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A B S T R A C T

There have been recent efforts to increase the degree of automation and frequency of data collection for con-
struction applications using Unmanned Aerial/Ground Vehicles (UAV/UGV). However, the current practice of
data collection is traditionally performed, which is manual, costly, time-consuming, and error-prone. Developing
vision-based mobile robotic systems that are aware of its surrounding and capable of autonomous navigation are
becoming essential to many construction applications, namely surveying, monitoring, and inspection.
Nevertheless, the systems above suffer from a series of performance issues. One major problem is inefficient
navigation in indoor and cluttered scenes with many obstacles and barriers, where some places are inaccessible
by a UGV. To provide a solution to this problem, this paper designs a UAV-UGV team that integrates two custom-
built mobile robots. The UGV autonomously navigates through space, leveraging its sensors. The UAV acts as an
external eye for the UGV, observing the scene from a vantage point that is inaccessible to the UGV. The relative
pose of the UAV is estimated continuously, which allows it to maintain a fixed location that is relative to the
UGV. The key aspects for the development of this system that is capable of autonomous navigation are the
localization of both UAV and UGV, mapping of the surrounding environment, and efficient path planning using
multiple sensors. The proposed system is tested in an indoor and cluttered construction-like environment. The
performance of the system demonstrates the feasibility of developing and deploying a robust and automated data
collection system for construction applications in the near future.

1. Introduction

Construction industry is one of the major economic sectors in most
countries, with 9%– 15% of total Gross Domestic Product (GDP) being
allocated to their built environment [1]. Despite this economic im-
portance, this industry is plugged with low productivity and in-
efficiencies. During the past few decades, the productivity rate in many
sectors has been steadily increasing; however, this rate in the con-
struction industry has barely increased, and it may have even de-
creased [2]. Automated systems and robotics are known as technologies
that have the potential to revolutionize the construction industry by
addressing the productivity challenges while improving quality [3].

In the past few years, on-site semi-automated and automated
Unmanned Vehicles (UVs) have received significant attention for con-
struction applications. They have been proposed for various activities
including inspection and structural health monitoring [4, 5], floor
cleaning [6], building components production [7-9], building compo-
nents assembly [10-12], material handling [13], and construction

surveying and monitoring [14-19]. According to the applications in the
latter activity, implementation of UVs for automated data collection is
limited to the outdoor environment. Typical autonomous UVs on job
sites use either GPS [20–22] or BIM-driven map [17, 23, 24] for au-
tonomous navigation. GPS technology is mainly suitable for outdoor
applications. The BIM-based motion planning solutions are inefficient
in a cluttered construction site with many temporary structures that are
not present in BIM.

An autonomous UV system capable of data collection on construc-
tion sites needs to have the following capabilities: 1) ability to collect
multiple types of sensory and visual data that are required for con-
struction performance monitoring, 2) ability to process the collected
data in real-time using a low computational complex platform and 3)
capability to navigate efficiently and autonomously on a construction
site [25]. The authors' previous work on an integrated mobile robotic
system [15] presents vision-based UGV for autonomous data collection
on construction sites. This system addresses the first two concerns for
an efficient autonomous data collection system. However, it is
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inefficient for autonomous navigation in a cluttered indoor scene where
all the locations are not accessible by the UGV for data collection. Sites
occluded with barriers or surfaces with different elevations are some
examples of such scenes.

To address this issue, this study proposes a mobile robotic system
that integrates two custom-built aerial and ground UVs. The com-
plementary skills provided by each vehicle overcome the specific lim-
itation of the other. Unmanned aerial vehicles (UAVs) offer a broad
field of view and rapid coverage of search areas, which is ideal for
mapping and monitoring tasks. However, they are constrained by their
low payload (hundreds of grams) in relation to their size and short
operational time (tens of minutes). UGVs, on the other hand, can carry
substantial payloads and operate for extended periods. They offer high-
resolution sensing, but with less field of view and lower coverage speed
compared to UAVs. They are much more susceptible to obstacles, oc-
clusions, and other sensing limitations. Therefore, coordinated opera-
tions between UGVs and UAVs can create highly beneficial synergies,
such as multi-domain sensing and enhanced line of sight communica-
tions.

The objective of this paper is to present a collaborative and ex-
plorative approach using UGV and UAV. To achieve this goal, the given
UGV-UAV system periodically visits a set of places of interest. These
places have been pre-selected by the construction management team.
During this mission, the UGV autonomously moves on the site and
continuously scans the environment by its sensors. The relative pose
between the two vehicles is estimated consistently, which enables the
UAV to follow the UGV's path during its navigation. If the place of in-
terest is not accessible by the UGV due to environmental constraints,
the UGV sends the UAV to the desired location to scan the area of in-
terest. The UAV does not process all data onboard; instead, the sensor's
data are transmitted to the UGV's onboard computer through the net-
work, where all the processing takes place. The UAV then returns to the
UGV, and the heterogeneous team continues towards the next area of
interest. It is necessary to mention that the places of interest for data
collection are selected by the construction management team either
directly through the laptop on the UGV, before starting the mission, or
by commanding the UGV remotely using Secure Shell (SSH), which
enables the operator to provide waypoints even during the mission.

To have an ideal and efficient system for indoor surveillance and
monitoring, a custom-built indoor blimp is designed as the UAV for this
study. Use of indoor blimp limits the application of the system to indoor
environments. However, outdoor blimps which are more stable against
air disturbance, have the potential to makes the system suitable for
outdoor applications. The use of blimp instead of other types of UAVs
(e.g., quadrotor, hexacopter, etc.) has the advantages of being safe in a
cluttered indoor space and having lower cost, energy consumption, and
noise.

The main contributions of this paper are 1) a comprehensive lit-
erature review on previous integrated UAV-UGV systems with different
applications and 2) an integrated UAV-UGV system that can autono-
mously navigate and collect visual data for construction monitoring
applications. This system addresses most of the limitations of past
studies (to be further detailed in Section 2.3 UAV-UGV collaborative
systems). The critical aspects of the system are 1) localization of both
UGV and UAV, (2) capability of being contextually aware of the en-
vironment, (3) mapping of the surrounding environment, and (4) effi-
cient path planning. Based on these aspects, the proposed system pro-
cesses the context awareness (via semantic image segmentation),
localization, mapping, and control planning in real-time, as illustrated
in Fig. 1. To evaluate the performance of the proposed system, the
system is implemented on an indoor cluttered construction-like en-
vironment (to be further detailed in Section 5 Experimental setup and
results) for data collection purposes, demonstrating the feasibility of
real-time performance for construction applications.

2. Background

The proposed system focuses on autonomous cooperation between
UGV and UAV for navigation and indoor environment monitoring.
Simultaneous Localization and Mapping (SLAM) and image segmenta-
tion algorithms are used for robot's localization, environment mapping,
and scene understanding. Therefore, this section provides background
information for visual SLAM and scene understanding. Additionally, it
dissects into the previous UAV-UGV cooperative systems and discusses
their application, sensors for both UGV and UAV, level of human in-
tervention, and limitations as benchmarks for the current and future
systems.

2.1. SLAM

In locations where GPS cannot receive signals (i.e., indoor en-
vironments), Simultaneous Localization and Mapping (SLAM) can be
used to estimate UV's position and build a map of an unknown en-
vironment simultaneously. Light Detection and Ranging (LIDAR) based
SLAM and vision-based SLAM are two major methodologies of SLAM
algorithms. Each of these methodologies has its limitations and ad-
vantages. For instance, the vision-based SLAM, specially monocular
SLAM, has higher computational cost compared to LIDAR-based SLAM
approaches [26]. However, with recent advances in computer vision
and processing power, visual SLAM can now run in real-time. On the
other hand, LIDAR-based methods have high sensor weight and energy
consumption. They are mostly inefficient in outdoor scenarios. In the
proposed system, visual SLAM is implemented for both UGV and UAV
and Robot Operating System (ROS) is used for data exchange between
various modules. Therefore, this subsection provides some background
information about the latest visual SLAM approaches that are compa-
tible with ROS.

Visual SLAM techniques estimate the camera's location and or-
ientation (known as camera pose) of image sequences and map the
environment, simultaneously in real-time [19]. Visual SLAM compares
visual features to find similarities between consecutive image frames to
estimate the camera poses (relative to the previous frame). It also uses
the corresponding features of the consecutive images to map the en-
vironment as it runs. The overall goal of this section is to review and
discuss the state-of-the-art visual SLAM algorithms which have the
potential to be implemented in the proposed system. Then, the most
appropriate SLAM methods for implementation on each of the UGV and
UAV are selected. Finally, the reason behind each selection is explained.

