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ABSTRACT

We propose Reference-Based Modulation (RB-Modulation), a new plug-and-play
solution for training-free personalization of diffusion models. Existing training-
free approaches exhibit difficulties in (a) style extraction from reference images in
the absence of additional style or content text descriptions, (b) unwanted content
leakage from reference style images, and (c) effective composition of style and
content. RB-Modulation is built on a novel stochastic optimal controller where a
style descriptor encodes the desired attributes through a terminal cost. The result-
ing drift not only overcomes the difficulties above, but also ensures high fidelity
to the reference style and adheres to the given text prompt. We also introduce a
cross-attention-based feature aggregation scheme that allows RB-Modulation to
decouple content and style from the reference image. With theoretical justifica-
tion and empirical evidence, our framework demonstrates precise extraction and
control of content and style in a training-free manner. Further, our method allows
a seamless composition of content and style, which marks a departure from the
dependency on external adapters or ControlNets.

1 INTRODUCTION

Text-to-image (T2I) generative models (Ramesh et al., 2021; Rombach et al., 2022; Saharia et al.,
2022) have excelled in crafting visually appealing images from text prompts. These T2I models are
increasingly employed in creative endeavors such as visual arts (Xu et al., 2024), gaming (Pearce
et al., 2023), personalized image synthesis (Ruiz et al., 2023; Huang et al., 2024a; Hu et al., 2021;
Shah et al., 2023), stylized rendering (Sohn et al., 2023; Hertz et al., 2023; Wang et al., 2024a; Jeong
et al., 2024), and image inversion or editing (Ulyanov et al., 2018; Delbracio & Milanfar, 2023; Rout
et al., 2023b; 2024; Mokady et al., 2023). Content creators often need precise control over both the
content and the style of generated images to match their vision. While the content of an image can be
conveyed through text, articulating an artist’s unique style – characterized by distinct brushstrokes,
color palette, material, and texture – is substantially more nuanced. This has led to research on
personalization through visual prompting (Sohn et al., 2023; Hertz et al., 2023; Wang et al., 2024a).

Recent studies have focused on finetuning pre-trained T2I models to learn style from a set of refer-
ence images (Gal et al., 2022; Ruiz et al., 2023; Sohn et al., 2023; Hu et al., 2021). This involves
optimizing the model’s text embeddings, model weights, or both, using the denoising diffusion
loss. However, these methods demand substantial computational resources for training or finetuning
large-scale foundation models, thus making them expensive to adapt to new, unseen styles. Fur-
thermore, these methods often depend on human-curated images of the same style, which is less
practical and can compromise quality when only a single reference image is available.

In training-free stylization, recent methods (Hertz et al., 2023; Wang et al., 2024a; Jeong et al.,
2024) manipulate keys and values within the attention layers using just one reference style image.
These methods face challenges in both extracting the style from the reference style image and ac-
curately transferring the style to a target content image. For instance, during the DDIM inversion
step (Song et al., 2021a) utilized by StyleAligned (Hertz et al., 2023), fine-grained details tend to be
compromised. To mitigate this issue, InstantStyle (Wang et al., 2024a) incorporates features from
the reference style image into specific layers of a previously trained IP-Adapter (Ye et al., 2023).
However, identifying the exact layer for feature injection in a model is complex and not universally
applicable across models. Also, feature injection can cause content leakage from the style image into
the generated content. Moving on to content-style composition, InstantStyle (Wang et al., 2024a)
employs a ControlNet (Zhang et al., 2023) (an additionally trained network) to preserve image lay-
out, which inadvertently limits its diversity.
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A guitar A piano A butterfly

A skyscraper A lighthouse A kangaroo

A dwarf A dragon An elf

Reference style

Reference

content

Figure 1: Given a single reference image (rounded rectangle), our method RB-Modulation offers a
plug-and-play solution for (a) stylization, and (b) content-style composition with various prompts
while maintaining sample diversity and prompt alignment. For instance, given a reference style
image (e.g., “melting golden 3d rendering style”) and content image (e.g., “a dog”), our method
adheres to the desired prompts without leaking contents (e.g., flower) from the reference style
image and without being restricted to the fixed pose or layout of the reference dog image.

We introduce Reference-Based Modulation (RB-Modulation), a novel approach for content and style
personalization that eliminates the need for training or finetuning diffusion models (e.g. Control-
Net (Zhang et al., 2023) or adapters (Ye et al., 2023; Hu et al., 2021)). Our work reveals that the
reverse dynamics in diffusion models can be formulated as stochastic optimal control problem. By
incorporating style features into the controller’s terminal cost, we modulate the drift field in diffu-
sion model’s reverse dynamics, enabling training-free personalization. Unlike conventional attention
processors that often leak content from the reference style image, we propose to enhance the image
fidelity via an Attention Feature Aggregation (AFA) module that decouples content from reference
style image. We demonstrate the effectiveness of our method in stylization (Hertz et al., 2023; Wang
et al., 2024a; Jeong et al., 2024) and style+content composition, as illustrated in Figure 1(a) and (b),
respectively. Our experiments show that RB-Modulation outperforms current SoTA methods (Hertz
et al., 2023; Wang et al., 2024a) in terms of human preference and prompt-alignment metrics.

Our contributions are summarized as follows:

• We present reference-based modulation (RB-Modulation), a novel stochastic optimal con-
trol framework that enables training-free, personalized style and content control, with a
new Attention Feature Aggregation (AFA) module to maintain high fidelity to the refer-
ence image while adhering to the given prompt (§4).

• We provide theoretical justifications connecting optimal control and reverse diffusion dy-
namics. We leverage this connection to incorporate desired attributes (e.g., style) in our
controller’s terminal cost and personalize T2I models in a training-free manner (§5).

• We perform extensive experiments covering stylization and content-style composition,
demonstrating superior performance over SoTA methods in human preference metrics (§6).

2 RELATED WORK

Personalization of T2I models: T2I generative models (Rombach et al., 2022; Podell et al., 2023;
Pernias et al., 2024) can now generate high quality images from text prompts. Their text-following
ability has unlocked new avenues in personalized content creation, including text-guided image
editing (Rout et al., 2024; Mokady et al., 2023), solving inverse problems (Rout et al., 2023b; 2024),
concept-driven generation (Ruiz et al., 2023; Tewel et al., 2023; Kumari et al., 2023; Chen et al.,
2024), personalized outpainting (Tang et al., 2023), identity-preservation (Ruiz et al., 2024; Huang
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et al., 2024a; Wang et al., 2024b), and stylized synthesis (Sohn et al., 2023; Wang et al., 2024a; Hertz
et al., 2023; Shah et al., 2023). To tailor T2I models for a specific style (e.g., painting) or content
(e.g., object), existing methods follow one of two recipes: (1) full finetuning (FT) (Ruiz et al., 2023;
Everaert et al., 2023) or parameter efficient finetuning (PEFT) (Kumari et al., 2023; Ye et al., 2023;
Hu et al., 2021; Sohn et al., 2023; Shah et al., 2023) and (2) training-free (Hertz et al., 2023; Wang
et al., 2024a; Jeong et al., 2024), which we discuss below.

Finetuning T2I models for personalization: FT (Ruiz et al., 2023; Everaert et al., 2023) and
PEFT (Kumari et al., 2023; Hu et al., 2021; Sohn et al., 2023; Shah et al., 2023) methods excel at
capturing style or object details when the underlying T2I model can be finetuned on a few (typically
4) reference images for few thousand iterations. A recent work PARASOL (Tarrés et al., 2024)
requires supervised data via a cross-modal search to train both the denoising U-Net and a projector
network. Diff-NST (Ruta et al., 2023) trains the attention processor by targeting the ‘V’ values
within the denoising U-Net. The curation of supervised data and resource-intensive finetuning for
every style or content makes these methods challenging for practical usage.

Training-free methods for personalization: Training-free personalization methods are preferable
to finetuning methods given the vastly faster time of execution. In StyleAligned (Hertz et al., 2023),
a reference style image and a text prompt describing the style are used to extract style features via
DDIM inversion (Song et al., 2021a). Target queries and keys are then normalized using adaptive
instance normalization (Huang & Belongie, 2017) based on reference counterparts. Finally, refer-
ence image keys and values are merged with DDIM-inverted latents in self-attention layers, which
tends to leak content information from the reference style image (Figure 2). Moreover, the need
for textual description in the DDIM inversion step can degrade its performance. DiffusionDisen-
tanglement (Wu et al., 2023) aims to reduce the approximation error in DDIM inversion by jointly
minimizing a perceptual loss and a directional CLIP loss, which is prone to content leakage (Wang
et al., 2024a). Swapping Self-Attention (SSA) (Jeong et al., 2024) addresses these limitations by
replacing the target keys and values in self-attention layers with those from a reference style image.
It still relies on DDIM inversion to cache keys and values of the reference style, which tends to
compromise fine-grained details (Wang et al., 2024a). Both StyleAligned (Hertz et al., 2023) and
SSA (Jeong et al., 2024) require two reverse processes to share their attention layer features and
thus demand significant memory. InstantStyle (Wang et al., 2024a) injects reference style features
into specific cross-attention layers of IP-Adapter (Ye et al., 2023), addressing two key limitations:
DDIM inversion and memory-intensive reverse processes. However, pinpointing the exact layers for
feature injection is complex, and may not generalize to other models. In addition, when composing
style and content, InstantStyle (Wang et al., 2024a) relies on ControlNet (Zhang et al., 2023), which
can limit the diversity of generated images to fixed layouts and deviate from the prompt.

Optimal Control: Stochastic optimal control finds wide applications in diverse fields such as molec-
ular dynamics (Holdijk et al., 2024), economics (Fleming & Rishel, 2012), non-convex optimiza-
tion (Chaudhari et al., 2018), robotics (Theodorou et al., 2011), and mean-field games (Carmona
et al., 2018) Despite its extensive use, it has been less explored in personalizing diffusion models.
In this paper, we introduce a novel framework leveraging the main concepts from optimal control
to achieve training-free personalization. A key aspect of optimal control is designing a controller
to guide a stochastic process towards a desired terminal condition (Fleming & Rishel, 2012). This
aligns with our goal of training-free personalization, as we target a specific style or content at the end
of the reverse diffusion process, which can be incorporated in the controller’s terminal condition.

