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ABSTRACT

Representation learning for register transfer level (RTL) circuits is fundamental
to enabling accurate performance, power, and area (PPA) prediction, efficient cir-
cuit generation, and retrieval in automated chip design. Unlike general program-
ming languages, RTL is inherently a structured dataflow graph where semantics
are intrinsically bound to the topology from a hardware view. However, exist-
ing language-model-based approaches ignore the nature of RTL circuits and fail
to capture topology-sensitive properties, leading to incomplete representation and
limited performance for diverse downstream tasks. To address this, we introduce
TopoRTL, a novel framework that explicitly learns topological differences across
RTL circuits and preserves the behavior information. First, we decompose RTL
designs into register cones and construct dual modalities initialized with behavior-
aware tokenizers. Second, we design three topology-aware positional encodings
and leverage attention mechanisms to enable the model to distinguish topolog-
ical variations among register cones and RTL designs. Finally, we introduce a
topology-guided cross-modal alignment strategy, employing contrastive learning
over interleaved modality pairs under topological constraints to enforce seman-
tic consistency and achieve superior modality alignment. Experiments demon-
strate that explicit topological modeling is critical to improving RTL represen-
tation quality, and TopoRTL significantly outperforms existing methods across
multiple downstream tasks.

1 INTRODUCTION

Artificial intelligence is transforming electronic design automation (EDA) through representation
learning. This approach maps circuits across abstraction levels into low-dimensional vector spaces,
enabling unified modeling for critical tasks like PPA prediction, SAT solving, and circuit genera-
tion (Li et al.l [2022b; Shi et al.| 2023} [2024} Zheng et al.l [2025}; [Liu et al., 2024bj 2025a3b}; |[Fang
et al.,2025)). This capability supports the design left-shift paradigm, moving performance prediction
and issue detection to earlier stages, which reduces costs and accelerates optimization (Xing| [2024;
Zeng| [2024).

Among digital circuit abstractions, register-transfer level (RTL) is crucial. It is typically described
using Verilog as the industry-standard hardware description language. Naturally, many approaches
treat RTL as software programming code, focusing on learning syntax and semantic meaning
through text-based representations. For example, CodeV (Zhao et al.l [2025) uses GPT-3.5 to gen-
erate natural language descriptions from high-quality Verilog code and fine-tunes different large
language models (LLMs) to enhance Verilog generation. Similarly, DeepRTL (Liu et al.| [2025a)
fine-tunes CodeT5+ on datasets connecting Verilog code to detailed descriptions, excelling in un-
derstanding and generating RTL. DeepRTL2 (Liu et al., [2025b)) further integrates generation and
embedding tasks within a unified framework.

Unlike software programming languages, RTL is inherently a structured dataflow graph where
behavior and topology coexist from a hardware view. It explicitly specifies the flow of data
between hardware registers and the logical operations performed on that data, which reflects quite
closely the logic structure of the circuit being modeled (IEEEL|[2006). Crucially, RTL is not a purely
behavioral description (which abstracts away hardware structure) nor a purely structural one (which
specifies gate-level connectivity). Instead, it represents a structured dataflow paradigm where be-
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Figure 1: RTL is a structured dataflow paradigm where behavioral intent is inseparable from
dataflow topology. Circuit A and B share a similar topology but implement different functions.
Circuit B and C implement identical four-input adders but with divergent topologies.

havioral intent is inseparable from topology (Micheli, |1994). This tight coupling between behavior
and topology necessitates that RTL not be treated as a general programming language to learn.

While this text-based approach seems straightforward, we argue that topology matters in RTL repre-
sentation learning. The topological structure of circuits directly influences their physical constraints
and implementation details (Micheli,|1994). For instance, in Figurem Circuits A and B have similar
topologies but produce different functions, while Circuits B and C, both four-input adders, demon-
strate performance variations due to their topological differences. Circuit B’s chain structure is less
timely but more power-efficient than Circuit C’s tree structure. Current methods typically use text-
based approaches, often relying on LLMs that struggle with graph-structured data (Li et al., |[2024),
making it challenging to capture circuit topological properties, leading to the following question:

Can we model RTL circuits by incorporating
both behavioral functions and topological structure information?

To address the question, we analyze the fundamental nature of RTL circuits. As previously men-
tioned, the sequential RTL circuit consists of registers and combinational logic. When a signal
propagates through the circuit, it undergoes a cyclic process:

Computation Phase. Signals traverse through combinational logic networks where functional
transformations occur. This phase determines the circuit’s operational behavior. The density of in-
terconnections directly impacts implementation quality, as densely connected logic regions increase
power consumption in physical implementation (Chandrakasan & Brodersen, 2002). Meanwhile,
the depth of propagation paths serves as a critical determinant of timing performance.

Storage Phase. At clock edges, registers capture and maintain the results of computational pro-
cesses, enabling sequential behavior and stateful operations. The bit-width of registers determines
the precision of data representation, directly influenced by the accuracy needs of functional opera-
tions. It also acts as a practical indicator of operational complexity in circuit design, significantly
impacting circuit performance optimization (Lee et al., 2006).

This dual-phase perspective highlights that topology is not just about combinational logic connec-
tions; it is also an intentional representation of behavioral function. Building on this idea, we propose
TopoRTL, a novel framework that explicitly captures variations in topology while maintaining
the semantics of behavior. Specifically, we design three topology-aware positional encodings that
reflect the essential characteristics of storage and computation dimensions. And we utilize atten-
tion mechanisms to enable the model to recognize topological variations among different circuits.
In addition, we introduce a topology-guided cross-modal alignment strategy that ensures semantic
consistency between graph and textual modalities while adhering to topological constraints. This
approach effectively models the intrinsic relationship between behavioral and dataflow structure.

To assess the efficacy of our proposed method, we carried out comprehensive experiments focused
on PPA prediction and circuit retrieval tasks. These downstream applications are pivotal for effective
circuit optimization and generation. Our findings reveal that TopoRTL, characterized by its efficient
and lightweight architecture, consistently outperforms or, at the very least, matches the performance
of several advanced methodologies, including numerous large-scale language models. In addition, a
detailed analysis through circuit representation visualization and further analysis robustly reinforces
our central premise: fopology matters in RTL representation learning. This research offers fresh
perspectives that significantly contribute to the advancement of circuit representation learning.
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2 RELATED WORKS AND PRELIMINARIES

In this section, we provide a systematic review of RTL representation learning approaches and
present our data preprocessing pipeline. In Section [2.1] we analyze previous methods, categoriz-
ing them into behavioral methods and topological methods, while also discussing their limitations
stemming from the nature of RTL. In Section[2.2] we outline our data preprocessing pipeline, which
comprises two main components: register cone generation (Section[2.2.T)) and multimodal data gen-

eration (Section 2.2.2).

2.1 RELATED WORKS

Register Transfer Level in EDA. Register Transfer Level (RTL) is a crucial abstraction in digital
circuit design, where behavioral intent and structural topology coexist. This unique abstract level
makes RTL an excellent target for circuit representation learning, which supports downstream EDA
applications by reducing design time and enhancing performance.

Behavioral Modeling for RTL. Most approaches treat RTL as software code, focusing on learn-
ing syntax and semantics through text representations, particularly with LLMs. For instance,
CodeV (Zhao et al, [2025) uses GPT-3.5 to produce natural language descriptions from Verilog
code, followed by fine-tuning LLMs to enhance Verilog generation. DeepRTL (Liu et al.l [2025a)
presents a unified model for understanding and generating Verilog by fine-tuning CodeT5+ on a
dataset linking Verilog to detailed language descriptions. DeepRTL?2 (Liu et al.,|2025b)) extends this
by combining generation with embedding-based tasks in RTL.

Topology Modeling for RTL. Traditional methods (Xu et al., 2022} |[Fang et al., 2023)) for topology
modeling primarily use feature engineering to transform Verilog code into graph structures, relying
on hand-crafted features that may lack semantic depth and generalizability. Recently, SNS v2 (Xu
et al.,|2023)) categorizes circuits into register cones and employs functionally equivalent contrastive
learning for pretraining, using this representation for downstream tasks. However, this approach
sacrifices topological awareness in the process. For instance, it cannot differentiate between Circuit
B and Circuit C as shown in Figure/[I}

Multi-modal Modeling for RTL. CircuitFusion Fang et al.| (2025) pioneers multimodal represen-
tation learning for RTL by integrating code, summaries, and graphs. To capture topological in-
formation, it employs a cross-stage alignment strategy that utilizes post-synthesis netlists during
pretraining, leveraging the physical implementation details to guide the behavior-aware contrastive
learning process.

Overall, these approaches face significant limitations. Text-centric models often overlook the in-
trinsic structured nature of RTL, while traditional topological methods lack semantic generalization.
Furthermore, recent multimodal attempts like CircuitFusion rely on costly logic synthesis to implic-
itly infer topology, limiting their efficiency and applicability in the design "left-shift" paradigm. In
contrast, we propose TopoRTL, an RTL-native framework. Instead of depending on synthesis out-
comes, TopoRTL explicitly captures topological variations directly from RTL via hardware-specific
inductive biases while preserving behavioral semantics.

2.2 PRELIMINARIES: DATA PREPROCESSING

2.2.1 REGISTER CONE GENERATION

In line with the core concept of sub-design partitioning, we extract register cones through a register-
driven backward traversal. This process is outlined in Algorithm [T] and occurs in three phases.
Phase 1. Given an RTL design V with a total of registers {R;}~ ;, we build signal dependency
dictionaries that include signal declarations and combinational dependency information. Phase 2.
We traverse the combinational logic from each register I?; to its inputs/connected registers. Phase
3. Using the identified signals, we generate syntactically correct subcircuits V¢, which are verified
using Yosys (Wolf et al.| 2013)), an open-sourced logic synthesis tool. This implementation ensures
complete and scalable decomposition for RTL designs. Details are provided in Appendix
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Figure 2: Overview of TopoRTL.
2.2.2 MULTIMODAL DATA GENERATION

Drawing on multimodal learning advances (Li et al.| 2022a; 2021} [Liu et al.| 2024a; Zhao et al.,
2023)), we construct two modalities to explicitly modeling structural topology and behavior function:
(1) Graph modality: we transform each subcircuit V% into a control-data flow graph (CDFG) G%:,
where the nodes represent combinational logic and registers, while the edges encode signal connec-
tivity. This approach is similar to the method described by |[Fang et al.| (2025), explicitly modeling
the topological structure. (2) Summary modality: we prompt GPT-OSS-120B (OpenAl, 2025)) to
generate behavioral descriptions S capturing high-level functional intent for each subcircuit V 7%,
This dual-representation framework enhances circuit behavior and topology learning.