Although many open-source visual SLAM approaches exist, not
many are compatible with robotic systems through ROS [27]. The au-
thors' previous work used a monocular camera as a visual sensor and
ORB-SLAM as the SLAM algorithm for localization purposes. ORB-
SLAM has a scale issue. To avoid dealing with the scale ambiguity, this
section only discusses methods that enable real scale estimation while
mapping (e.g., using a stereo camera or visual inertial odometry).
Therefore, monocular approaches like Semi-direct Visual Odometry
(SVO) [28], Deferred Triangulation SLAM (DT-SLAM) [29], Large-Scale
Direct monocular SLAM (LSD-SLAM) [30], and Oriented FAST and ro-
tated BRIEF SLAM (ORB)-SLAM [31] are excluded in this section. The
following visual SLAM methods are applicable to ROS and do not suffer
from scale drift over time.

Stereo Parallel Tracking and Mapping (S-PTAM) [32] and ORB-
SLAM2 [33] are feature-based approaches, that mostly are used with a
stereo camera. In these approaches, Distributed Bag of Words
(DBoW2) [34] is used for loop closure detection, which optimizes the
map through bundle adjustment. After loop closure, the graph optimi-
zation runs in a separate thread. Therefore, the camera tracking frame
rate performance is not affected. As the map grows, the processing time
for loop closure detection and graph optimization is increased, which
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can lead to a significant delay for loop closure correction after the loop
is detected. The main drawback with these methods is that the output
point cloud is a sparse point cloud and can not be used for occupancy
map generation suitable for autonomous navigation.

Red Green Blue inverse Depth (RGBiD) SLAM [35] and Dense Visual
Odometry (DVO)-SLAM [36] use photometric and depth errors for
pixels of RGB-D images to estimate motions, instead of local visual
features. Although they provide dense point clouds of the environment,
they lack a loop closure detection approach, which makes them in-
efficient for large-scale mapping.

Monocular Visual-Inertial System (VINS-Mono) [37] and ma-
plab [38] are visual-inertial graph-based SLAM systems consisting of a
monocular camera and an low-cost Inertial Measurement Unit (IMU).
Using this minimum sensor suite, they provide a real-scale estimate of
camera poses, as well as sparse representation of the environment in
terms of a point cloud. The lightweight sensor system makes them the
most suitable SLAM approaches for autonomous systems with a limited
payload.

One of the assumptions with the above approaches is that camera
frames always have enough visual features to track. However, in con-
struction environments, a camera can be fully obstructed from different
objects or face feature-less surfaces (e.g., white wall) during navigation.
Red Green Blue Depth Simultaneous Localization and Mapping (RGB-
DSLAMv2) [39] and Real-Time Appearance-Based Mapping (RTAB-
MAP) [40] use external odometry as motion estimation to be more
robust to such events. They both can additionally create a 3D occu-
pancy grid named as OctoMap [41] (RTAB-Map can also generate 2D
map) and a dense point cloud of the environment. Besides these two
methods, none of the above visual SLAM approaches create the required
occupancy grid map for autonomous navigation. It should be noted that
both approaches are compatible with Kinect as a sensor. RTAB-Map is
also compatible with a stereo camera.

In this paper, localizing the UVs and estimating their relative posi-
tions are necessary for motion planning. Therefore, VINS-Mono is im-
plemented on the UAV to provide real-scale odometry. This method is
known as suitable SLAM approach for UAVs with a limited payload. On
the other side, RTAB-Map is implemented on the UGV to provide real-
scale odometry together with dense point clouds suitable for occupancy
map generation. This SLAM algorithm is compatible with a stereo
camera and has been proved as proper SLAM approach for large-scale,

long-term, and real-time operations [42].

2.2. Semantic segmentation

In robotics research, object classification and semantic segmenta-
tion are well-known approaches for scene understanding, which enable
a robot to recognize objects of interest and make a proper decision
based on its observation. Object recognition uses bounding boxes to
classify objects in the scene, whereas semantic segmentation provides
each pixel with a label, which results in a boundary around the objects.
While semantic segmentation has more computational cost for real-time
application, it would provide more accurate boundaries for the objects.
The accurate boundary provides the robot with a classified scene that is
used for object avoidance and autonomous navigation.

In this paper, the real-time performance of the proposed system is
one of the priorities. Therefore, efficient Convolutional Neural
Networks (CNNs) for mobile robotic applications with a light model is
required for the system. Semantic segmentation networks such as
MobileNets [43], ENet [44], and LNSNet [45, 46]) are examples of such
efficient models that are designed to run on robotic systems with lim-
ited computing resources.

In the authors' previous study [15], ENet was implemented as the
semantic segmentation model. However, this segmentation task had
still the heaviest computational load on the system. The large seg-
mentation model size and the high memory usage restricted the authors
to run the segmentation module on a separate processor. Data trans-
formation between segmentation and SLAM modules over the network
caused a high latency (inference speed of 15 frames per seconds (fps)
before integration is reduced to 3 fps after integration). Therefore,
LNSNet [45] with smaller model size and faster inference speed com-
pared to the ENet model was proposed by authors to determine na-
vigable space in real-time on construction sites. In this paper, authors
implement LNSNet as the semantic segmentation method, that enables
multiple modules to be combined and run on the same processor unit
that also runs other modules.

2.3. UAV-UGV collaborative systems

Cooperative robotics has been explored since the 1990s when
challenges with collaboration between unmanned vehicles (UVs) and

Fig. 1. Overview of the system with different modules: (1) Context Awareness Module, (2) UGV SLAM Module, (3) Blimp Localization and Tracking Module, and (4)
Control Planning Module.
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Table 1
Related studies in multi-agent systems consisting of UAV and UGV.
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possible future applications were discussed by Cao et al. [47]. In terms
of perception abilities, payload, and mobility, UGVs and UAVs have
several advantages and disadvantages over each other. Over the past
15 years, studies have focused on creating multi-robot systems to
combine UGV's and UAV's advantages for applications in many fields,
such as military and surveillance [48]. Based on past studies, efforts in
this area are mainly categorized into the five following groups: (1)
UAV-UGV relative positions are estimated, (2) UGV is followed by UAV
or vice versa, (3) Targets are searched and Tracked, (4) UGV's Navi-
gation performance is improved using a map provided by UAV, and (5)
collaborative surveillance while mapping the environment. Table 1
shows the studies related to each category. In this table, the UAV and
UGV platforms alongside with the sensors used in each platform are
mentioned. The specific requirements for each system are provided as
additional remarks in the table. As shown in the table, the Operator
Control Unit (OCU) is required for most of the studies, which is capable
of providing coordination between the operator and the robots. Data
from different agents are sent to this unit for further processes. The
results are sent back to the agents as different commands (e.g., way-
points provided by the operator for autonomous navigation).

Systems in the first category focus on estimating the relative posi-
tion of mobile agents using registration of the map generated by each
agent [49, 50]. Autonomous navigation is not considered for vehicles in
any of the studies in this category. For continuous localization, an
overlap between the maps that are generated by each robot is neces-
sary, which restricts the robots to capture data from almost similar
scenes.

In the second category, a UGV is tracked using a sensor mounted on
the UAV [51] or vice versa [52]. The tracked agent can be localized
only if it is in the field-of-view of the other agent. Therefore, they are
required to stay close to each other at all times. In surveillance sce-
narios, this constraint prevents one agent from exploring areas further
away from the other one, which makes the global guidance mission
inefficient. Furthermore, navigation for the tracked agent happens ei-
ther manually by the operator [52] or by random-based move-
ments [51]. In some studies, it even has not been specified [53], and the
system never been tested in a realistic environment.

Studies related to targets searching and tracking include efforts on
searching for fixed targets in an environment using cooperative air and
ground surveillance, tracking a moving target using a UAV in co-
operation with a UGV [54–56,76], and strategies for take-off, tracking
and landing of a UAV on a UGV [57, 58]. Autonomous navigation for
either UAV or UGV has not been considered in the above studies, and
they all rely on either manual navigation or waypoints provided by
OCU operator. In systems proposed in Refs. [54, 57] , no sensor is used
on the UGV and UAV platforms. Instead, multiple cameras are set up in
the test environment. They provide robots with information related to
localization and navigation.