RB-Modulation overcomes several challenges encountered by SoTA methods (Hertz et al., 2023;
Jeong et al., 2024; Wang et al., 2024a). Since RB-Modulation does not require DDIM inversion, it
retains fine-grained details unlike StyleAligned (Hertz et al., 2023). Using a stochastic controller
to refine the trajectory of a single reverse process, it overcomes the limitation of coupled reverse
processes (Hertz et al., 2023). By incorporating a style descriptor in our controller’s terminal cost,
it eliminates the dependency on Adapters (Ye et al., 2023; Hu et al., 2021) or ControlNets (Zhang
et al., 2023) by InstantStyle (Wang et al., 2024a).

3 PRELIMINARIES

Diffusion models consist of two stochastic processes: (a) noising process, modeled by a Stochastic
Differential Equation (SDE) known as forward-SDE: dXt = f(Xt, t) dt + g(Xt, t) dWt, X0 ∼
p0, and (b) denoising process, modeled by the time-reversal of forward-SDE under mild regularity
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conditions (Anderson, 1982), also known as reverse-SDE:

dXt =
[
f(Xt, t)− g2(Xt, t)∇ log p(Xt, t)

]
dt+ g(Xt, t) dWt, X1 ∼ N (0, Id) . (1)

Here, W = (Wt)t≥0 is standard Brownian motion in a filtered probability space,
(Ω,F , (Ft)t≥0,P), p(·, t) denotes the marginal density of p at time t, and ∇ log pt(·) the corre-
sponding score function. f(Xt, t) and g(Xt, t) are called drift and volatility, respectively. A popular
choice of f(Xt, t) = −Xt and g(Xt, t) =

√
2 corresponds to the well-known forward Ornstein-

Uhlenbeck (OU) process.

For T2I generation, the reverse-SDE (1) is simulated using a neural network s (xt, t; θ) (Hyvärinen
& Dayan, 2005; Vincent, 2011) to approximate ∇x log p(xt, t). Importantly, to accelerate the
sampling process in practice (Song et al., 2021a; Karras et al., 2022; Zhang & Chen, 2022),
the reverse-SDE (1) shares the same path measure with a probability flow ODE: dXt =[
f(Xt, t)− 1

2g
2(Xt, t)∇ log p(Xt, t)

]
dt, where X1 ∼ N (0, Id).

Personalized diffusion models either fully finetune θ of s (xt, t; θ) (Ruiz et al., 2023; Everaert et al.,
2023), or train a parameter-efficient adapter ∆θ for s (xt, t; θ + ∆θ) on reference style images (Hu
et al., 2021; Sohn et al., 2023; Shah et al., 2023). Our method does not finetune θ or train ∆θ.
Instead, we derive a new drift field through a stochastic optimal controller that modulates the drift
of the standard reverse-SDE (1).

4 METHOD

Personalization using optimal control: Normalize time t by the total number of diffusion steps
T such that 0 ≤ t ≤ 1. Let us denote by u : Rd × [0, 1] → Rd a controller from the admissible
set of controls U ⊆ Rd, Xu

t ∈ Rd a state variable, ` : Rd × Rd × [0, 1] → R the transient
cost, and h : Rd → R the terminal cost of the reverse process (Xu

t )0
t=1. We show in §5 that

training-free personalization can be formulated as a control problem where the drift of the standard
reverse-SDE (1) is modified via RB-modulation:

min
u∈U

E[

∫ 0

1

` (Xu
t , u(Xu

t , t), t) dt+ γh(Xu
0 )], where (2)

dXu
t =

[
f(Xu

t , t)− g2(Xu
t , t)∇ log p(Xu

t , t) + u(Xu
t , t)

]
dt+ g(Xu

t , t)dWt, X
u
1 ∼ N (0, Id) .

Importantly, the terminal cost h(·), weighted by γ, captures the discrepancy in feature space be-
tween the styles of the reference image and the generated image. The resulting controller u(·, t)
modulates the drift over time to satisfy this terminal cost. We derive the solution to this optimal con-
trol problem through the Hamilton-Jacobi-Bellman (HJB) equation (Fleming & Rishel, 2012); refer
to Appendix A for details. Our proposed RB-Modulation Algorithm 1 has two key components: (a)
stochastic optimal controller and (b) attention feature aggregation. Below, we discuss each in turn.

(a) Stochastic Optimal Controller (SOC): We show that the reverse dynamics in diffusion models
can be framed as a stochastic optimal control problem with a quadratic terminal cost (theoretical
analysis in §5). For personalization using a reference style image Xf

0 = z0, we use a Contrastive
Style Descriptor (CSD) (Somepalli et al., 2024) to extract style features Ψ(Xf

0 ). Since the score
functions s (xt, t; θ)≈∇ log p (Xt, t) are available from pre-trained diffusion models (Podell et al.,
2023; Pernias et al., 2024), our goal is to add a correction term u(·, t) to modulate the reverse-
SDE and minimize the overall cost (2). We approximate Xu

0 with its conditional expectation using
Tweedie’s formula (Efron, 2011; Rout et al., 2023b; 2024). Finally, we incorporate the style features
into our controller’s terminal cost as: h (Xu

0 ) = ‖Ψ(Xf
0 )−Ψ(E [Xu

0 |Xu
t ])‖22.

Our theoretical results (§5) suggest that the optimal controller can be obtained by solving the
HJB equation and letting γ → ∞. In practice, this translates to dropping the transient cost
` (Xu

t , u(Xu
t , t), t) and solving (2) with only the terminal constraint, i.e.,

min
u∈U
‖Ψ(Xf

0 )−Ψ(E [Xu
0 |Xu

t ])‖22. (3)

Thus, we solve (3) to find the optimal control u and use this controller in the reverse dynamics (2) to
update the current state fromXu

t toXu
t−∆t (recall that time flows backwards in the reverse-SDE (1)).

Our implementation of (3) is given in Algorithm 1, which follows from our theoretical insights.

4
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Implementation challenge: For smaller generative models (Rombach et al., 2022), we can directly
solve our control problem (3). However, for larger models (Podell et al., 2023; Pernias et al., 2024),
optimizing our control objective (3) requires back propagation through the score network s (xt, t; θ)
with tentatively billions of parameters. This significantly increases time and memory complexity
(Rout et al., 2023b; 2024).

We propose a proximal gradient descent approach to address this challenge. Recall that the key in-
gredient of our Algorithm 1 is to find the previous state Xt−∆t by modulating the current state Xt

based on an optimal controller u∗. The optimal controller u∗ is obtained by minimizing the discrep-
ancy in style between X̄u

0 := E[Xu
0 |Xu

t = xt], obtained using our controlled reverse-SDE (3), and
the reference style image z0. Motivated by this interpretation, an alternate Algorithm 2 avoids back
propagation through s(xt, t; θ) by introducing a dummy variable x0, which serves as a proxy for
X̄u

0 in the terminal cost. Instead of forcing x0 to be decided by the dynamics of the reverse-SDE as
in Algorithm 1, we allow it to be only approximately faithful to the dynamics. This is implemented
by adding a proximal penalty, i.e. x∗0 = arg minx0∈Rd‖Ψ(Xf

0 )−Ψ(x0)‖22 +λ‖x0−E [Xu
0 |Xu

t ]‖22,
where the hyper-parameter λ controls the faithfulness of the reverse dynamics. This penalty assumes
that with a small step-size in the reverse-SDE dynamics (3), x∗0 and E[Xu

0 |Xu
t = xt] will be close.

Thus, Algorithm 2 enables personalization of large-scale foundation models, matching the speed
of training-free methods and obtaining 5-20X speedup over training-based methods; see Table 4 in
Appendix B.2 for details.

(b) Attention Feature Aggregation (AFA): Let d denote the dimension of the latent variable
Xt, nq the embedding dimension for query Q, and nh the output dimension of the hidden layer.
Transformer-based diffusion models (Rombach et al., 2022; Podell et al., 2023; Pernias et al., 2024)
consist of self-attention and cross-attention layers operating on latent embedding xt ∈ Rd×nh .
Within the attention module Attention(Q,K, V ), xt is projected into queries Q ∈ Rd×nq , keys
K ∈ Rd×nq , and values V ∈ Rd×nh using linear projections. Through Q, K, and V , attention
layers capture global context and improve long-range dependencies within xt.

To incorporate a reference image (e.g., style or content) while retaining alignment with the prompt,
we introduce the Attention Feature Aggregation (AFA) module. Given a prompt p, a reference
style image Is, and a reference content image Ic, we first extract the embeddings using CLIP text
encoder (Radford et al., 2021) and CSD image encoder (Somepalli et al., 2024). These embeddings
are projected into keys and values using linear projection. We denote by Kp and Vp the keys and
values from p, Ks and Vs from Is, Kc and Vc from Ic (used only in content-style composition). The
query Q, derived from a linear projection of xt, remains consistent in the AFA module. To maintain
consistency between text and style, we compose the keys and values of both text and style in our
attention mechanism. The final output of the AFA module is given by

AFA = Avg (Atext, Astyle, Atext+style) , Atext = Attention(Q, [K;Kp], [V ;Vp]),

Astyle = Attention(Q, [K;Ks], [V ;Vs]), Atext+style = Attention(Q, [K;Kp;Ks], [V ;Vp;Vs]),

where [K;Kp] ∈ R2d×nq indicates concatenation of K with Kp along the number of tokens di-
mension. For style-content composition, we process the content image Ic in the same way as the
reference style image Is, and obtain another set of attention outputs:

AFA = Avg (Atext, Astyle, Acontent, Acontent+style) ,

Acontent = Attention(Q, [K;Kc], [V ;Vc]), Acontent+style = Attention(Q, [K;Ks;Kc], [V ;Vs;Vc]).

Importantly, the AFA module is computationally tractable as it only requires the computation of a
multi-head attention, which is widely used in practice (Podell et al., 2023).