3 METHODOLOGY

We introduce TopoRTL, a framework that integrates behavior functions with topology structure in-
formation. As illustrated in Figure [2] TopoRTL has three key components: (1) Behavior-Aware
Dual-Modal Tokenizers for extracting semantics from topology graphs and functional descriptions;
(2) Topology-Aware Positional Encoding that incorporates bit-width centrality, signal path depth,
and interconnection density into Transformer attention; and (3) Topology-Guided Cross-Modal
Alignment that merges modalities while maintaining topological constraints. The representations
generated by TopoRTL can be applied to tasks such as PPA prediction and circuit retrieval.

3.1 BEHAVIOR-AWARE DUAL-MODAL TOKENIZERS

To capture the behavior information of circuits, we utilize behavior-aware dual-modal tokenizers
that are trained through a behavior equivalence contrastive learning task and a mask modeling task.

Graph-Based Tokenizer. To capture topology-aware circuit semantics, we employ a pretrained
graph tokenizer that maps sub-circuits to compact latent representations. For a design decomposed
into N sub-circuits {GT}¥ |, the tokenizer outputs a representation xf* € R'*? for each sub-
circuit G®i. These representations are combined with a global design-level [CLS] token z to
form the input sequence for downstream tasks:

T T
X0 = (g7 gt

et pRy T ¢ RA+N)xd, (1)
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This sequence preserves hierarchical design semantics while enabling efficient processing by
transformer-based models. For more details, please refer to Appendix [E.2.T}

Summary-Based Tokenizer. To capture behavioral semantics from circuit descriptions, we employ
a pretrained summary tokenizer based on BERT that encodes textual summaries into semantic em-
beddings. For a design with N sub-circuits and their textual summaries {ST} | the tokenizer
outputs a global [CLS] token embedding ¢ € R!*¢. These embeddings are combined with a
learnable global design-level [CLS] token % to form the input sequence:

T0 — (tROT tRlT,,_.,tRNT)T ER(1+N)><CI' )

)

This sequence enables transformer models to jointly reason over circuit functionality. For more
details, please refer to Appendix[E.2.2]

3.2 TOPOLOGY-AWARE POSITIONAL ENCODING WITH TRANSFORMER
3.2.1 BIT-WIDTH CENTRALITY ENCODING

During the storage phase, registers preserve computational results where bit-width directly deter-
mines the precision range of data representation. In practice, complex operations (e.g., 32-bit arith-
metic units) inherently require wider bit-widths to maintain accuracy, while simpler control signals
(e.g., 1-bit flags) operate effectively with minimal precision (Lee et al.,|2006). To enable the model
to distinguish such functional hierarchies from circuit topology, we propose Bit-Width Centrality
Encoding.

Bit-width Encoding. For each register R;, we extract bit(R;) from Verilog declarations (e.g., reg
[31:0] data;) to encode precision constraints as topology features. We first process the initial
node features X° and S° from dual modalities through a multi-layer perception (MLP):

X = MLP(X?) e RUFNIxd g — MLP(S?) ¢ RUFN)xd, 3)

where X, S € RO+N)xd and N denotes the total number of registers and d is the feature dimension.

Subsequently, we assign two learnable embedding vectors a%t and a’jg“ for each possible bit-width
value. These embedding vectors are accessed through a lookup table mechanism based on each

register’s actual bit-width:

BB gy agt(Ri), B = sf +agit(3i) 1<i<N, 4)

where 2% and s are the features after MLP processing, and algt(Ri) and a?t(Ri) are the learnable
embedding vectors corresponding to the bit-width of register R;. This positional encoding method
helps the model associate bit-width values with functional complexity during topological learning.

3.2.2 MAX-PATH AND DENSITY DISCREPANCY ENCODING

During the computation phase, signals traverse through combinational logic networks, where high
interconnection density raises power consumption due to increased parasitic capacitance (Chan-
drakasan & Brodersen, 2002). The propagation path depth also influences timing performance
through the critical path length. To help the model differentiate these structural factors from cir-
cuit topology, we introduce Max-Path and Density Discrepancy Encoding.

Max-Path Encoding. For each register cone G where 1 < i < N, we extract the maximum path
length set:

L% = {dist(R;, R;) | exist path R; — R; in G} 1<i <N, ®))
where dist(R;, R;) represents the number of pseudo logic gates between registers R; and R;.
Rather than relying solely on the absolute maximum path length, which can be sensitive to out-
liers, we select the Top-K longest paths and compute their mean for robust representation:

1% = MEAN(Top-K(L®)) 1<i<N. (6)
This approach captures the typical critical path behavior while mitigating the impact of anomalous
paths. We then construct a relative matrix AL € RN*N where

ALy =" —1"| 1<i,j<N, ()
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representing the discrepancy in critical path characteristics between register pairs.
Graph Density Encoding. For each G, we compute graph density as:

R;
R; E

:W 1 <4, <N, ®)

p
where E%i and N denote the number of edges and nodes in the register cone, respectively. This
metric quantifies how interconnected the logic surrounding register R; is, with higher values indi-
cating more complex, tightly coupled functionality. We then compute a relative density discrepancy
matrix Ap € RNXN where

Apij = 1o —p| 1<ij<N. &)

3.2.3 TRANSFORMER WITH TOPOLOGY-AWARE ATTENTION

The Transformer architecture consists of a composition of Transformer layers, each containing two
key components: a self-attention module and a position-wise feed-forward network (FFN). To illus-
trate our approach, we specifically describe the process using the graph modality Hg. Here, Hg
serves as the input to the self-attention module with hidden dimension d, where each position repre-
sents the ¢-th register in the RTL circuit. This input is projected into three matrices through learnable
weight parameters Wg € R¥xdr WK € RI¥dx and WY € R4*4V to obtain the corresponding
representations Q¢, K¢, Vi:

Qc = HoWS, Kg=HeWE, Vg=HeWY, (10)
QK%
Ag = , Attn(Hg) = softmax(Ag) Ve, (11)
Vdi (

where Ag captures the similarity between queries and keys. For clarity, we consider the single-head
self-attention mechanism, assuming that dir = dy = d. This analysis is presented in the context of
graph modality, where the summary modality is the same.

The vanilla Transformer architecture is powerful for sequential data but fails to account for the
unique topological properties of RTL circuits. Unlike linear natural language sequences, RTL cir-
cuits have complex hierarchical structures where signal paths and connection densities are crucial
for functionality. To overcome this limitation, we integrate our previously proposed Max-Path and
Density Discrepancy Encodings into the attention mechanism:

RivirQy (1, Bipi7 K\T
Agi; = (he We)the' We) +ag - fa(ALij) + Ba - 9a(Apij)s (12)
Vd
where fq(-), ga(-) : R — R*? are learnable mapping functions implemented as MLPs, and
ag, Bg are learnable scaling parameters, and 1 < 4, j < N. This formulation enables the attention
mechanism to dynamically adjust its focus based on both the timing characteristics and structural
complexity of register relationships.

For the virtual node Ry representing the entire circuit, we manage its connections uniquely by re-
setting all spatial encodings to distinct learnable scalars. The final circuit representation is produced
by processing the inputs through modified Transformer layers:

H¢ = Graph-Transformer(H), Hg = Summary-Transformer(H). (13)

3.3 TorPOLOGY-GUIDED CROSS-MODAL ALIGNMENT

Achieving effective alignment across various modalities is essential for a thorough understanding
of circuit representation learning. To enhance the model’s ability to comprehend circuit topology,
we introduce a topology-guided cross-modal alignment mechanism. This innovative approach capi-
talizes on our previously encoded structural information, ensuring that meaningful correspondences
are established between modalities while honoring the inherent topology of the circuits.

LetY = (Hg, Hg) € ROTN)*2d and 7 — (Hg, Hg) € ROTN)*X24 represent two complementary
fusion patterns between the graph modality (Hg, Hg) and summary modality (Hg, Hg), where N
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Table 1: PPA prediction results, and model specifications. The best, second-best, and third-best
results in each column are highlighted with bold, underlined, and italic fonts, respectively.

Circuit Dim Area Power
Data PCCt R?>t MAPE/RRSE/PCCt R?*t MAPE/RRSE|

GCN-MLP  Graph 1.20M 7k 768 0.271-224.015 37.818 0.985 0.605-0.361 43.434 0.804
GCN-GNN  Graph 1.20M Tk 768 0.145-250.694 25.324 0.993 0.345-6.816 53.436 0.939

Qwen3-E-0.6B Text 0.6B - 1024 0.694 0.422 13.735 0.858 0.743 0.515 37.917 0.796
Qwen3-E-4B  Text 4B - 2560 0.760 0.560 11.541 0.753 0.716 0.382 38.341 0.939
Qwen3-E-8B  Text 8B - 4096 0.720 0.451 12.079 0.876 0.766 0.556 37.826 0.821
CodeV-CL Text 7B 165k 4096 0.795 0.596 11.574 0.661 0.812 0.633 39.448 0.623
CodeV-DS Text 6.7B 165k 4096 0.814 0.637 10.778 0.626 0.827 0.673 36.544 0.624
CodeV-QC Text 7B 165k 3584 0.818 0.662 10.830 0.648 0.805 0.622 37.314 0.678

CircuitFusion Multi 150.59M 7k 768 0.647 0.378 13.242 1.085 0.657 0.393 43.073 0.993
TopoRTL Multi 29.13M 7k 768 0.863 0.683 7.952 0.574 0.884 0.712 25.033 0.585

Method Type Size

Slack TNS WNS
PCCt R?t MAPE/RRSE/PCCt R2t MAPE/RRSE|PCC! R>? MAPE|RRSE]