In the fourth category, UAV is used as a remote sensor which flies
ahead the UGV to provide the traversable map of the environment to
the UGV for autonomous navigation. Similar to the above categories,
most of the systems in this category rely on OCU for manually con-
trolling the UAV, providing agents with waypoints for navigation, or
preparing the map provided by the UAV for UGV navigation.
Autonomous navigation for the aerial vehicle has not been considered
in this category in the majority of cases. It is either controlled manually
[59–64,78] or navigates in a predetermined path [65–68,77], or rely on
waypoint-based navigation provided by the operator [69, 70].

Integrated robotic systems from the last category are the most si-
milar systems to the current study. Such systems capable of collabora-
tive surveillance and mapping the environment handle multiple tasks
from the previous categories. For instance, in the proposed system
during collaborative surveillance and mapping the environment, the

relative position of the UAV with respect to the UGV is estimated (first
category), and UAV follows the UGV during its navigation (second and
third categories). Variety of works have been done for collaborative
surveillance; however, relatively few studies operate both vehicles si-
multaneously and in an autonomous manner. The UGV in Ref. [71] is
controlled manually by the operator. In the system proposed by Saska
et al. [72], UGV moves in a predetermined path. Most of the efforts in
this category rely on OCU for online data processing [73] or providing
waypoints for the robots' navigation [71, 74].

2.4. Proposed system

The proposed system consists of two custom-built robots (one
ground robot and one aerial blimp). A stereo camera and LIDAR are
used on the UGV for localization, autonomous navigation, and en-
vironment mapping. A wide-angle camera is mounted on top of the
UGV for blimp tracking and localization. The blimp uses a monocular
camera in integration with an IMU sensor for localization purposes.

This system addresses most of the limitations of past studies. To
clarify the advantages of the proposed system over the past studies,
major limitations with the existing systems are pointed in Table 1 in the
“Additional Remarks” column. These constraints are addressed in the
proposed system. According to the Table 1, in majority number of past
studies, the manual control is required for at least one the UVs; how-
ever, in the proposed system, both aerial and ground vehicles navigate
autonomously. Lack of real-time data processing on the vehicles' on-
board computers is one of the main research gaps in most of the existing
systems, which has been addressed properly in the proposed system. In
contrast to many of the existing systems, in the proposed system, there
is no need for installing additional sensors (e.g., multiple OptiTrack
cameras) in the site for localization purposes. Moreover, contrary to
many of the studies presented in Table 1, the proposed system does not
require high-level user interaction, such as OCU.

This paper is one of the few studies on using an indoor blimp in a
realistic environment. To the best of our knowledge, there is no work
that has been published on autonomous data collection using hetero-
geneous blimp and UGV in GPS-denied cluttered environments, espe-
cially for construction applications. The blimp robot not only provides
an excellent opportunity for indoor environment monitoring but also
increases the monitoring efficiency. The use of an indoor blimp instead
of different types of UAVs used in past studies (e.g., drone, fixed-wing
aircraft, etc.) has the following advantages 1) reduces safety concerns:
in terms of hitting and falling, blimps are reasonably safe, 2) reduces
cost: indoor blimps are significantly less expensive than drones, 3) re-
duces energy consumption and increases operation time: the blimp's
battery consumption is significantly lower than a simple drone.
Moreover, it can stay floated without the uplift force from a motor,
which increases the flight time significantly, and 4) reduces noise: the
blimp operation produces negligible noise. These advantages make the
blimps ideal for indoor surveillance and monitoring without disturbing
the environment [75].

3. Hardware description

The proposed integrated system consists of two custom-built un-
manned and autonomous platforms, a ground vehicle and a blimp.
Mounted in the center of the UGV's chassis is a laptop with the fol-
lowing specification to carry out most of the necessary calculations of
all modules: 16 GB DDR3 RAM, Intel Core i7-4710HQ quad-core
Haswell processor, and NVIDIA GeForce GTX 960M. Two Raspberry Pis,
one on the UGV and the other on the UAV, are used to control the
actuators. The laptop and Raspberry Pis are all connected to the same
network via a router on the UGV and run both Ubuntu 16.04 LTS and
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ROS Kinetic. The laptop and Raspberry Pi on the UGV are connected to
this router using an Ethernet cable. The Raspberry on the blimp is then
connected wirelessly via Wi-Fi to the router.

All modules run as individual nodes in the ROS ecosystem and use
ROS Topics and Messages to exchange information. Fig. 2 illustrates the
hardware utilized in each vehicle, including the sensors interfacing
with different modules and the network diagram necessary for data
transformation among the modules in the proposed system.

3.1. UGV

In the proposed system, UGV is a custom-built robot, that is built on
a Clearpath Husky A200 mobile robotic platform [79]. On this plat-
form, multiple actuators are used in locomotion and camera's pan/tilt
unit (see Fig. 3). A Microsoft Xbox controller is used for manual navi-
gation during the initial mapping of an unknown environment. The
Raspberry Pi on the UGV receives the control commands from the
Control Planning Module through Transmission Control Protocol/In-
ternet Protocol (TCP/IP) and sends back the wheel encoder informa-
tion. It can also operate a kill switch that remotely stops the motors on
the UGV in case of an emergency.

The UGV is powered by a 24 V, 20 Ah battery. The operation time
varies from 3 h in typical operation up to 8 h in standby (i.e., no

motion) status [80]. The battery is used by the UGV for locomotion as
well as to power multiple units, such as a router, Raspberry Pi, and
laptop. Power from the battery is distributed at 20 V, 12 V, and 5 V for
other units (see Fig. 4). The voltage conversion is happening using the
buck (step-down) converters. Buck converters are more power-efficient
than typical voltage regulators. Voltage regulators mostly step-down
the voltage by dissipating power as heat, whereas, buck converters are
capable of stepping down the voltage by storing the power in an in-
ductor.

In addition to the above components, multiple sensors are used on
the UGV. They are connected to the laptop through the USB connection.
A wide-angle camera, Point Grey Flea3, is mounted on a tilt unit for
blimp localization and tracking. As the blimp moves, this camera tracks
the marker attached to the blimp enabling the system to continuously
estimate the location of the blimp with respect to the UGV (to be further
detailed in Section 4.3.1 Blimp localization using a marker). A HO-
KUYO URG 04LX-UG01 LIDAR sensor is mounted in the front of the
UGV to generate a 2D map describing the occupancy of the environ-
ment. Moreover, to make the system contextually more aware of the
environment, a forward-looking stereo camera (ZED) [81] is mounted
on a pan-tilt unit to be used by Context-Awareness Module in integra-
tion with SLAM module in providing a 3D segmented map of the en-
vironment. The UGV's main components, including sensors and their
functionality are highlighted in Fig. 5.

3.2. UAV

The UAV in this paper is a custom-built blimp that is made of 3D-
printed parts and selected off-the-shelf components including a
Raspberry Pi, a custom-built Printed Circuit Board (PCB), two motor
controllers, three motors, four batteries, and multiple sensors. The
blimp acts as a “flying external eye” for the UGV, observing a scene
from a vantage point inaccessible by the UGV. The first step in the
development of an aerial blimp is to design a flying mechanism con-
sisting of an envelope and a payload carrier. To achieve this goal, the
weight of the payload, including the hardware components, is esti-
mated. Then, the size of the envelope is estimated. Correct estimation of
the envelope's dimensions is necessary. If the envelope is bigger than

Fig. 2. Physical diagram of components in each vehicle. The channels used for interactions between the different components are labeled in blue. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. UGV actuators diagram.
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the required size, navigating in an indoor construction site is challen-
ging for the blimp, and it will not be stable in an encounter with airflow
(e.g., outdoor scenarios, indoor environments with active air con-
ditioning system, etc.). If the envelope is smaller than the required size,
it would not be able to lift the payload carrier. Many variables need to
be considered, such as helium purity, payload carrier weight, and the
shape and material of the envelope itself. The envelope used in the
proposed system, is ellipsoid in shape, with a length of 1.83 m, made of
formulated polyurethane (vinyl) that is chosen for its excellent helium
holding properties, flexibility, and lightweight. The blimp can carry a
total weight of 300 g.