Disentangling content and style. In stylization (content described by text; style illustrated by a
reference style image), prior works (Hertz et al., 2023; Wang et al., 2024a) inject the entire refer-
ence style image Is that does not disentangle content and style. However, our AFA module injects
only the style features from Is using the style attention head of the Vision Transformer (ViT) in
CSD (Somepalli et al., 2024). The AFA module achieves content-style disentanglement by comput-
ing separate attention maps for content from text and style from image. In this case, SOC does not
handle content and focuses solely on style aspects by using the style attention head from CSD as
feature extractor Ψ(·).

In content-style composition (content described by both text and a reference content image; style
described by a reference style image), the AFA module injects content (extracted from the reference
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Algorithm 1: RB-Modulation (Exact)
Input: Diffusion steps T , reference prompt p, reference style

image z0, style descriptor Ψ(·),
score network s(·, ·, ·; θ)

Tunable parameter: Stepsize η, optimization stepsM
Output: Personalized latentXu0

1 Initialize xT ← N (0, Id)
2 for t = T to 1 do
3 Initialize controller u = 0
4 form = 1 toM do
5 x̂t = xt + u . controlled state

6 X̄u0 =
x̂t√
ᾱt

+
(1−ᾱt)√

ᾱt
s (x̂t, t,p; θ)

7 h(X̄u0 ) = ‖Ψ(z0)−Ψ(X̄u0 )‖22 using Eq. (3)
8 u = u− η∇uh(X̄u0 ) . update controller
9 end

10 x∗t = xt + u . optimally controlled state

11 X̄u0 =
x∗t√
ᾱt

+
(1−ᾱt)√

ᾱt
s (x∗t , t,p; θ) . terminal state

12 xt−1 ← DDIM(X̄u0 ,x
∗
t ) . one denoising update

13 end
14 returnXu0

Algorithm 2: RB-Modulation (Proximal)
Input: Diffusion time steps T , reference prompt p, reference

style image z0, style descriptor Ψ(·),
score network s(·, ·, ·; θ)

Tunable parameters: Stepsize η, optimization stepsM ,
proximal strength λ
Output: Personalized latentXu0

1 Initialize xT ← N (0, Id)
2 for t = T to 1 do
3 Compute posterior mean

E[Xu0 |X
u
t = xt] =

xt√
ᾱt

+
(1−ᾱt)√

ᾱt
s (xt, t,p; θ)

4 Initialize optimization variable x0 = 0
5 form = 1 toM do
6 Compute controller’s cost L(x0) := ‖Ψ(z0)−

Ψ(x0)‖22 + λ‖x0 − E [Xu0 |X
u
t = xt]‖22

7 Update optimization variable
x0 = x0 − η∇x0L(x0)

8 end
9 xt−1 ← DDIM(x0,xt) . one denoising step

10 end
11 returnXu0

content) and style features (from the reference style image) separately using their respective attention
heads in the ViT (Somepalli et al., 2024). The SOC module controls content by minimizing the
discrepancy between content features from the generated image and the reference content image,
and style by minimizing the discrepancy between style features extracted from the generated and
reference style image. This distinction from prior works enables our method to prevent leakage.

5 THEORETICAL JUSTIFICATIONS
Problem setup: We outline an approach to derive the optimal controller for a special case of our
control problem (2). We substitute t← 1− t to account for the time reversal in the reverse-SDE (1).
Here, Xu

0 ∼ N (0, Id) and Xu
1 ∼ pdata. We consider the dynamic without the Brownian motion:

dXu
t = v(Xu

t , u, t)dt, Xu
t0 = x0, where 0 ≤ t0 ≤ t ≤ tN ≤ 1 and v : Rd × Rd × [t0, tN ]→ Rd

denotes the drift field. The optimal controller u∗ can be derived by solving the Hamilton-Jacobi-
Bellman (HJB) equation (Fleming & Rishel, 2012; Basar et al., 2020), see Appendix A for details.

Incorporating optimal control in diffusion: Following recent works (Kappen, 2008; Chen et al.,
2023), we consider a dynamical system whose drift field minimizes a transient trajectory cost and a
terminal cost (weighted by γ) to ensure “closeness” to reference content x1 (Appendix A.1). Propo-
sition A.2 (Chen et al., 2023) outlines the optimal control in the limiting setting where γ → ∞.
Furthermore, suppose we replace x1 with its conditional expectation (discussed in Remark A.3), the
resulting dynamic is the standard reverse-SDE for the Orstein-Uhlenbeck (OU) diffusion process
for a particular noise schedule. This connection between classic linear quadratic control and the
standard reverse-SDE allows us to study other diffusion problems (e.g., personalization) through the
lens of stochastic optimal control. For instance, we derive the optimal controller given reference
style features y1 at the terminal time.
Proposition 5.1. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Given reference style features y1, consider the control problem:

min
u∈U

∫ 1

t0

1

2
‖u(Xu

t , t)‖
2
dt+

γ

2
‖AXu

1 − y1‖22 , where dXu
t = u(Xu

t , t) dt, Xu
t0 = x0.

Then, in the limit when γ →∞, the optimal controller u∗ =
(ATA)

−1
AT (y1−Axt)

1−t , which yields the

following controlled dynamic: dXu
t =

(ATA)
−1
AT (y1−Axt)

1−t dt.

Implication. The optimal controller depends on the reference style features y1 at the terminal time,
instead of the image content encoded in x1. To simulate the controlled dynamic in practice, we
use CSD (Somepalli et al., 2024) as a style feature extractor and replace y1 with the style features
extracted from the expected terminal state E[Xu

1 |Xu
t ], as discussed in Appendix A.2.

Drift modulation through optimal controller: We then study a control problem where the velocity
field is a linear combination of the state and the control variable. This problem is interesting to
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Figure 2: Qualitative results for stylization: A comparison with state-of-the-art methods
(InstantStyle (Wang et al., 2024a), StyleAligned (Hertz et al., 2023), StyleDrop (Sohn et al., 2023))
highlights our advantages in preventing information leakage from the reference style and adhering
more closely to desired prompts.

study because the reverse-SDE dynamic of the standard OU process has a drift field of the form:
v (Xt, t) = −Xt − 2∇ log p(Xt, t). For a Gaussian prior X0 ∼ N (0, I), the law of the OU process
satisfies∇ log p (Xt, t) = −Xt, and the corresponding drift field becomes v (Xt, t) = Xt. Our goal
is to modulate this drift field using a controller u (Xu

t , t). The result below provides the structure of
the optimal control (again in the setting where the terminal objective is known; see Appendix A1).
Proposition 5.2. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Let pt denote ∇xV
∗(x, t) in HJB equation (A.1). Given reference style features y1,

consider the control problem:

min
u∈U

∫ 1

t0

1

2
‖u(Xu

t , t)‖
2
dt+

γ

2
‖AXu

1 − y1‖22 , where dXu
t = [Xu

t + u(Xu
t , t)] dt, Xu

t0 = x0,

Then, the optimal controller becomes u∗(t) = −pt, where the instantaneous state Xu
t = xt and pt

satisfy the following coupled transitions:[
xt
pt

]
=

[
x0e

t − γ
2A

T (Ax1 − y1) e1+t + γ
2A

T (Ax1 − y1) e1−t

γAT (Ax1 − y1) e1−t

]
.

Summary. We build on the connection between optimal control and reverse diffusion (see Ap-
pendices A.1-A.3 for details). The general strategy is to derive the optimal controller with known
terminal state, and then replace the terminal state in the controller with its estimate using Tweedie’s
formula. For stylized models and Gaussian prior, the controllers have an explicit form. However in
practice, the data distribution may not be Gaussian, and thus, we do not aim for a closed-form ex-
pression to modulate the drift. This line of analysis, however, points to our method RB-Modulation.
As discussed in §4, we incorporate a style descriptor in our controller’s terminal cost and evaluate the
resulting drift at each reverse time step either through back propagating through the score network
(Algorithm 1), or an approximation based on proximal gradient updates (Algorithm 2).

6 EXPERIMENTS

Metrics: Evaluating stylized synthesis is challenging due to the subjective nature of style, mak-
ing simple metrics inadequate. We follow a two step approach: first using metrics from prior
works and then conducting human evaluation. To evaluate prompt-image alignment, we use CLIP-T
score (Hertz et al., 2023; Sohn et al., 2023; Wang et al., 2024a) and ImageReward (Xu et al., 2024),
which also consider human aesthetics, distortions, and object completeness. When a style descrip-
tion is provided, CLIP-T and ImageReward also capture style alignment. We assess style similarity
using DINO (Caron et al., 2021) and content similarity using CLIP-I (Radford et al., 2021) as in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: User study: We report the % of human preference on ours vs. alternatives for overall
quality (OQ), style alignment (SA), and prompt alignment (PA), including ties where users couldn’t
decide. Our method consistently outperforms alternatives, achieving higher scores in all metrics.

Human Ours vs. InstantStyle Ours vs. StyleAligned Ours vs. IP-Adapter
Preference (%) OQ ↑ SA ↑ PA ↑ OQ ↑ SA ↑ PA ↑ OQ ↑ SA ↑ PA ↑
Alternative 39.8 38.5 39.5 24.4 27.8 29.4 8.1 20.1 8.3
Tie 9.3 6.4 7.3 8.8 7.1 5.8 6.9 4.8 4.5
RB-Modulation (ours) 51.0 55.1 53.3 66.9 65.1 64.9 85.0 75.1 87.2

prior work (Hertz et al., 2023; Ruiz et al., 2023; Sohn et al., 2023), and highlight their limitations in
disentangling style and content performance in evaluation. Given the importance of human evalua-
tion in T2I personalization (Hertz et al., 2023; Sohn et al., 2023; Ruiz et al., 2023; Shah et al., 2023;
Jeong et al., 2024), we also conduct a user study though Amazon Mechanical Turk to measure both
style and text alignment.

Datasets and baselines: We use style images from StyleAligned benchmark (Hertz et al., 2023) for
stylization and content images from DreamBooth (Ruiz et al., 2023) for content-style composition.
We base RB-Modulation on the recently released StableCascade (Pernias et al., 2024). We compare
with three training-free methods: InstantStyle (Wang et al., 2024a) (state-of-the-art), IP-Adapter
(Ye et al., 2023), and StyleAligned (Hertz et al., 2023). For completeness, we also compare with
training-based methods StyleDrop (Sohn et al., 2023) and ZipLoRA (Shah et al., 2023).