GCN-MLP 0256 -0.193 55268 1.430 0.712 0.154 43.171 0.705 0.691 0.344 45.401 0.766
GCN-GNN  0.199 -3.323 57.830 1.025 0.739 -0.155 44.190 0.693 0.634 0.213 48.836 0.859

Qwen3-E-0.6B 0.876 0.724 35.587 0.554 0.885 0.753 30.944 0.555 0.860 0.667 40.477 0.728
Qwen3-E-4B 0.881 0.753 35.162 0.570 0.884 0.777 39.324 0.520 0.839 0.686 52.680 0.718
Qwen3-E-8B  0.888 0.784 34241 0.563 0.899 0.781 33.802 0.534 0.849 0.659 43.880 0.674
CodeV-CL 0.909 0.822 30.472 0.465 0.922 0.846 28.108 0.428 0.806 0.643 41.267 0.716
CodeV-DS 0.881 0.758 32.712 0.579 0.928 0.848 31.857 0.383 0.780 0.600 41.750 0.735
CodeV-QC 0.868 0.754 34.618 0.575 0.927 0.856 29.920 0.402 0.762 0.464 47.401 1.400

CircuitFusion 0.893 0.788 30.944 0.494 0.885 0.727 34.454 0.544 0.817 0.572 38.227 0.808
TopoRTL 0.909 0.821 31.249 0.443 0.872 0.743 32.016 0.521 0.862 0.723 40.130 0.580

is the number of registers and d is the feature dimension. We compute their global representations
by taking the mean across nodes:

y = MEAN(Y) € R'*2? > — MEAN(Z) € R4, (14)

Our topology-guided approach uses structural constraints to align y and z while maintaining circuit
topological properties. We employ a quadruplet loss that pulls positive pairs closer and ensures
topological consistency by requiring the difference between y and z to be smaller than that of em-
beddings from topologically dissimilar paths. Negative samples are randomly selected as graph
modality fused embedding /., and summary modality fused embedding z;,., from the batch. The
contrastive learning loss is:

Liuse =1y =23 =11y 2neg 13 +81+ + I 2=y 13 = | 2= yneg I3 +8+, (15

where [ is a hyperparameter that controls the margin of the distance between pairs of positive and
negative samples, and [-] ;. denotes max(0, -). This loss serves as the pretraining loss.

4 EXPERIMENTS

In this section, we conduct experiments to address the following research questions:

* RQ1: How does TopoRTL excel in topology-dependent tasks? Does it effectively capture essen-
tial topological dependencies for precise predictions?

* RQ2: How well does TopoRTL integrate topological structure in behavior-sensitive tasks? Can it
overcome the topological neglect seen in existing methods?

* RQ3: Do TopoRTL embeddings maintain both local structural details and global topological
relationships in hidden spaces?

* RQ4: What unique contributions do its encodings make to representation quality?
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Figure 3: Circuit Retrieve Performance.

4.1 EXPERIMENTAL SETUP

We begin by briefly outlining the dataset, baseline methods, and the evaluation tasks and metrics.
For more detailed descriptions of the experimental settings, please refer to Appendix [C|and [D]

Evaluation Tasks and Metrics. To evaluate the capability of RTL representation learning, we
selected two downstream tasks: Performance, Power, Area (PPA) Prediction and Natural Lan-
guage Code Search. The first is a regression task, using evaluation metrics such as PCC, R?,
MAPE, and RRSE. The second task is framed as a retrieval classification (Lu et al.l [2021), with
AUC as the evaluation metric. For further details, please refer to Appendix

Circuit Dataset. We construct a dataset with 115 RTL designs collected from OpenCores (Albrecht,
2003)), VexRiscv (Papon & Spinall, 2024)), ITC 99 (Corno et al., [2002), and DeepCircuitX (Li et al.,
2025)). The circuit dataset has a wide range of circuit sizes, with different scales and functions. After
extracting register cones, the dataset consists of 7,576 sub-circuits. For more information on data
collection, processing, and statistics, please refer to Appendix [C]

Baseline Models and Implementation Details. We compare TopoRTL with baselines in three
categories. (i) Graph modality models: Graph Convolutional Networks (GCN) with two types
of finetune methods, e.g., GCN-MLP and GCN-GNN. (2) Text modality models: Open-source
models Qwen3-Embedding (abbreviated as Qwen3-E) (Zhang et al., [2025) and Verilog-specialized
CodeV (Zhao et al., 2025). CodeV includes three variants: CodeV-CL-7B, CodeV-DS-6.7B, CodeV-
QC-7B. (2) Multimodal models: CircuitFusion (Fang et al.,[2025). For more baseline information
and implementation details, please refer to Appendix [D.4Jand[D.3]

4.2 PERFORMANCE ON PPA PREDICTION (RQ1)

To assess the ability to represent topology information, we performed five PPA prediction tasks
covering Slack, Worst Negative Slack (WNS), Total Negative Slack (TNS), Area, and Power metrics.
Further details about PPA tasks can be found in Appendix [D.1] while the experimental analysis area
is detailed in Appendix [E.3.1] Based on Tables[I] we can draw the following observations:

* Obs 1: TopoRTL achieves holistic RTL modeling superiority through topology-behavior
integration with lightweight architecture. Specifically, it dominates ppa metrics (1 5.5% Area
PCC, 1 6.9% Power PCC, | 26.2% Area MAPE, |31.5% Power MAPE) and sets the timing
benchmark (WNS PCC=0.862, RRSE=0.580), outperforming all baselines in critical-path analysis
while matching Slack accuracy. Crucially, these improvements come with fewer parameters and
training data, showcasing TopoRTL’s effectiveness in capturing global topological dependencies
that text-based models struggle with.

4.3 PERFORMANCE ON CIRCUIT SEARCH (RQ2)

To evaluate behavioral representation capabilities, we conduct a natural language code search task
critical for hardware design reuse and verification. Following |Lu et al.[(2021)), we evaluate with L
negative designs (L € {5,8,10,15}) per query, measuring performance via AUC. Further details
regarding this task can be found in Appendix [D.2] while the analysis of detailed experiment results
is presented in Appendix Based on Figure 3| we derive two key insights:
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Obs 2: TopoRTL demonstrates superior performance and robustness across retrieval sce-
narios. Our model maintains a stable performance near 0.8 AUC for all L values (5-15 negative
samples), outperforming all baselines. This consistency stems from TopoRTL’s joint modeling of
topology and behavior, emphasizing the importance of topology in RTL representation learning.

4.4 HIDDEN REPRESENTATIONS ANALYSIS (RQ3)

As demonstrated in the previous sections, TopoRTL effectively learns both topological and behav-
ioral circuit characteristics. To further validate this, we visualize the learned representations using
t-SNE (Maaten & Hinton, |2008)). Embeddings are projected into 2D space, colored by normalized
Area, Power, and Slack metrics. The analysis of detailed experiment results is presented in Appendix
[E33] According to Figure[d we can find that:

Obs 3: TopoRTL produces well-structured embeddings that clearly distinguish between
topologically diverse regions. Compared to CircuitFusion, TopoRTL’s representations exhibit
clear clusters and smooth gradients (e.g., high and low Area and Power in yellow and green),
showcasing alignment with topology design.

4.5 ABLATION AND FURTHER ANALYSIS (RQ4)

Abalation Study. To validate the contribution of each TopoRTL component, we conduct compre-
hensive ablation experiments by systematically removing key modules. More details and analysis
are provided in Appendix [E.3.4] As shown in Figure[5] these experiments reveal:
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* Obs 4: Positional encodings improve performance across tasks. Bit-width encoding effectively
captures topology and complexity, while max-path and density encodings show inconsistent re-
sults, highlighting the need for complementary topological signals in circuit representation.

* Obs 5: Topology-guided alignment favors topology fidelity. This approach prioritizes
topology-semantic consistency, which may slightly reduce timing accuracy but significantly
boosts other topological and behavioral tasks, underlining its importance for design optimization.

We recommend readers check Appendix [E.J|for detailed experiments and analysis.

5 CONCLUSION

In this work, we analyze RTL circuits that fundamentally operate as structured dataflow graphs
where behavioral semantics and topological structure are inseparable. Inspired by this, we propose
TopoRTL, a novel framework that explicitly encodes topological relationships while preserving be-
havioral functionality. Specifically, we develop dual modalities that are initialized using behavior-
aware tokenizers and create three topology-aware positional encodings grounded in signal propaga-
tion. Additionally, we introduce a topology-guided cross-modal alignment strategy, enhancing the
integration and interaction between the modalities. Extensive experiments across ppa and retrieval
tasks definitively demonstrate TopoRTL’s superiority in jointly capturing topological and behavioral
characteristics, proving that topology matters in RTL representation learning.

ETHICS STATEMENT

This work enhances representation learning for RTL circuits to improve automated chip design.
Our research aims for more efficient hardware development, potentially leading to energy savings
and advanced computational capabilities. While focusing on circuit representation, we acknowl-
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well-being.

REPRODICIBILITY STATEMENT
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we utilized Large Language Models (LLMs) solely as a general-
purpose writing assistance tool for minor language refinement and grammatical correction. Specifi-
cally, we utilized LLMs to identify basic syntax errors, enhance sentence clarity, and ensure proper
academic phrasing in non-technical sections of the text. We carefully reviewed and verified all con-
tent produced with LLM assistance to ensure accuracy and maintain scientific integrity. We are
responsible for all content in this manuscript, following ICLR’s policies on LLM usage.

B LIMITATION AND FUTURE DISCUSSION

While TopoRTL demonstrates significant improvements in RTL representation learning, several lim-
itations warrant attention. First, scaling to larger and more diverse RTL datasets would enhance the
model’s generalization across circuit architectures. Second, our current decomposition approach
assumes synchronous sequential circuits and disrupts clock domain relationships during register
cone extraction; future work should extend to handle asynchronous circuits through clock-aware
decomposition strategies. Additionally, developing more sophisticated topology-aware positional
encodings could better capture complex signal propagation patterns. Addressing these limitations
would further strengthen the framework’s applicability to practical chip design scenarios.

C DATASET DETAILS

C.1 SOURCE BENCHMARKS

In this section, we provide an overview of the various hardware description languages (HDLSs) circuit
datasets used in this work.

