
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOPOLOGY MATTERS IN RTL CIRCUIT REPRESENTA-
TION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Representation learning for register transfer level (RTL) circuits is fundamental
to enabling accurate performance, power, and area (PPA) prediction, efficient cir-
cuit generation, and retrieval in automated chip design. Unlike general program-
ming languages, RTL is inherently a structured dataflow graph where semantics
are intrinsically bound to the topology from a hardware view. However, exist-
ing language-model-based approaches ignore the nature of RTL circuits and fail
to capture topology-sensitive properties, leading to incomplete representation and
limited performance for diverse downstream tasks. To address this, we introduce
TopoRTL, a novel framework that explicitly learns topological differences across
RTL circuits and preserves the behavior information. First, we decompose RTL
designs into register cones and construct dual modalities initialized with behavior-
aware tokenizers. Second, we design three topology-aware positional encodings
and leverage attention mechanisms to enable the model to distinguish topolog-
ical variations among register cones and RTL designs. Finally, we introduce a
topology-guided cross-modal alignment strategy, employing contrastive learning
over interleaved modality pairs under topological constraints to enforce seman-
tic consistency and achieve superior modality alignment. Experiments demon-
strate that explicit topological modeling is critical to improving RTL represen-
tation quality, and TopoRTL significantly outperforms existing methods across
multiple downstream tasks.

1 INTRODUCTION

Artificial intelligence is transforming electronic design automation (EDA) through representation
learning. This approach maps circuits across abstraction levels into low-dimensional vector spaces,
enabling unified modeling for critical tasks like PPA prediction, SAT solving, and circuit genera-
tion (Li et al., 2022b; Shi et al., 2023; 2024; Zheng et al., 2025; Liu et al., 2024b; 2025a;b; Fang
et al., 2025). This capability supports the design left-shift paradigm, moving performance prediction
and issue detection to earlier stages, which reduces costs and accelerates optimization (Xing, 2024;
Zeng, 2024).

Among digital circuit abstractions, register-transfer level (RTL) is crucial. It is typically described
using Verilog as the industry-standard hardware description language. Naturally, many approaches
treat RTL as software programming code, focusing on learning syntax and semantic meaning
through text-based representations. For example, CodeV (Zhao et al., 2025) uses GPT-3.5 to gen-
erate natural language descriptions from high-quality Verilog code and fine-tunes different large
language models (LLMs) to enhance Verilog generation. Similarly, DeepRTL (Liu et al., 2025a)
fine-tunes CodeT5+ on datasets connecting Verilog code to detailed descriptions, excelling in un-
derstanding and generating RTL. DeepRTL2 (Liu et al., 2025b) further integrates generation and
embedding tasks within a unified framework.

Unlike software programming languages, RTL is inherently a structured dataflow graph where
behavior and topology coexist from a hardware view. It explicitly specifies the flow of data
between hardware registers and the logical operations performed on that data, which reflects quite
closely the logic structure of the circuit being modeled (IEEE, 2006). Crucially, RTL is not a purely
behavioral description (which abstracts away hardware structure) nor a purely structural one (which
specifies gate-level connectivity). Instead, it represents a structured dataflow paradigm where be-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Functionally Inequivalent

Structurally Similar

Functionally Equivalent

Structurally Dissimilar

a b

+ c

+

-

d

sum

Sparse

Circuit A.
…
assign _0_ = a + b;
assign _1_ = _0_ + c;
assign _2_ = _1_ - d;
always @(posedge clk)

sum <= _2_;
… a b

+ c

+

+

d

sum

Sparse

Circuit B.
…
assign _0_ = a + b;
assign _1_ = _0_ + c;
assign _2_ = _1_ + d;
always @(posedge clk)

sum <= _2_;
… a b

+

c

+

+

d

sum

Dense

Circuit C.
…
assign _0_ = a + b;
assign _1_ = c + d;
assign _2_ = _0_ + _1_;
always @(posedge clk)

sum <= _2_;
…

Figure 1: RTL is a structured dataflow paradigm where behavioral intent is inseparable from
dataflow topology. Circuit A and B share a similar topology but implement different functions.
Circuit B and C implement identical four-input adders but with divergent topologies.

havioral intent is inseparable from topology (Micheli, 1994). This tight coupling between behavior
and topology necessitates that RTL not be treated as a general programming language to learn.

While this text-based approach seems straightforward, we argue that topology matters in RTL repre-
sentation learning. The topological structure of circuits directly influences their physical constraints
and implementation details (Micheli, 1994). For instance, in Figure 1, Circuits A and B have similar
topologies but produce different functions, while Circuits B and C, both four-input adders, demon-
strate performance variations due to their topological differences. Circuit B’s chain structure is less
timely but more power-efficient than Circuit C’s tree structure. Current methods typically use text-
based approaches, often relying on LLMs that struggle with graph-structured data (Li et al., 2024),
making it challenging to capture circuit topological properties, leading to the following question:

Can we model RTL circuits by incorporating
both behavioral functions and topological structure information?

To address the question, we analyze the fundamental nature of RTL circuits. As previously men-
tioned, the sequential RTL circuit consists of registers and combinational logic. When a signal
propagates through the circuit, it undergoes a cyclic process:

Computation Phase. Signals traverse through combinational logic networks where functional
transformations occur. This phase determines the circuit’s operational behavior. The density of in-
terconnections directly impacts implementation quality, as densely connected logic regions increase
power consumption in physical implementation (Chandrakasan & Brodersen, 2002). Meanwhile,
the depth of propagation paths serves as a critical determinant of timing performance.

Storage Phase. At clock edges, registers capture and maintain the results of computational pro-
cesses, enabling sequential behavior and stateful operations. The bit-width of registers determines
the precision of data representation, directly influenced by the accuracy needs of functional opera-
tions. It also acts as a practical indicator of operational complexity in circuit design, significantly
impacting circuit performance optimization (Lee et al., 2006).

This dual-phase perspective highlights that topology is not just about combinational logic connec-
tions; it is also an intentional representation of behavioral function. Building on this idea, we propose
TopoRTL, a novel framework that explicitly captures variations in topology while maintaining
the semantics of behavior. Specifically, we design three topology-aware positional encodings that
reflect the essential characteristics of storage and computation dimensions. And we utilize atten-
tion mechanisms to enable the model to recognize topological variations among different circuits.
In addition, we introduce a topology-guided cross-modal alignment strategy that ensures semantic
consistency between graph and textual modalities while adhering to topological constraints. This
approach effectively models the intrinsic relationship between behavioral and dataflow structure.

To assess the efficacy of our proposed method, we carried out comprehensive experiments focused
on PPA prediction and circuit retrieval tasks. These downstream applications are pivotal for effective
circuit optimization and generation. Our findings reveal that TopoRTL, characterized by its efficient
and lightweight architecture, consistently outperforms or, at the very least, matches the performance
of several advanced methodologies, including numerous large-scale language models. In addition, a
detailed analysis through circuit representation visualization and further analysis robustly reinforces
our central premise: topology matters in RTL representation learning. This research offers fresh
perspectives that significantly contribute to the advancement of circuit representation learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS AND PRELIMINARIES

In this section, we provide a systematic review of RTL representation learning approaches and
present our data preprocessing pipeline. In Section 2.1, we analyze previous methods, categoriz-
ing them into behavioral methods and topological methods, while also discussing their limitations
stemming from the nature of RTL. In Section 2.2, we outline our data preprocessing pipeline, which
comprises two main components: register cone generation (Section 2.2.1) and multimodal data gen-
eration (Section 2.2.2).

2.1 RELATED WORKS

Register Transfer Level in EDA. Register Transfer Level (RTL) is a crucial abstraction in digital
circuit design, where behavioral intent and structural topology coexist. This unique abstract level
makes RTL an excellent target for circuit representation learning, which supports downstream EDA
applications by reducing design time and enhancing performance.

Behavioral Modeling for RTL. Most approaches treat RTL as software code, focusing on learn-
ing syntax and semantics through text representations, particularly with LLMs. For instance,
CodeV (Zhao et al., 2025) uses GPT-3.5 to produce natural language descriptions from Verilog
code, followed by fine-tuning LLMs to enhance Verilog generation. DeepRTL (Liu et al., 2025a)
presents a unified model for understanding and generating Verilog by fine-tuning CodeT5+ on a
dataset linking Verilog to detailed language descriptions. DeepRTL2 (Liu et al., 2025b) extends this
by combining generation with embedding-based tasks in RTL.

Topology Modeling for RTL. Traditional methods (Xu et al., 2022; Fang et al., 2023) for topology
modeling primarily use feature engineering to transform Verilog code into graph structures, relying
on hand-crafted features that may lack semantic depth and generalizability. Recently, SNS v2 (Xu
et al., 2023) categorizes circuits into register cones and employs functionally equivalent contrastive
learning for pretraining, using this representation for downstream tasks. However, this approach
sacrifices topological awareness in the process. For instance, it cannot differentiate between Circuit
B and Circuit C as shown in Figure 1.

Overall, these approaches have significant limitations in addressing the previous question. They tend
to either overlook the intrinsic characteristics of RTL designs or lack the capacity for generalization
across a wide range of RTL tasks. In contrast, this work proposes TopoRTL, a novel framework that
explicitly captures variations in topology while preserving the essential semantics of behavior.

2.2 PRELIMINARIES: DATA PREPROCESSING

2.2.1 REGISTER CONE GENERATION

In line with the core concept of sub-design partitioning, we extract register cones through a register-
driven backward traversal. This process is outlined in Algorithm 1 and occurs in three phases.
Phase 1. Given an RTL design V with a total of registers {Ri}Ni=1, we build signal dependency
dictionaries that include signal declarations and combinational dependency information. Phase 2.
We traverse the combinational logic from each register Ri to its inputs/connected registers. Phase
3. Using the identified signals, we generate syntactically correct subcircuits V Ri , which are verified
using Yosys (Wolf et al., 2013), an open-sourced logic synthesis tool. This implementation ensures
complete and scalable decomposition for RTL designs. Details are provided in Appendix E.1.