Implementation details: All experiments run on a single A100 NVIDIA GPU. We use the same
hyper-parameters for our method across tasks, and default settings for alternative methods as per
their original papers. Details are provided in Appendix B.1.

6.1 IMAGE STYLIZATION

Qualitative analysis: This section describes image stylization experiments using a text prompt
and a reference style image. Figure 2 compares our method with SoTA training-free InstantStyle
(Wang et al., 2024a) and StyleAligned (Hertz et al., 2023), and training-based StyleDrop (Sohn
et al., 2023). Except for StyleDrop, which requires ∼5 minutes of training per style, all methods,
including ours, are training-free and complete inference in <1 minute. While all methods produce
reasonable outputs, alternative methods encounter issues with information leakage. For instance, in
the third row of Figure 2, StyleAligned and StyleDrop generate a wine bottle and book resembling
the smartphone in the reference style image. In the last row, StyleAligned leaks the house and the
background of the reference image; InstantStyle exhibits color leakage from the house, resulting
in similar-colored images. Our method accurately adheres to the prompt in the desired style. As
illustrated in the second and the third row, our method generates only one glass of wine and a high-
fidelity rubber duck, compared to baselines where extra items appear (wine bottles styled like the
left smartphone) or incorrect styles (cartoon-style rubber duck).

User study: Given the subjective nature of this field, we conduct a user study on Amazon Mechan-
ical Turk with 155 participants using 100 styles from the StyleAligned dataset (Hertz et al., 2023),
collecting a total of 7,200 answers (8 responses for each question). Each user answers 3 questions
comparing our method with an alternative method regarding (1) overall quality, (2) style alignment,
and (3) prompt alignment (details in the Appendix B.8). Table 1 summarizes the percentage of
human preferences for our method, the alternative method, or a tie. Our method consistently out-
performs the alternatives, including the current SoTA method InstantStyle (Wang et al., 2024a). The
preference rates over all three metrics highlight the effectiveness of our method RB-Modulation.

Quantitative analysis: Table 2 evaluates 300 prompts and 100 styles on the StyleAligned
dataset (Hertz et al., 2023) using three metrics, with and without style descriptions in the prompts.
Our method outperforms others notably in the ImageReward metric, closely matching human aes-
thetics assessment from the user study in Table 1. In addition, the CLIP-T score indicates our ef-
fective alignment between generated images and text prompts. While IP-Adapter and StyleAligned
have higher DINO scores, their lower rating in ImageReward, CLIP-T and user preference expose
information leakage from the reference style images. Nevertheless, our DINO score remains com-
petitive with the leading method InstantStyle. Notably, all metrics show improvement with style
descriptions, particularly in ImageReward, where leveraging style descriptions enhances prompt
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Reference style StableCascade DirectConcat AFA only SOC only AFA + SOCContent prompt

�A cat�

�A piano�

Figure 3: Ablation study: We show the effectiveness of our different proposed components by
sequentially adding them to vanila StableCascade (Pernias et al., 2024). DirectConcat involves
concatenating reference image embeddings with prompt embeddings.

Table 2: Quantitative results for stylization: We compare alternative methods on three metrics:
ImageReward (Xu et al., 2024) and CLIP-T (Radford et al., 2021) for prompt alignment, DINO
(Caron et al., 2021) for style alignment. Note that DINO score does not capture information
leakage, so higher scores are not necessarily better (§B.5).

ImageReward ↑ CLIP-T score ↑ DINO score
With style description? No Yes No Yes No Yes

IP-Adapter (Ye et al., 2023) -1.99 -1.51 0.21 0.26 0.89 0.89
StyleAligned (Hertz et al., 2023) -0.68 0.01 0.26 0.31 0.80 0.85
InstantStyle (Wang et al., 2024a) 0.09 0.72 0.29 0.33 0.68 0.72
RB-Modulation (ours) 0.91 1.18 0.30 0.34 0.68 0.73

alignment. Our method achieves high ImageReward and CLIP-T score even without style descrip-
tions, suggesting robustness in prompt alignment without explicit style information in the prompt.

Ablation Study: Figure 3 shows an ablation study of the AFA and SOC modules. We include
a baseline, “DirectConcat”, which concatenates reference style embeddings with text embeddings
in the cross-attention modules. DirectConcat mixes both embeddings, making it less effective in
disentangling style from prompts (e.g., cat vs. lighthouse). While AFA or SOC alone mitigates this
by modulating the reverse drift and attention modules (§4), each has drawbacks. AFA alone fails to
capture the cat’s style accurately, and SOC alone misplaces elements, like “a lighthouse hat on the
cat” and “a railroad trunk on a piano”. We observe consistent improvements with each module, with
the best results when combined.

6.2 CONTENT-STYLE COMPOSITION

Since this paper primarily focuses on style-based personalization, we perform extensive experiments
on stylization. To further demonstrate the versatility of our framework, RB-Modulation, we also
explore content-style composition as an additional capability.

Qualitative analysis: Content-style composition aims to preserve the essence of both content and
style depicted in the reference images, while ensuring the resulting image aligns with a given text
prompt. Figure 4 compares our method against training-free InstantStyle (Wang et al., 2024a), IP-
Adapter (Ye et al., 2023), and training-based ZipLoRA (Shah et al., 2023). Notably, the training-
free InstantStyle and IP-Adapter rely on ControlNet (Zhang et al., 2023), which often constrains
their ability to accurately follow prompts for changing the pose of the generated content, such as
illustrating “dancing” in Figure 4(b), or “walking” in (c). In contrast, our method avoids the need
for ControlNet or adapters, and can effectively capture the distinctive attributes of both style and
content images while adhering to the prompt to generate diverse images. In Figure 4(a), our method
accurately captures elements like “table” and “river” that are overlooked in InstantStyle and IP-
Adapter. In addition, our method mitigates information leakage, as evidenced in Figure 4(b), where
the trunk of the tree behind the sloth is erroneously captured by InstantStyle and IP-Adapter but not
by ours. Compared to ZipLoRA (Shah et al., 2023) that requires training of 12 LoRAs (Hu et al.,
2021) and additional merge layers for each composition, our method requires no training at all while
yielding competitive or better results. For instance, our method effectively captures the 2D cartoon
and 3D rendering styles as illustrated in Figures 4(a) and (b).
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Figure 4: Qualitative results for content-style composition: Our method shows better prompt
alignment and greater diversity than training-free methods IP-Adapter (Ye et al., 2023) and
InstantStyle (Wang et al., 2024a), and have competitive performance with training-based
ZipLoRA (Shah et al., 2023) .

Table 3: Quantitative results for composition: In addition to stylization metrics, we use CLIP-T
score (Radford et al., 2021) to evaluate content alignment with the reference image. Similar to
DINO, CLIP-I could inflate test score (Sohn et al., 2023; Shah et al., 2023) due to content leakage,
but does not correlate to user preference; higher scores do not indicate better human preference.

ImageReward ↑ CLIP-T score ↑ DINO score CLIP-I score

IP-Adapter -0.78 0.22 0.73 0.68
InstantStyle -0.54 0.21 0.71 0.71
RB-Modulation (ours) 0.74 0.26 0.74 0.71

Quantitative analysis: Table 3 shows quantitative evaluation using 50 styles from StyleAligned
dataset (Hertz et al., 2023) and 5 contents from DreamBooth dataset (Ruiz et al., 2023). Unlike prior
works (Hertz et al., 2023; Sohn et al., 2023; Shah et al., 2023; Ruiz et al., 2023; Jeong et al., 2024)
reporting either DINO and CLIP-I scores, we present both metrics and demonstrate comparable
performance across them. Additionally, we obtain notably higher ImageReward score, which aligns
closely with human aesthetics assessment as evidenced in §6.1 and (Xu et al., 2024). Consequently,
we omitted a user study in this section. For more details, please refer to Appendix B.1.

7 CONCLUSION

We introduced Reference-Based modulation (RB-Modulation), a training-free method for personal-
izing transformer-based diffusion models. RB-Modulation builds on concepts from stochastic opti-
mal control to modulate the drift field of reverse diffusion dynamics, incorporating desired attributes
(e.g., style or content) via a terminal cost. Our Attention Feature Aggregation (AFA) module decou-
ples content and style in the cross-attention layers and enables precise control over both. In addition,
we derived theoretical connections between linear quadratic control and the denoising diffusion pro-
cess, which led to the creation of RB-Modulation. Empirically, our method outperformed current
state-of-the-art methods in stylization and content-style composition. To our best knowledge, this is
the first training-free personalization framework using stochastic optimal control, which marks the
departure from external adapters or ControlNets.

Limitation: We proposed a framework and demonstrated its efficacy by incorporating a style de-
scriptor (Somepalli et al., 2024) in a pre-trained diffusion model (Pernias et al., 2024). The inherent
limitations of the style descriptor or diffusion model might propagate into our framework. We be-
lieve these limitations can be addressed by an appropriate descriptor or a generative prior.

Reproducibility: The pseudocode and hyper-parameter details have been provided in the paper.
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A ADDITIONAL THEORETICAL RESULTS

In this section, we restate the propositions more precisely and provide their technical proofs. First,
we recall standard terminologies from optimal control literature (Fleming & Rishel, 2012). For
0 ≤ t0 ≤ t ≤ tN ≤ 1, the cost function associated with the controller u(·) is defined by the integral:

V (u;x0, t0) =

∫ tN

t0

` (Xu
t , u, t) dt+ h

(
Xu
tN

)
, Xu

t0 = x0, (4)

where `(· · ·) denotes a scalar valued function of the state Xu
t , controller u(·), and instantaneous

time t. The value function V ∗(x0, t0) is defined as the minimum value of V (u;x0, t0) over the set
of admissible controllers U , i.e.,

V ∗ = V ∗(x0, t0) = min
u∈U

V (u;x0, t0) = min
u∈U

∫ tN

t0

` (Xu
t , u, t) dt+ h

(
Xu
tN

)
, Xu

t0 = x0, (5)

which satisfies a Partial Differential Equation (PDE) given below in Theorem A.1.