C.1.1 ITC99

The ITC’99 (Corno et al.|[2002) benchmark circuits represent a standardized set of circuits with char-
acteristics typical of synthesized designs. As one of the established unimodal benchmark datasets
alongside ISCAS’89 and EPFL, it continues to serve as an important resource for circuit verification
and testing methodologies.

C.1.2 OPENCORES

OpenCores (Albrecht, [2005)) is a prominent online community established in 1999 for the devel-
opment and sharing of gateware Intellectual Property (IP) cores. It serves as a collaborative plat-
form where digital designers can showcase, promote, and discuss their work through forums and
news channels. The OpenCores repository hosts diverse RTL designs, including DSP cores, crypto
cores, memory cores, and various system-level implementations. As one of the largest open-source
hardware communities, it provides a version control system for source management and supports a
vibrant user community dedicated to free and open-source hardware collaboration.

C.1.3 VEXRISCV

VexRiscv (Papon & Spinal, 2024) is an FPGA-friendly 32-bit RISC-V CPU implementation.
VexRiscv supports M, C, and A RISC-V instruction set extensions with numerous optimizations, in-
cluding multi-stage pipelines and data caching capabilities. Implemented in SpinalHDL, VexRiscv
utilizes complementary plugins to enhance functionality while maintaining a streamlined core ar-
chitecture, making it particularly suitable for FPGA-based system-on-chip designs.

C.1.4 DEEPCIRCUITX

DeepCircuitX (L1 et al., 2025) represents a holistic, repository-level dataset specifically curated
to address limitations in existing RTL datasets. It provides comprehensive data and annotations
across multiple abstraction levels, like chip, IP, module, and RISC-V. The dataset features multi-level
source RTL code spanning repository, file, module, and block levels, with corresponding annotations
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Figure 6: Label Distribution Statistics

generated by GPT-4o. It establishes specialized benchmarks for RTL understanding, generation, and
completion tasks, with detailed data distributions across different RTL categories as documented in
its comprehensive dataset summaries.

Table 2: Circuit Benchmarks Statistics

Source #Circui Circuit Size (Min, Avg, Max)

Benchmarks freuit .
#Gate #Token (Code) #Register

ITC 99 18 (135, 5K, 22K) (2K, 284K, 262K) (5, 45.0, 252)
OpenCores 12 (360, 5K, 28K) (1K, 182K, 1IM) (7,59.8,371)
VexRiscv 13 (7K, 14K, 63K) (112K, 232K, 1M) (67, 141.2, 434)
DeepCircuitX 72 (64, 4K, 66K) (187, 53K, IM) (1, 58.5, 1326)
Total 115 711K 14M 7576

C.2 DATASET PROCESS

This section details our data processing methodology and label generation approach for different
downstream tasks. We first selected 115 syntactically correct sequential circuits from the afore-
mentioned four open-source benchmarks that can be directly synthesized. We then generated task-
specific labels for PPA prediction and circuit retrieval tasks.

PPA Label Generation. To address the heterogeneity of HDLs across different sources, including
VHDL, Verilog, and SpinalHDL, we employed Yosys to standardize all designs into a unified Verilog
representation. Subsequently, we utilized Synopsys Design Compiler, an industry-standard logic
synthesis tool, to automatically synthesize each RTL circuit into gate-level netlists. These netlists
represent the actual circuit implementations composed of logic gates (e.g., ADD, INV, AND, etc.)
and registers (DFF) from a specific technology library. The synthesis process employed the open-
source NanGate 45nm standard cell library, with the compile_ultra command to ensure high-
quality PPA metrics on the Pareto frontier, as verified by [Fang et al.| (2023). Finally, Synopsys
PrimeTime was utilized to analyze the gate-level netlists, extracting detailed PPA labels, which
include timing metrics such as Slack, WNS, and TNS, as well as measurements for Area and Power.
The statistics related to the RTL designs post-synthesis are presented in Table [2] Additionally, the
distribution of labels can be found in Figure[§]
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Query Generation. For natural language code retrieval experiments, we developed a two-stage
query generation pipeline using large language models (LLMs) followed by embedding encoding.
First, we prompted the LLM to generate detailed descriptions for each module within a circuit, cov-
ering its name, inputs, outputs, functionality, and sub-module instantiations. Second, we concate-
nated all module descriptions from the same circuit and prompted the LLM to produce a high-level
functional summary that mimics human retrieval behavior. This two-stage approach offers two sig-
nificant advantages: (1) it effectively mitigates the context window limitations of LLMs through
modular processing, and (2) the resulting high-level circuit summaries present a more challenging
test for circuit representation models, better evaluating their ability to capture semantic function-
ality rather than merely syntactic patterns. Here we use GPT-OSS-120B to obtain descriptions
and Qwen3-Embedding-8B to embed them. For the prompts we use to generate module-level and
design-level descriptions, please refer to Appendix [H]

D EVALUATION DETAILS

This section first introduces the two downstream tasks for evaluating pre-trained models, PPA pre-
diction and natural language code retrieval, along with our unified evaluation framework. We then
detail the selected baselines and their parameter configurations.

D.1 PPA PREDICTION TASK

The Performance, Power, and Area (PPA) prediction task represents a critical design quality evalu-
ation at the RTL stage, enabling early assessment of circuit implementation characteristics without
full synthesis. We evaluate five key prediction tasks:

* Register slack prediction: forecasting timing margins for individual registers, which identifies
potential timing violation points in the circuit.

* WNS prediction: estimating the Worst Negative Slack, representing the most severe timing vio-
lation across the entire design.

* TNS prediction: predicting the Total Negative Slack, which aggregates all timing violations to
indicate overall timing quality.

* Power prediction: assessing the circuit’s power consumption for energy efficiency evaluation.

* Area prediction: determining the silicon footprint required for implementation, crucial for phys-
ical feasibility and cost considerations.

Notably, register slack prediction operates at the sub-circuit level, while the remaining four metrics
are evaluated at the complete circuit level.

Metric. We employ four complementary metrics to comprehensively assess prediction quality:

* PCC: Pearson correlation coefficient, which assesses the linear correlation between predictions
and ground truth. Formally, given the prediction value vector  and the truth label v, it is calculated
as follows:

\/E(I —mg)? ) (y — my)2

where m, is the mean of x and m,, is the mean of y. The metric varies between —1 and 1.
» R?: Coefficient of determination, which measures the proportion of variance explained by the
model. Formally, prediction value x and the truth label y with n samples, it is calculated as

follows: .
Dic1(yi — x;)?
Sy —9)?’
where § = % Z?’:l y;. The best value score is 1.0, and it can be negative (because the model can
be arbitrarily worse).
* MAPE: Mean absolute percentage error, which Quantifies prediction error as a percentage of

ground truth. Formally, prediction value x and the truth label y with n samples, it is calculated as
follows:

R?P=1-

1 — T — Y
MAPE = 00%§ ekl
no - Yi
i=1
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This metric is nonnegative, and the lower the better.

* RRSE: Root relative squared error, which is a commonly used regression metric to measure the
prediction error. Formally, prediction value = and the truth label y with n samples, it is calculated
as follows:

SN (@i — yi)?

RRSE = i —
Zi:l(yi - y)z

)

where y = 23" | w;.

This multi-metric approach provides a balanced evaluation, capturing both correlation strength and
absolute prediction accuracy.

D.2 NATURAL LANGUAGE CODE SEARCH

Natural language code search enables hardware designers to locate relevant RTL implementations
through intuitive natural language queries, significantly enhancing design productivity and code
reuse. This task involves embedding both natural language queries and circuit implementations into
a shared semantic space, where relevance is determined by vector similarity. For hardware design
contexts, this capability is particularly valuable as it bridges the gap between high-level specifi-
cations and concrete RTL implementations, accelerating the design process and reducing manual
search effort.

Metric. Following [Lu et al. (2021), we formulate this as a retrieval classification problem. For
each query, we sample L negative circuit designs and measure ranking quality using AUC (Area
Under the ROC Curve), a robust information retrieval metric that evaluates the model’s ability to
distinguish relevant from irrelevant designs across all possible classification thresholds. AUC values
range from O to 1, with higher scores indicating superior retrieval performance, where 1.0 represents
perfect ranking and 0.5 indicates random performance.

D.3 EVALUATION FRAMEWORK

To ensure fair and rigorous evaluation across diverse representation models, we implement a stan-
dardized assessment framework with strict separation of training, validation, and test phases. Our
methodology proceeds as follows: First, models undergo pre-training on unlabeled RTL circuits,
with hyperparameters carefully adhering to original publications to maintain implementation fi-
delity. After pre-training completion, we systematically extract circuit representations from multiple
training epochs. For each downstream task, we then fine-tune a consistent classification/regression
head architecture using these representations, with the optimal pre-training checkpoint selected ex-
clusively based on validation set performance. Crucially, the test set remains completely isolated
throughout both pre-training and fine-tuning processes, guaranteeing unbiased evaluation.

This approach offers two significant advantages: (1) it decouples representation quality from down-
stream task optimization, providing a cleaner assessment of learned representations; and (2) it en-
sures fair comparison by standardizing the fine-tuning process across all models. Crucially, the test
set remains completely isolated throughout both pre-training and fine-tuning phases, guaranteeing
unbiased performance evaluation.

D.4 BASELINES

We evaluate TopoRTL against a comprehensive set of representative baselines spanning three fun-
damental paradigms in circuit representation learning. These baselines were strategically selected
to address critical research questions:

1. Can conventional graph-based approaches effectively capture RTL topology?

2. Can text-based models overcome their inherent limitations when processing structured RTL cir-
cuits?

3. How do existing multimodal frameworks integrate topological and behavioral information?

By comparing against these diverse approaches, we establish a rigorous evaluation framework that
isolates the specific contributions of TopoRTL’s topology-aware architecture while addressing the
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fundamental question of whether explicit topological modeling provides measurable advantages
over conventional representation learning methods.