The 3D CAD model of the payload carrier is designed, and 3D
printed. It is attached at the base of the ellipsoid envelope and is de-
signed to carry the hardware components of the flying blimp and the
motor control system. The blimp has a single board computer
(Raspberry Pi 3), to which all the sensors and actuators are interfaced.
The in-built Wi-Fi module, available ports for micro SD card, GPIO, and

camera together with its lightweight, makes Raspberry Pi 3 suitable for
the proposed system.

The blimp consists of three systems, Localization, Power Supply
Regulation, and Motor Control Systems (see Fig. 6). These systems have
one or more capabilities that are detailed in the following subsections.
They assist the operation of different modules essential for autonomous
navigation. On the blimp platform, a single downward-looking camera
and an IMU sensor are used to capture and stream live-camera feed and
odometry data, respectively, through the network to the laptop for
further localization processes. Three motors are used to navigate
through the construction site. The designed platform also incorporates a
power supply regulator. This regulator regulates the voltage to ensure
that the components are powered from a constant supply voltage.

3.2.1. Localization system
The blimp localization system consists of a camera and an IMU

sensor. This system provides the Control Planning Module with the

Fig. 4. Main battery power distribution diagram.

Fig. 5. UGV's hardware description.
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blimp's location and orientation with respect to the starting point. Since
the Raspberry Pi 3 is not powerful enough to process this data, it
streams the data to the laptop on the UGV through the network. This
data are inputs for the SLAM algorithm that estimates the blimp's ego-
motion (3D motion of the camera) during its navigation (to be further
detailed in Section 4.3.2 Blimp localization using Vins-Mono SLAM
algorithm).

A stereo camera is a sensor that captures images together with depth
information. However, due to the limited payload capacity of the blimp,
carrying a stereo camera with an average weight of 150 g is a challenge.
For this reason, a monocular camera that can be lifted by the blimp is
used. A Raspberry Pi camera v2 with a weight of 19 g is selected. This
rolling shutter camera captures video with the resolution of 410 × 308
with the frame rate of 30 fps, which is streamed to the laptop using a
ROS-based video streaming approach [82].

In the localization system, the IMU sensor measures the specific
force, angular rate, and the magnetic field surrounding the unit using a
combination of accelerometer, gyroscope, and magnetometer. In this
study, a Bosch BNO055 IMU with nine degrees of freedom (DOF) is used
with the camera to provide accurate information about camera or-
ientation. This sensor offers an absolute orientation (i.e., Euler and
Quaternion angles), angular velocity, and linear acceleration at 100 Hz.
It uses a high-speed ARM Cortex-M0 processor with minimal power
consumption, which is suitable for interaction with Raspberry Pi.

3.2.2. Motor control system
The motor control system forms the basis of the navigation system

to control the three-axis motion of the blimp. This system consists of
three 3.7-volt DC Hubsan-X4 motors and propellers, one for vertical
motion and two for lateral motion. The vertical motion system provides
upward and downward movement capability, while the lateral motion
system facilitated forward, backward, and left/right (yaw) turn mo-
tions. The reason behind having the separated side motors is to generate
the maximum torque. Increasing the distance between side motors can
generate more rotational power. The IMU provides the yaw at a fre-
quency of 10 Hz, and output is provided to the motors at 10 Hz. The
pitch and roll movements are not incorporated in this system. Two
motor controller boards (TB6612FNG) can control up to two DC motors
each at a constant current of 1.2 A (3.2 A peak). A ROS node provides
closed-loop directional input to the blimp. This input is converted into

control signals from the GPIO pins on the Raspberry Pi to the motor
controllers.

3.2.3. Power supply regulation system
The power of the system is given by four single-cell, Lithium-Ion,

750-milliampere batteries that enable a flight time of 30 min if all three
motors are continuously operated all the time. However, the blimp can
stay floated without the uplift force from a motor, and the actual flight
time can increase significantly. For proper functionality of the motor
controllers, sensors, and other hardware components, the system needs
to be supplied with a constant voltage. However, the voltage varies over
time as the batteries get drained. To address this issue, a linear voltage
regulator that receives supply from the batteries is incorporated in the
power supply regulation system. The output of the linear voltage reg-
ulator supplies a fixed voltage to the components within the system.
Two batteries power the Raspberry Pi and sensors. They are connected
in series and then regulates to 5 V using an LM1085 voltage regulator.
The LM1085-ADJ has a maximum current rating of 3 A. The other two
batteries are used to power the motor control system (see Fig. 7).

With the first version of the blimp platform, the system used jumper
cables to connect every peripheral to the Raspberry Pi 3. The main
problem with this system is that the wiring becomes tedious and diffi-
cult to manage. To simplify the system, a custom-built Printed Circuit
Board (PCB) is designed using Autodesk EAGLE software [83] to in-
terface various sensors, actuators, and power supply regulation system.
It reduces both the complexity (by allowing the sensor systems to in-
tegrate into the GPIO pins of the Raspberry Pi simply without large
jumper wires) and weight of the system. The PCB integrated the voltage
regulator to supply power to the rest of the subsystems, as shown in
Fig. 8. Other incorporated components connected to the PCB are two
motor drivers, batteries, and an IMU sensor (see Fig. 6).

4. System architecture

This section describes the proposed integrated UAV-UGV system for
autonomous data collection on construction sites. This multi-robot
system uses ROS to integrate a variety of open-source packages. This
architecture enables passing data between different modules, called
nodes, within multiple computers through the publisher (i.e., a node
that continually broadcasts a message) and the subscriber (i.e., a node

Fig. 6. Blimp system overview (left), payload carrier with all hardware components (right). The channels used for interactions between the different components are
labeled in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that receives a message from a publisher). Each of these modules has
many capabilities that are summarized in this section. Fig. 9 illustrates
the integration among multiple modules (shown in red boxes).

The system has two separate pipelines for occupancy map genera-
tion necessary for autonomous navigation. These maps are generated
only by UGV using two independent approaches — one that uses LIDAR
to create 2D occupancy maps and the other that uses a stereo camera to
generate 3D segmented maps. At this time, the system is able to switch
between the two approaches. However, integrating these two maps is
not part of the scope of this paper.

In the first pipeline, a LIDAR sensor scans the environment to gen-
erate a 2D occupancy map. To avoid the UGV structure interference, the
LIDAR's scan range is limited to 180° instead of the full range (i.e., 240
°). The 2D occupancy map, along with the odometry received from
wheel encoders, are sent to the Control Planning Module for the path
planning process.

In the second pipeline, images and their corresponding depth data
from a ZED stereo camera are fed to the Context Awareness Module. A
binary scene segmentation scheme (i.e., navigable space and non-na-
vigable space) process the images to generate segmented images. The
segmented images, together with their corresponding depth

information, are input to the UGV SLAM Module. This module gen-
erates a 3D occupancy map of the environment. Besides, it estimates the
UGV's position in the generated map at each given time. The Control
Planning Module receives this information and relays a free of obstacle
path to the Raspberry Pi connected to the ground vehicle for autono-
mous navigation.

The LIDAR model used in the system is a HOKUYO URG 04LX-
UG01. This LIDAR has been designed for indoor use only, and it can
scan the environment just in one dimension. The scan area is 180°
semicircle with maximum radius 4000 mm. Laser beam diameter is less
than 20 mm at 2000 mm [84]. So, the sensor can only map the obstacles
which are present at the same height that it is mounted. Although the
2D map generated by the LIDAR sensor is more accurate, the map
generated in the second pipeline has the following advantages: (1) It
can be used for outdoor environments, (2) In contrary to the map
generated by the LIDAR (HOKUYO URG 04LX-UG01), the second pi-
peline can avoid all the obstacles. Because it maps the obstacles even if
they are not present at the same height that the camera is mounted. (3)
The generated map using RTAB-MAP is a 3D contextually aware map,
where objects of interest (in this study “Ground“ and “Not ground”) are
detected, and their real size are estimated.

Fig. 7. Blimp power distribution diagram.

Fig. 8. 3D printed PCB: design (left) and actual board (right).