Theorem A.1 (HJB Equation, (Fleming & Rishel, 2012; Basar et al., 2020)). If V ∗ has continuous
partial derivatives, then it must satisfy the following PDE, also known as Hamilton-Jacobi-Bellman
(HJB) equation:

−∂V
∗

∂t
(x, t) = min

u∈U

[
H (x,∇xV

∗ (x, t) , u, t) := ` (x, u, t) + (∇xV
∗ (x, t))

T
v (x, u, t)

]
.

Also, the Hamiltonian H (x,∇xV
∗ (x, t) , u, t), optimal controller u∗(t) and the state trajectory

x∗(t) must satisfy

min
u∈U

H (x∗(t),∇xV
∗ (x∗(t), t) , u, t) = H (x∗(t),∇xV

∗ (x∗(t), t) , u∗(t), t) .

A.1 INTERPRETING REVERSE-SDE AS A SOLUTION TO OPTIMAL CONTROL

For clarity, we restate the problem setup here and describe the main ideas from §4 in more details.
Problem setup: We discuss a standard approach to derive the optimal controller in a special case
of our control problem (2). We substitute t ← 1 − t to account for the time reversal in the reverse-
SDE (1). In this setup, Xu

0 ∼ N (0, Id) and Xu
1 ∼ pdata. We consider the following dynamic

without the Brownian motion:

dXu
t = v(Xu

t , u, t)dt, Xu
t0 = x0, (6)

where 0 ≤ t0 ≤ t ≤ tN ≤ 1 and v : Rd × Rd × [t0, tN ] → Rd denotes the drift field. The optimal
controller u∗ can be derived by solving the Hamilton-Jacobi-Bellman (HJB) equation (Fleming &
Rishel, 2012; Basar et al., 2020), see Appendix A for details. By certainty equivalence (when the
drift and diffusion coefficients are linear time-varying (Astrom, 1971), which occurs when pdata is
Gaussian; see also discussion in Section A.3), the same u∗ applies to a more general case with the
Brownian motion (Chen et al., 2023), where

dXu
t = v(Xu

t , u, t)dt+ dWt, Xu
t0 = x0. (7)

Therefore, we analyze the reverse dynamic in the absence of the Brownian motion, and employ the
same controller in more general cases with the Brownian motion.

Below, we consider a dynamical system whose drift field is chosen to minimize a transient trajec-
tory cost and a terminal cost (weighted by γ) that enforces “closeness” to reference content x1.
Proposition A.2 provides the structure of the optimal control in the limiting setting where γ →∞.
Furthermore, suppose we replace x1 with its conditional expectation (discussed in Remark A.3), the
resulting dynamic, interestingly, is the standard reverse-SDE for the Orstein-Uhlenbeck (OU) dif-
fusion process. This connection between optimal control (more precisely, classic Linear Quadratic
Control) and the standard reverse-SDE provides us a path to study other diffusion problems (e.g.
personalization (Ruiz et al., 2023; Hertz et al., 2023; Sohn et al., 2023; Wang et al., 2024a), image
editing or inversion (Mokady et al., 2023; Delbracio & Milanfar, 2023; Rout et al., 2023b; 2024;
2023a)) through the lens of stochastic optimal control.
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Proposition A.2 (Linear optimal control with quadratic cost (Chen et al., 2023)). Consider the
control problem:

min
u∈U

∫ 1

t0

1

2
‖u(Xu

t , t)‖
2
dt+

γ

2
‖Xu

1 − x1‖22 ,

where dXu
t = u(Xu

t , t) dt, Xu
t0 = x0

Then, in the limit when γ → ∞, the optimal controller is given by u∗ =
x1−Xut

1−t , which yields

dXu
t =

x1−Xut
1−t dt for the deterministic case and dXu

t =
x1−Xut

1−t dt+ dWt for the stochastic case.

The optimal controller for the problem presented in Proposition A.2 can be derived using estab-
lished techniques from control theory (Fleming & Rishel, 2012; Basar et al., 2020; Kappen, 2008);
the specific form of the above result follows from (Chen et al., 2023) (but without their momen-
tum term). The key steps in this derivation include: (1) computing the Hamiltonian, (2) applying
the minimum principle theorem to derive a set of differential equations, and (3) taking the limit as
γ → ∞. These three steps are fundamental in deriving a closed-form solution. The final step is
critical for satisfying hard terminal constraint and is essential for the practical implementation of
Algorithm 1 and Algorithm 2, as detailed in §4.

For generative modeling, the controlled dynamics described in Proposition A.2 cannot be directly
applied. This limitation arises because the optimal control u∗ depends on the terminal state x1,
making it non-causal or reliant on future information. Inspired by recent advancements in flow-based
generative models (Lipman et al., 2022; Liu et al., 2022), we make the optimal controller causal by
replacing the terminal state with its conditional expectation given the current state, i.e., , i.e. x1 ←
E[Xu

1 |Xu
t = xt]. This modification results in a controlled dynamic that can be simulated to produce

a generative model incorporating principles from optimal control, as elaborated in Remark A.3.

Remark A.3 (Connections between diffusion-based generative modeling and stochastic optimal
control). Following conditional diffusion models and optimal transport paths (Lipman et al., 2022;
Liu et al., 2022), where Xf

t = tXf
0 + (1 − t)ε, the state variable Xu

t is equal in distribution to
Xf

1−t = (1− t)Xf
0 + tε, ε ∼ N (0, Id) after time reversal. Now, we use Tweedie’s formula (Efron,

2011) to compute the posterior mean:

E[Xu
1 |Xu

t ] =
Xu
t

1− t
+

t2

1− t
∇ log p (Xu

t , 1− t) . (8)

Substituting the posterior mean in the controlled reverse dynamic of Proposition A.2, we arrive at

dXu
t =

(E[Xu
1 |Xu

t ]−Xu
t )

(1− t)
dt+ dWt

=
[ t

(1− t)2
Xu
t +

t2

(1− t)2
∇ log p(Xu

t , 1− t)
]
dt+ dWt.

We observe that the above equation is structurally the same as reverse-SDE associated with a forward
Orstein-Uhlenbeck (OU) diffusion process. This relation between diffusion-based generative models
and optimal control is further explored in the Appendices below.

Indeed, diffusion models (Ho et al., 2020; Song et al., 2021b; Rombach et al., 2022; Podell et al.,
2023; Pernias et al., 2024) provide an effective approximation to the terminal state of a denoising
process. This approximation has been used for a variety of generative modeling tasks. Also, the
terminal state can be approximated using Tweedie’s formula (Efron, 2011) with a learned score
function (Ho et al., 2020)1. By utilizing these pre-trained diffusion models, we can employ the
connection to optimal control as discussed above to develop practically implementable generative
models that incorporates terminal objectives such as style and personalization. Consequently, the
subsequent sections are dedicated to deriving the optimal controller assuming a known terminal
state; we will approximate this in practice using Tweedie’s formula as above.

1Alternatively, when the reverse process is described by a probability flow ODE, a trained neural network
can directly predict the terminal state (Song et al., 2021a).
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A.2 INCORPORATING PERSONALIZED STYLE CONSTRAINTS THROUGH A TERMINAL COST

In this section, we derive the optimal controller when we have access to the reference style features
y1 at the terminal time (instead of the content of the image encoded through x1).
Proposition A.4. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Given reference style features y1, consider the control problem:

min
u∈U

∫ 1

t0

1

2
‖u(Xu

t , t)‖
2
dt+

γ

2
‖AXu

1 − y1‖22 , (9)

where dXu
t = u(Xu

t , t) dt, Xu
t0 = x0, (10)

Then, in the limit when γ → ∞, the optimal controller u∗ =
(ATA)

−1
AT (y1−AXut )

1−t , which yields
the following controlled dynamic:

dXu
t =

(
ATA

)−1
AT (y1 −AXu

t )

1− t
dt. (11)

Proof. We derive the closed-form solution of the optimal controller given a fixed terminal state
condition. This is similar to (Chen et al., 2023), where the reverse process is accelerated using
momentum (see also (Kappen, 2008; Basar et al., 2020) for further details on this approach). The
distinction, however, lies in the treatment of the terminal constraint. For completeness, we provide
full details of the proof below.

To derive the closed-form solution2, recall from equation (5) that `(xt,ut, t) = 1
2 ‖ut‖

2 and the
terminal cost h(x1) = γ

2 ‖Ax1 − y1‖2. Let pt represent ∇xV
∗(x, t) in Theorem A.1. Then, the

Hamiltonian of the control problem (9) is given by

H(xt,pt,ut, t) = `(xt,ut, t) + pTt ut

=
1

2
‖ut‖2 + pTt ut.

Since the minimizer of the Hamiltonian is u∗t = −pt, the value function becomes

V ∗ = min
ut

H(ut,pt,ut, t) = H(ut,pt,u
∗
t , t) = −1

2
‖pt‖2 . (12)

Now, we use minimum principle theorem (Basar et al., 2020) to obtain the following set of differen-
tial equations:

dxt
dt

= ∇pH (xt,pt,u
∗
t , t) = −pt; (13)

dpt
dt

= −∇xH (xt,pt,u
∗
t , t) = 0; (14)

xt0 = x0; (15)

ptN = ∇xh (xtN , tN ) = γAT (AxtN − y1) . (16)

Integrating both sides of (13), we have∫ 1

t0

dxt = −
∫ 1

t0

ptdt = −p (1− t0) , (17)

where the last equality is due to (14), which states that pt is a constant independent of time t. This
implies x1 = xt0 − p(1− t0). From (16), we know for tN = 1 that

p1 = γAT (Ax1 − y1)

= γ
(
ATA (x0 − p(1− t0))−AT y1

)
= γATAx0 − γATAp1(1− t0)− γAT y1 (18)

2With slight abuse of notation, we use xt to denote Xu
t and ut to denote u(Xu

t , t) in the deterministic case.
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Rearranging (18) and solving for p1, we get

p1 = γ
(
I + γATA (1− t0)

)−1 (
ATAx0 −AT y1

)
=

(
I

γ
+ATA (1− t0)

)−1 (
ATAx0 −AT y1

)
= p (19)

Passing (19) through the limit γ →∞, we get

lim
γ→∞

p =

(
ATA

)−1 (
ATAx0 −AT y1

)
1− t0

. (20)

Therefore, the optimal control becomes u∗t = −p = − (ATA)
−1

(ATAxt−AT y1)
1−t , and the resulting

dynamical system is given by

dxt =

(
ATA

)−1
AT (y1 −Axt)
1− t

dt,

for the deterministic process and

dxt =

(
ATA

)−1
AT (y1 −Axt)
1− t

dt+ dWt,

for the stochastic process with the Brownian motion. This completes the statement of the proof.