2.2.2 MULTIMODAL DATA GENERATION

Drawing on multimodal learning advances (Li et al., 2022a; 2021; Liu et al., 2024a; Zhao et al.,
2023), we construct two modalities to explicitly modeling structural topology and behavior function:
(1) Graph modality: we transform each subcircuit V Ri into a control-data flow graph (CDFG) GRi ,
where the nodes represent combinational logic and registers, while the edges encode signal connec-
tivity. This approach is similar to the method described by Fang et al. (2025), explicitly modeling
the topological structure. (2) Summary modality: we prompt GPT-OSS-120B (OpenAI, 2025) to
generate behavioral descriptions SRi capturing high-level functional intent for each subcircuit V Ri .
This dual-representation framework enhances circuit behavior and topology learning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

…

C2
C1

Input 1 Input 4

R1

RN

R2R3

… C3

G
raph

Tokenizer
Sum

m
ary

Tokenizer

R0

R1

R2

RN

R3

R4

⁞

G
raph

initial em
beddings

C
entrality Encoding

R0

R1

R2

RN

R3

R4

⁞

Layer N
orm

Linear
Linear

Linear

M
ax-Path

PE

G
raph

D
ensity

PE

M
ulti-head

A
ttention

FFN

R0

R1

R2

RN

R3

R4

⁞

G
raph encoded em

beddings

⊕
⊕

×N

푄

퐾

푉

R0

R1

R2

RN

R3

R4

⁞

Sum
m

ary
initial em

beddings

Input 1 Input 2

R2

Input 3

Input 4

+

+

+

Layer N
orm

푄 푄

퐾 퐾

C
entrality Encoding

R0

R1

R2

RN

R3

R4

⁞

Layer N
orm

Linear
Linear

Linear

M
ax-Path

PE

G
raph

D
ensity

PE

M
ulti-head

A
ttention

FFN
R0

R1

R2

RN

R3

R4

⁞

Sum
m

ary encoded em
beddings

⊕

⊕

×N

푄

퐾

푉

Layer N
orm
푄 푄

퐾 퐾

bit-width densitymax-path
⁞

8
⁞

⁞

⁞

{4,4,3,2} 7
8 × 7

⁞

⁞

⁞

⁞

⁞

⁞

⁞

⁞

R0

R1

R2

RN

R3

R4

⁞

R0

R1

R2

RN

R3

R4

⁞

Contrastive
loss

M
EA

N
M

EA
N

bit-width densitymax-path
⁞

8
⁞

⁞

⁞

3.66 0.125
⁞

⁞

⁞

⁞

⁞

⁞

⁞

⁞

comp.

풃풊풕(푹ퟐ)

(풍푹ퟐ , 풍푹풊) (흆푹ퟐ , 흆푹풊)

풃풊풕(푹ퟐ)

[CLS] token Node token ⊕Add

(풍푹ퟐ , 풍푹풊) (흆푹ퟐ , 흆푹풊)

(a)Behavior-Aware
Dual-Modal Tokenizers

(b) Topology-Aware
Positional Encoding with Transformer

(c) Topology-Guided
Cross-Modal Alignment

Concat.

Concat.

푋�

푇�

퐻� 퐻��

퐻�
퐻��

퐻�

퐻�

푧

푦

Frozen Trainable

Figure 2: Overview of TopoRTL.

3 METHODOLOGY

We introduce TopoRTL, a framework that integrates behavior functions with topology structure in-
formation. As illustrated in Figure 2, TopoRTL has three key components: (1) Behavior-Aware
Dual-Modal Tokenizers for extracting semantics from topology graphs and functional descriptions;
(2) Topology-Aware Positional Encoding that incorporates bit-width centrality, signal path depth,
and interconnection density into Transformer attention; and (3) Topology-Guided Cross-Modal
Alignment that merges modalities while maintaining topological constraints. The representations
generated by TopoRTL can be applied to tasks such as PPA prediction and circuit retrieval.

3.1 BEHAVIOR-AWARE DUAL-MODAL TOKENIZERS

To capture the behavior information of circuits, we utilize behavior-aware dual-modal tokenizers
that are trained through a behavior equivalence contrastive learning task and a mask modeling task.

Graph-Based Tokenizer. To capture topology-aware circuit semantics, we employ a pretrained
graph tokenizer that maps sub-circuits to compact latent representations. For a design decomposed
into N sub-circuits {GRi}Ni=1, the tokenizer outputs a representation xRi ∈ R1×d for each sub-
circuit GRi . These representations are combined with a global design-level [CLS] token xR0 to
form the input sequence for downstream tasks:

X0 = (xR0
T
, xR1

T
, . . . , xRN

T
)T ∈ R(1+N)×d. (1)

This sequence preserves hierarchical design semantics while enabling efficient processing by
transformer-based models. For more details, please refer to Appendix E.2.1.

Summary-Based Tokenizer. To capture behavioral semantics from circuit descriptions, we employ
a pretrained summary tokenizer based on BERT that encodes textual summaries into semantic em-
beddings. For a design with N sub-circuits and their textual summaries {SRi}Ni=1, the tokenizer
outputs a global [CLS] token embedding tRi ∈ R1×d. These embeddings are combined with a
learnable global design-level [CLS] token tR0 to form the input sequence:

T 0 = (tR0
T
, tR1

T
, . . . , tRN

T
)T ∈ R(1+N)×d. (2)

This sequence enables transformer models to jointly reason over circuit functionality. For more
details, please refer to Appendix E.2.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 TOPOLOGY-AWARE POSITIONAL ENCODING WITH TRANSFORMER

3.2.1 BIT-WIDTH CENTRALITY ENCODING

During the storage phase, registers preserve computational results where bit-width directly deter-
mines the precision range of data representation. In practice, complex operations (e.g., 32-bit arith-
metic units) inherently require wider bit-widths to maintain accuracy, while simpler control signals
(e.g., 1-bit flags) operate effectively with minimal precision (Lee et al., 2006). To enable the model
to distinguish such functional hierarchies from circuit topology, we propose Bit-Width Centrality
Encoding.

Bit-width Encoding. For each register Ri, we extract bit(Ri) from Verilog declarations (e.g., reg
[31:0] data;) to encode precision constraints as topology features. We first process the initial
node features X0 and S0 from dual modalities through a multi-layer perception (MLP):

X = MLP(X0) ∈ R(1+N)×d, S = MLP(S0) ∈ R(1+N)×d, (3)

where X,S ∈ R(1+N)×d and N denotes the total number of registers and d is the feature dimension.

Subsequently, we assign two learnable embedding vectors abitG and abitS for each possible bit-width
value. These embedding vectors are accessed through a lookup table mechanism based on each
register’s actual bit-width:

hRi

G = xRi + a
bit(Ri)
G , hRi

S = sRi + a
bit(Ri)
S 1 ≤ i ≤ N, (4)

where xRi and sRi are the features after MLP processing, and a
bit(Ri)
G and a

bit(Ri)
S are the learnable

embedding vectors corresponding to the bit-width of register Ri. This positional encoding method
helps the model associate bit-width values with functional complexity during topological learning.

3.2.2 MAX-PATH AND DENSITY DISCREPANCY ENCODING

During the computation phase, signals traverse through combinational logic networks, where high
interconnection density raises power consumption due to increased parasitic capacitance (Chan-
drakasan & Brodersen, 2002). The propagation path depth also influences timing performance
through the critical path length. To help the model differentiate these structural factors from cir-
cuit topology, we introduce Max-Path and Density Discrepancy Encoding.

Max-Path Encoding. For each register cone GRi , where 1 ≤ i ≤ N , we extract the maximum path
length set:

LRi = {dist(Ri, Rj) | exist path Rj → Ri in GRi} 1 ≤ i ≤ N, (5)
where dist(Rj , Ri) represents the number of pseudo logic gates between registers Rj and Ri.
Rather than relying solely on the absolute maximum path length, which can be sensitive to out-
liers, we select the Top-K longest paths and compute their mean for robust representation:

lRi = MEAN(Top-K(LRi)) 1 ≤ i ≤ N. (6)

This approach captures the typical critical path behavior while mitigating the impact of anomalous
paths. We then construct a relative matrix ∆L ∈ RN×N , where

∆Lij = |lRi − lRj | 1 ≤ i, j ≤ N, (7)

representing the discrepancy in critical path characteristics between register pairs.

Graph Density Encoding. For each GRi , we compute graph density as:

ρRi =
ERi

NRi(NRi − 1)
1 ≤ i, j ≤ N, (8)

where ERi and NRi denote the number of edges and nodes in the register cone, respectively. This
metric quantifies how interconnected the logic surrounding register Ri is, with higher values indi-
cating more complex, tightly coupled functionality. We then compute a relative density discrepancy
matrix ∆ρ ∈ RN×N , where

∆ρij = |ρRi − ρRj | 1 ≤ i, j ≤ N. (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.3 TRANSFORMER WITH TOPOLOGY-AWARE ATTENTION

The Transformer architecture consists of a composition of Transformer layers, each containing two
key components: a self-attention module and a position-wise feed-forward network (FFN). To illus-
trate our approach, we specifically describe the process using the graph modality HG. Here, HG

serves as the input to the self-attention module with hidden dimension d, where each position repre-
sents the i-th register in the RTL circuit. This input is projected into three matrices through learnable
weight parameters WQ

G ∈ Rd×dK , WK
G ∈ Rd×dK , and WV

G ∈ Rd×dV to obtain the corresponding
representations QG,KG, VG:

QG = HGW
Q
G , KG = HGW

K
G , VG = HGW

V
G , (10)

AG =
QGK

T
G√

dK
, Attn(HG) = softmax(AG)VG, (11)

where AG captures the similarity between queries and keys. For clarity, we consider the single-head
self-attention mechanism, assuming that dK = dV = d. This analysis is presented in the context of
graph modality, where the summary modality is the same.

The vanilla Transformer architecture is powerful for sequential data but fails to account for the
unique topological properties of RTL circuits. Unlike linear natural language sequences, RTL cir-
cuits have complex hierarchical structures where signal paths and connection densities are crucial
for functionality. To overcome this limitation, we integrate our previously proposed Max-Path and
Density Discrepancy Encodings into the attention mechanism:

AGij =
(hRi

G WQ
G)(h

Rj

G WK
G)T√

d
+ αG · fG(∆Lij) + βG · gG(∆ρij), (12)

where fG(·), gG(·) : R → R1×d are learnable mapping functions implemented as MLPs, and
αG, βG are learnable scaling parameters, and 1 ≤ i, j ≤ N . This formulation enables the attention
mechanism to dynamically adjust its focus based on both the timing characteristics and structural
complexity of register relationships.

