP-T
by +3.1 mAP. We note that other methods such as GroundingDINO [36] achieve better absolute
performance by introducing more grounding data, which can be critical in datasets whose classes are
not common objects. (For example, the classes of Boggle Boards are letters, the classes of UnoCards
are numbers, and the classes of websiteScreenshots are UI elements).

A.5 Other Ablation Studies

We provide further ablations on a few design choices in this section.

Text Encoder. We experiment with replacing the BERT text encoder in UNINEXT with a pre-trained
CLIP encoder. Additionally, following practices of ODISE [56], we prompt each label to a sentence
"a photo of <label>". For RIS and REC tasks, the language expression remains unchanged. We report
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COCO RefCOCO

PQ APMask oIoU

CLIP 51.5 44.3 48.7
BERT 51.3 44.4 77.3

Table A6: Ablation Studies on the choice of Text Encoder. We find that while CLIP and BERT achieve similar
performance on panoptic and instance segmentation, BERT performs significantly better on Referring Instance
Segmentation (+28.6 oIoU).

COCO RefCOCO

PQ APMask oIoU

w/o OTA 50.9 43.6 76.3
w/ OTA 51.3 44.4 77.3

Table A7: Ablation Studies on the SimOTA matching process. Introducing SimOTA leads to performance
improvement in all evaluation metrics.

the result in Table A6. We find that while CLIP and BERT achieve similar performance on panoptic
and instance segmentation, BERT performs significantly better on referring instance segmentation
(+28.6 oIoU). We hypothesize that this may be caused by the lack of explicit language-focused
training which can help achieve a better understanding of referring expression.

SimOTA.Following UNINEXT [58] we adopted simOTA in the matching process for "thing" classes
during the training. We experiment with removing simOTA matching and use standard one-to-one
matching instead. We report the result in Table A7. We find that simOTA improves the performance
on both panoptic segmentation and referring instance segmentation.

A.6 Limitations

We’ve showcased experimental evidence supporting our method across a diverse set of tasks, including
open vocabulary panoptic and semantic segmentation, instance and referring segmentation, and object
detection. However, it will be crucial for future work to test our methodology on video-related tasks,
such as object tracking and segmentation, to draw comparisons with other universal models like
UNINEXT [58]. Furthermore, it’s worth considering additional pretraining of our vision encoder on
newer, more complex datasets that encompass a vast amount of masks and information. For instance,
SA-1B [24], which includes over 1 billion masks, would serve as an ideal training ground. Lastly,
it would be advantageous to measure the change in performance when training on supplementary
hierarchical datasets. Such an approach will allow us to demonstrate more varied object part
segmentations, thereby expanding the capabilities and versatility of our model.

A.7 Broader Impact

Our research introduces a potent approach to hierarchical and universal open vocabulary image
segmentation, aiming to address the ever-increasing demand for more data and advanced model
architectures. As the demand increases, practical methodologies such as universal segmentation are
projected to play a vital role in constructing and training foundational models. Our model, HIPIE,
shows promise for fostering progress in a multitude of fields where hierarchical data are critical,
including self-driving cars, manufacturing, and medicine. However, it’s imperative to acknowledge
potential limitations. Given that our model is trained on human annotations and feedback, it can
inadvertently replicate any errors or biases present in the datasets. The architecture’s complexity is
further enhanced when multiple models are integrated, which, in turn, compromises the explainability
of the final predictions. Therefore, as with the introduction of any novel technology, it’s crucial to
implement safety protocols to mitigate misuse. This includes mechanisms for ensuring the accuracy
of inputs and establishing procedures to comprehend the criteria the model employs for predictions.
By doing so, we can improve the model’s reliability and mitigate potential issues.
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A.8 Qualitative Results

A.8.1 More Visualizations

We provide more visualizations of panoptic segmentation, part segmentation and referring segmenta-
tion in Figs. A2 and A3.

A.8.2 Combining with SAM

We integrate our model with the mask outputs generated by the ViT-H Image encoder from Segment
Anything (SAM) [24]. The encoder is trained on SA-1B which encompasses a broad spectrum of
objects and masks within each image, enabling us to enhance our segmentation output by utilizing
the high-quality masks from the SAM encoder to generate finer, more detailed masks.