K. Asadi, et al. Automation in Construction 112 (2020) 103068

9



In the initial data collection, the 2D/3D map of the construction site
is generated by manually navigating the UGV in the site. During this
navigation, the obstacles are detected, and their locations with respect
to the UGV are determined. In the further data collections, the desti-
nations are either pre-selected by the construction management team
directly through the laptop on the UGV or selected remotely through
Secure Shell (SSH), which enables the operator to provide waypoints
even during the mission. Then, the Rapidly-exploring Random Tree
(RRT) algorithm is implemented to address the point-to-point collision-
free navigation problem. In the presence of new obstacles in the UGV's
path, the initial map is updated using UGV's sensors. If updated, the
RRT algorithm runs immediately to update the navigable path. This
capability makes the system robust for navigation in construction sce-
narios, where navigable paths may dramatically change during a day.
Moreover, if some places are not accessible by the UGV anymore (e.g.,
in the presence of new obstacles/barriers in the environment, which
makes the destination inaccessible to the UGV), it sends the blimp to
those places for data collection. For this purpose, the relative position of
UAV with respect to the UGV within the map is continuously required.

The Blimp Localization and Tracking Module provides the Control
Planning Module with the estimated position of the blimp with respect
to the UGV. To make this estimation robust, two separate approaches
are implemented — marker detection and SLAM comparison. For
marker detection, a system consisting of a wide-angle camera is
mounted on a tilt unit on the UGV. As the camera detects a marker on
the blimp, it sends the relative position between UAV and UGV to the
Control Planning Module that enables the blimp to follow the UGV as it
is navigating on the site (to be further detailed in Section 4.4.2 UAV
autonomous navigation). The tilt unit enables the camera to track the
blimp as long as it is in the UGV's field of view (to be further detailed in
Section 4.3.1 Blimp localization using a marker). Therefore, the blimp
can be localized only if it is in the field of view of the camera.

In the second approach, SLAM comparison, the position of the blimp

is estimated by comparing odometry data from the SLAM algorithms
that run on the UGV and blimp. The inputs for the SLAM method on the
blimp are camera images and absolute orientation (AO) of the camera,
captured by the Pi camera and the IMU sensor, respectively. In this
approach, there is no need for the UVs to stay close to each other during
their navigation. This advantage makes this approach as the primary
approach to estimate the relative position. In situations where SLAM
tracking is lost for each vehicle, the relative position can be estimated
by the first approach. In the following, further details regarding each
module are provided.

4.1. Context-Awareness Module

This module uses a ZED stereo camera as a vision sensor. This sensor
provides two RGB images for both left and right cameras. It also pro-
vides depth information for each pixel in the image. In a depth image,
pixels go from black to white. Black indicates that the pixel is close to
the camera, and white indicates the pixel is far from the camera. Depth
values in the intermediate range are represented by a gradient of gray,
where darker gray indicates a depth closer to the camera than lighter
colors (see Fig. 10).

The Context-Awareness Module uses this data to provides the seg-
mented image frames alongside with their corresponding depth data to
the UGV SLAM Module. Since all the modules are running on the same
processing unit, a light segmentation model that focuses on providing a
high inference speed and low model size is selected — LNSNet [45].
The LNSNet model takes pixel-wise labeled images as input for training.
To the best of our knowledge, no publicly available dataset of se-
mantically annotated images from indoor construction site currently
exists. In this work, authors created their own dataset that consists of
3000 images from indoor and outdoor construction site environments.
Since the segmented images are finally used for navigation purposes,
the training images are labeled in two classes, namely, Ground and Not

Fig. 9. General pipeline for the proposed integrated system consists of a custom-built ground and aerial vehicles. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)
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Ground. The Ground is indicated by the white pixels and rest by black
pixels (see Fig. 11). To extend this approach to accurately segment a
wide variety of scenes, the segmentation model needs to be trained with
more images from different construction sites.

The model is trained on a server that is equipped with a Xeon E5,
128 GB RAM, and Tesla k40c and Tesla k20c with 12 GB VRAM. The
Docker container [85] is used to train the model on the server. Docker is
a computer program that performs operating-system-level virtualiza-
tion, also known as containerization. The Docker virtualization tool is
used to overcome different version interdependencies while training on
the server. The segmentation model is executed on the Caffe frame-
work [86] with some changes to accommodate the different class labels.
The network is trained in 2 steps. The first step involves training the
encoder, which takes input of size 640 × 360. In the second step, the
decoder is trained on top of the encoder, to upscale the smaller size
intermediate map to full image dimensions. The model is trained for
1000 epochs with a batch size of 4. The inference time for the seg-
mentation model running on the laptop for an input image size of

640 × 360 is 21 fps.
The depth data received from the ZED stereo camera is synchro-

nized with segmented images using ROS timestamps. The Context-
Awareness Module receives the RGB image frames with corresponding
depth data together from the ZED camera using ZED SDK interface [87].
Then, the corresponding RGB frames, depth data, and segmented
frames are published as ROS topics with the same timestamp to main-
tain synchronization. Time synchronization is a necessary step to send
corresponding segmented and depth images simultaneously to the UGV
SLAM Module.

4.2. UGV SLAM Module

The primary goal of the UGV SLAM Module is to provide the 3D
occupancy map using the data received from the Context-Awareness
Module while concurrently localizing the UGV within that map. The
Control Planning Module uses the occupancy map for autonomous
navigation. To achieve this, RTAB-MAP SLAM [42] is implemented to

Fig. 10. (a) Raw images, (b) depth images.

Fig. 11. (a) Raw images, (b) output segmented images.
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generate the 3D segmented map of the environment (3D occupancy
map) in integration with the Context-Awareness Module (see Fig. 12).
2D images alongside with depth images from ZED stereo camera are
inputs to the Context-Awareness Module. Outputs from Context-
Awareness Module (2D segmented images synchronized with depth
information) are inputs to the UGV SLAM module. This module pro-
cesses segmented images with corresponding depth data to create a 3D
segmented map of the environment (a 3D map which determines the
navigable path with white point cloud and the rest of the scene with
black point cloud).

After the initial data collection, the comprehensive map of the en-
vironment (known as the global map) is saved to the disk. The global
map file consists of the keyframe database, map, and map points, which
are serialized to the disk as a binary file using serialization feature of
the Boost C++ libraries [88]. This process avoids the need to remap
the environment in further data collections by re-localizing in the
previously saved map. This mode attempts to find similar visual fea-
tures by comparing the images the robot currently sees with the images
in the database (i.e., new and old image sets, respectively). In the case
of navigating in a dynamic environment, this map is updated during
further data collections using the UGV sensors. Map updating is done by
comparing the odometry data and visual features corresponding to the
new and old images. If it is the same, then the new image replaces with
the old one and the 3D point clouds created from the receiving images
is updated. This capability provides a proper understanding of the en-
vironment to the UGV to navigate in a path that is free of obstacles.

The odometry data can be extracted from either the ZED camera or
the UGV's built-in wheel odometry. The ZED camera uses visual fea-
tures and tracks their changes over time to localize the position of the
camera with respect to its environment in a technique called 6-DoF pose
estimation. The odometry consists of the position of the camera and a
vector that represents the camera orientation. These values are not
precise enough if the robot faces a feature-less scene (e.g., a wall with a
single color) or in the presence of objects too close to the camera, which
results in inaccurate localization and mapping. However, it is possible
to get a moderately accurate map using this odometry data if the en-
vironment contains visual features, and there are not many moving
objects passing in front of the camera.

The UGV's wheel odometry can be used as an alternative to the ZED
camera odometry. During the experiments, the authors found the wheel
odometry to be more accurate. Therefore, during the map generation,
this odometry is used instead of the ZED camera odometry, which re-
sults in a more accurate map and better localization within the en-
vironment. However, in case of eventual wheel slippage, the wheel
odometry data is not reliable anymore. To address this issue, the odo-
metry data is reported after processing data from multiple resources, an
inertial measurement unit (IMU) and position sensors (incremental

encoders). The sensor fusion approach is based on the Extended Kalman
Filter (EKF) [89]. EKF efficiently combines the same modality data from
multiple sources to provide a more accurate estimation.

4.3. Blimp Localization and Tracking Module

The objective of the blimp is to provide aerial footage that is out of
the UGV's view, which involves the blimp to fly to different locations of
the construction site. However, collision avoidance against obstacles
around the UAV is not part of the scope of this paper. Instead, the UAV
uses the relative pose information (i.e., UAV's relative pose with respect
to the UGV) to follow the UGV's path as it is navigating in the site. The
UGV also sends the UAV to the places which are not accessible to the
UGV anymore. It should be notified that these places do not count as
unexplored areas. They had been visited by the UGV during the initial
data collection before. At the beginning of each data collection, the
system re-localizes in the comprehensive map of the site (i.e., global
map). This map is generated by the UGV after initial data collection and
continuously updated in the further data collections.

