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ABSTRACT

Surrogate neural network-based partial differential equation (PDE) solvers have
the potential to solve PDEs in an accelerated manner, but they are largely limited
to systems featuring fixed domain sizes, geometric layouts, and boundary condi-
tions. We propose Specialized Neural Accelerator-Powered Domain Decompo-
sition Methods (SNAP-DDM), a DDM-based approach to PDE solving in which
subdomain problems containing arbitrary boundary conditions and geometric pa-
rameters are accurately solved using an ensemble of specialized neural opera-
tors. We tailor SNAP-DDM to 2D electromagnetics and fluidic flow problems and
show how innovations in network architecture and loss function engineering can
produce specialized surrogate subdomain solvers with near unity accuracy. We
utilize these solvers with standard DDM algorithms to accurately solve freeform
electromagnetics and fluids problems featuring a wide range of domain sizes.

1 INTRODUCTION

Large scale physics simulations are critical computational tools in every modern science and engi-
neering field, and they involve the solving of parametric partial differential equations (PDEs) with
different physical parameters, boundary conditions, and sources. Their ability to accurately capture
underlying physical processes makes them particularly well suited in modeling and optimization
tasks. Conventionally, PDE problems are set up using discretization methods such as the finite ele-
ment or finite difference formalisms, which frame the PDE systems as large sparse matrices that are
solved by matrix inversion. Problems are set up from scratch every time and computational scaling
with domain size is fundamentally tied to the scaling of matrix inversion algorithms.

Neural network-based approaches to solving PDE problems have emerged and have garnered great
interest due to their tantalizing potential to exceed the capabilities of conventional algorithms. One
of the earliest and most prominent concepts is the Physics Informed Neural Network (PINN), which
produces an ansatz for a given PDE problem (Raissi et al., 2019; Karniadakis et al., 2021; Cai et al.,
2021). PINNs have been shown to be able to solve wave propagation problems with fixed domain
size and domain geometry, but their accuracy is sub-optimal (Moseley et al., 2020; Rasht-Behesht
et al., 2022) in systems featuring high spatial frequency phenomena (Wang et al., 2022; Farhani
et al., 2022). In addition, they require retraining every time the PDE problem is modified, making
them unsuitable for solving generalized parametric PDE problems.

Neural Operators, which are the focus of this study, have also been recently proposed as deep net-
work surrogate PDE solvers. Unlike PINNs, Neural Operators learn a family of PDEs by directly
learning the mapping of an input, such as PDE coefficients, to corresponding output solutions using
simulated training data. PDE solutions are evaluated through model inference, as opposed to model
training, which enables exceptionally high speed PDE problem solving. Initial work on Neural Op-
erator models can be traced to PDE-Net (Long et al., 2018; 2019), and additional improvements in
network architecture have been proposed with DeepONet (Lu et al., 2019) and Fourier Neural Op-
erators (FNO) (Li et al., 2020). While much progress has been made, Neural Operators cannot yet
directly scale to large arbitrary domain sizes, and they cannot accurately handle arbitrary boundary
conditions. These challenges arise due to multiple reasons: 1) the dimensionality of PDE problems
grows exponentially with problem scale and can outpace the expressiveness of deep neural networks;
2) it remains difficult to scale neural networks to large numbers of parameters; and 3) the large scale
generation of training data for the training of large scale models is resource consuming.
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In this work, we propose Specialized Neural Accelerator-Powered Domain Decomposition Methods
(SNAP-DDM), which is a qualitatively new way to implement Neural Operators for solving large
scale PDE problems with arbitrary domain sizes and boundary conditions. Our method circumvents
the issues posed above by subdividing global boundary value problems into smaller boundary value
subdomain problems that can be tractably solved with Neural Operators, and then to stitch together
subdomain solutions in an iterative, self-consistent method using Domain Decomposition Methods
(DDMs). DDMs are the basis for solving large PDE problems with parallel computing (Smith, 1997;
Dolean et al., 2015), and they can be implemented using various algorithms including the Schwarz,
finite-element tearing and interconnecting (Wolfe et al., 2000), optimized Schwarz (Gander et al.,
2002), two-level (Farhat et al., 2000), and sweeping preconditioner (Poulson et al., 2013) methods.
While DDM methods have been previously explored in the context of PINNs (Jagtap et al., 2020;
Jagtap & Karniadakis, 2021), the accurate solving of arbitrary PDE problems using the combination
of Neural Operators and DDM has not been previously reported.