For the virtual node R0 representing the entire circuit, we manage its connections uniquely by re-
setting all spatial encodings to distinct learnable scalars. The final circuit representation is produced
by processing the inputs through modified Transformer layers:

ĤG = Graph-Transformer(HG), ĤS = Summary-Transformer(HS). (13)

3.3 TOPOLOGY-GUIDED CROSS-MODAL ALIGNMENT

Achieving effective alignment across various modalities is essential for a thorough understanding
of circuit representation learning. To enhance the model’s ability to comprehend circuit topology,
we introduce a topology-guided cross-modal alignment mechanism. This innovative approach capi-
talizes on our previously encoded structural information, ensuring that meaningful correspondences
are established between modalities while honoring the inherent topology of the circuits.

Let Y = (HG, ĤS) ∈ R(1+N)×2d and Z = (ĤG, HS) ∈ R(1+N)×2d represent two complementary
fusion patterns between the graph modality (HG, ĤG) and summary modality (HS , ĤS), where N
is the number of registers and d is the feature dimension. We compute their global representations
by taking the mean across nodes:

y = MEAN(Y) ∈ R1×2d, z = MEAN(Z) ∈ R1×2d. (14)

Our topology-guided approach uses structural constraints to align y and z while maintaining circuit
topological properties. We employ a quadruplet loss that pulls positive pairs closer and ensures
topological consistency by requiring the difference between y and z to be smaller than that of em-
beddings from topologically dissimilar paths. Negative samples are randomly selected as graph
modality fused embedding yneg and summary modality fused embedding zneg from the batch. The
contrastive learning loss is:

Lfuse = [∥ y − z ∥22 − ∥ y − zneg ∥22 +β]+ + [∥ z − y ∥22 − ∥ z − yneg ∥22 +β]+, (15)
where β is a hyperparameter that controls the margin of the distance between pairs of positive and
negative samples, and [·]+ denotes max(0, ·). This loss serves as the pretraining loss.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: PPA prediction results, and model specifications. The best, second-best, and third-best
results in each column are highlighted with bold, underlined, and italic fonts, respectively.

Method Type Size Circuit
Data

Dim Area Power

PCC↑ R2↑ MAPE↓RRSE↓PCC↑ R2↑ MAPE↓RRSE↓

GCN-MLP Graph 1.20M 7k 768 0.271 -224.015 37.818 0.985 0.605 -0.361 43.434 0.804
GCN-GNN Graph 1.20M 7k 768 0.145 -250.694 25.324 0.993 0.345 -6.816 53.436 0.939

Qwen3-E-0.6B Text 0.6B - 1024 0.694 0.422 13.735 0.858 0.743 0.515 37.917 0.796
Qwen3-E-4B Text 4B - 2560 0.760 0.560 11.541 0.753 0.716 0.382 38.341 0.939
Qwen3-E-8B Text 8B - 4096 0.720 0.451 12.079 0.876 0.766 0.556 37.826 0.821
CodeV-CL Text 7B 165k 4096 0.795 0.596 11.574 0.661 0.812 0.633 39.448 0.623
CodeV-DS Text 6.7B 165k 4096 0.814 0.637 10.778 0.626 0.827 0.673 36.544 0.624
CodeV-QC Text 7B 165k 3584 0.818 0.662 10.830 0.648 0.805 0.622 37.314 0.678

CircuitFusion Multi 150.59M 7k 768 0.647 0.378 13.242 1.085 0.657 0.393 43.073 0.993

TopoRTL Multi 29.13M 7k 768 0.863 0.683 7.952 0.574 0.884 0.712 25.033 0.585

Slack TNS WNS

PCC↑ R2↑ MAPE↓RRSE↓PCC↑ R2↑ MAPE↓RRSE↓PCC↑ R2↑ MAPE↓RRSE↓

GCN-MLP 0.256 -0.193 55.268 1.430 0.712 0.154 43.171 0.705 0.691 0.344 45.401 0.766
GCN-GNN 0.199 -3.323 57.830 1.025 0.739 -0.155 44.190 0.693 0.634 0.213 48.836 0.859

Qwen3-E-0.6B 0.876 0.724 35.587 0.554 0.885 0.753 30.944 0.555 0.860 0.667 40.477 0.728
Qwen3-E-4B 0.881 0.753 35.162 0.570 0.884 0.777 39.324 0.520 0.839 0.686 52.680 0.718
Qwen3-E-8B 0.888 0.784 34.241 0.563 0.899 0.781 33.802 0.534 0.849 0.659 43.880 0.674
CodeV-CL 0.909 0.822 30.472 0.465 0.922 0.846 28.108 0.428 0.806 0.643 41.267 0.716
CodeV-DS 0.881 0.758 32.712 0.579 0.928 0.848 31.857 0.383 0.780 0.600 41.750 0.735
CodeV-QC 0.868 0.754 34.618 0.575 0.927 0.856 29.920 0.402 0.762 0.464 47.401 1.400

CircuitFusion 0.893 0.788 30.944 0.494 0.885 0.727 34.454 0.544 0.817 0.572 38.227 0.808

TopoRTL 0.909 0.821 31.249 0.443 0.872 0.743 32.016 0.521 0.862 0.723 40.130 0.580

4 EXPERIMENTS

In this section, we conduct experiments to address the following research questions:

• RQ1: How does TopoRTL excel in topology-dependent tasks? Does it effectively capture essen-
tial topological dependencies for precise predictions?

• RQ2: How well does TopoRTL integrate topological structure in behavior-sensitive tasks? Can it
overcome the topological neglect seen in existing methods?

• RQ3: Do TopoRTL embeddings maintain both local structural details and global topological
relationships in hidden spaces?

• RQ4: What unique contributions do its encodings make to representation quality?

4.1 EXPERIMENTAL SETUP

We begin by briefly outlining the dataset, baseline methods, and the evaluation tasks and metrics.
For more detailed descriptions of the experimental settings, please refer to Appendix C and D.

Evaluation Tasks and Metrics. To evaluate the capability of RTL representation learning, we
selected two downstream tasks: Performance, Power, Area (PPA) Prediction and Natural Lan-
guage Code Search. The first is a regression task, using evaluation metrics such as PCC, R2,
MAPE, and RRSE. The second task is framed as a retrieval classification (Lu et al., 2021), with
AUC as the evaluation metric. For further details, please refer to Appendix D.

Circuit Dataset. We construct a dataset with 115 RTL designs collected from OpenCores (Albrecht,
2005), VexRiscv (Papon & Spinal, 2024), ITC’99 (Corno et al., 2002), and DeepCircuitX (Li et al.,
2025). The circuit dataset has a wide range of circuit sizes, with different scales and functions. After
extracting register cones, the dataset consists of 7,576 sub-circuits. For more information on data
collection, processing, and statistics, please refer to Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GCN-MLP GCN-GNN Qwen3-E-0.6B Qwen3-E-4B Qwen3-E-8B CodeV-CL CodeV-DS CodeV-QC CircuitFusion TopoRTL
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C

L=5 L=8 L=10 L=15

Figure 3: Circuit Retrieve Performance.

Baseline Models and Implementation Details. We compare TopoRTL with baselines in three
categories. (i) Graph modality models: Graph Convolutional Networks (GCN) with two types
of finetune methods, e.g., GCN-MLP and GCN-GNN. (2) Text modality models: Open-source
models Qwen3-Embedding (abbreviated as Qwen3-E) (Zhang et al., 2025) and Verilog-specialized
CodeV (Zhao et al., 2025). CodeV includes three variants: CodeV-CL-7B, CodeV-DS-6.7B, CodeV-
QC-7B. (2) Multimodal models: CircuitFusion (Fang et al., 2025). For more baseline information
and implementation details, please refer to Appendix D.4 and D.5.

4.2 PERFORMANCE ON PPA PREDICTION (RQ1)

To assess the ability to represent topology information, we performed five PPA prediction tasks
covering Slack, Worst Negative Slack (WNS), Total Negative Slack (TNS), Area, and Power metrics.
Further details about PPA tasks can be found in Appendix D.1, while the experimental analysis area
is detailed in Appendix E.3.1. Based on Tables 1, we can draw the following observations:

• Obs 1: TopoRTL achieves holistic RTL modeling superiority through topology-behavior
integration with lightweight architecture. Specifically, it dominates ppa metrics (↑ 5.5% Area
PCC, ↑ 6.9% Power PCC, ↓ 26.2% Area MAPE, ↑31.5% Power MAPE) and sets the timing
benchmark (WNS PCC=0.862, RRSE=0.580), outperforming all baselines in critical-path analysis
while matching Slack accuracy. Crucially, these improvements come with fewer parameters and
training data, showcasing TopoRTL’s effectiveness in capturing global topological dependencies
that text-based models struggle with.

4.3 PERFORMANCE ON CIRCUIT SEARCH (RQ2)

To evaluate behavioral representation capabilities, we conduct a natural language code search task
critical for hardware design reuse and verification. Following Lu et al. (2021), we evaluate with L
negative designs (L ∈ {5, 8, 10, 15}) per query, measuring performance via AUC. Further details
regarding this task can be found in Appendix D.2, while the analysis of detailed experiment results
is presented in Appendix E.3.2. Based on Figure 3, we derive two key insights:

• Obs 2: TopoRTL demonstrates superior performance and robustness across retrieval sce-
narios. Our model maintains a stable performance near 0.8 AUC for all L values (5-15 negative
samples), outperforming all baselines. This consistency stems from TopoRTL’s joint modeling of
topology and behavior, emphasizing the importance of topology in RTL representation learning.

4.4 HIDDEN REPRESENTATIONS ANALYSIS (RQ3)

As demonstrated in the previous sections, TopoRTL effectively learns both topological and behav-
ioral circuit characteristics. To further validate this, we visualize the learned representations using
t-SNE (Maaten & Hinton, 2008). Embeddings are projected into 2D space, colored by normalized
Area, Power, and Slack metrics. The analysis of detailed experiment results is presented in Appendix
E.3.3. According to Figure 4, we can find that:

• Obs 3: TopoRTL produces well-structured embeddings that clearly distinguish between
topologically diverse regions. Compared to CircuitFusion, TopoRTL’s representations exhibit
clear clusters and smooth gradients (e.g., high and low Area and Power in yellow and green),
showcasing alignment with topology design.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 2 0 2 4 6
TSNE Component 1

4

2

0

2

4

6

8

10

TS
NE

 C
om

po
ne

nt
 2

Area

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

8 6 4 2 0 2 4
TSNE Component 1

8

6

4

2

0

2

4

TS
NE

 C
om

po
ne

nt
 2

Power

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

100 75 50 25 0 25 50 75 100
TSNE Component 1

100

75

50

25

0

25

50

75

100

TS
NE

 C
om

po
ne

nt
 2

Slack

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Distribution of CircuitFusion.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
TSNE Component 1

8

6

4

2

0

2

4

TS
NE

 C
om

po
ne

nt
 2

Area

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

7.5 5.0 2.5 0.0 2.5 5.0 7.5
TSNE Component 1

8

6

4

2

0

2

4

TS
NE

 C
om

po
ne

nt
 2

Power

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

75 50 25 0 25 50 75 100
TSNE Component 1

75

50

25

0

25

50

75

100

TS
NE

 C
om

po
ne

nt
 2

Slack

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Distribution of TopoRTL.