During the system navigation for autonomous data collection: 1) the
UAV follows the UGV during its navigation, 2) for a place that is not
accessible by the UGV, UAV is sent to scan the place, 3) UAV returns on
top of the UGV to continue towards the next place of interest. For all
these steps, accurate localization is necessary for UAV's self-navigation
and relative pose estimation with respect to the UGV. This relative
position is continuously sent to the Control Planning Module, which
enables the UAV to follow the UGV as it is moving, navigate to the place
of interest, and return to the vicinity of the UGV (to be further detailed
in Section 4.4.2 UAV autonomous navigation). The blimp localization is
performed using two separate approaches, blimp localization using a
marker and blimp localization using Vins-Mono SLAM algorithm.

4.3.1. Blimp localization using a marker
An approach similar to Ref. [90] is adapted using a Whycon marker

(shown in the yellow box in Fig. 13) that is attached to the blimp to
estimate the relative location of the blimp with respect to the ground
vehicle. The camera searches for the Whycon marker in each frame as it
continuously acquires data of its surroundings. Once the Whycon
marker is detected, the relative position is estimated and sent to the
Control Planning Module, which enables the blimp to navigate auton-
omously during the mission. During this process, the blimp needs to be
in the camera's field of view, which is achieved by tracking the marker
using the camera tilt unit. So, the process of blimp localization using the
camera and the marker is divided into two dependent steps, marker
localization and tracking unit actuation. Fig. 13 shows the procedure
for each step.

Regarding the marker localization step, the inner diameter (

Fig. 12. Autonomous navigation using 3D segmented map provided by the UGV SLAM Module.
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di = 50 mm) and outer diameter ( do = 122 mm) of the Whycon marker
are set as ROS parameters. These parameters act as references for the
marker localization algorithm. During this step, first of all, the black
disk with diameter do is detected. then, the algorithm searches for the
white disk with diameter di inside the black disk using the flood-fill
segmentation technique [90]. The distance of the marker from the
camera (i.e., relative position) is then calculated based on the size of the
concentric circles depending on the camera re-projection techniques
and intrinsic parameters of the camera. This distance is published as the
marker coordinates (x,y,z) which is input for the tracking unit actuation
step.

The tracking unit is comprised of a servo motor with tilt unit fixed to
the camera. This unit receives the (x,y,z) coordinates of the marker and
tries to reduce the distance between the center of the camera and the
marker in the x-axis(i.e., error along the x-axis). This error is scaled to
an angle θ. The servo motor is then tilted by the θ degree which tilts the
camera in such a way that the marker is always at the center of the
frame and the error is minimum. A video [91] is prepared to illustrate
the process of marker localization and tracking unit actuation. Al-
though Whycon marker is used as a marker for the UAV in this paper,
other methods of tracking are also available, such as efforts on tracking
a 3D moving target [92] or fiducial tags [93]. However, not all of them
are compatible with ROS and some require a wrapper.

4.3.2. Blimp localization using Vins-Mono SLAM algorithm
In this approach, Vins-Mono SLAM algorithm [37] is implemented

to estimate the location and orientation of the blimp using outputs from
Pi camera and IMU mounted on the blimp. Images are streamed at a
constant frequency of 30 Hz with 410 × 308 resolution along with the
quaternions of gyroscope measurements and linear acceleration along
the three Cartesian axes in real-time. In the proposed system, Vins-
Mono uses a loosely-coupled sensor fusion, where IMU is treated as an
independent module to assist vision-only pose estimation obtained from
the visual structure from motion. Fusion is usually done by an Extended
Kalman Filter (EKF) [94] where IMU is used for state-propagation, and

vision-only pose is used for the update. Further on, tightly-coupled vi-
sual-inertial algorithms are either used on the EKF or graph optimiza-
tion, where camera and IMU measurements are jointly optimized from
the raw measurement level.

To have the camera and the IMU sensor on the same coordinate
axes, a transformation between the axes of these two sensors is im-
plemented. The data from the IMU sensor and the camera feed are
usually not synchronized because of the traffic on the network on the
ROS pipeline. The system is set up such that the incoming sensory
signals are time synchronized to a tolerance of below 30 ms. This is
important as the time skew between the camera and the IMU can have a
drastic impact on the camera pose estimation.

Vins-mono is a real-time SLAM algorithm for monocular visual-in-
ertial systems. It uses an optimization-based sliding window formula-
tion for providing high-accuracy visual-inertial odometry. It processes
the images to detect key points which are extracted using a Harris
corner detector. These points are used to create the history point-cloud,
which is saved relative to the camera coordinate system. For each new
incoming frame, IMU measurements between two consecutive frames
are pre-integrated and previously tracked features are tracked using
KLT optical flow algorithm. This algorithm assumes a local neighbor-
hood of pixels for each key point and tracks the change in intensity
value by calculating the intensity gradient in x and y directions. VINS
Mono gives a very robust localization and a sparse point cloud along
with the camera orientation. It can detect the history points and com-
plete a loop closure. Also, the system can eliminate drifts in the path by
utilizing a tightly-coupled re-localization module that seamlessly in-
tegrates the Visual-Inertial Odometry (VIO). VINS Mono incorporates
IMU pre-integration for gyroscope bias calibration, which is then sub-
sequently used for other metric initialization, which results in fast in-
itialization.

4.4. Control Planning Module

This section describes the Control Planning Module approaches for

Fig. 13. Blimp localization and tracking procedure.
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both UAV and UGV's autonomous navigation using data provided by
other modules.

4.4.1. UGV autonomous navigation
As previously mentioned, the UGV has two separate pipelines for

navigation — one that uses LIDAR to generate 2D occupancy maps and
the other that uses a stereo camera to generate 3D segmented maps. In
both maps, the obstacles are detected, and their location with respect to
the UGV is identified. Based on this information, the Rapidly-exploring
Random Tree (RRT) algorithm [95] is implemented to address the
point-to-point collision-free navigation problem. During the obstacle
detection and occupancy map generation, a safety buffer is created
around each obstacle. The size of this buffer is almost equal to the
UGV's size. The RRT algorithm searches for the possible path free of any
obstacles and safety buffers.

RRT is an algorithm designed to efficiently search non-convex, high-
dimensional spaces by randomly building a space-filling tree. To
achieve this goal, the starting point is set as root. Then a random point
is generated on the map, and the node of RRT, which is the closest to
the random point is found. A new node at a pre-defined distance from
the closest node towards the random point is added to the RRT if the
connection path is within a feasible region and the connection is free of
obstacles. Otherwise, the new node is added at the edge of the un-
feasible region, closer to the RRT node, along the path. The random
point generation and linkage to the RRT are performed until the node of
RRT hits the target node (see Fig. 14). The resulting path is sent to a
path following algorithm to trace the generated path. This algorithm
sends the linear and angular velocity commands to the Raspberry Pi,
which controls the UGV motors to perform the desired maneuver.

The processing time of this searching algorithm highly depends on
the size of randomly generated nodes during the searching process [96,

97]. In this study, to reduce the processing time, the size of the ran-
domly generated nodes is limited. Tuning this parameter happens
through a try and error process until the results (processing time and
accuracy) are satisfactory. Considering the environment scattered by
obstacles, the size of randomly generated points is limited to 100 to
make the process real-time while maintaining the accuracy acceptable.

4.4.2. UAV autonomous navigation
The Control Planning Module enables the UAV to maintain an al-

most fixed pose relative to the ground vehicle. For this reason, at the
beginning of the data collection, the blimp must be calibrated on top of
the UGV in a way that both start from the almost same location with the
same orientation, but obviously with a difference in Z direction. The
relative position result from marker localization approach can be used
directly for UAV autonomous navigation. However, for calculating the
relative pose between UAV and UGV by comparing the estimated pose
from SLAM algorithms running on each vehicle (RTAB-Map for UGV
and Vins-Mono for UAV), a transformation matrix between two vehicles
is calculated.

With the transformation matrix calculated, the UAV utilizes
Algorithm 1 to control the x, y, and z lateral movements as well as the
yaw control of the UAV. In this algorithm, the system gets the relative
position, orientation (i.e., [Δx, Δy, Δz, Δθ]), and predetermined
thresholds (i.e., [dx, dy, dzmax , dzmin , dθ]) for these relative values as
input. The outputs for each series of input are motor speed and pro-
peller direction. For each input data, based on the current values of
relative position, orientation, and corresponding thresholds, the blimp's
motors run for a specified duration with a certain speed and direction.
Algorithm 1. General control system for the UAV.