A principal challenge in adapting Neural Operators to DDM is that the subdomain solvers require
exceptional accuracy and generalizability to enable accurate DDM convergence (Corigliano et al.,
2015). To address this challenge, we train specialized Neural Operators that each solve particu-
lar classes of subdomain problems, such as those containing only sources or structural geometric
parameters as model inputs. We also propose the Self-Modulating Fourier Neural Operator (SM-
FNO) architecture, an augmented FNO architecture with modulation connections that is capable
of learning complex PDE boundary value operators with over 99% accuracy. We integrate these
Neural Operators directly into a Schwarz DDM iterative framework, where field solutions within
each subdomain are iteratively solved until the field solutions in and between every subdomain are
self-consistent, at which point the global field solutions are converged.

2 METHODS

For this study, we will initially focus on classical electromagnetics (EM) as a model system for
detailed analysis, followed by demonstrations of SNAP-DDM to fluid mechanics problems. Clas-
sical EM PDEs are governed by Maxwell’s equations, from which consolidation of Faraday’s and
Ampere’s laws produce PDEs in the form of wave equations. The magnetic field wave equation is:

∇× (
1

ε(r)
∇×H(r))− µ0ω

2H(r) = iωJ(r) (1)

ω is angular frequency, ε(r) is a heterogeneous dielectric material distribution that is a function of
spatial position r, J(r) is the current source distribution, and H(r) is the magnetic field distribution
to be solved. In two dimensions, the solutions to Maxwell’s equations can be reduced to those
involving a TE and TM polarization basis. For the TM polarization basis (Hz, Ex, Ey), which will
be the focus here, equation 1 reduces to a 2D scalar wave equation for Hz .

To adapt our surrogate PDE solver to more generalized global simulation frameworks, we consider
two types of global boundary conditions. One is the Bloch periodic boundary condition, in which the
fields at one boundary wrap around and connect with field solutions at the opposite boundary with an
additional Bloch phase. These boundaries are used to model infinitely periodic systems. The second
is the perfectly matched layer (PML), which have complex valued, spatially varying dielectric con-
stants that are specified to absorb incident electromagnetic waves without backreflection. Various
forms of PMLs have been proposed, and we utilize the uniaxial PML (Gedney, 1996). The Bloch
periodic and PML boundaries can be used exclusively for both horizontal and vertical-orientated
global boundaries or be used in combination to model semi-infinite scattering systems.

The global simulation domain is parameterized using the finite difference formalism, in which the
electromagnetic fields, sources, dielectric material distributions, and boundary conditions are spec-
ified on a rectilinear grid using the Yee formalism (Yee, 1966). In this manner, the discretized field
solutions are stable and consistent with the continuous differential form of Maxwell’s equations and
Equation 1. In the frequency domain, training data is generated using established finite-difference
frequency domain (FDFD) solvers (Hughes et al., 2019). For this study, we consider global elec-
tromagnetic simulation domains that are discretized with pixel dimensions of 6.25 × 6.25 nm. The
source wavelength is 1050 nm and the dielectric materials have a refractive index ranging from 1 to
4. Our consideration of dielectric media featuring relatively high dielectric constant values presents
unique challenges in modeling due to their ability to support strongly resonant optical interactions.
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2.1 SNAP-DDM

We consider a domain decomposition approach in which we subdivide the global domain into over-
lapping square subdomains with fixed 64 × 64 pixel dimensions (Figure 1a). Each subdomain for
a given DDM iteration poses a PDE boundary value problem with magnetic field boundary condi-
tions that are solved using a specialized pretrained subdomain model. In this study, we utilize the
overlapping Schwarz DDM formalism using Robin boundary conditions for each subdomain solver
(Figure 1b), also known as the transmission Robin type boundary condition, which is used in opti-
mized Schwarz Methods (Gander et al., 2001; Dolean et al., 2009). The DDM iterative algorithm is
illustrated in Figure 1c and the procedure is summarized as follows:

1. The magnetic field is initialized to be zero everywhere.
2. For the kth iteration, a boundary value problem is solved at each subdomain using a spe-

cialized subdomain model. The inputs to each subdomain model are the subdomain Robin
boundary values and a specialized image of the domain (i.e., image of the material, source,
or global boundary) and the output is an H-field map.

3. H-fields outputted from the subdomain models are used to update the subdomain Robin
boundaries in all subdomains, which are used as model inputs for the (k + 1)th iteration.