Figure 4: The distribution of hidden representations across different models and tasks.

Area

Power Slack

TNS

WNS

PCC

Area

Power Slack

TNS

WNS

RRSE

Retrieval

AUC
TopoRTL wo_cross_modal_loss wo_graph_density wo_max_path wo_bit_width

Figure 5: Ablation Study.

4.5 ABLATION AND FURTHER ANALYSIS (RQ4)

Abalation Study. To validate the contribution of each TopoRTL component, we conduct compre-
hensive ablation experiments by systematically removing key modules. More details and analysis
are provided in Appendix E.3.4. As shown in Figure 5, these experiments reveal:

• Obs 4: Positional encodings improve performance across tasks. Bit-width encoding effectively
captures topology and complexity, while max-path and density encodings show inconsistent re-
sults, highlighting the need for complementary topological signals in circuit representation.

• Obs 5: Topology-guided alignment favors topology fidelity. This approach prioritizes
topology-semantic consistency, which may slightly reduce timing accuracy but significantly
boosts other topological and behavioral tasks, underlining its importance for design optimization.

We recommend readers check Appendix E.3 for detailed experiments and analysis.

5 CONCLUSION

In this work, we analyze RTL circuits that fundamentally operate as structured dataflow graphs
where behavioral semantics and topological structure are inseparable. Inspired by this, we propose
TopoRTL, a novel framework that explicitly encodes topological relationships while preserving be-
havioral functionality. Specifically, we develop dual modalities that are initialized using behavior-
aware tokenizers and create three topology-aware positional encodings grounded in signal propaga-
tion. Additionally, we introduce a topology-guided cross-modal alignment strategy, enhancing the
integration and interaction between the modalities. Extensive experiments across ppa and retrieval
tasks definitively demonstrate TopoRTL’s superiority in jointly capturing topological and behavioral
characteristics, proving that topology matters in RTL representation learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work enhances representation learning for RTL circuits to improve automated chip design.
Our research aims for more efficient hardware development, potentially leading to energy savings
and advanced computational capabilities. While focusing on circuit representation, we acknowl-
edge the broad societal implications of chip design automation. We adhere to the ICLR Code of
Ethics, ensuring rigorous experimentation and accurate reporting of results. Our datasets consist of
standard benchmark circuits, with no personal information or human subjects involved. We urge
the chip design community to consider environmental impacts, maintain human oversight, and pro-
mote transparency in AI-assisted design systems, committing to responsible research for societal
well-being.

REPRODICIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our methodology and experimental
setup. All circuit datasets are sourced from open-source benchmarks with complete documentation
of data processing procedures and statistical characteristics, which can be found in Appendix C. We
commit to releasing our complete codebase and processing scripts upon paper acceptance to enable
verification and further research in RTL representation learning. All experimental results can be
reproduced using the specifications provided in the manuscript and supplementary materials.

REFERENCES

Christoph Albrecht. Iwls 2005 benchmarks. In International Workshop for Logic Synthesis (IWLS),
volume 9, 2005.

Anantha P Chandrakasan and Robert W Brodersen. Minimizing power consumption in digital cmos
circuits. Proceedings of the IEEE, 83(4):498–523, 2002.

Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. Rt-level itc’99 benchmarks and first
atpg results. IEEE Design & Test of computers, 17(3):44–53, 2002.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423/.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and Zhiyao
Xie. Masterrtl: A pre-synthesis ppa estimation framework for any rtl design. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pp. 1–9, 2023. doi: 10.1109/
ICCAD57390.2023.10323951.

Wenji Fang, Shang Liu, Jing Wang, and Zhiyao Xie. Circuitfusion: Multimodal circuit represen-
tation learning for agile chip design. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=rbnf7oe6JQ.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

IEEE. Ieee standard for verilog hardware description language. IEEE Std 1364-2005 (Revision of
IEEE Std 1364-2001), pp. 1–590, 2006. doi: 10.1109/IEEESTD.2006.99495.

10

https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://openreview.net/forum?id=rbnf7oe6JQ

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

D-U Lee, Altaf Abdul Gaffar, Ray CC Cheung, Oskar Mencer, Wayne Luk, and George A Con-
stantinides. Accuracy-guaranteed bit-width optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25(10):1990–2000, 2006.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caiming Xiong, and
Steven Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=OJLaKwiXSbx.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, 2022a. URL https://api.semanticscholar.org/
CorpusID:246411402.

Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate: Learning
neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022b.

Xin Li, Weize Chen, Qizhi Chu, Haopeng Li, Zhaojun Sun, Ran Li, Chen Qian, Yiwei Wei,
Chuan Shi, Zhiyuan Liu, Maosong Sun, and Cheng Yang. Can large language models ana-
lyze graphs like professionals? a benchmark, datasets and models. In The Thirty-eight Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL
https://openreview.net/forum?id=mMnL0n7Cwy.

Zeju Li, Changran Xu, Zhengyuan Shi, Zedong Peng, Yi Liu, Yunhao Zhou, Lingfeng Zhou,
Chengyu Ma, Jianyuan Zhong, Xi Wang, Jieru Zhao, Zhufei Chu, Xiaoyan Yang, and Qiang
Xu. Deepcircuitx: A comprehensive repository-level dataset for rtl code understanding, genera-
tion, and ppa analysis. In 2025 IEEE International Conference on LLM-Aided Design (ICLAD),
pp. 204–211, 2025. doi: 10.1109/ICLAD65226.2025.00029.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
One for all: Towards training one graph model for all classification tasks. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=4IT2pgc9v6.

Jiawei Liu, Jianwang Zhai, Mingyu Zhao, Zhe Lin, Bei Yu, and Chuan Shi. Polargate: Breaking the
functionality representation bottleneck of and-inverter graph neural network. In Proceedings of
the 43rd IEEE/ACM International Conference on Computer-Aided Design, pp. 1–9, 2024b.

Yi Liu, Changran XU, Yunhao Zhou, Zeju Li, and Qiang Xu. DeepRTL: Bridging verilog under-
standing and generation with a unified representation model. In The Thirteenth International Con-
ference on Learning Representations, 2025a. URL https://openreview.net/forum?
id=2hcfoCHKoB.

Yi Liu, Hongji Zhang, Yunhao Zhou, Zhengyuan Shi, Changran Xu, and Qiang Xu. DeepRTL2:
A versatile model for RTL-related tasks. In Findings of the Association for Computational Lin-
guistics: ACL 2025, pp. 6485–6500, Vienna, Austria, July 2025b. Association for Computational
Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation. CoRR, abs/2102.04664, 2021.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=OJLaKwiXSbx
https://openreview.net/forum?id=OJLaKwiXSbx
https://api.semanticscholar.org/CorpusID:246411402
https://api.semanticscholar.org/CorpusID:246411402
https://openreview.net/forum?id=mMnL0n7Cwy
https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=2hcfoCHKoB
https://openreview.net/forum?id=2hcfoCHKoB

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Educa-
tion, 1st edition, 1994. ISBN 0070163332.

OpenAI. gpt-oss-120b and gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Charles Papon and HDL Spinal. Vexriscv, a fpga friendly 32 bit risc-v cpu implementation.
VexRISC-V: An FPGA-friendly 32-bit RISC-V CPU implementation, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingx-
uan Yuan, Zhufei Chu, and Qiang Xu. Deepgate2: Functionality-aware circuit representation
learning. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp.
1–9. IEEE, 2023.

Zhengyuan Shi, Ziyang Zheng, Sadaf Khan, Jianyuan Zhong, Min Li, and Qiang Xu. Deepgate3:
Towards scalable circuit representation learning. In Proceedings of the 43rd IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 1–9, 2024.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

Zeyuan Xing. Survey on Machine Learning and Artificial Intelligence Used for Electronic Design
Automation. PhD thesis, Politecnico di Torino, 2024.

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills. Sns’s not a synthesizer: a deep-learning-based
synthesis predictor. In Proceedings of the 49th Annual International Symposium on Computer
Architecture, ISCA ’22, pp. 847–859, New York, NY, USA, 2022. Association for Computing
Machinery.

Ceyu Xu, Pragya Sharma, Tianshu Wang, and Lisa Wu Wills. Fast, robust, and transferable predic-
tion for hardware logic synthesis. In 2023 56th IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 167–179, 2023.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.

Yu Zeng. Automatic Generation of Hardware Abstractions From Register-Transfer Level (RTL)
Designs. PhD thesis, Princeton University, 2024.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding:
Advancing text embedding and reranking through foundation models, 2025. URL https:
//arxiv.org/abs/2506.05176.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learn-
ing on large-scale text-attributed graphs via variational inference. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=q0nmYciuuZN.

Yang Zhao, Di Huang, Chongxiao Li, et al. Codev: Empowering llms with hdl generation through
multi-level summarization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 1–1, 2025. doi: 10.1109/TCAD.2025.3604320.

Ziyang Zheng, Shan Huang, Jianyuan Zhong, Zhengyuan Shi, Guohao Dai, Ningyi Xu, and Qiang
Xu. Deepgate4: Efficient and effective representation learning for circuit design at scale. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=b10lRabU9W.

12

https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2506.05176
https://arxiv.org/abs/2506.05176
https://openreview.net/forum?id=q0nmYciuuZN
https://openreview.net/forum?id=q0nmYciuuZN
https://openreview.net/forum?id=b10lRabU9W
https://openreview.net/forum?id=b10lRabU9W

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we utilized Large Language Models (LLMs) solely as a general-
purpose writing assistance tool for minor language refinement and grammatical correction. Specifi-
cally, we utilized LLMs to identify basic syntax errors, enhance sentence clarity, and ensure proper
academic phrasing in non-technical sections of the text. We carefully reviewed and verified all con-
tent produced with LLM assistance to ensure accuracy and maintain scientific integrity. We are
responsible for all content in this manuscript, following ICLR’s policies on LLM usage.