Implications: The optimal controller depends on the reference style features y1 at the terminal time
(instead of the image content x1 as in Appendix A.1). The reverse dynamic can be simulated in
practice by using CSD (Somepalli et al., 2024) as a style feature extractor and replacing y1 with the
extracted style features from the expected terminal state E[Xu

1 |Xu
t ], as discussed in Remark A.3.

This makes the controller drift causal and non-anticipating future information

A.3 INCORPORATING STYLE THROUGH MODULATION AND A TERMINAL COST

In this section, we study a control problem where the velocity field is a linear combination of the
state and the control variable. This problem is interesting to study because of the following reason.
The reverse-SDE dynamic of the standard OU process has a drift field of the form:

v (Xt, t) = −Xt − 2∇ log p(Xt, t).

For a Gaussian prior X0 ∼ N (0, I), the law of the OU process satisfies∇ log p (Xt, t) = −Xt, and
the corresponding drift field becomes v (Xt, t) = Xt. Our goal is to modulate this drift field using
a controller u (Xu

t , t). The result below provides the structure of the optimal control (again in the
setting where the terminal objective is known; see Appendix A1).
Proposition A.5. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Let pt denote ∇xV
∗(x, t) in HJB equation (A.1). Given reference style features y1,

consider the control problem:

min
u∈U

∫ 1

t0

1

2
‖u(Xu

t , t)‖
2
dt+

γ

2
‖AXu

1 − y1‖22 , (21)

where dXu
t = [Xu

t + u(Xu
t , t)] dt, Xu

t0 = x0, (22)

Then, the optimal controller becomes u∗(t) = −pt, where the instantaneous state Xu
t = xt and pt

satisfy the following:[
xt
pt

]
=

[
x0e

t − γ
2A

T (Ax1 − y1) e1+t + γ
2A

T (Ax1 − y1) e1−t

γAT (Ax1 − y1) e1−t

]
.

Proof. The proof of Proposition A.5 is similar to Proposition A.4. One key distinction is the set
of differential equations obtained using minimum principle theorem (Basar et al., 2020). We begin
with the Hamiltonian:

H(xt,pt,ut, t) = `(xt,ut, t) + pTt (ut + xt)

=
1

2
‖ut‖2 + pTt ut + pTt xt,
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which gives us the minimizer of the Hamiltonian u∗t = −pt and its value function becomes
V ∗ = minut H(ut,pt,ut, t) = H(ut,pt,u

∗
t , t) = − 1

2‖pt‖
2 + pTt xt. By the minimum principle

theorem (Basar et al., 2020),

ẋt :=
dxt
dt

= ∇pH (xt,pt,u
∗
t , t) = −pt + xt; (23)

ṗt :=
dpt
dt

= −∇xH (xt,pt,u
∗
t , t) = −pt; (24)

xt0 = x0; (25)

ptN = ∇xh (xtN , tN ) = γAT (AxtN − y1) . (26)

This leads to a coupled system of differential equations with boundary conditions as given below:[
ẋt
ṗt

]
=

[
1 −1
0 −1

] [
xt
pt

]
;

xt0 = x0;

p1 = γAT (Ax1 − y1) .

This can be solved numerically using ODE solvers, see (Fleming & Rishel, 2012; Basar et al., 2020)

for details. Denote q̇t =

[
ẋt
ṗt

]
and M =

[
1 −1
0 −1

]
. We seek a solution of the form q(t) = qeλt. If

q(t) is a solution of the above problem, then it must satisfy the following eigen value problem:

qeλtλ = Mqeλt. (27)

Writing the characteristic polynomial of (27), we get det (M− λI) = 0, which gives the eigen
values λ = {1,−1}. Substituting these eigen values, we have[

0 −1
0 −2

] [
q1

q2

]
= 0,

[
2 −1
0 0

] [
q1

q2

]
= 0,

which gives two fundamental solutions. By combining these two, we obtain the final solution[
xt
pt

]
= ω

[
1
0

]
et + ξ

[
1
2

]
e−t,

where ω and ξ can be found using the boundary conditions. Since x0 = x0 and p1 =
γAT (Ax1 − y1), we get ω = x0 − γ

2A
T (Ax1 − y1) e and ξ = γ

2A
T (Ax1 − y1) e. Substitut-

ing the values of ω and ξ, we arrive at[
xt
pt

]
=

[
x0e

t − γ
2A

T (Ax1 − y1) e1+t + γ
2A

T (Ax1 − y1) e1−t

γAT (Ax1 − y1) e1−t

]
.

This completes the proof of the proposition.

Summary: Though Appendices A.1-A.3, we have seen the connection between optimal control and
diffusion based generation with a personalized terminal constraint. The general strategy has been to
derive the optimal controller with known terminal state, and then replace the terminal state in the
controller with its estimate using Tweedie’s formula. While the controllers so far have an explicit
form, in practice, the data distribution is not Gaussian, and thus, we do not have a closed-form
expression for the drift of the controller.

This line of analysis, however, points to our method RB-Modulation. As discussed in §4, we incor-
porate a contrastive style descriptor in our controller’s terminal cost and numerically evaluate the
drift of the controller at each reverse time step either through back propagation through the score
network, or an approximation based on proximal gradient updates.

B ADDITIONAL EXPERIMENTS

In this section, we provide implementation details and additional experimental evaluation which
have been omitted from the main draft due to limited space.
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B.1 IMPLEMENTATION DETAILS

Baselines: We demonstrate the applicability of our method RB-Modulation with StableCas-
cade (Pernias et al., 2024) (released before April 2024). To our best knowledge, RB-Modulation
is the first framework that introduces new capabilities to StableCascade by incorporating SOC and
AFA modules. Since there are no existing training-free personalization baselines designed for Sta-
bleCascade, we seek alternatives built on other comparable state-of-the-art models such as SDXL
(Podell et al., 2023) and Muse (Chang et al., 2023)3.

Among alternate training-free baselines, InstantStyle (Wang et al., 2024a) does not directly apply to
StableCascade because it requires feature injection into specific layers of an IP-Adapter, which is
not available for StableCascade. Similarly, StyleAligned (Hertz et al., 2023) relies on DDIM inver-
sion, which is currently applicable only to single-stage diffusion models. In contrast, StableCascade
utilizes a two-stage diffusion process, making the application of standard DDIM inversion (Song
et al., 2021a) infeasible. We run the official source code for InstantStyle4 and StyleAligned5. In the
absence of a style description, we use “image in style” for DDIM inversion in StyleAligned. Follow-
ing InstantStyle (Wang et al., 2024a), we also compare with IP-Adapter. We include the quantitative
comparison in Table 2, and only compare qualitatively with stronger baselines in Figure 2.

For completeness, we also compare with training-based baselines: StyleDrop (Sohn et al., 2023)
and ZipLoRA (Shah et al., 2023). Since the official codebase for StyleDrop6 and ZipLoRA7 are
not publicly available, we use the third-party implementation and follow the training details in the
corresponding papers. It takes 5 minutes for training StyleDrop for 1000 steps and 20 minutes
for training each LoRA for ZipLoRA. We train each LoRA with only one reference image for both
content and styles to make a fair comparison with other methods. Similarly, we train StyleDrop
with only one reference image. When a style description is not provided, we follow the original
paper (Sohn et al., 2023) and use “in a [v*] style” instead.

Tunable parameters. Our method introduces only two hyper-parameters: stepsize η and optimiza-
tion steps M in Algorithm 1. We use DDIM sampling with η = 0.1 and M = 3 for all the
experiments. Figure 5 illustrates an overall pipeline of RB-Modulation.

Cross 
Attention

Denoising Score Network

𝑥! 𝑥!"#

A butterfly in melting 
golden 3d rendering style

Text 
Encoder

Image 
Encoder

AFA
Module

Fixed Modules

Added Modules

Dropped

Added

Fixed

𝑥$

Figure 5: Overall pipeline of RB-Modulation. AFA module replaces the cross-attention processor
in the denoising UNet, disentangling the content and style of the reference image using CSD [43].

Content-style composition. The prompt-guided content-style composition task introduces a new
layer of complexity beyond stylization. This task necessitates the disentanglement of the text
prompt, reference style image, and reference content image through additional conditioning (Shah
et al., 2023; Wang et al., 2024c; Huang et al., 2024b; Guo et al., 2024). Such complexity poses
significant challenges for DDIM inversion (Song et al., 2021a) and attention caching mechanisms
(Hertz et al., 2023) due to the inherent dependencies on multiple reverse paths.

3Note that StableCascade and SDXL have comparable performance in prompt alignment whereas Stable-
Cascade is more efficient due to a highly compressed semantic latent space (Pernias et al., 2024).

4https://github.com/InstantStyle/InstantStyle
5https://github.com/google/style-aligned
6https://github.com/aim-uofa/StyleDrop-PyTorch
7https://github.com/mkshing/ziplora-pytorch
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Our AFA module effectively addresses these challenges. It manipulates transformer layers to easily
incorporate these additional conditions. The content information is integrated in a manner similar to
the style information. Specifically, we use a pre-trained ViT-L/14 model to extract content features
in the SOC framework and update the latent embeddings concurrently via the AFA module, using
an additional set of keys and values illustrated in Figure 6.

K V K V

K V

K V

Kp Vp

Kp Vp

Kc VcKs VsKs Vs

Q Multi-Head Attention

Avg

Content-Style Composition

Kp Vp

Ks Vs

Figure 6: Attention Feature Aggregation (AFA): Within the cross-attention layers, the keys and
values from the previous layers (K,V ), text embedding (Kp,Vp), reference style image (Ks,Vs) and
reference content image (Kc,Vc) are concatenated and processed separately to disentangle the
information, which is followed by an averaging layer for the output. Kc,Vc and only used for
content-style composition.