4. The algorithm terminates when a predetermined number of iterations is executed or when
the physics residue falls below a predetermined threshold.

Figure 1: SNAP-DDM framework. a) Global simulation domain and corresponding H-field so-
lution for a 2D electromagnetics problem featuring arbitrary sources, global boundary conditions,
and freeform grayscale dielectric structures. The global domain is subdivided into overlapping sub-
domains parameterized by position (i, j). Three types of specialized Neural Operator models are
trained to solve for three types of subdomain problems. b) Expression for the Robin type boundary
condition used in the specialized Neural Operator subdomain models. k(r) = 2πε(r)/λ is the wave
vector in a medium with dielectric constant ε and n is the outward normal direction. c) Flow chart of
the iterative overlapping Schwarz method. In iteration k, electromagnetic fields in each subdomain
are solved using the specialized Neural Operators, and the resulting fields are used to update the
subdomain boundary value inputs for iteration k+1. The “Boundary value update” box shows how
solved fields in the (i, j) subdomain are used to update the boundary value fields in nearest neighbor
subdomains for subsequent DDM iterations. B.V.: boundary value. PML: perfectly matched layers.

It is essential that the trained subdomain PDE surrogate solvers have near unity accuracy to ensure
that the DDM algorithm accurately converges. We introduce two innovations to enhance solver
accuracy. First, we train specialized neural operators that each solve specific classes of PDE prob-
lems. For 2D EM problems, we consider three types of Neural Operators that each specialize in
solving: 1) subdomains containing only PMLs in air; 2) subdomains containing only sources in air;
and 3) subdomains containing only heterogeneous grayscale material and air structures. Compared
to a generalized surrogate subdomain solver that would require many data inputs, our specialized
subdomain solvers each have inputs consisting of only a single specialized image together with a
vector containing the magnetic field Robin boundary conditions, which reduces the dimensionality
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of the learning problem and enables specialized physics to be more accurately captured in each net-
work. Additional specialized neural operators can be considered with increasing problem domain
complexity without loss of generality.

Second, we modify the original FNO architecture (Li et al., 2020) and introduce the Self-Modulating
Fourier Neural Operator (SM-FNO) subdomain surrogate solver (Figure 2). We specifically incor-
porate two key features, the first of which we term a modulation encoder. Mechanistically, we utilize
multiple residual blocks and fully connected layers to compress the input data into a latent modu-
lation tensor, which then modulates each linear transformation R in the neural operator through
element-wise multiplication (Figure 2). This concept builds on our observation that in the original
FNO architecture, the linear transform weight R in each Fourier layer is fixed and are independent
of the network input parameters, limiting the ability of the neural operator to accurately process
the highly heterogeneous input data featured in our problem. This modification is inspired by the
efficacy of self-attention in transformer architectures (Vaswani et al., 2017) and multiplicative in-
teractions between inputs in PINNs (Wang et al., 2021). We show in Section 4 that the modulation
method we introduced is crucial to enhance the expressivity of the model.

The second feature we propose is the explicit addition of a residual connection within each Fourier
layer. The residual connection concept dates back to the ResNet architecture (He et al., 2016), where
such connections were shown to mitigate the vanishing gradient problem and enable the training
of deeper models. From our experiments, we have discovered that explicit residual connections
are necessary for training deeper FNOs, especially when inputs are augmented with auxiliary data
like boundary values. We note that the residual connection is equivalent to initializing the 1 × 1
convolutional layer W using identity plus Kaiming or Xavier initialization (He et al., 2015), but we
keep the residual connection in Figure 2 for clarity and ease of implementation. We also note that
related concepts involving the addition of residual connections to the FNO architecture have been
explored elsewhere (Tran et al., 2021).

Figure 2: Self-Modulating Fourier Neural Operator Architecture for DDM subdomain solvers. Mod-
ifications to the standard Fourier Neural Operator (FNO) are highlighted in red and include: 1) the
addition of self-modulation connections that encode the input into a tensor, which is then multiplied
with the linear transformation matrix R* in each Fourier layer; and 2) the addition of residual con-
nections inside each Fourier layer. a: network input comprising a stack of images specifying the
specialized subdomain layout and Robin boundary values. u: network output comprising a stack of
images specifying the real and imaginary H-field maps. P: fully connected layer that increases the
number of channels. Q: fully connected layer that decreases the number of channels. F : Fourier
transform. σ: leaky-ReLU activation function (Xu et al., 2015). W: channel mixer via 1-by-1 kernel
convolution. R: original linear transform on the lower Fourier modes. R*: modulated linear trans-
form through an element-wise multiplication with the modulation tensor.