Graph Modality Models. Graph Convolutional Network (GCN) (Kipf & Welling, 2017) has
demonstrated success in general graph representation tasks. Following the methodology established
by Xu et al.[(2023)), we implement a 3-layer GCN pre-training on functional equivalence contrastive
learning tasks. Notably, |Xu et al.|(2023)) employs a hierarchical graph structure that constructs reg-
ister dataflow graphs based on inter-subgraph connections during downstream tasks. To ensure both
methodological fidelity and evaluation consistency, we implement two variants: GCN-GNN, which
preserves the original hierarchical approach with graph-based fine-tuning; GCN-MLP, which aligns
with our unified evaluation framework by replacing hierarchical processing with a standard MLP
head. This baseline specifically tests whether topology alone, without explicit behavioral modeling,
can adequately capture both topological structure and behavioral semantics of RTL circuits.

Text Modality Models. We evaluate two leading text-based approaches: (1) Qwen3-Embedding
(Qwen3-E) (Zhang et all 2025), a state-of-the-art open-source embedding model with excep-
tional cross-lingual capabilities and strong performance across multiple natural language processing
benchmarks; and (2) CodeV (Zhao et al.| [2025)), a specialized Verilog code understanding frame-
work with three variants—CodeV-CL-7B (finetune based on CodelL.lama-7b-Instruct (Roziere et al.}
2023)), CodeV-DS-6.7B (finetune based on DeepSeek-Coder-6.7b-Instruct (Guo et al.,|2024))), and
CodeV-QC-7B (finetune based on Qwen2.5-Coder-7B (Hui et al., 2024))). Qwen3-E serves as a
general-purpose text representation benchmark, while CodeV variants represent the current state-of-
the-art in hardware-specific text modeling. These baselines collectively address the critical question
of whether treating RTL as unstructured text (rather than recognizing its inherent graph structure)
can effectively capture the essential characteristics of hardware designs, particularly the structured
dataflow relationships that define circuit behavior.

Multimodal Models. CircuitFusion (Fang et al., [2025) represents the current frontier in multi-
modal circuit representation, integrating graph topology, natural language summaries, and raw RTL
code through cross-modal attention mechanisms. Unlike TopoRTL, CircuitFusion relies on cross-
stage netlist representations during pre-training to indirectly infer topological information, rather
than explicitly modeling RTL’s inherent graph structure. This baseline employs multiple contrastive
learning objectives during the pretraining stage, including functional equivalence tasks. For a fair
comparison, we remove the netlist encoder and only maintain the RTL encoder.

D.5 IMPLEMENTATION DETAILS

All experiments adhere to a rigorous implementation protocol designed to ensure fair, reproducible
comparisons while maintaining fidelity to original methodologies.

Graph Modality Models. For GCN-based approaches, we implement a 3-layer GCN following the
functional equivalence contrastive learning framework established in prior work (Xu et al. [2023).
Functional equivalence pairs are systematically generated using Yosys for pre-training objectives.
We maintain subgraph representation dimension at 768 across all graph models, with graph-level
embeddings derived through sum-pooling operations. For GCN-GNN, we preserve the hierarchical
graph processing approach with 3-layer GCN fine-tuning heads as in the original implementation.
For GCN-MLP, we replace hierarchical processing with standard MLP heads to align with our uni-
fied evaluation framework. This dual-implementation strategy enables direct comparison between
architecture-specific optimizations and standardized evaluation protocols.

Text Modality Models. For text-based approaches, we directly interface with Hugging Face APIs to
obtain embeddings from Qwen3-Embedding and CodeV series models. Each circuit’s representation
is generated by concatenating the function description with corresponding RTL code, with truncation
applied for sequences exceeding maximum token limits. Notably, we adopt different embedding
extraction strategies aligned with each model’s design philosophy: for CodeV variants, we use the
mean of all hidden states in the final layer as the text embedding, while for Qwen3-Embedding,
we utilize the last hidden state following its original implementation specifications. This approach
ensures optimal utilization of each model’s architectural strengths while maintaining consistent input
processing across the text modality category.
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Multimodal Models. For CircuitFusion implementation, we carefully follow its open-source code
and published paper. The graph encoder employs a 7-layer Graphormer (Ying et al.l 2021), pro-
ducing 768-dimensional graph representations. The summary encoder utilizes the first 6 layers
of BERT (Devlin et all [2019) (768-dimensional hidden and output spaces), while the code en-
coder substitutes Qwen3-Embedding-0.6B for the originally proposed NV-Embd-V1 (Lee et al.
2024) due to hardware constraints on NVIDIA RTX 3090 GPUs. This substitution is justified
by Qwen3-Embedding-0.6B’s superior performance on the Massive Text Embedding Benchmark
(MTEB) while maintaining the same 32K maximum input token capacity. Code embeddings (1024
dimensions) are linearly projected to 768 dimensions to maintain representation space consistency,
with modality fusion handled by the final 6 layers of BERT.

Evaluation Framework. All models employ a standardized 768-dimensional output representa-
tion with batch size of 128 and 50 pre-training epochs. (except text modality models since we
directly infer during API). Crucially, our evaluation protocol extracts circuit representations at mul-
tiple pre-training epochs, with downstream task performance determining the optimal checkpoint
selection based solely on validation set metrics. Dataset partitioning follows a 30%-30%-40% (train-
validation-test) split at the circuit level, rather than subgraph level, to accommodate both global and
subgraph-level downstream tasks while preventing data leakage. This partitioning strategy reflects
real-world scenarios where substantial unlabeled data exists, emphasizing model generalization ca-
pabilities. All experiments were conducted on NVIDIA GeForce RTX 3090 GPUs.

E PRETRAINING AND EXPERIMENT RESULT DETAILS

E.1 REGISTER CONE EXTRACT
Algorithm 1 Register Cone Extraction via Register-Driven Backward Traversal

Input: RTL circuit V, Total registers { R; } ¥,
Output: Register cones {VEi} NV |
Phase 1: Build Signal Dependency Dictionaries
1: D,C <+ ParseVerilog(V') © Extract signal declarations D and combinational dependencies C
Phase 2: Backward Traversal from Registers

2: for each register R; € {R;}¥, do

3: @ + GetDrivingSignals(R;) > Initialize with RHS signals of R;

4: S {Rl}, Iy + {Rl}, COI « GetOutputDecl(Ri)

5: while Q # 0 do

6: u + @Q.dequeue()

7 if u ¢ S then

8: S« Su{u}

9: Iy, + I U {u} if IsInputOrReg(u) > Register-to-input conversion
10: COI < COI U GetCodeLines(u, D, C) > Add signal declaration/assignment
11: @ + Q U ExtractDependencies(u, C') > Backward propagate to RHS signals

> Note: If u is input/register, ExtractDependencies(u, C') returns empty set
12: end if

13: end while
Phase 3: Sub-circuit Generation and Verification
14 VEi « GenerateModule(I;,,, R;, COI)
15: VerifyWithYosys(V ) > Check for syntax correctness
16: end for
17: return {V 5} N

Algorithm Overview: The register cone extraction process (Algorithm [I)) systematically decom-
poses an RTL design into functionally complete subcircuits through three stages, ensuring both
accuracy and scalability.

* Phase 1: Build Signal Dependency Dictionaries. Verilog code is parsed to extract two critical
data structures: D, a dictionary mapping signals to their declarations; C', a directed graph encoding
combinational dependencies between signals. These dictionaries enable precise tracking of signal
origins and propagation paths, forming the foundation for subsequent traversal.

* Phase 2: Backward Traversal from Registers. For each register R;, the algorithm initializes a
queue Q) with its driving signals (RHS signals) and collects output declaration information COI.
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It then performs a backward traversal through combinational logic: starting from R;, it dequeues
signals u, adds them to the signal set S if unvisited, and converts their input connections [, to
corresponding declaration types (e.g., mapping register inputs to wire declarations). The traver-
sal propagates upstream by enqueuing signals from u’s dependencies in C, recursively capturing
all signals causally influencing R;’s value, including indirect paths through intermediate regis-
ters. This phase ensures completeness by exhaustively tracing all upstream dependencies while
avoiding redundant processing.

* Phase 3: Sub-circuit Generation and Verification. Using the collected signals S and converted
declarations, the algorithm generates a syntactically correct Verilog module V% for each register
cone. This module includes: (1) all signals in S, (2) the original register R; and its driving
combinatorial logic, and (3) corrected input declarations to ensure standalone functionality. To
validate correctness, the generated subcircuit is verified using Yosys (Wolf et al.,[2013]), checking
for proper syntax, valid assignments, and resolved signal references. This step guarantees that
each partitioned subcircuit is synthesizable and maintains behavioral integrity.

This framework achieves scalable and accurate decomposition by leveraging backward traversal
to capture causal dependencies, ensuring completeness without over-inclusion. The integration of
Yosys validation further enforces syntactic and functional correctness, making the approach robust
for large-scale RTL designs.

E.2 BEHAVIOR-AWARE TOKENIZERS PRETRAINING

E.2.1 GRAPH TOKENIZER

Graph Transformers have emerged as a powerful paradigm for modeling graph-structured data,
directly addressing critical limitations of traditional message-passing GNNs, such as the over-
smoothing problem. By replacing localized neighborhood aggregation with global attention mech-
anisms, Graph Transformers dynamically capture long-range dependencies while preserving struc-
tural uniqueness across all nodes. In this work, we adopt Graphormer (Ying et al., [2021) as our
graph tokenizer to encode circuit topologies. Formally, given a sub-circuit G with N*% nodes, the
output of tokenizer is:

o™i X = Graph-Tokenizer(G*) (16)

where X7 ¢ RN "ixd is the node feature matrix, and 2% € R1*? is a learnable [CLS] token to
represent the global information.

Behavior Equivalence Contrastive Learning. To embed behavioral semantics into topology rep-
resentations, we enforce that functionally equivalent circuits map to similar latent spaces. Given a
sub-circuit G| we generate positive samples Gfgs using Yosys, which applies random structural
transformations (e.g., gate resynthesis, buffer insertion) while preserving functional equivalence.
Negative sample Gﬁgg is randomly selected from the same batch. We then optimize a contrastive

loss using the TripletMarginLoss:
Lop =[] a™ —apg 13— 1 2™ — 3%y 13 +5l+, a7

where [ is a hyperparameter that controls the margin of the distance between pairs of positive and
negative samples, and [-] ;. is a shorthand for max(0, -).