Furthermore, to better preserve the identity of the foreground content, we extract the desired content
using LangSAM8 based on the content prompt. This step is optional but offers more user control
when multiple subjects are present in the reference image.

B.2 IMPLEMENTATION USING LARGE-SCALE DIFFUSION MODELS

The exact implementation of our control problem (3) is given in Algorithm 1, which follows from
our theoretical insights. In practice, our controller encounters a challenge when the generative model
contains billions of parameters as in StableCascade (Pernias et al., 2024) due to back propagation
through the score network, as discussed in §4. Our strategy to overcome this practical challenge
involves a proximal gradient update, given in Line 7-8 of Algorithm 2. To accelerate the sampling
process, we run a few steps (M = 3) of gradient descent after initializing x0 = E [Xu

0 |Xu
t = xt],

resulting in only two hyperparameters to tune: stepsize η and the number of optimization steps
M . Further, since the CSD model expects a clean image to extract style features, we apply the
previewer model available in StableCascade on the terminal state before extracting style features.
After obtaining the final personalized latent using our Algorithm 1 and Algorithm 2, we follow the
decoding process as per the inference pipeline of the adopted generative model. In Table 4, we show
the computational overhead of our method in comparison with competing methods.

Table 4: RB-Modulation matches the speed of training-free methods and offers 5-20X speedup
over training-based methods like StyleDrop [11] and ZipLoRA [10]. For instance, StyleDrop and
ZipLoRA require 300 seconds (s) and 1200s, respectively, for training specific components, in
addition to their standard inference times of 30s and 40s. RB-Modulation does not use DDIM
inversion or additional parameters in the UNet, thus further reducing the computational overhead.

Method Runtime (s) Training-Free DDIM Inv. Params in UNet
IP-Adapter [21] 21 Yes Yes Adapters
StyleAligned [12] 39 Yes Yes No
InstantStyle [13] 22 Yes Yes Adapters, ControlNets
StyleDrop [11] 300+30 No No Adapters
ZipLoRA [10] 1200+40 No No 2 LoRAs, 1 Merge layer
RB-Modulation (ours) 44 Yes No No

8https://github.com/luca-medeiros/lang-segment-anything
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Reference style StyleAligned OursInstantStyle StyleAligned OursInstantStyle

(a) �A sofa in a infographic style� (b) �A sofa in a infographic style�

Figure 7: Impact of style descriptions in the prompt: (a) When style descriptions are provided,
all methods yield better results. (b) Without style descriptions (e.g., hard for users to describe in
text), alternative methods could struggle to capture the intended style in the reference image. Our
method offers consistent stylization even without explicit style descriptions.

B.3 IMPACT OF HYPERPARAMETERS ON CONTROLLING STYLE AND CONTENT FEATURES

As detailed in §4 and the ablation study in §6.1, SOC helps disentangle the style and the prompt
information by updating the drift field in the standard reverse-SDE. We study the impact of the two
hyperparameters present in Algorithm 1 and Algorithm 2 that enables this disentanglement, as
shown in Figure 8. We found better disentanglement when the step size η = 0.1 and the number
of optimization steps M = 3. However, increasing the step size further results in style image in-
formation leaking into the output (top row). Additionally, adding more optimization steps increases
computational overhead without yielding much performance gain (bottom row).

Reference Style

step size η
0 0.20.10.010.001

Optimization steps M
0 4321

�A dog wearing glasses�

�A running robot�

Figure 8: Qualitative results of different tunable hyperparameters: Improved style-prompt
disentanglement are shown when increasing to our best configurations optimization step size
η = 0.1 and optimization steps M = 3.

B.4 STYLE DESCRIPTION IN TEXT PROMPTS FOR BETTER ASSIMILATION OF UNIQUE STYLES

In addition to the quantitative analysis in §6.1, Figure 7 demonstrates that our method generates
consistent stylized results with and without the style description. In contrast, the alternatives fail
to accurately follow the prompt when the style description is absent. Although all results show
noticeable improvement when the style description is provided, it is often challenging for users to
describe styles in many real-world scenarios. We believe our early results by RB-Modulation will
pave the way for interesting future research along this direction.

We present additional qualitative results on stylization with (Figure 11) and without (Figure 12)
style descriptions using StyleAligned dataset (Hertz et al., 2023). Our results consistently align with
the reference style and the prompt, while other methods encounter several issues: (1) difficulty in
following prompt guidance, (2) information leakage from the style reference image, and (3) failure
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Reference Style        “mountain”                “pillow”                  “building”                 “bottle”               “turtle”

Figure 9: A gallery of additional qualitative results on stylization using RB-Modulation.

to achieve reasonable prompt/style alignment in the absence of style descriptions. Figure 9 presents
a gallery of text-driven stylization results using RB-Modulation.

B.5 EVALUATION CHALLENGES IN MEASURING STYLE AND CONTENT LEAKAGE

In §6, we discussed the limitations of metrics used in previous works (Sohn et al., 2023; Hertz et al.,
2023; Shah et al., 2023), such as DINO (Caron et al., 2021) and CLIP-I score (Radford et al., 2021).
To quantify these limitations, we use results from our ablation study shown in Figure 3. As illustrated
in Figure 10, DINO and CLIP-I scores are not well-suited for measuring style similarity in the
presence of content leakage. This is because images with high semantic correlations to the reference
style image consistently receive higher scores. For instance, in the top row, although the last two
columns visually align more closely with the isometric illustration styles of the reference image,
the DirectConcat output featuring a lighthouse receives higher scores. The margin is particularly
pronounced for CLIP-I score.

A similar observation can be made in the bottom row, where images containing train-related objects
receive higher scores regardless of their stylistic similarity. Conversely, images with less content
leakage (as seen in the last column) are assigned lower scores. This indicates that DINO and CLIP-
I scores prioritize semantic content over stylistic fidelity, thus failing to accurately measure style
similarity in scenarios where content leakage prevails.

On the other hand, our final method (last column), which combines AFA and SOC, demonstrates
high scores for both prompt alignment metrics: ImageReward (Xu et al., 2024) and CLIP-T (Radford
et al., 2021). This method also shows higher user preference, as evidenced in Table 1. In contrast, the
DirectConcat results suffer from information leakage and poor alignment with the prompt, resulting
in significantly lower or even negative reward scores.

In the ablation study, our primary focus is on the disentanglement of prompts and reference styles.
The conventional metrics fail to accurately reflect true performance due to information leakage.
Consequently, we emphasize qualitative demonstrations and place greater importance on user study
results, as shown in Table 1, similar to previous approaches (Hertz et al., 2023; Sohn et al., 2023).
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Reference style StableCascade DirectConcat AFA only SOC only AFA + SOC

ImageReward

DINO score

CLIP-T

CLIP-I

ImageReward

DINO score

CLIP-T

CLIP-I

0.55 0.80 0.68 0.70 0.65

0.28 0.23 0.29 0.28 0.29

1.49 0.06 1.39 1.11 1.43

0.57 0.82 0.66 0.61 0.61

0.48 0.74 0.66 0.75 0.72

0.27 0.23 0.27 0.22 0.27

0.99 -1.63 0.17 -1.20 0.40

0.50 0.88 0.70 0.73 0.72

Figure 10: Comparison of different evaluation metrics: The StableCascade output is provided
for reference because it doesn’t use the reference style image. The highest score for each metric is
marked bold with underscore. We compare four metrics: ImageReward and CLIP-T score for
prompt alignment, DINO and CLIP-I score for style alignment. The prompt for the top row is “A
cat” and for the bottom row is “A piano”.

B.6 MORE QUALITATIVE RESULTS ON STYLIZATION AND CONTENT-STYLE COMPOSITION

We also showcase results on consistent style generation using user defined prompts in Figure 13.
Our results with different prompts consistently align with the styles while introducing various sce-
narios following the prompts. The other methods face challenges like information leakage (e.g.
hiking boots and the monocular) and monotonous scenes (e.g. InstantStyle). Note that the origi-
nal StyleDrop paper (Sohn et al., 2023) has mentioned its difficulty when training with one image
without description. We keep the results for completeness even though they are less satisfying. In
Figure 15, we provide additional comparison with training-based and training-free personalization
approaches. Figure 14 shows stylization given hand drawn reference style images. In Figure 16, we
show qualitative results obtained by integrating the AFA and SOC modules in SDXL (Podell et al.,
2023) pipeline, justifying the plug-and-play nature of our method, RB-Modulation.

Compatibility with ControlNet. Our method readily adapts to layout guidance via Control-
Net (Zhang et al., 2023), as shown in Figure 17. Since ControlNet enhances the denoising network,
the proposed method effectively minimizes the terminal cost associated with the expected terminal
state, ensuring that SOC remains practical and effective. Furthermore, the AFA module integrates
seamlessly by replacing the default attention processor in the denoising network, maintaining its
functionality even when ControlNet is employed.

Controllability of AFA Module. Figure 18 demonstrates the precise control provided by the AFA
module. The pair (Kp, Vp) is computed using the given prompt (e.g., “a cat”) without using text
description of the reference style image, and (Ks, Vs) using the style attention head of the CSD
feature extractor applied to the reference style image. By gradually increasing the strength of the
style image embedding, our method progressively incorporates features from the reference style
image, enabling fine-grained control over stylization.

Figure 19 demonstrates the ability of our method RB-Modulation to generate novel and unseen
styles by continuously interpolating between CSD style embedding of two reference style images.
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In Figure 21, we demonstrate more qualitative results for content-style composition Figure 22 shows
the impact of content image in content-style composition. Figure 23 highlights the robustness of
RB-Modulation in capturing content-specific features independently of color.

B.7 ADDITIONAL RELATED WORK

In this section, we discuss missing related works from the main paper. DiffusionDisentangle-
ment (Wu et al., 2023) relies on VGG 16 for perceptual loss and ViT/B-32 for directional CLIP
loss, which is prone to content leakage (Wang et al., 2024a). In contrast, our method injects fea-
tures exclusively from the style attention head of the fine-tuned CSD-CLIP model, ensuring better
content-style disentanglement in the AFA module. Additionally, our approach introduces an optimal
controller framework to minimize a terminal cost, offering a richer design space and superior con-
trollability compared to (Wu et al., 2023). Lastly, our method reduces sampling bias by optimizing
the controller u in Algorithm 1, unlike (Wu et al., 2023), which can provably fail to sample from the
correct posterior (Xu & Chi, 2024).