B LIMITATION AND FUTURE DISCUSSION

While TopoRTL demonstrates significant improvements in RTL representation learning, several lim-
itations warrant attention. First, scaling to larger and more diverse RTL datasets would enhance the
model’s generalization across circuit architectures. Second, our current decomposition approach
assumes synchronous sequential circuits and disrupts clock domain relationships during register
cone extraction; future work should extend to handle asynchronous circuits through clock-aware
decomposition strategies. Additionally, developing more sophisticated topology-aware positional
encodings could better capture complex signal propagation patterns. Addressing these limitations
would further strengthen the framework’s applicability to practical chip design scenarios.

C DATASET DETAILS

C.1 SOURCE BENCHMARKS

In this section, we provide an overview of the various hardware description languages (HDLs) circuit
datasets used in this work.

C.1.1 ITC’99

The ITC’99 (Corno et al., 2002) benchmark circuits represent a standardized set of circuits with char-
acteristics typical of synthesized designs. As one of the established unimodal benchmark datasets
alongside ISCAS’89 and EPFL, it continues to serve as an important resource for circuit verification
and testing methodologies.

C.1.2 OPENCORES

OpenCores (Albrecht, 2005) is a prominent online community established in 1999 for the devel-
opment and sharing of gateware Intellectual Property (IP) cores. It serves as a collaborative plat-
form where digital designers can showcase, promote, and discuss their work through forums and
news channels. The OpenCores repository hosts diverse RTL designs, including DSP cores, crypto
cores, memory cores, and various system-level implementations. As one of the largest open-source
hardware communities, it provides a version control system for source management and supports a
vibrant user community dedicated to free and open-source hardware collaboration.

C.1.3 VEXRISCV

VexRiscv (Papon & Spinal, 2024) is an FPGA-friendly 32-bit RISC-V CPU implementation.
VexRiscv supports M, C, and A RISC-V instruction set extensions with numerous optimizations, in-
cluding multi-stage pipelines and data caching capabilities. Implemented in SpinalHDL, VexRiscv
utilizes complementary plugins to enhance functionality while maintaining a streamlined core ar-
chitecture, making it particularly suitable for FPGA-based system-on-chip designs.

C.1.4 DEEPCIRCUITX

DeepCircuitX (Li et al., 2025) represents a holistic, repository-level dataset specifically curated
to address limitations in existing RTL datasets. It provides comprehensive data and annotations
across multiple abstraction levels, like chip, IP, module, and RISC-V. The dataset features multi-level
source RTL code spanning repository, file, module, and block levels, with corresponding annotations

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

5 6 7 8 9 10 11 12
Log-normalized Value

0

5

10

Fr
eq

ue
nc

y Area
Distribution
Histogram

0 1 2 3 4 5
Log-normalized Value

0

5

10

15

Fr
eq

ue
nc

y Power
Distribution
Histogram

1.0 0.8 0.6 0.4 0.2 0.0
Log-normalized Value

0

10

20

Fr
eq

ue
nc

y Wns
Distribution
Histogram

10 8 6 4 2 0
Log-normalized Value

0

5

10

Fr
eq

ue
nc

y Tns
Distribution
Histogram

1.0 0.8 0.6 0.4 0.2 0.0 0.2
Log-normalized Value

0

200

400

600

Fr
eq

ue
nc

y Slack
Distribution
Histogram

Figure 6: Label Distribution Statistics

generated by GPT-4o. It establishes specialized benchmarks for RTL understanding, generation, and
completion tasks, with detailed data distributions across different RTL categories as documented in
its comprehensive dataset summaries.

Table 2: Circuit Benchmarks Statistics

Source
Benchmarks #Circuit Circuit Size (Min, Avg, Max)

#Gate #Token (Code) #Register

ITC’99 18 (135, 5K, 22K) (2K, 284K, 262K) (5, 45.0, 252)
OpenCores 12 (360, 5K, 28K) (1K, 182K, 1M) (7, 59.8, 371)
VexRiscv 13 (7K, 14K, 63K) (112K, 232K, 1M) (67, 141.2, 434)
DeepCircuitX 72 (64, 4K, 66K) (187, 53K, 1M) (1, 58.5, 1326)

Total 115 711K 14M 7576

C.2 DATASET PROCESS

This section details our data processing methodology and label generation approach for different
downstream tasks. We first selected 115 syntactically correct sequential circuits from the afore-
mentioned four open-source benchmarks that can be directly synthesized. We then generated task-
specific labels for PPA prediction and circuit retrieval tasks.

PPA Label Generation. To address the heterogeneity of HDLs across different sources, including
VHDL, Verilog, and SpinalHDL, we employed Yosys to standardize all designs into a unified Verilog
representation. Subsequently, we utilized Synopsys Design Compiler, an industry-standard logic
synthesis tool, to automatically synthesize each RTL circuit into gate-level netlists. These netlists
represent the actual circuit implementations composed of logic gates (e.g., ADD, INV, AND, etc.)
and registers (DFF) from a specific technology library. The synthesis process employed the open-
source NanGate 45nm standard cell library, with the compile_ultra command to ensure high-
quality PPA metrics on the Pareto frontier, as verified by Fang et al. (2023). Finally, Synopsys
PrimeTime was utilized to analyze the gate-level netlists, extracting detailed PPA labels, which
include timing metrics such as Slack, WNS, and TNS, as well as measurements for Area and Power.
The statistics related to the RTL designs post-synthesis are presented in Table 2. Additionally, the
distribution of labels can be found in Figure 6.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Query Generation. For natural language code retrieval experiments, we developed a two-stage
query generation pipeline using large language models (LLMs) followed by embedding encoding.
First, we prompted the LLM to generate detailed descriptions for each module within a circuit, cov-
ering its name, inputs, outputs, functionality, and sub-module instantiations. Second, we concate-
nated all module descriptions from the same circuit and prompted the LLM to produce a high-level
functional summary that mimics human retrieval behavior. This two-stage approach offers two sig-
nificant advantages: (1) it effectively mitigates the context window limitations of LLMs through
modular processing, and (2) the resulting high-level circuit summaries present a more challenging
test for circuit representation models, better evaluating their ability to capture semantic function-
ality rather than merely syntactic patterns. Here we use GPT-OSS-120B to obtain descriptions
and Qwen3-Embedding-8B to embed them. For the prompts we use to generate module-level and
design-level descriptions, please refer to Appendix F.

D EVALUATION DETAILS

This section first introduces the two downstream tasks for evaluating pre-trained models, PPA pre-
diction and natural language code retrieval, along with our unified evaluation framework. We then
detail the selected baselines and their parameter configurations.

D.1 PPA PREDICTION TASK

The Performance, Power, and Area (PPA) prediction task represents a critical design quality evalu-
ation at the RTL stage, enabling early assessment of circuit implementation characteristics without
full synthesis. We evaluate five key prediction tasks:

• Register slack prediction: forecasting timing margins for individual registers, which identifies
potential timing violation points in the circuit.

• WNS prediction: estimating the Worst Negative Slack, representing the most severe timing vio-
lation across the entire design.

• TNS prediction: predicting the Total Negative Slack, which aggregates all timing violations to
indicate overall timing quality.

• Power prediction: assessing the circuit’s power consumption for energy efficiency evaluation.
• Area prediction: determining the silicon footprint required for implementation, crucial for phys-

ical feasibility and cost considerations.

Notably, register slack prediction operates at the sub-circuit level, while the remaining four metrics
are evaluated at the complete circuit level.

Metric. We employ four complementary metrics to comprehensively assess prediction quality:

• PCC: Pearson correlation coefficient, which assesses the linear correlation between predictions
and ground truth. Formally, given the prediction value vector x and the truth label y, it is calculated
as follows:

PCC =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2
,

where mx is the mean of x and my is the mean of y. The metric varies between −1 and 1.
• R2: Coefficient of determination, which measures the proportion of variance explained by the

model. Formally, prediction value x and the truth label y with n samples, it is calculated as
follows:

R2 = 1−
∑n

i=1(yi − xi)
2∑n

i=1(yi − ȳ)2
,

where ȳ = 1
n

∑n
i=1 yi. The best value score is 1.0, and it can be negative (because the model can

be arbitrarily worse).
• MAPE: Mean absolute percentage error, which Quantifies prediction error as a percentage of

ground truth. Formally, prediction value x and the truth label y with n samples, it is calculated as
follows:

MAPE =
100%

n

n∑
i=1

|xi − yi
yi

|.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

This metric is nonnegative, and the lower the better.
• RRSE: Root relative squared error, which is a commonly used regression metric to measure the

prediction error. Formally, prediction value x and the truth label y with n samples, it is calculated
as follows:

RRSE =

√√√√∑N
i=1(xi − yi)2∑N
i=1(yi − ȳ)2

,

where ȳ = 1
n

∑n
i=1 yi.

This multi-metric approach provides a balanced evaluation, capturing both correlation strength and
absolute prediction accuracy.

D.2 NATURAL LANGUAGE CODE SEARCH

Natural language code search enables hardware designers to locate relevant RTL implementations
through intuitive natural language queries, significantly enhancing design productivity and code
reuse. This task involves embedding both natural language queries and circuit implementations into
a shared semantic space, where relevance is determined by vector similarity. For hardware design
contexts, this capability is particularly valuable as it bridges the gap between high-level specifi-
cations and concrete RTL implementations, accelerating the design process and reducing manual
search effort.

Metric. Following Lu et al. (2021), we formulate this as a retrieval classification problem. For
each query, we sample L negative circuit designs and measure ranking quality using AUC (Area
Under the ROC Curve), a robust information retrieval metric that evaluates the model’s ability to
distinguish relevant from irrelevant designs across all possible classification thresholds. AUC values
range from 0 to 1, with higher scores indicating superior retrieval performance, where 1.0 represents
perfect ranking and 0.5 indicates random performance.

D.3 EVALUATION FRAMEWORK

To ensure fair and rigorous evaluation across diverse representation models, we implement a stan-
dardized assessment framework with strict separation of training, validation, and test phases. Our
methodology proceeds as follows: First, models undergo pre-training on unlabeled RTL circuits,
with hyperparameters carefully adhering to original publications to maintain implementation fi-
delity. After pre-training completion, we systematically extract circuit representations from multiple
training epochs. For each downstream task, we then fine-tune a consistent classification/regression
head architecture using these representations, with the optimal pre-training checkpoint selected ex-
clusively based on validation set performance. Crucially, the test set remains completely isolated
throughout both pre-training and fine-tuning processes, guaranteeing unbiased evaluation.