Masked Node Modeling. To help the model learn the topology connection relationships, we intro-

duce a reconstruction task where random nodes are masked and their features predicted. For encoded

node features X7, we use a learnable [MASK] token to randomly mask nodes and obtain masked

features X %i. The model then reconstructs the original features of masked nodes via a lightweight
decoder head, optimized with mean squared error (MSE) loss:

Lomask = _|/\/11Ri Z I Decoder(XjRi) - XJR" 2, (18)

G

jembi
where /\/lg denotes the set of masked nodes. The total pretraining loss combines both objectives:

Egraph—tokenizer = /\1£CL + /\2£mask7 (19)

where A1, Ao balance task contributions.
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Input Representation. After pretraining the graph tokenizer, we initialize the representation using
the [CLS] token in each sub-circuit and construct the input sequence for the entire design with a
learnable global [CLS] token xfo;

X0 = (gRe” g pRxT\T ¢ ROA+N)xd (20)

E.2.2 SUMMARY TOKENIZER

Transformer-based language models have revolutionized natural language processing by effec-
tively capturing contextual relationships through self-attention mechanisms. In this work, we adopt
BERT (Devlin et al.| |2019) as our summary tokenizer to encode textual descriptions of circuit be-
haviors. Formally, given a textual summary S’ for sub-circuit R;, the output of the tokenizer is:

tfti . TR — Summary-Tokenizer(S%), 2D

where TR: € RTL™ xd is the token feature matrix with TL® representing the sequence length, and
tfi ¢ R4 is the [CLS] token embedding that captures the global semantic representation of the
summary.

Behavior Equivalence Contrastive Learning. To align textual representations with functional cir-
cuit semantics, we enforce that summaries describing functionally equivalent circuits map to similar
regions in the embedding space. Given a sub-circuit ST, we generate positive samples Sﬁ;s by
applying random but function-preserving transformations to the original circuit using Yosys, then
re-generating the textual summary. Negative samples ngg are randomly selected from the same
batch. We optimize the following contrastive loss using TripletMarginLoss:

Lop = (|| t% —tfi 113 — |t — ], 113 +6]+, (22)

pos neg

where [ is a hyperparameter that controls the margin of the distance between pairs of positive and
negative samples, and [-] ;- is a shorthand for max(0, -).

Masked Language Modeling. To enhance the model’s understanding of linguistic structure and
circuit-specific terminology, we implement the standard BERT pretraining objective. After ran-
domly masked tokens, the model then predicts the original tokens at masked positions through a
classification head over the vocabulary. Formally, given masked token features 7%, the mask loss

is computed as:
1 R,
‘C’mlm = - W E log Do (TJ

TR AT, (23)
M jembi

where M? denotes the set of masked token positions, A% is the attention mask, and pp repre-
sents the probability distribution predicted by the model. The total pretraining loss combines both
objectives:

‘Csummaryftokenizer = )\SKCL + )\4£mlma (24)

where A3z, A4 balance task contributions.

Input Representation. After pretraining the summary tokenizer, we extract the [CLS] token em-
bedding from each summary to represent its semantic content. We then construct the input sequence
for the entire design by concatenating these embeddings with a learnable global [CLS] token ¢/%:

70 = (tRoT ¢RaT R T\T ¢ RO+N)xd (25)

E.3 DETAIL EXPERIMENT ANALYSIS

E.3.1 RQI1: PPA PREDICTION

To assess the ability to represent topology information, we performed five PPA prediction tasks
focused on key metrics in circuit optimization. Timing Performance: Slack measures timing com-
pliance post-synthesis, with Worst Negative Slack (WNS) indicating the largest timing violation,
and Total Negative Slack (TNS) summing all violations to guide optimization efforts. Area Perfor-
mance: Area refers to the total silicon area required for the circuit, crucial for feasibility and cost.
Power Performance: Power measures the circuit’s energy efficiency. Based on Tables |1} we can
draw the following observations:
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* Obs: TopoRTL achieves superior area and power prediction with minimal resource over-
head. Specifically, it outperforms the best baseline by 5.5% 1 in Area PCC and 6.9% 1 in Power
PCC, while slashing MAPE errors by 26.2% |, for area and 31.5% | for power. Crucially, these im-
provements come with fewer parameters and training data, showcasing TopoRTL’s effectiveness
in capturing global topological dependencies that text-based models struggle with.

* Obs: TopoRTL exhibits competitive timing performance due to its lightweight design. It
achieves the highest WNS prediction (PCC=0.862, RRSE=0.580), outperforming all baselines
in critical-path topology modeling. Although it doesn’t match the CodeV family for some tim-
ing tasks, it matches Slack PCC and surpasses most in RRSE, emphasizing the significance of
topology-behavior integration. TopoRTL’s WNS performance highlights its potential for timing
optimization and scalability.

* Obs: CodeV highlights domain-specific fine-tuning benefits but faces task-specific limita-
tions. It shows substantial gains over non-finetuned Qwen3, underscoring the critical role of
specialized training for RTL tasks. However, its improvements are constrained—e.g., it underper-
forms Qwen3-E-0.6B in WNS prediction and fails to achieve balanced results across all ppa tasks,
revealing inherent limitations in model generalizability.

* Obs: GCN-based models (GCN-MLP/GCN-GNN) exhibit poor accuracy due to topology-
agnostic pretraining. Their functional-aware contrastive learning discards essential circuit topol-
ogy, as evidenced by identical graph representations for structurally distinct circuits (e.g., Circuit
B vs. Circuit C in Figure[I). Notably, GCN-GNN underperforms GCN-MLP due to the invalid
homophily assumption in circuit graphs (where neighboring nodes often represent dissimilar com-
ponents) and over-smoothing effects that erase topological distinctions. This confirms that naive
graph conversion alone is inadequate, reinforcing the necessity of topology-integrated designs for
robust circuit modeling.

* Obs: CircuitFusion’s weak performance arises from topology information loss in architec-
ture and pretraining. CircuitFusion processes RTL code using functional contrastive pretrain-
ing focused on behavioral equivalence rather than topological relationships. While it converts
RTL to CDFG representations, it fails to capture crucial topology-sensitive circuit information, as
confirmed by GCN-GNN and GCN-MLP models. Our analysis shows that topology awareness
depends on cross-stage netlist alignment; without this data, the model’s topological awareness
diminishes, degrading the reliability of timing predictions and underscoring the importance of
topology.

Table 3: Detailed results of retrieval experiments.

Method AUCT

L=5 L=8 L=10 L=15
GCN-MLP 0.719 0.682 0.698 0.672
GCN-GNN 0.664 0.644 0.695 0.632

Qwen3-E-0.6B 0.495 0.545  0.531 0.497
Qwen3-E-4B 0489  0.512 0.505 0.500
Qwen3-E-8B 0.511 0.509  0.499  0.500

CodeV-CL 0.629  0.655  0.637  0.485
CodeV-DS 0.551 0.523 0572 0.631
CodeV-QC 0.522  0.530  0.509  0.509
CircuitFusion 0.674  0.674  0.666  0.670
TopoRTL 0.787  0.804 0.760  0.783

E.3.2 RQ2: CIRCUIT RETRIEVE

To evaluate behavioral representation capabilities, we conduct a natural language code search task
critical for hardware design reuse and verification. Following |Lu et al.[(2021)), we evaluate with L
negative designs (L € {5,8,10,15}) per query, measuring performance via AUC. Further details
regarding this task can be found in Appendix [D.2] Based on Figure 3] and Table [3| we derive two
key insights:

* Obs: TopoRTL demonstrates superior performance and robustness across retrieval scenar-
ios. Our model maintains a stable performance near 0.8 AUC for all L values (5-15 negative
samples), outperforming all baselines. This consistency stems from TopoRTL’s joint modeling
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of topology and behavior, emphasizing the importance of topology in RTL representation learn-
ing. The topology-guided alignment mechanism filters out irrelevant samples, ensuring reliable
behavioral matching even in noisy conditions, thus enhancing cross-modal retrieval accuracy and
supporting scalable design reuse across various hardware applications.

* Obs: CodeV validates domain adaptation efficacy in retrieval tasks through consistent gains
over Qwen3. It achieves higher AUC than non-finetuned Qwen3 across all negative sample
lengths (5-15 negative samples), demonstrating that RTL-specific fine-tuning effectively captures
behavioral semantics for retrieval. This reinforces domain adaptation as a critical strategy, though
its task-specific limitations persist.

* Obs: GCN models succeed in behavioral retrieval but expose topology’s irreplaceable role.
They match CircuitFusion and surpass LLM-based models in retrieval AUC, confirming that graph
modality with functional contrastive learning effectively encodes behavioral semantics. However,
their inability to outperform TopoRTL proves that behavioral modeling alone is insufficient; pre-
cise topological integration remains essential for robust cross-modal retrieval.

E.3.3 RQ3: HIDDEN REPRESENTATION ANALYSIS

As demonstrated in the previous sections, TopoRTL effectively learns both topological and behav-
ioral circuit characteristics. To further validate this, we visualize the learned representations using
t-SNE (Maaten & Hinton, [2008)). Embeddings from our model and CircuitFusion (selected as it
matches TopoRTL’s output dimension and training data scale) are projected into 2D space, colored
by normalized Area, Power, and Slack metrics. According to Figure[d] we can find that:

* Obs: TopoRTL preserves continuous topological trends in representation space. In Area
and Power visualizations (Figure b)), TopoRTL exhibits smooth, coherent gradients along t-SNE
dimensions, evidenced by seamless purple-to-yellow shifts for Area and Power. This reflects pre-
cise modeling of topological scaling effects (e.g., larger circuits systematically mapping to higher
Area/Power regions). Conversely, CircuitFusion (Figure[4a)) shows fragmented, discontinuous dis-
tributions with abrupt value jumps (e.g., isolated high-Power clusters amid low-Power regions),
indicating failure to capture topological continuity. This validates TopoRTL’s topology-guided
alignment in preserving quantitative design variations.