In addition to the algorithm for the lateral movements, a pro-
portional—integral—derivative (PID) control system is used to control

Fig. 14. Visualization of RRT sampling points. The red dot is the UGV's start
point and the green dot is the destination. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 15. General control system for the yaw, longitudinal, and lateral axis of
motion for the UAV.
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the angular yaw movements in space. A PID control system con-
tinuously utilizes the error of the desired set point vs the actual position
to calculate the motor power signal. The PID controller manages the
motor power to match the UAV yaw angle with the UGV yaw angle. The
controller can be expressed as Eq. (1), where u is the motor control
variable along a yaw axis; e is the calculated error, and the constant
coefficients Kp, Ki, and Kd are tuned based upon the system:

= + +u t K e t K e t dt K de t
dt

( ) ( ) ( ) ( )
p i

t
d0 (1)

After designing the controller, the PID parameters are tuned for the
UAV's angular movements. In order to tune the system, an impulse of a
target angle is inputted to the UAV controller, and the output of the
magnetometer on the UAV is recorded to analyze the response. The PID
parameters are optimized to create a responsive system without over-
shooting the desired target angle. The general control system is ex-
plained by the control loop in Fig. 15, where R(s) is the input signal or
the desired set point of the UAV. e(s) is the calculated positional error
between the actual UAV position. u(s) is the output of the controller
that alters the power of the motors. The Plant is the UAV system. C(s) is
the actual position of the UAV. The Sensor is the UAV tracking system
on the UGV that calculates the relative position difference between the
UAV and the UGV. d(s) is the calculated distance from the sensor. The
Controller is a combination of the system described in Algorithm 1
combined with the PID yaw controller.

5. Experimental setup and results

The proposed system has been tested on Constructed Facilities Lab
(CFL) at North Carolina State University. This lab environment re-
sembles an indoor construction site as there are stacks of construction
materials and ongoing fabrication of structural components (e.g., col-
umns, walls, bridge spans, etc.). Fig. 16 shows the test environments (A
and B) and the corresponding 2D global map. Before the experiments,
through an initial data collection, a comprehensive map of the con-
struction site (known as the global map) was created by manually

navigating the UGV in the site. Then, a destination for data collection is
specified within the global map. During the experiment, to deal with a
dynamic environment, new obstacles are added to the UGV's path to-
wards the destination. These new obstacles make the rest of the site
inaccessible to the UGV. In this situation, the UGV stops and sends the
UAV to the desired location to scan the area of interest. The UAV then
returns to the UGV, and this integrated team continuous towards the
next area of interest.

Videos of the entire pipeline during the tests are prepared to de-
monstrate the capabilities of this integrated system for indoor data
collection and determine if any issues in UGV following is present [98,
99]. Obstacle avoidance for the UAV is not part of the scope of this
paper. Instead, the main objective of the UAV is to follow the UGV's
path as it is navigating in the site. The UAV is also sent by the UGV to
the places which are not accessible to the UGV. Dealing with obstacles
around the UAV can be added as a capability to the system in future
studies.

During the experiments in the construction site, sometimes the UAV
flew close to an air conditioner (AC) vent, and it was blown off course.
But, it was able to get back to the desired path to follow the UGV. The
focus of validation is the integrated UAV-UGV system consisting of
aerial and ground platforms with multiple components. Therefore, this
section focuses on the integration and running the system in the real-
time, not validations of individual modules (e.g., the accuracy of Vins-
Mono, RTAB-Map, and LNSNet). In addition, the UAV autonomous
navigation is validated by providing the robots' trajectory alongside
with their relative position during their navigation in a path.

The IMU sensors are usually unreliable in the presence of consistent
noise in magnetometer measurements (due to heavy metal structures
usually present in construction sites). However, it should be notified
that, in the Vins-Mono SLAM method, the IMU sensor is used in in-
tegration with camera in a loosely-coupled sensor fusion approach,
where both the IMU and the camera are treated as independent mod-
ules to assist each other. According to the test videos, no significant
drift in the trajectory for both the UAV and UGV is observed. In running
the system for an extended long period of time, these errors can be

Fig. 16. (a) Test environment, (b) 2D global map. Numbers show the specific locations that the first and second experiments are implemented.
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accumulated and make the results unreliable. However, in such situa-
tions, loop closure techniques are activated to optimize the drift errors.

5.1. Hardware utilization

In the proposed system, a single laptop is used to process scene
segmentation, localization, mapping, and control planning for both the
UGV and UAV in real-time. To evaluate the real-time performance of
the system while all the modules with different approaches are running
(e.g., both marker detection and SLAM comparison approaches are
running to estimate the relative position between the robots), a 3 min
experiment is performed. During this experiment, the computational
load put in the main processor (UGV's laptop) is recorded using remote
logging and reported. Reporting the computational load can be used as
a benchmark for future system and pipelines. Running all the modules
on a laptop with the specified configuration prevents an unnecessary
increase in the number of processing units and processing capabilities.
This is a major challenge in developing an autonomous robot because it
increases the size and weight, especially with added batteries. It also

reduces the operation time with a fixed number of batteries. Moreover,
the problem becomes even more challenging if the processes were to be
applied to an unmanned aerial vehicle.

RAM utilization is reported in GB unit within a range of 0 –16 as the
laptop has 16 GB RAM. The CPU utilization is reported in percentage
within a range of 0 –400 as the laptop has a quad-core processor.
Therefore, 100% usage corresponds to one core running at its full ca-
pacity. For GPU utilization, the percentage of GPU memory (within a
range of 0 –100) and Streaming Multiprocessor (SM) are reported. In
terms of computational complexity, the Context-Awareness Module,
UGV, and UAV SLAM Modules have the heaviest computational load.
The results for these modules are reported and discussed in details
below.

5.1.1. Context-Awareness Module
The Context-Awareness Module implements LNSNet as the semantic

segmentation method. This module uses up to 37% of the GPU memory
and the average GPU utilization for inference is 7% as can be seen in
Fig. 17a and b, respectively. Table 2 summarizes the findings. The GPU
usage is measured using the nvidia-smi [100] utility provided by
NVIDIA. The semantic segmentation task is triggers by every input
image frame from the ZED stereo camera that takes up some memory.
As an image is passed onto the LNSNet network, a binary segmented
image is generated and is shown as a spike in the GPU usage in the
Fig. 17a and b. After the image is processed, it is released from memory,
which explains the regular rise and falls in memory usage (Fig. 17d).
The Context-Awareness Module occupies a CPU core running on its full
capacity (see Fig. 17c and Table 2).

Fig. 17. System usage graphs for semantic segmentation task: (a) LNSNet GPU usage (memory in %), (b) LNSNet CPU usage (%), (c) LNSNet GPU usage (SM in %) (d)
LNSNet RAM usage (GB).

Table 2
Semantic segmentation task hardware utilization statistics.

Min usage Max usage Average usage

GPU memory (%) 0 19 7
GPU SM (%) 0 37 14
CPU (%) 103 114 108
RAM (GB) 2.4 2.5 2.45
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The Context-Awareness Module receives input data from the ZED
stereo camera through the ZED ROS Wrapper Package [101]. This
package enables the camera to be used with ROS. It provides access to
the left and right rectified images together with depth information.
However, it outputs much unnecessary information for this study, such
as point cloud, poses information, and visual odometry. Providing all
these outputs as topics results in high CPU and GPU utilization as can be
seen in Fig. 18 and Table 3. In the future system, a separate code can be
developed to directly get the required topics (i.e., a name that is used to

Fig. 18. System usage graphs for ZED stereo ROS wrapper package: (a) GPU usage (memory in %), (b) CPU usage (%), (c) GPU usage (SM in %) (d) RAM usage (GB).

Table 3
ZED Stereo ROS Wrapper hardware utilization statistics.

Min usage Max usage Average usage

GPU memory (%) 0 30 13
GPU SM (%) 0 60 27
CPU (%) 62 233 118
RAM (GB) 2.3 2.3 2.3

Fig. 19. System usage graphs for RTAB-MAP SLAM algorithm: (a) CPU usage (%), (b) RAM usage (GB).
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identify the content of the message in ROS) from the ZED software
development kit (SDK) which reduces the computational load on CPU,
GPU, and RAM.