This approach offers two significant advantages: (1) it decouples representation quality from down-
stream task optimization, providing a cleaner assessment of learned representations; and (2) it en-
sures fair comparison by standardizing the fine-tuning process across all models. Crucially, the test
set remains completely isolated throughout both pre-training and fine-tuning phases, guaranteeing
unbiased performance evaluation.

D.4 BASELINES

We evaluate TopoRTL against a comprehensive set of representative baselines spanning three fun-
damental paradigms in circuit representation learning. These baselines were strategically selected
to address critical research questions:

1. Can conventional graph-based approaches effectively capture RTL topology?
2. Can text-based models overcome their inherent limitations when processing structured RTL cir-

cuits?
3. How do existing multimodal frameworks integrate topological and behavioral information?

By comparing against these diverse approaches, we establish a rigorous evaluation framework that
isolates the specific contributions of TopoRTL’s topology-aware architecture while addressing the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

fundamental question of whether explicit topological modeling provides measurable advantages
over conventional representation learning methods.

Graph Modality Models. Graph Convolutional Network (GCN) (Kipf & Welling, 2017) has
demonstrated success in general graph representation tasks. Following the methodology established
by Xu et al. (2023), we implement a 3-layer GCN pre-training on functional equivalence contrastive
learning tasks. Notably, Xu et al. (2023) employs a hierarchical graph structure that constructs reg-
ister dataflow graphs based on inter-subgraph connections during downstream tasks. To ensure both
methodological fidelity and evaluation consistency, we implement two variants: GCN-GNN, which
preserves the original hierarchical approach with graph-based fine-tuning; GCN-MLP, which aligns
with our unified evaluation framework by replacing hierarchical processing with a standard MLP
head. This baseline specifically tests whether topology alone, without explicit behavioral modeling,
can adequately capture both topological structure and behavioral semantics of RTL circuits.

Text Modality Models. We evaluate two leading text-based approaches: (1) Qwen3-Embedding
(Qwen3-E) (Zhang et al., 2025), a state-of-the-art open-source embedding model with excep-
tional cross-lingual capabilities and strong performance across multiple natural language processing
benchmarks; and (2) CodeV (Zhao et al., 2025), a specialized Verilog code understanding frame-
work with three variants—CodeV-CL-7B (finetune based on CodeLlama-7b-Instruct (Roziere et al.,
2023)), CodeV-DS-6.7B (finetune based on DeepSeek-Coder-6.7b-Instruct (Guo et al., 2024)), and
CodeV-QC-7B (finetune based on Qwen2.5-Coder-7B (Hui et al., 2024)). Qwen3-E serves as a
general-purpose text representation benchmark, while CodeV variants represent the current state-of-
the-art in hardware-specific text modeling. These baselines collectively address the critical question
of whether treating RTL as unstructured text (rather than recognizing its inherent graph structure)
can effectively capture the essential characteristics of hardware designs, particularly the structured
dataflow relationships that define circuit behavior.

Multimodal Models. CircuitFusion (Fang et al., 2025) represents the current frontier in multi-
modal circuit representation, integrating graph topology, natural language summaries, and raw RTL
code through cross-modal attention mechanisms. Unlike TopoRTL, CircuitFusion relies on cross-
stage netlist representations during pre-training to indirectly infer topological information, rather
than explicitly modeling RTL’s inherent graph structure. This baseline employs multiple contrastive
learning objectives during the pretraining stage, including functional equivalence tasks. For a fair
comparison, we remove the netlist encoder and only maintain the RTL encoder.

D.5 IMPLEMENTATION DETAILS

All experiments adhere to a rigorous implementation protocol designed to ensure fair, reproducible
comparisons while maintaining fidelity to original methodologies.

Graph Modality Models. For GCN-based approaches, we implement a 3-layer GCN following the
functional equivalence contrastive learning framework established in prior work (Xu et al., 2023).
Functional equivalence pairs are systematically generated using Yosys for pre-training objectives.
We maintain subgraph representation dimension at 768 across all graph models, with graph-level
embeddings derived through sum-pooling operations. For GCN-GNN, we preserve the hierarchical
graph processing approach with 3-layer GCN fine-tuning heads as in the original implementation.
For GCN-MLP, we replace hierarchical processing with standard MLP heads to align with our uni-
fied evaluation framework. This dual-implementation strategy enables direct comparison between
architecture-specific optimizations and standardized evaluation protocols.

Text Modality Models. For text-based approaches, we directly interface with Hugging Face APIs to
obtain embeddings from Qwen3-Embedding and CodeV series models. Each circuit’s representation
is generated by concatenating the function description with corresponding RTL code, with truncation
applied for sequences exceeding maximum token limits. Notably, we adopt different embedding
extraction strategies aligned with each model’s design philosophy: for CodeV variants, we use the
mean of all hidden states in the final layer as the text embedding, while for Qwen3-Embedding,
we utilize the last hidden state following its original implementation specifications. This approach
ensures optimal utilization of each model’s architectural strengths while maintaining consistent input
processing across the text modality category.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Multimodal Models. For CircuitFusion implementation, we carefully follow its open-source code
and published paper. The graph encoder employs a 7-layer Graphormer (Ying et al., 2021), pro-
ducing 768-dimensional graph representations. The summary encoder utilizes the first 6 layers
of BERT (Devlin et al., 2019) (768-dimensional hidden and output spaces), while the code en-
coder substitutes Qwen3-Embedding-0.6B for the originally proposed NV-Embd-V1 (Lee et al.,
2024) due to hardware constraints on NVIDIA RTX 3090 GPUs. This substitution is justified
by Qwen3-Embedding-0.6B’s superior performance on the Massive Text Embedding Benchmark
(MTEB) while maintaining the same 32K maximum input token capacity. Code embeddings (1024
dimensions) are linearly projected to 768 dimensions to maintain representation space consistency,
with modality fusion handled by the final 6 layers of BERT.

Evaluation Framework. All models employ a standardized 768-dimensional output representa-
tion with batch size of 128 and 50 pre-training epochs. (except text modality models since we
directly infer during API). Crucially, our evaluation protocol extracts circuit representations at mul-
tiple pre-training epochs, with downstream task performance determining the optimal checkpoint
selection based solely on validation set metrics. Dataset partitioning follows a 30%-30%-40% (train-
validation-test) split at the circuit level, rather than subgraph level, to accommodate both global and
subgraph-level downstream tasks while preventing data leakage. This partitioning strategy reflects
real-world scenarios where substantial unlabeled data exists, emphasizing model generalization ca-
pabilities. All experiments were conducted on NVIDIA GeForce RTX 3090 GPUs.

E PRETRAINING AND EXPERIMENT RESULT DETAILS

E.1 REGISTER CONE EXTRACT

Algorithm 1 Register Cone Extraction via Register-Driven Backward Traversal

Input: RTL circuit V , Total registers {Ri}Ni=1

Output: Register cones {V Ri}Ni=1
Phase 1: Build Signal Dependency Dictionaries

1: D,C ← ParseVerilog(V) ▷ Extract signal declarations D and combinational dependencies C
Phase 2: Backward Traversal from Registers

2: for each register Ri ∈ {Ri}Ni=1 do
3: Q← GetDrivingSignals(Ri) ▷ Initialize with RHS signals of Ri

4: S ← {Ri}, Iin ← {Ri}, COI ← GetOutputDecl(Ri)
5: while Q ̸= ∅ do
6: u← Q.dequeue()
7: if u /∈ S then
8: S ← S ∪ {u}
9: Iin ← Iin ∪ {u} if IsInputOrReg(u) ▷ Register-to-input conversion

10: COI ← COI ∪ GetCodeLines(u,D,C) ▷ Add signal declaration/assignment
11: Q← Q ∪ ExtractDependencies(u,C) ▷ Backward propagate to RHS signals

▷ Note: If u is input/register, ExtractDependencies(u,C) returns empty set
12: end if
13: end while

Phase 3: Sub-circuit Generation and Verification
14: V Ri ← GenerateModule(Iin, Ri, COI)
15: VerifyWithYosys(V Ri) ▷ Check for syntax correctness
16: end for
17: return {V Ri}Ni=1

Algorithm Overview: The register cone extraction process (Algorithm 1) systematically decom-
poses an RTL design into functionally complete subcircuits through three stages, ensuring both
accuracy and scalability.

• Phase 1: Build Signal Dependency Dictionaries. Verilog code is parsed to extract two critical
data structures: D, a dictionary mapping signals to their declarations; C, a directed graph encoding
combinational dependencies between signals. These dictionaries enable precise tracking of signal
origins and propagation paths, forming the foundation for subsequent traversal.

• Phase 2: Backward Traversal from Registers. For each register Ri, the algorithm initializes a
queue Q with its driving signals (RHS signals) and collects output declaration information COI .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

It then performs a backward traversal through combinational logic: starting from Ri, it dequeues
signals u, adds them to the signal set S if unvisited, and converts their input connections Iin to
corresponding declaration types (e.g., mapping register inputs to wire declarations). The traver-
sal propagates upstream by enqueuing signals from u’s dependencies in C, recursively capturing
all signals causally influencing Ri’s value, including indirect paths through intermediate regis-
ters. This phase ensures completeness by exhaustively tracing all upstream dependencies while
avoiding redundant processing.

• Phase 3: Sub-circuit Generation and Verification. Using the collected signals S and converted
declarations, the algorithm generates a syntactically correct Verilog module V Ri for each register
cone. This module includes: (1) all signals in S, (2) the original register Ri and its driving
combinatorial logic, and (3) corrected input declarations to ensure standalone functionality. To
validate correctness, the generated subcircuit is verified using Yosys (Wolf et al., 2013), checking
for proper syntax, valid assignments, and resolved signal references. This step guarantees that
each partitioned subcircuit is synthesizable and maintains behavioral integrity.

This framework achieves scalable and accurate decomposition by leveraging backward traversal
to capture causal dependencies, ensuring completeness without over-inclusion. The integration of
Yosys validation further enforces syntactic and functional correctness, making the approach robust
for large-scale RTL designs.