* Obs: TopoRTL achieves topology-aware clustering for discrete design regimes. For Slack
prediction (Figure [4b), TopoRTL forms distinct, non-overlapping clusters: high-Slack circuits
(orange/yellow) cleanly separate from low-Slack regions (blue/purple), directly corresponding to
critical-path topologies. CircuitFusion (Figure 4a)) exhibits severe cluster entanglement, proving
its inability to disentangle topologically critical states. This confirms TopoRTL’s unique capacity
to encode discrete topological regimes essential for timing-critical decision making, a capability
absent in behavior-only models.

* Obs: Discrete representation gaps in TopoRTL hint at RTL-to-gate-level topological mis-
matches. While TopoRTL successfully clusters Slack values, isolated outliers (e.g., yellow points)
suggest unresolved discrepancies between abstract RTL descriptions and concrete gate-level im-
plementations. These gaps likely stem from: (1) Abstraction loss: RTL netlists omit low-level
details (e.g., buffer insertion, wire routing) critical for precise timing analysis; (2) Hierarchical
misalignment: Modular RTL components may map non-linearly to flat gate-level structures, dis-
rupting topological continuity. This observation highlights the necessity for improved and well-
designed topology features.

E.3.4 RQ4: ABLATION AND FURTHER ANALYSIS

Abalation Study. To rigorously validate the contribution of each TopoRTL component, we conduct
ablation experiments by systematically removing key modules: (1) w/o Bit-width: eliminating bit-
width centrality encoding a’ and feeding initial embeddings directly to the transformer; (2) w/o
Max-path: discarding max-path discrepancy encoding AL during attention score computation; (3)
w/o Graph density: removing graph density encoding Ap from attention mechanisms; (4) w/o Cross-
loss: replacing topology-guided alignment with standard contrastive learning between isolated graph
and text modalities. As shown in Figure[5]and Table[d] these experiments reveal:

* Obs: Positional encodings yield balanced performance across diverse downstream tasks.
Bit-width centrality encoding improves performance by effectively capturing both topology and
functional complexity. In contrast, max-path and density encodings demonstrate varying impacts
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Table 4: Detailed results of the ablation study

Model Area Power Slack

PCCt R*t MAPE|RRSE|PCCt R*t MAPE|RRSE|PCCt R?>t MAPE|RRSE|
TopoRTL 0.863 0.683 7.952 0.574 0.884 0.712 25.033 0.585 0.909 0.821 31.249 0.443
w/o cross modal loss 0.839 0.662 8.992 0.602 0.859 0.695 28.098 0.636 0.892 0.792 32.720 0.491
w/o graph density  0.851 0.692 8.794 0.572 0.874 0.689 29.777 0.621 0.873 0.744 38.662 0.536
w/o max path 0.854 0.705 8.634 0.565 0.871 0.694 27.998 0.616 0.890 0.777 33.599 0.525
w/o bit width 0.838 0.693 9.354 0.645 0.792 0.553 34.159 0.755 0.8540.709 32.479 0.707
only graph density  0.836 0.696 9.652 0.632 0.812 0.627 37.818 0.649 0.837 0.690 35.348 0.717
only max path 0.816 0.660 10.085 0.730 0.831 0.637 32.198 0.645 0.838 0.605 40.505 0.664
only bit width 0.8350.663 8.889 0.614 0.814 0.611 29.139 0.669 0.856 0.717 39.541 0.557

TNS WNS Retrieval

PCCt R?*t MAPE|RRSE|PCCt R?*t MAPE|RRSE| AUC?T
TopoRTL 0.872 0.743 32.016 0.521 0.862 0.723 40.130 0.580 0.787
w/o cross modal loss 0.902 0.800 31.776 0.444 0.869 0.710 35.936 0.633 0.759
w/o graph density  0.867 0.723 32.821 0.515 0.867 0.734 41.962 0.555 0.771
w/o max path 0.901 0.778 32.937 0.503 0.896 0.760 41.148 0.564 0.781
w/o bit width 0.882 0.722 37.991 0.601 0.813 0.545 41.096 0.913 0.723
only graph density  0.893 0.762 36.002 0.504 0.855 0.642 42.884 0.840 0.709
only max path 0.858 0.663 34.672 0.584 0.726 0.265 55.031 0.988 0.684
only bit width 0.896 0.773 33.819 0.446 0.867 0.739 44.679 0.526 0.760

CircuitFusion CodeV-DS-6.7B Qwen3-Embedding-0.6B s Qwen3-Embedding-8B . GCN_MLP —e— PCC/AUC
CodeV-CL-7B B CodeV-QC-7B B Qwen3-Embedding-4B GCN_GNN s TopoRTL m  RRSE
Slack TNS WNS
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Figure 7: Split Ratio Results.

1.00{ O
-4

0.75 &

o
N

D 0.65
0.60

i

1 0.

0. 2 0.3
Split Ratio

Retrieval

0.4

0.1 0.2 0.3
Split Ratio

0.4

due to gaps between RTL and netlist representations. This suggests that a comprehensive repre-
sentation of a circuit requires complementary topological signals.
* Obs: Topology-guided cross-modal alignment prioritizes topology fidelity over pure timing
accuracy. By enforcing topology-semantic consistency, the alignment ensures behavioral descrip-
tions honor physical constraints, which is a necessary trade-off for design left-shift that slightly
constrains timing prediction (e.g., TNS) while significantly boosting other topological and be-
havioral tasks. This confirms that topology-guided alignment is helpful for end-to-end design

optimization.

Effect of Dataset Scale. As noted earlier, TopoRTL slightly underperforms larger models on timing
tasks due to its small pretraining dataset. Given EDA’s scarcity of labeled data, evaluating low-label
generalization is critical for real-world deployment. To assess scalability and data efficiency, we
train TopoRTL at 10%, 20%, 30% (default), and 40% label rates, using equal validation splits with
the remainder as test data. As shown in Figure[7] results reveal:
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Table 5: Performance comparison across different circuit scales. (MAPE%)

Method Task Small Medium Large Mean Std

Area 8.178 6.231 11.924 8.778  2.893
Power  28.4 18.846  29.094 25.447 5.727
TopoRTL Slack  62.187  37.242  33.587 44.339 15.565
TNS 45243  15.834 24954 28.677 15.054
WNS 53362 25937 27414 35571 15.425

Area 14.001 8.273 24285 15520 8.113
Power 54.046 24835 50.857 43.246 16.024
CircuitFusion Slack 59.419  36.396 25.491 40435 17.321
TNS 50.146  12.485 33930 32.187 18.891
WNS  46.580 30336 27.172 34.696 10.413

Area 11.818 8.504 13.058 11.127 2.354
Power 48.724 22734  26.950 32.803 13.948
CodeV-DS Slack  63.297  32.643  30.260 42.067 18.425
TNS 46.043  18.053  14.222 26.106 17.372
WNS 52,151  31.809 28311 37.424 12874

* Obs: TopoRTL surpasses larger models across more tasks at sufficient label rates. The model
initially underperforms baselines at lower label rates (10% and 20%), but consistently surpasses or
at least matches all competing approaches when label rates reach 30% and 40%. This progression
confirms that TopoRTL’s topology-aware architecture efficiently learning the topology and behav-
ior information, proving its viability for industrial EDA pipelines where labeled data gradually
accumulates.

F FURTHER ANALYSIS: ROBUSTNESS AND GENERALIZATION

F.1 CIRCUIT SCALE ANALYSIS

Real-world applications involve diverse circuits with varying functionalities and sizes, necessitating
representation models that possess both robustness and scalability. To further investigate model
performance across different scales, we partitioned the test set based on post-synthesis logic cell
counts into three categories: Small (< 1k cells), Medium (1k-10k cells), and Large (> 10k cells).
We selected three representative top-performing models for comparison: CodeV-DS (text-based),
CircuitFusion (multimodal), and TopoRTL. As shown in Table[3] the results reveal two key insights:

* Obs: TopoRTL demonstrates superior robustness on large-scale designs. On topology-
sensitive metrics such as Area and Power, TopoRTL maintains high accuracy even as circuit
complexity increases. Notably, on Large circuits, TopoRTL achieves an Area MAPE of 11.92%,
reducing the error by nearly 50% compared to CircuitFusion (24.29%). This confirms that our
explicit topology encodings effectively capture the complexity of large-scale combinational logic
blocks.

* Obs: TopoRTL exhibits large scale invariance. While baseline models often show signifi-
cant performance fluctuation across different groups, TopoRTL maintains consistent low variance
across Small, Medium, and Large categories. This suggests that our model generalizes well to
unseen designs across different scales.

F.2 CRrR0SS-PDK GENERALIZATION ANALYSIS

During logic synthesis, RTL circuits are mapped to physical gates based on a specific Process De-
sign Kit (PDK). Consequently, PPA metrics derived from different manufacturing processes (e.g.,
varying nanometer nodes) exhibit significant discrepancies. However, since RTL descriptions fun-
damentally specify functional behavior and logical topology rather than physical implementation,
the representations learned by TopoRTL should theoretically be PDK-agnostic, enabling early-stage
optimization across diverse technologies.
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Figure 8: Label distribution statistics on different PDKs.

Table 6: Performance comparison on different PDKs.

Model Task NanGate 45nm SkyWater 130nm GlobalFoundries 180nm
PCCt MAPE] PCCYt MAPE| PCCt MAPE|
Area  0.863 7.952 0.833 7.351 0.808 6.313
Power (.884 25.033 0.896 16.624 0.873 14.649
TopoRTL Slack  0.909 31.249 0.876 26.957 0.830 11.025
TNS  0.872 32.016 0.901 13.036 0.902 7.849
WNS  0.862 40.130 0.820 17.890 0.806 8.553
Area  0.647 13.242 0.643 10.804 0.620 8.664
Power 0.657 43.073 0.643 34.308 0.640 28.268
CircuitFusion Slack 0.893 30.944 0.885 25.408 0.865 9.451
TNS  0.885 34.454 0.848 18.315 0.831 11.983
WNS 0.817 38.227 0.798 21.267 0.852 7.399
Area 0.814 10.778 0.806 8.989 0.791 7.397
Power 0.827 36.544 0.818 27.850 0.819 21.950
CodeV-DS Slack  0.881 32.712 0.900 22.761 0.905 7.325
TNS  0.928 31.857 0.918 15.977 0.917 9.397
WNS 0.780 41.750 0.763 17.954 0.790 7.330

To validate this cross-PDK generalization, we re-synthesized the dataset using two additional open-
source PDKs, SkyWater 130nm and GlobalFoundries 180nm, distinct from the default NanGate
45nm. As illustrated in Figure [8] PPA distributions vary significantly across process nodes, with
performance metrics naturally degrading as the node size increases. To address absolute scale differ-
ences while preserving relative circuit rankings, we applied a log-transformation to the PPA labels.
We compared TopoRTL against CodeV-DS and CircuitFusion, with results summarized in Table[6}
The analysis yields two key observations:

* Obs: TopoRTL achieves robust generalization across technologies. TopoRTL consistently
outperforms baselines on 45nm, 130nm, and 180nm tasks when prediction heads are trained on
the corresponding data. For instance, in Area prediction on GlobalFoundries 180nm, TopoRTL
achieves a PCC of 0.808, significantly surpassing CircuitFusion (0.620) and CodeV-DS (0.791).
This confirms that our model learns universal circuit properties.