To elaborate, in the context of panoptic segmentation, we implement a voting scheme between our
pixel-wise annotations and the masks from Segment Anything (SAM), enriching these masks with
our labels. For objects where our model demonstrates a strong understanding of hierarchy, such as
"person" or "bird", we substitute the SAM masks with ours. This approach enables us to optimize
hierarchical outcomes in the face of highly complex images.

Based on our observations from the figures, it’s evident that Grounding DINO generates instance
segmentation bounding boxes and subsequently uses SAM for the application of the segmentation
masks. While this method proves effective for most datasets, SA-1B is a highly complex set featuring
a vast array of whole objects, parts and subparts. Our qualitative findings suggest that the a single
granularity instance segmentation model may fail to fully capture all objects/parts within an image
or may incorrectly identify them. This consequently leads to SAM receiving sub-optimal bounding
boxes for segmentation, resulting in fewer and less accurate masks (see third columns in Figs. A4
to A6). In contrast, our methodology (see last columns in Figs. A4 to A6) integrates the SAM encoder
masks with our annotations and hierarchical masks wherever feasible. This results in a significantly
more fine-grained and accurate output, proving superior in handling complex datasets such as SA-1B.

A.8.3 Combining with Stable Diffusion

As an interesting experiment, we combined our model with image generation model Stable-
Diffusion[46] in Fig. A7. Given a source expression and target prompt, we first use HIPIE’s
segmentation capability to find the corresponding masks, which are then used for image inpainting.
Notably, our model can uniquely achieve fine-grained control over object parts by providing part
segmentation masks.
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Panoptic Segment Part Segment Subpart Segment Referring Segment

Figure A2: More visualizations showcasing panoptic segmentation, part segmentation, subpart segmentation,
and referring segmentation results on RefCOCO. It is recommended to view the results in color and zoom in for
better detail.
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Panoptic Segment Part Segment Subpart Segment Referring Segment

Figure A3: More visualizations showcasing panoptic segmentation, part segmentation, subpart segmentation,
and referring segmentation results on RefCOCO. It is recommended to view the results in color and zoom in for
better detail.
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Raw Image SAM Mask GDINO+SAM HIPIE+SAM

Figure A4: Additional results of merging HIPIE with SAM for hierarchical segmentation. By integrating the
part masks from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed
mask outputs. Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B
dataset compared to the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating
between intra-class objects and identifying distinct object parts.
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Raw Image SAM Mask GDINO+SAM HIPIE+SAM

Figure A5: Additional results of merging HIPIE with SAM for hierarchical segmentation. By integrating the
part masks from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed
mask outputs. Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B
dataset compared to the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating
between intra-class objects and identifying distinct object parts.
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Raw Image SAM Mask GDINO+SAM HIPIE+SAM

Figure A6: Additional results of merging HIPIE with SAM for hierarchical segmentation. By integrating the
part masks from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed
mask outputs. Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B
dataset compared to the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating
between intra-class objects and identifying distinct object parts.
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Figure A7: Results of combining HIPIE with Stable Diffusion for Image inpainting. We leverage our segmenta-
tion model to generate masks for the redrawing process. Our model can uniquely achieve fine-grained control by
providing part segmentation masks.

25


	Introduction
	Related Works
	Method
	Overall Framework
	Text Prompts
	Image and Text Feature Extraction
	Text-Image Feature Fusion
	Thing and Stuff Mask Generation
	Open-Vocabulary Universal Segmentation
	Hierarchical segmentation
	Class-aware part segmentation with SAM
	Experiments
	Implementation Details
	Results
	Ablation Study
	Conclusions
	List of Datasets

	Hierarchical Segmentation
	Experiment Setup
	Model Learning Settings
	Implementation Details
	Training Process
	Additional Evaluations
	Referring Expression Comprehension 
	Object Detection and Segmentation in the Wild
	Other Ablation Studies
	Limitations
	Broader Impact

	Qualitative Results
	More Visualizations
	Combining with SAM
	Combining with Stable Diffusion