E.2 BEHAVIOR-AWARE TOKENIZERS PRETRAINING

E.2.1 GRAPH TOKENIZER

Graph Transformers have emerged as a powerful paradigm for modeling graph-structured data,
directly addressing critical limitations of traditional message-passing GNNs, such as the over-
smoothing problem. By replacing localized neighborhood aggregation with global attention mech-
anisms, Graph Transformers dynamically capture long-range dependencies while preserving struc-
tural uniqueness across all nodes. In this work, we adopt Graphormer (Ying et al., 2021) as our
graph tokenizer to encode circuit topologies. Formally, given a sub-circuit GRi with NRi nodes, the
output of tokenizer is:

xRi , XRi = Graph-Tokenizer(GRi) (16)

where XRi ∈ RNRi×d is the node feature matrix, and xRi ∈ R1×d is a learnable [CLS] token to
represent the global information.

Behavior Equivalence Contrastive Learning. To embed behavioral semantics into topology rep-
resentations, we enforce that functionally equivalent circuits map to similar latent spaces. Given a
sub-circuit GRi , we generate positive samples GRi

pos using Yosys, which applies random structural
transformations (e.g., gate resynthesis, buffer insertion) while preserving functional equivalence.
Negative sample GRi

neg is randomly selected from the same batch. We then optimize a contrastive
loss using the TripletMarginLoss:

LCL = [∥ xRi − xRi
pos ∥22 − ∥ xRi − xRi

neg ∥22 +β]+, (17)

where β is a hyperparameter that controls the margin of the distance between pairs of positive and
negative samples, and [·]+ is a shorthand for max(0, ·).
Masked Node Modeling. To help the model learn the topology connection relationships, we intro-
duce a reconstruction task where random nodes are masked and their features predicted. For encoded
node features XRi , we use a learnable [MASK] token to randomly mask nodes and obtain masked
features X̃Ri . The model then reconstructs the original features of masked nodes via a lightweight
decoder head, optimized with mean squared error (MSE) loss:

Lmask = − 1

|MRi

G |

∑
j∈MRi

G

∥ Decoder(X̃Ri
j)−XRi

j ∥
2
2, (18)

whereMRi

G denotes the set of masked nodes. The total pretraining loss combines both objectives:

Lgraph−tokenizer = λ1LCL + λ2Lmask, (19)

where λ1, λ2 balance task contributions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Input Representation. After pretraining the graph tokenizer, we initialize the representation using
the [CLS] token in each sub-circuit and construct the input sequence for the entire design with a
learnable global [CLS] token xR0 :

X0 = (xR0
T
, xR1

T
, . . . , xRN

T
)T ∈ R(1+N)×d (20)

E.2.2 SUMMARY TOKENIZER

Transformer-based language models have revolutionized natural language processing by effec-
tively capturing contextual relationships through self-attention mechanisms. In this work, we adopt
BERT (Devlin et al., 2019) as our summary tokenizer to encode textual descriptions of circuit be-
haviors. Formally, given a textual summary SRi for sub-circuit Ri, the output of the tokenizer is:

tRi , TRi = Summary-Tokenizer(SRi), (21)

where TRi ∈ RTLRi×d is the token feature matrix with TLRi representing the sequence length, and
tRi ∈ R1×d is the [CLS] token embedding that captures the global semantic representation of the
summary.

Behavior Equivalence Contrastive Learning. To align textual representations with functional cir-
cuit semantics, we enforce that summaries describing functionally equivalent circuits map to similar
regions in the embedding space. Given a sub-circuit SRi , we generate positive samples SRi

pos by
applying random but function-preserving transformations to the original circuit using Yosys, then
re-generating the textual summary. Negative samples SRi

neg are randomly selected from the same
batch. We optimize the following contrastive loss using TripletMarginLoss:

LCL = [∥ tRi − tRi
pos ∥22 − ∥ tRi − tRi

neg ∥22 +β]+, (22)

where β is a hyperparameter that controls the margin of the distance between pairs of positive and
negative samples, and [·]+ is a shorthand for max(0, ·).
Masked Language Modeling. To enhance the model’s understanding of linguistic structure and
circuit-specific terminology, we implement the standard BERT pretraining objective. After ran-
domly masked tokens, the model then predicts the original tokens at masked positions through a
classification head over the vocabulary. Formally, given masked token features T̃Ri , the mask loss
is computed as:

Lmlm = − 1

|MRi

S |

∑
j∈MRi

S

log pθ(T
Ri
j | T̃Ri ,ARi), (23)

where MRi

S denotes the set of masked token positions, ARi is the attention mask, and pθ repre-
sents the probability distribution predicted by the model. The total pretraining loss combines both
objectives:

Lsummary−tokenizer = λ3LCL + λ4Lmlm, (24)
where λ3, λ4 balance task contributions.

Input Representation. After pretraining the summary tokenizer, we extract the [CLS] token em-
bedding from each summary to represent its semantic content. We then construct the input sequence
for the entire design by concatenating these embeddings with a learnable global [CLS] token tR0 :

T 0 = (tR0
T
, tR1

T
, . . . , tRN

T
)T ∈ R(1+N)×d (25)

E.3 DETAIL EXPERIMENT ANALYSIS

E.3.1 RQ1: PPA PREDICTION

To assess the ability to represent topology information, we performed five PPA prediction tasks
focused on key metrics in circuit optimization. Timing Performance: Slack measures timing com-
pliance post-synthesis, with Worst Negative Slack (WNS) indicating the largest timing violation,
and Total Negative Slack (TNS) summing all violations to guide optimization efforts. Area Perfor-
mance: Area refers to the total silicon area required for the circuit, crucial for feasibility and cost.
Power Performance: Power measures the circuit’s energy efficiency. Based on Tables 1, we can
draw the following observations:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Obs: TopoRTL achieves superior area and power prediction with minimal resource over-
head. Specifically, it outperforms the best baseline by 5.5% ↑ in Area PCC and 6.9% ↑ in Power
PCC, while slashing MAPE errors by 26.2% ↓ for area and 31.5% ↓ for power. Crucially, these im-
provements come with fewer parameters and training data, showcasing TopoRTL’s effectiveness
in capturing global topological dependencies that text-based models struggle with.

• Obs: TopoRTL exhibits competitive timing performance due to its lightweight design. It
achieves the highest WNS prediction (PCC=0.862, RRSE=0.580), outperforming all baselines
in critical-path topology modeling. Although it doesn’t match the CodeV family for some tim-
ing tasks, it matches Slack PCC and surpasses most in RRSE, emphasizing the significance of
topology-behavior integration. TopoRTL’s WNS performance highlights its potential for timing
optimization and scalability.

• Obs: CodeV highlights domain-specific fine-tuning benefits but faces task-specific limita-
tions. It shows substantial gains over non-finetuned Qwen3, underscoring the critical role of
specialized training for RTL tasks. However, its improvements are constrained—e.g., it underper-
forms Qwen3-E-0.6B in WNS prediction and fails to achieve balanced results across all ppa tasks,
revealing inherent limitations in model generalizability.

• Obs: GCN-based models (GCN-MLP/GCN-GNN) exhibit poor accuracy due to topology-
agnostic pretraining. Their functional-aware contrastive learning discards essential circuit topol-
ogy, as evidenced by identical graph representations for structurally distinct circuits (e.g., Circuit
B vs. Circuit C in Figure 1). Notably, GCN-GNN underperforms GCN-MLP due to the invalid
homophily assumption in circuit graphs (where neighboring nodes often represent dissimilar com-
ponents) and over-smoothing effects that erase topological distinctions. This confirms that naive
graph conversion alone is inadequate, reinforcing the necessity of topology-integrated designs for
robust circuit modeling.

• Obs: CircuitFusion’s weak performance arises from topology information loss in architec-
ture and pretraining. CircuitFusion processes RTL code using functional contrastive pretrain-
ing focused on behavioral equivalence rather than topological relationships. While it converts
RTL to CDFG representations, it fails to capture crucial topology-sensitive circuit information, as
confirmed by GCN-GNN and GCN-MLP models. Our analysis shows that topology awareness
depends on cross-stage netlist alignment; without this data, the model’s topological awareness
diminishes, degrading the reliability of timing predictions and underscoring the importance of
topology.

Table 3: Detailed results of retrieval experiments.

Method AUC↑
L=5 L=8 L=10 L=15

GCN-MLP 0.719 0.682 0.698 0.672
GCN-GNN 0.664 0.644 0.695 0.632

Qwen3-E-0.6B 0.495 0.545 0.531 0.497
Qwen3-E-4B 0.489 0.512 0.505 0.500
Qwen3-E-8B 0.511 0.509 0.499 0.500
CodeV-CL 0.629 0.655 0.637 0.485
CodeV-DS 0.551 0.523 0.572 0.631
CodeV-QC 0.522 0.530 0.509 0.509

CircuitFusion 0.674 0.674 0.666 0.670

TopoRTL 0.787 0.804 0.760 0.783

E.3.2 RQ2: CIRCUIT RETRIEVE

To evaluate behavioral representation capabilities, we conduct a natural language code search task
critical for hardware design reuse and verification. Following Lu et al. (2021), we evaluate with L
negative designs (L ∈ {5, 8, 10, 15}) per query, measuring performance via AUC. Further details
regarding this task can be found in Appendix D.2. Based on Figure 3 and Table 3, we derive two
key insights:

• Obs: TopoRTL demonstrates superior performance and robustness across retrieval scenar-
ios. Our model maintains a stable performance near 0.8 AUC for all L values (5-15 negative
samples), outperforming all baselines. This consistency stems from TopoRTL’s joint modeling

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

of topology and behavior, emphasizing the importance of topology in RTL representation learn-
ing. The topology-guided alignment mechanism filters out irrelevant samples, ensuring reliable
behavioral matching even in noisy conditions, thus enhancing cross-modal retrieval accuracy and
supporting scalable design reuse across various hardware applications.

• Obs: CodeV validates domain adaptation efficacy in retrieval tasks through consistent gains
over Qwen3. It achieves higher AUC than non-finetuned Qwen3 across all negative sample
lengths (5–15 negative samples), demonstrating that RTL-specific fine-tuning effectively captures
behavioral semantics for retrieval. This reinforces domain adaptation as a critical strategy, though
its task-specific limitations persist.

• Obs: GCN models succeed in behavioral retrieval but expose topology’s irreplaceable role.
They match CircuitFusion and surpass LLM-based models in retrieval AUC, confirming that graph
modality with functional contrastive learning effectively encodes behavioral semantics. However,
their inability to outperform TopoRTL proves that behavioral modeling alone is insufficient; pre-
cise topological integration remains essential for robust cross-modal retrieval.