* Obs: Performance trends. All models show slightly reduced accuracy on older PDKs
(130nm/180nm vs. 45nm), primarily because open-source PDKs have limited standard cell li-
braries, causing synthesis tools to map complex functions to suboptimal cells and thus introducing
noise in ground-truth PPA labels.

F.3 ROBUSTNESS ABILITY ON SUMMARY NOISE

In TopoRTL, we leverage dual modalities, graph and summary, to capture structural topology and
behavioral semantics, respectively. For the summary modality, we employ LLMs to generate func-
tional descriptions from Verilog code, which are then processed by a behavior-aware tokenizer.
However, given the varying capabilities of different LLMs or human-written types, the quality of
generated text can fluctuate. To investigate the sensitivity of RTL representation learning to text
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Figure 9: Performance of using different LLMs to generate functionality summary.
Table 7: Performance comparison across different summary shuffling ratios.
Task 0% 1% 5% 10%
PCCt MAPE| PCCt MAPE| PCC{t MAPE| PCCt MAPE]|
Area 0.8629  7.9521 0.869 7.7672  0.8421  9.0629 0.8057 9.5074
Power 0.8842 25.0326 0.8315 28.6588 0.8196 31.9563 0.8384 31.1551
Slack 0.9089 31.2487 0.8778 34.2507 0.8695 39.4997 0.8795 34.1435
TNS 0.8723 32.0156 0.8798 33.1328 0.8666 34.0015 0.8734 34.0001
WNS 0.8621 40.1298 0.8814 43.4544 0.8851 37.3168 0.8926 39.2374
Retrieval 0.787 0.7705 0.7651 0.7675

quality, we conducted experiments from two perspectives: semantic quality variation and extreme
information mismatch.

Impact of Semantic Quality. We first simulated a scenario with lower-quality textual inputs by re-
placing the summaries generated by GPT-OSS-120B with those from a significantly smaller model,
GPT-0OSS-20B. The TopoRTL model was then retrained using these coarser summaries. As illus-
trated in Figure ] the results reveal:

* Obs: TopoRTL is robust to variations in LLM capability. The performance degradation
across all downstream tasks remains minimal (PCC, < 4%) when switching to the smaller 20B
model. This indicates that while high-fidelity summaries optimize performance, TopoRTL does
not strictly depend on state-of-the-art LLMs. The graph modality acts as a structural anchor,
stabilizing the learned representation even when textual nuances are less precise, ensuring broad
applicability even with resource-constrained generation models.

Impact of Textual Accuracy. We further introduced extreme noise to test the model’s ability to
correct behavioral misinformation. During pretraining, we randomly shuffled the textual summaries
for a specific ratio (0%, 1%, 5%, 10%) of the dataset (effectively pairing circuits with completely
incorrect descriptions), forcing the model to reconcile conflicting modal signals. As shown in Table

03

* Obs: Topology encodings act as a correction mechanism for behavioral noise. We observed
that timing-related tasks remain highly resilient to textual noise. Remarkably, WNS prediction
performance actually improves under high noise conditions. We attribute this to the intrinsic
conflict between high-level summaries and worst-case timing. Text summaries provide a prior
for "average" functional behavior but lack specific information about the critical path. When
textual inputs are noisy, the model effectively gates out these vague semantic signals and is forced
to rely exclusively on the precise, explicitly encoded topology. This confirms that our topology-
aware architecture provides a robust backbone that compensates when behavioral descriptions fail.
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Figure 10: Cosine similarity histogram of functionally equivalent circuits.

Small circuits have few registers (<5), making global property (Area/Power) estimation vulnerable
to semantic corruption.

F.4 CIRCUIT FUNCTIONALITY AND TOPOLOGY SIMILARITY ANALYSIS

From a hardware perspective, an RTL circuit is inherently a structured dataflow graph where behav-
ioral intent and topological structure are intimately bound. As illustrated in Figure [T} circuits can
share identical functions (e.g., Circuit B and C) yet exhibit divergent topologies that dictate physical
performance (PPA). Therefore, an ideal RTL representation must simultaneously capture behavioral
equivalence while distinguishing topological variations.

To further validate TopoRTL'’s capability in disentangling these aspects, we employed Yosys to gen-
erate functionally equivalent but structurally diverse variants for each circuit in our dataset. For
every original-variant pair, we extracted both global embeddings (derived from the [CLS] token)
and subgraph embeddings (register cone level), and computed their cosine similarities. The result-
ing distributions are presented in Figure[I0] The analysis yields two critical observations:

* Obs: TopoRTL achieves near-perfect behavioral consistency. The global embeddings of func-
tionally equivalent pairs exhibit an extremely high mean similarity of 0.999. This confirms that
our behavior-aware dual-modal tokenizers successfully align the high-level semantic representa-
tion of circuits, ensuring that structural transformations do not distort the model’s understanding
of the underlying functionality.

* Obs: TopoRTL maintains acute topological sensitivity within functional equivalence. In con-
trast to the global alignment, the subgraph embeddings show a noticeably lower mean similarity
of 0.868. This distinct "similarity gap" proves that our topology-aware encodings and alignment
effectively detect and encode local structural variations (such as logic depth changes or intercon-
nection density) even when the overall function remains unchanged. This capability is pivotal for
precise PPA prediction, as it allows the model to differentiate between implementation choices
that affect timing and power without losing functional context.

This directly addresses our core question from the introduction: TopoRTL uniquely balances behav-
ioral equivalence preservation with topological differentiation.

G FURTHER DISCUSSION AND FUTURE OUTLOOK

While TopoRTL successfully demonstrates the importance of topology in RTL representation learn-
ing for PPA prediction and retrieval, our framework opens up several promising directions for future
research and industrial application.

Application to Functional Verification Tasks. Current evaluations focus on static analysis (PPA
and Retrieval). However, the principles of TopoRTL are theoretically well-suited for dynamic func-
tional verification, such as coverage prediction (e.g., Design2Vec [Vasudevan et al) (2021)). Ver-
ification is fundamentally a problem of state reachability and logic dependency. Our Bit-Width
Centrality Encoding inherently captures state space dimensionality, while the Register Cone de-
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composition mirrors the "Cone of Influence" analysis used in formal verification. Future work will
explore leveraging these topological priors to predict verification complexity and guide testbench
generation, bridging the gap between static representation and dynamic behavior.

Generalizing to Gate-Level Representations. The core insight of TopoRTL, explicitly model-
ing the interplay between topological structure and functional behavior, is not limited to RTL but
is transferrable to lower levels of abstraction, such as gate-level netlists. The concept of register
cones naturally extends to Flip-Flop (DFF) cones in netlists. At this level, our positional encodings
become even more physically meaningful: Max-Path maps directly to critical path delays through
standard cells, and Graph Density correlates strongly with routing congestion. Adapting TopoRTL
to netlists could enable fine-grained physical design prediction, creating a unified representation
learning framework across the design flow.

Towards Real-Time EDA Integration. Unlike large-scale LLMs that suffer from high latency,
TopoRTL is lightweight (29.13M parameters) and efficient, with an average inference time of less
than one second per circuit. This efficiency, combined with our superior accuracy in PPA prediction,
makes TopoRTL an ideal candidate for integration into real-time EDA flows. We envision TopoRTL
functioning as an interactive "copilot" within design tools, providing instant feedback on power and
timing implications as engineers modify code, thereby accelerating the iterative loop of agile chip
design.
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H OTHER DETAILS

Prompts to generate module-level and design-level descriptions

Module-level Generation

System Prompt

You are a professional VLSI designer and an expert at Verilog
coding. Your task is to analyze a Verilog module and provide
a structured description in JSON format.

User Prompt

Analyze the following Verilog module. Your response MUST
be a single, valid JSON object.

Do not include any introductory text or explanations outside
of the JSON structure.

The JSON object should have the following keys:

1. "suggested_name": A short, descriptive, and functional
name for the module (e.g., "ALU", "FIFO Controller").

2. "inputs": A list of strings, where each string is a high-level
description of an input§ purpose (e.g., "Clock signal", "Data
to be written", "Reset signal"). Do not use signal names from
the code.

3. "outputs": A list of strings, similar to inputs, describing
each outputs purpose (e.g., "Result of calculation", "Indicates
buffer is full").

4. "functionality": A concise paragraph describing what the
module does, its main operations, and its purpose. Avoid im-
plementation details.

5. "sub_modules_called": A list of strings containing the
names of any other modules instantiated within this module.
If none, provide an empty list [].

Here is the Verilog module code:

“verilog
{module_code}

Design-level Generation

System Prompt

You are a professional VLSI designer and an expert technical
writer. You synthesize descriptions of individual circuit mod-
ules into a cohesive, high-level overview of the entire design.

User Prompt

You are given descriptions for individual hardware modules
that make up a larger digital circuit. Your task is to generate a
single, high-level natural language description of the **entire
circuit’s functionality**. Follow these requirements:

1. Focus on the overall purpose and main operations of the
complete design. Synthesize, do not just list the parts.

2. Do not include any variable names, signal names, or the
suggested module names from the provided context.

3. The description should be concise, clear, and written as if
a human user is describing what they want the final circuit to
achieve.

4. Keep the final description under 400 words.

Here are the descriptions of the individual modules:

{context_str}
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