5.1.2. UGV and UAV SLAM modules
RTAB-MAP and Vins-Mono SLAM run on CPU. As can be seen in

Figs. 19a and 20a, CPU usage in Vins-Mono as a monocular SLAM al-
gorithm is higher than usage in RTAB-MAP, which is a stereo SLAM
algorithm. Both SLAM algorithms do not use GPU. As can be seen in
Fig. 19b, the RAM usage increases as the duration of RTAB-MAP in-
creases due to the increasing size of the point clouds generated in the
mapping process. However, the RAM utilization for Vins-Mono is not
significant compared to the RTAB-MAP (see Tables 4 and 5). The au-
thors restricted the SLAM algorithm on the UAV to provide only the
localization information, and accumulated mapping is not part of the
requirements for this system.

5.2. UAV autonomous navigation's validation

To evaluate the performance of the system and determine how well
the blimp succeeds in following the UGV, the system is implemented in
a hallway that is free of any air disturbance (e.g., AC systems and fans).
To make a challenging path for the UAV to follow, the UGV is con-
trolled manually, and multiple rotations along the path are performed.
The pose of both the UGV and UAV are visualized in Rviz [102]. Fig. 21
shows a trial run in the hallway for 115 s. At a speed of 0.2 m/s, the
UGV and UAV covered almost 21 m. For a longer distance, the speed of
the UGV can be increased; however, if the speed is higher than 1 m/s,
the UAV will not be able to follow the UGV properly because it receives
the movement commands in the frequency of 0.5 Hz. As shown in
Fig. 21, as the UGV navigates the hallway, the UAV very closely follows
it demonstrating that in a free of air disturbance environment, the UAV
can follow the UGV without drifting off the course.

In addition, during the system navigation in the hallway, the re-
lative pose estimated by the marker detection approach (blue triangles)
is compared to the relative pose calculated by SLAM comparison ap-
proach (orange squares) along X-axis, Y-axis, and Z-axis(Figs. 22, 23,
and 24, respectively). As shown in Fig. 25, the relative position is de-
fined as a vector from the UGV sensors (either the ZED camera or the
wide-angle camera depends on the approach) to the UAV (either the Pi
camera or the marker's center) which satisfies the right-hand rule. In
the majority of the times, the UAV moves back of the UGV. So, the
relative positions in X-axis has mostly negative values (see Figs. 22 and
23). The longest motion is along the X-axis(along the direction of
travel). Since the hallway is free of any air disturbance, there is no

Fig. 20. System usage graphs for Vins-Mono SLAM algorithm: (a) CPU usage (%), (b) RAM usage (GB).

Table 4
RTAB-MAP hardware utilization statistics.

Min usage Max usage Average usage

CPU (%) 17 86 52
RAM (GB) 1.8 3 2.4

Table 5
Vins-Mono hardware utilization statistics.

Min usage Max usage Average usage

CPU (%) 47 111 91
RAM (GB) 0.2 0.2 0.2

Fig. 21. Poses and orientation shown as arrows: UGV (red) and UAV (green).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 22. Relative pose in X-axis estimated by marker detection (blue triangles) and SLAM comparison (orange squares). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 23. Relative pose in Y-axis estimated by marker detection (blue triangles) and SLAM comparison (orange squares). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Relative pose in Z-axis estimated by marker detection (blue triangles) and SLAM comparison (orange squares). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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significant changes in Y- and Z-axes during the navigation where the
UAV stays close to the UGV and maintains a nominal height with small
variations (see Figs. 23 and 24). According to the UAV control system
for navigation in X-axis, as the UGV is moving, if the relative position
exceeds a specific threshold (e.g., 35 cm for this experiment), the UAV's
lateral motors run in the forward direction to reach the top of the UGV
again. These lateral movements are shown as rises and falls in Fig. 22.

The results indicate that there is an almost constant difference (for
each axis) between the values obtain by the marker detection and SLAM
comparison approaches. The difference is around 25 cm for X-axis and
Y-axis and 30 cm for Z-axis. This difference is due to errors in marker
detection and distance between the sensors (see Fig. 25), which remain
constant (sensor locations are fixed and error in marker detection is
around 6 cm [90]). Therefore, to switch from one approach to another,
these constant differences (for x, y, and z-axes) are either added to or
deducted from the pose values obtained from one of the approaches to
compute the values for the other approach.

6. Conclusion and future work

Over the past few years, autonomous UAVs and UGVs have received
significant popularity in the construction industry, namely construction
site surveying, existing structure inspection, and work-in-progress
monitoring. However, there are still numerous open problems for fur-
ther research such as efficient autonomous navigation in cluttered GPS-
denied environments, where some places are inaccessible by the UGVs.
To address this issue and increase the degree of automation through
vision-based data acquisition, this paper presents a collaborative ex-
ploration approach using UAV and UGV that is capable of autonomous
navigation, mapping, and data acquisition. The results show that the
UGV can autonomously navigate towards the places of interest that are
pre-selected by the construction team while being followed by the UAV
using vision-based techniques. If an area of interest is not accessible by
the UGV due to environmental constraints, the UGV sends the UAV to
scan the place. The UAV, then, returns to the top of the UGV and they
continue towards the next area of interest. The system is evaluated by
performing three experiments (one in a hallway and two in an indoor
cluttered construction-like environment). The results are promising,
demonstrating the effectiveness and robustness of the proposed system
for autonomous navigation and visual data collection for automated
construction performance monitoring and condition assessment appli-
cations.

Some of the possible extensions and improvements to this study are
documented as follows. The hardware utilization can further be im-
proved by preventing unnecessary computations (e.g., useless topics
that publish by ZED ROS wrapper node) and reducing the computa-
tional load on the CPU by performing heavy calculations (e.g., feature
extraction and matching parts in SLAM) on GPU.

The blimp is not stable in the vicinity of active AC systems and fans.
Any air disturbance takes the blimp away from the UGV, and it takes
some times for the blimp to return to the top of the UGV. However, in
the presence of multiple fans and AC vents along the UAV's path, the
system cannot be efficient and consumes lots of energy just for stability.
The use of fins and tails on the blimps' envelope makes it more stable
when facing such conditions. In availability of construction site's BIM
model, this model can be integrated with the map provided by the UGV
to determine the location of fans and AC vents. Providing this in-
formation to the Control Planning Module enables the blimp to skip
these locations during its navigation.

Mapping of the environment is performed only by UGV using two
independent approaches — one that uses LIDAR to generate 2D occu-
pancy maps and the other that uses a stereo camera to generate 3D
segmented maps. However, maps created by the LIDAR and the stereo
camera have not been integrated. By integrating these two maps, a
more accurate occupancy map is generated, and the system will be able
to switch between two approaches. Moreover, future work will perform
3D-mapping of the environment by UAV using its front camera. This
map can be combined with the maps provided by the UGV [50], which
offers even more accurate map of the environment and improves the
UGV's navigation performance for autonomous navigation in unknown
environments.

Obstacle avoidance for the blimp is not part of the scope of this
paper. Instead, the main objective of the blimp is to follow the UGV's
path as it is navigating in the site. Dealing with obstacles around the
UAV can be added as a capability to the system by adding more sensors
to the blimp such as ultrasonic sensors. Visual-based obstacle avoidance
approaches also have the potential to be implemented on the blimp for
multi-directional obstacle avoidance. In the future study, multiple ap-
proaches will be implemented on the system, and the potential ap-
plicability of each method is investigated as the benchmark for the
current and future systems.

Fig. 25. Relative pose estimated by SLAM comparison and marker detection
approaches.
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The proposed system is the authors' first attempt in developing a
cooperative UAV-UGV system for autonomous data collection in con-
struction. The focus of this study is on the system's integration and the
possibility of real-time applications, not the validation of individual
modules (accuracy of RTAB-Map and Vins-Mono algorithms). In the
future, work error analysis will perform on each module to determine
the effect of individual algorithms and sensor issues (e.g., IMU drifts in
the presence of heavy metal structures) on the overall performance of
the system. Moreover, techniques such as sensor fusion can be per-
formed to provide results with less uncertainty during experiments
running for an extended period of time. For example, odometry data
from the camera can be combined with the wheel odometry to provide
a more accurate estimation of the UGV pose.
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