E.3.3 RQ3: HIDDEN REPRESENTATION ANALYSIS

As demonstrated in the previous sections, TopoRTL effectively learns both topological and behav-
ioral circuit characteristics. To further validate this, we visualize the learned representations using
t-SNE (Maaten & Hinton, 2008). Embeddings from our model and CircuitFusion (selected as it
matches TopoRTL’s output dimension and training data scale) are projected into 2D space, colored
by normalized Area, Power, and Slack metrics. According to Figure 4, we can find that:

• Obs: TopoRTL preserves continuous topological trends in representation space. In Area
and Power visualizations (Figure 4b), TopoRTL exhibits smooth, coherent gradients along t-SNE
dimensions, evidenced by seamless purple-to-yellow shifts for Area and Power. This reflects pre-
cise modeling of topological scaling effects (e.g., larger circuits systematically mapping to higher
Area/Power regions). Conversely, CircuitFusion (Figure 4a) shows fragmented, discontinuous dis-
tributions with abrupt value jumps (e.g., isolated high-Power clusters amid low-Power regions),
indicating failure to capture topological continuity. This validates TopoRTL’s topology-guided
alignment in preserving quantitative design variations.

• Obs: TopoRTL achieves topology-aware clustering for discrete design regimes. For Slack
prediction (Figure 4b), TopoRTL forms distinct, non-overlapping clusters: high-Slack circuits
(orange/yellow) cleanly separate from low-Slack regions (blue/purple), directly corresponding to
critical-path topologies. CircuitFusion (Figure 4a) exhibits severe cluster entanglement, proving
its inability to disentangle topologically critical states. This confirms TopoRTL’s unique capacity
to encode discrete topological regimes essential for timing-critical decision making, a capability
absent in behavior-only models.

• Obs: Discrete representation gaps in TopoRTL hint at RTL-to-gate-level topological mis-
matches. While TopoRTL successfully clusters Slack values, isolated outliers (e.g., yellow points)
suggest unresolved discrepancies between abstract RTL descriptions and concrete gate-level im-
plementations. These gaps likely stem from: (1) Abstraction loss: RTL netlists omit low-level
details (e.g., buffer insertion, wire routing) critical for precise timing analysis; (2) Hierarchical
misalignment: Modular RTL components may map non-linearly to flat gate-level structures, dis-
rupting topological continuity. This observation highlights the necessity for improved and well-
designed topology features.

E.3.4 RQ4: ABLATION AND FURTHER ANALYSIS

Abalation Study. To rigorously validate the contribution of each TopoRTL component, we conduct
ablation experiments by systematically removing key modules: (1) w/o Bit-width: eliminating bit-
width centrality encoding abit and feeding initial embeddings directly to the transformer; (2) w/o
Max-path: discarding max-path discrepancy encoding ∆L during attention score computation; (3)
w/o Graph density: removing graph density encoding ∆ρ from attention mechanisms; (4) w/o Cross-
loss: replacing topology-guided alignment with standard contrastive learning between isolated graph
and text modalities. As shown in Figure 5 and Table 4, these experiments reveal:

• Obs: Positional encodings yield balanced performance across diverse downstream tasks.
Bit-width centrality encoding improves performance by effectively capturing both topology and
functional complexity. In contrast, max-path and density encodings demonstrate varying impacts

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: Detailed results of the ablation study

Model Area Power Slack

PCC↑ R2↑ MAPE↓RRSE↓PCC↑ R2↑ MAPE↓RRSE↓PCC↑ R2↑ MAPE↓RRSE↓

TopoRTL 0.863 0.683 7.952 0.574 0.884 0.712 25.033 0.585 0.909 0.821 31.249 0.443
w/o cross modal loss 0.839 0.662 8.992 0.602 0.859 0.695 28.098 0.636 0.892 0.792 32.720 0.491
w/o graph density 0.851 0.692 8.794 0.572 0.874 0.689 29.777 0.621 0.873 0.744 38.662 0.536
w/o max path 0.854 0.705 8.634 0.565 0.871 0.694 27.998 0.616 0.890 0.777 33.599 0.525
w/o bit width 0.838 0.693 9.354 0.645 0.792 0.553 34.159 0.755 0.854 0.709 32.479 0.707

TNS WNS Retrieval

PCC↑ R2↑ MAPE↓RRSE↓PCC↑ R2↑ MAPE↓RRSE↓ AUC↑

TopoRTL 0.872 0.743 32.016 0.521 0.862 0.723 40.130 0.580 0.787
w/o cross modal loss 0.902 0.800 31.776 0.444 0.869 0.710 35.936 0.633 0.759
w/o graph density 0.867 0.723 32.821 0.515 0.867 0.734 41.962 0.555 0.771
w/o max path 0.901 0.778 32.937 0.503 0.896 0.760 41.148 0.564 0.781
w/o bit width 0.882 0.722 37.991 0.601 0.813 0.545 41.096 0.913 0.723

0.1 0.2 0.3 0.4
Split Ratio

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

Retrieval

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RR
SE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RR
SE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RR
SE

0.0

0.5

1.0

1.5

2.0

RR
SE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

RR
SE

0.1 0.2 0.3 0.4
Split Ratio

0.0

0.2

0.4

0.6

0.8

PC
C

Slack

0.1 0.2 0.3 0.4
Split Ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PC
C

TNS

0.1 0.2 0.3 0.4
Split Ratio

0.2

0.0

0.2

0.4

0.6

0.8

PC
C

WNS

0.1 0.2 0.3 0.4
Split Ratio

0.2

0.4

0.6

0.8

PC
C

Power

0.1 0.2 0.3 0.4
Split Ratio

0.2

0.4

0.6

0.8

PC
C

Area

CircuitFusion
CodeV-CL-7B

CodeV-DS-6.7B
CodeV-QC-7B

Qwen3-Embedding-0.6B
Qwen3-Embedding-4B

Qwen3-Embedding-8B
GCN_GNN

GCN_MLP
TopoRTL

PCC/AUC
RRSE

Figure 7: Split Ratio Results.

due to gaps between RTL and netlist representations. This suggests that a comprehensive repre-
sentation of a circuit requires complementary topological signals.

• Obs: Topology-guided cross-modal alignment prioritizes topology fidelity over pure timing
accuracy. By enforcing topology-semantic consistency, the alignment ensures behavioral descrip-
tions honor physical constraints, which is a necessary trade-off for design left-shift that slightly
constrains timing prediction (e.g., TNS) while significantly boosting other topological and be-
havioral tasks. This confirms that topology-guided alignment is helpful for end-to-end design
optimization.

Effect of Data Scale. As noted earlier, TopoRTL slightly underperforms larger models on timing
tasks due to its small pretraining dataset. Given EDA’s scarcity of labeled data, evaluating low-label
generalization is critical for real-world deployment. To assess scalability and data efficiency, we
train TopoRTL at 10%, 20%, 30% (default), and 40% label rates, using equal validation splits with
the remainder as test data. As shown in Figure 7, results reveal:

• Obs: TopoRTL surpasses larger models across more tasks at sufficient label rates. The model
initially underperforms baselines at lower label rates (10% and 20%), but consistently surpasses or
at least matches all competing approaches when label rates reach 30% and 40%. This progression
confirms that TopoRTL’s topology-aware architecture efficiently learning the topology and behav-
ior information, proving its viability for industrial EDA pipelines where labeled data gradually
accumulates.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F OTHER DETAILS

Prompts to generate module-level and design-level descriptions

Module-level Generation

System Prompt
You are a professional VLSI designer and an expert at Verilog
coding. Your task is to analyze a Verilog module and provide
a structured description in JSON format.

User Prompt

Analyze the following Verilog module. Your response MUST
be a single, valid JSON object.
Do not include any introductory text or explanations outside
of the JSON structure.
The JSON object should have the following keys:
1. "suggested_name": A short, descriptive, and functional
name for the module (e.g., "ALU", "FIFO Controller").
2. "inputs": A list of strings, where each string is a high-level
description of an inputś purpose (e.g., "Clock signal", "Data
to be written", "Reset signal"). Do not use signal names from
the code.
3. "outputs": A list of strings, similar to inputs, describing
each outputś purpose (e.g., "Result of calculation", "Indicates
buffer is full").
4. "functionality": A concise paragraph describing what the
module does, its main operations, and its purpose. Avoid im-
plementation details.
5. "sub_modules_called": A list of strings containing the
names of any other modules instantiated within this module.
If none, provide an empty list [].

Here is the Verilog module code:
```verilog
{module_code}
```

Design-level Generation

System Prompt
You are a professional VLSI designer and an expert technical
writer. You synthesize descriptions of individual circuit mod-
ules into a cohesive, high-level overview of the entire design.

User Prompt

You are given descriptions for individual hardware modules
that make up a larger digital circuit. Your task is to generate a
single, high-level natural language description of the **entire
circuit’s functionality**. Follow these requirements:
1. Focus on the overall purpose and main operations of the
complete design. Synthesize, do not just list the parts.
2. Do not include any variable names, signal names, or the
suggested module names from the provided context.
3. The description should be concise, clear, and written as if
a human user is describing what they want the final circuit to
achieve.
4. Keep the final description under 400 words.

Here are the descriptions of the individual modules:

{context_str}

24

	Introduction
	Related Works and Preliminaries
	Related Works
	Preliminaries: Data Preprocessing
	Register Cone Generation
	Multimodal Data Generation

	Methodology
	Behavior-Aware Dual-Modal Tokenizers
	Topology-Aware Positional Encoding with Transformer
	Bit-Width Centrality Encoding
	Max-Path and Density Discrepancy Encoding
	Transformer with Topology-Aware Attention

	Topology-Guided Cross-Modal Alignment

	Experiments
	Experimental Setup
	Performance on PPA Prediction (RQ1)
	Performance on Circuit Search (RQ2)
	Hidden Representations Analysis (RQ3)
	Ablation and Further Analysis (RQ4)

	Conclusion
	The Use of Large Language Models
	Limitation and Future Discussion
	Dataset Details
	Source Benchmarks
	ITC'99
	OpenCores
	VexRiscv
	DeepCircuitX

	Dataset Process

	Evaluation Details
	PPA Prediction Task
	Natural Language Code Search
	Evaluation Framework
	Baselines
	Implementation Details

	Pretraining and Experiment Result Details
	Register Cone Extract
	Behavior-Aware Tokenizers Pretraining
	Graph Tokenizer
	Summary Tokenizer

	Detail Experiment Analysis
	RQ1: PPA Prediction
	RQ2: Circuit Retrieve
	RQ3: Hidden Representation Analysis
	RQ4: Ablation and Further Analysis

	Other Details