In FreeDoM (Yu et al., 2023), the conditional guidance term∇xt log p(·|xt) is approximated by the
gradient of an energy function, ∇xtE(·,xt). Our Algorithm 1 differs by replacing ∇xt log p(·|xt)
with a controller u, optimized to minimize this approximation error. Algorithm 2 in FreeDom intro-
duces a time-travel resampling strategy to mitigate poor guidance problem in their Algorithm 1 by
iteratively noising and denoising the intermediate latents. While effective, this process is computa-
tionally expensive. In contrast, our approach (Algorithm 2) is grounded in optimal control, where
we optimize the expected terminal state to satisfy constraints, such as aligning the style of the gener-
ated image with the input. Thus, our Algorithm 2 avoids the need for gradient computation through
the denoising score network, which is particularly expensive for large-scale models like SDXL or
StableCascade. Additionally, we propose a novel attention processor, namely AFA module to dis-
entangle content and style, whereas FreeDoM uses the standard attention processor, known to suffer
from content leakage (Hertz et al., 2023; Wang et al., 2024a).

PARASOL (Tarrés et al., 2024) and Diff-NST (Ruta et al., 2023) are training-based methods, while
our approach is entirely training-free. PARASOL requires supervised data via a cross-modal search
(Section 3.1 in (Tarrés et al., 2024)) to train both the denoising U-Net and a projector network. Diff-
NST (Ruta et al., 2023) trains the attention processor by targeting the ‘V’ values within the denoising
U-Net architecture. In contrast, our method uses two training-free modules: the AFA module re-
places the default attention processor in the denoising U-Net to disentangle content and style, and
the SOC module minimizes a terminal cost to enhance stylization and content-style composition.

B.8 HUMAN EVALUATION TO DISCERN HIGHLY SUBJECTIVE NATURE OF STYLE

We conduct a user study with 155 participants via Amazon Mechanical Turk using 100 styles from
the StyleAligned dataset (Hertz et al., 2023). The study requires no personally identifiable infor-
mation of the participants. There is no risk incurred and no vulnerable population. The standard
guidelines have been followed while conducting the user study.

We first provide participants with instructions to familiarize them with the relevant terminologies.
For each style, we randomly sample three outputs using three different prompts. Participants see two
rows of model outputs in random order (3 images per row) and answer 3 questions, as illustrated in
Figure 20.

1. In which row below, the images align better with the reference style image?

2. In which row below, the images align better with the reference text prompt above each
image?

3. In which row below, the images overall align better with the reference style image AND
the text prompt above each image AND with high quality?

For each question, participants choose one of three options. We collect 8 responses for each question,
with each question comparing our method against one of the alternatives. In total, we gathered 7,200
responses.
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B.9 FAILURE CASES OF TRAINING-FREE STYLIZATION USING RB-MODULATION

In Figure 24, we illustrate stylization of different letters using a single reference style image. Al-
though our method captures the intended style and generates prompted letters, we notice that there
is an inherent tendency to generate upper-case letters (Figure 24 (a)), even though it is prompted to
generate lower-case letters. Upon further investigation, we observed that this issue stems from the
underlying generative model StableCascade, as shown in Figure 24 (b). This highlights a crucial
limitation of our method. As a training-free method, RB-Modulation shares a concern with other
training-free methods (Wang et al., 2024a; Hertz et al., 2023; Jeong et al., 2024) that the performance
is influenced by the original generative prior.

C BROADER IMPACT STATEMENT

Social impact: Image stylization and content-style composition based on diffusion models poten-
tially have both positive and negative social impact. This technology provides an easy-to-use tool
to the general public for image generation which can help visualize their artistic ideas. On the other
hand, our work on stylization and content-style composition poses a risk of generating arts that
closely mimic or infringe upon existing copyrighted material, leading to legal and ethical issues.
More broadly, our method inherits the risks from T2I models which are capable of generating fake
contents that can be misused by malicious users.

Safeguards: We build on StableCascade (Pernias et al., 2024), which has a mechanism to filter
offensive image generations. Our framework RB-Modulation inherits these safeguards. In addition,
to mitigate misuse, we believe it is crucial to ensure the underlying model’s safety, which may
involve (i) watermarking AI-generated artworks and (ii) implementing an NSFW filter to remove
inappropriate contents.
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Reference style Ours InstantStyle StyleAligned StyleDrop

�An airplane in watercolor painting style�

�A bowl of cornflakes in 3d rendering style�

�An elephant in wooden sculpture style�

�The letter A in abstract rainbow-colored flowing smoke wave design�

�A vintage camera in retro hipster style�

�A milkshake in 1950s dinner art style�

�A train in cafe logo style�

Figure 11: Additional qualitative results for stylization with style description: While the
alternative methods face challenges like following the prompts (e.g., multiple airplanes instead of
an airplane) and information leakage (e.g., the clouds on the cornflake bowl and the guitar in the
milkshake image), our method demonstrates strong performance on both prompt and style
alignment. Style description is in blue. 27
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Reference style Ours InstantStyle StyleAligned StyleDrop

�A cat�

�A skyscraper�

�A leopard�

�A drum�

�A ladybug�

�A fireman�

�A winter evening by the fire�

Figure 12: Additional qualitative results for stylization without style description: StyleAligned
and StyleDrop show severe performance drop after removing the style descriptions (e.g., see
fireman and cat images). InstantStyle results show more information leakage (e.g., the pink
ladybug and leopard), whereas no obvious performance drop is observed in our results.
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Ours InstantStyle StyleAligned StyleDrop Ours InstantStyle StyleAligned StyleDrop

�A man reading a book in the park�

�A dog running in the park�

�A woman reading in the park�

�A soaring dragon�

Reference style Reference style

Figure 13: Additional qualitative results for consistent stylization for user defined prompts:
With no style description, our results demonstrate more diversity while following the styles and
prompts. InstantStyle results show monotonous scenes and StyleAligned results suffer from severe
information leakage. We report StyleDrop results for completeness and it is known to perform
worse with no style description and single training image (Sohn et al., 2023).
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Reference Style “house on a mountain”  “racing car”    “futuristic robot”           “tiger”              “lion”

“pencil sketch”

“plastic crayon”

“comm. paint”

Figure 14: Qualitative results for hand drawn reference style images. The proposed method is
agnostic to real or generated reference images. Given hand drawn reference style images (e.g.,
“paint” from a commercial service provider) and desired text prompts (e.g., “a tiger”+style
description), RB-Modulation captures the reference style in the generated content image.

Reference Style      DreamBooth DreamBooth+LoRA StyleDrop IP-Adapter           InstantStyle Ours

“3d rendering” Training-based Training-free

Figure 15: Qualitative comparison with classical personalization methods. The proposed
method significantly outperforms other training-free methods while remaining comparable to or
better than classical training-based personalization approaches. Prompt:“a baby penguin in 3d
rendering style.”

Reference Style             A guitar                        A piano               Reference Style         A skyscraper              A lighthouse

Reference Style              A dwarf                          A dragon            Reference Style          A racing car             A sports bike

Figure 16: Qualitative results using SDXL (Podell et al., 2023) as base model. This verifies the
plug-and-play nature of RB-Modulation for training-free personalization.
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(a) Prompt: “A dog” + Reference Style (b) Prompt: “A cat” + Reference Style
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Figure 17: Qualitative results demonstrating compatibility with ControlNet (Zhang et al.,
2023). Given the Canny edge map of a reference content and an image of a reference style, the
proposed method effectively controls the pose of the generated samples while accurately capturing
the desired style.

Reference style 0.0 0.2 0.4 0.6 0.8 1.0

Interpolation/stylization strength

                 “a cabin”

                 “a cat”

                 “a car”

Figure 18: Qualitative results showing controllability of our method for stylization. By
progressively increasing the strength of the style image embedding derived from the CSD style
descriptor, our method gradually integrates features from the reference style image, providing
fine-grained control over stylization.
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“neon graffiti”                                                         “a tiger”                                       “glowing”

Interp. Strength            0                        0.2                      0.4                     0.6                     0.8                     1.0

“mosaic”                                                                                “a lighthouse”                             “cyberpunk”

“retro surf”                                                                             “a giant ship”                                                  “psychedelic”

Figure 19: Qualitative results showing interpolation of two different reference style images.
The interpolation strength parameter provides additional control for blending features from
multiple reference styles (e.g., “a lighthouse in mosaic art style”→ “a lighthouse in cyberpunk art
style”). This highlights RB-Modulation’s capability to generate novel and previously unseen styles.
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Figure 20: User study interface: Three randomly sampled outputs are shown for each method
given a style reference image, forming two rows of images. The users are asked to answer three
questions on (1) style alignment (2) prompt alignment and (3) overall alignment and quality.
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Reference styles

Reference styles

IP-Adapter

InstantStyle

Ours

Ref. content

IP-Adapter

InstantStyle

Ours

Ref. content

Figure 21: Additional qualitative results for content-style composition: Our results show better
prompt and style alignment while preserving reference content without leaking contents from the
reference style images (e.g. background of the first column and fruits in the last column,). Unlike
compared baselines, our method is not restricted to a fixed pose of the reference content image,
illustrating sample diversity.
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ref. styleref. content Ours w/o ref. content ref. styleref. content Ours w/o ref. content

Figure 22: Qualitative results on content-style composition to illustrate the impact of content
image. Excluding the content reference image (i.e., removing Kc and Vc from the AFA module)
results in a loss of content details, such as the dog breed and car type, as highlighted in the red box.
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Figure 23: Qualitative comparisons for content-style composition by graying out the reference
content image. Notably, the content (e.g., dog) is effectively transferred even after the grayscale
transformation, demonstrating the robustness of our method in capturing and transferring
content-specific features independently of color.
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Figure 24: Failure cases for stylization: The top row shows the results of our method,
RB-Modulation, while the bottom row displays the results of the backbone, StableCascade.
Notably, the stylized images do not adhere to the prompt,“lower-case letter”. This highlights the
limitations imposed by the pre-trained generative priors on the capabilities of training-free
personalization models (top row).
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