3 EXPERIMENTS

3.1 NETWORK TRAINING AND BENCHMARKING

To curate the training data, we build a data generation platform based on 1000 full-wave simulations,
each containing heterogeneous dielectric distributions and sources within a 960 × 960 pixel simu-
lation domain. The structural layouts are specified by a pipeline inspired from image processing,
with details provided in Appendix A. Random magnetic current sources surrounding the devices are

4



Under review as a conference paper at ICLR 2024

specified as a superposition of sinusoidal functions with random amplitudes and phases. The result-
ing simulated fields are then cropped into 64× 64 pixel sections to produce the subdomain training
dataset. Using this approach, we generate a total of 1.2M subdomain training data samples (100k
for the PML solver, 100k for the source solver, and 1M for the grayscale material solver). To train
the subdomain solvers, we apply a training scheme that utilizes a hybrid data-physics loss function:

L = Ldata + α(Lpde + cLbc) (2)

Detailed expressions of the data and physics loss terms are in Appendix B. c is a constant weight set
to 1 for simplicity (we found the model performance is insensitive to its value between 0.1 and 10)
and α is a dynamic weighting term that balances data loss and physics loss. Regularization of net-
work training with physical loss serves to explicitly enforce physical relationships between nearest
neighbor field pixels, which enhances the accuracy of magnetic field spatial derivatives calculated
using the finite differences method (Chen et al., 2022b). Such accuracy is critical for evaluating
electric fields and Robin boundary conditions from inferenced magnetic fields.

We benchmark our trained SM-FNO subdomain solver with the UNet (Ronneberger et al., 2015),
Swin Transformer (Liu et al., 2021) (details in Appendix F), the classical FNO, and the recently
improved version of FNO termed F-FNO (Tran et al., 2021). We also train our SM-FNO solver
without physics loss. The networks are trained with both 100K and 1M total data to show their
dependency on data scaling, except for the Swin Transformer model, which is only benchmarked on
100k training data (training on 1M data would take 2 months). The 100k and 1M data are split into
90% training data and 10% test data. All models use a batchsize of 64 and are trained for 100 epochs
for 100k training data or 50 epochs for 1M training data. The Adam optimizer with an individually
fine-tuned learning rate is used with an exponential decay learning rate scheduler that decreases the
learning rate by 30× by the end of training. A padding of 20 pixels is applied to all FNOs.

We consider only the material subdomain model in this analysis for simplicity and specify archi-
tectures with similar floating point operations (FLOP) and model weights. All data in Table 1 and
plots in Figure 3 are conducted on 10k newly generated, unseen test data. We see that the spec-
ification of a targeted model architecture is crucial to achieving high accuracy. The vanilla FNO
fails to learn the problem with good accuracy, even with a large number of model weights. While
the Swin transformer requires relatively fewer neural network weights, the expensive self-attention
operations require over 10x FLOPs compared to FNO-based architectures. A comparison of SM-
FNO-data-only and SM-FNO indicates that the explicit inclusion of Maxwell’s equations leads to a
dramatic reduction of Lpde and Lbc, which is essential to getting the DDM algorithm to converge.
Our largest model, SM-FNO-v2, is 99.0% accurate and features exceptionally low Lpde and Lbc.

Table 1: Electromagnetics: Subdomain model benchmark on 10k test data

Model (trained on 100k data) Ldata (%) Lpde (a.u.) Lbc (a.u.) Param (M) FLOP (G)

FNO-v1 9.04 2.21 0.309 73.8 0.79
F-FNO-v1 8.32 1.69 0.163 4.9 1.45
UNet-v1 5.40 0.73 0.099 5.2 1.53
Swin T-v1 5.15 2.15 0.148 1.9 9.60
SM-FNO-v1-data-only(ours) 3.95 7.08 0.162 4.7 0.66
SM-FNO-v1(ours) 3.85 0.50 0.067 4.7 0.66

Model (trained on 1M data) Ldata (%) Lpde (a.u.) Lbc (a.u.) Param (M) FLOP (G)

FNO-v2 5.34 1.43 0.124 131.2 1.86
F-FNO-v2 3.52 0.84 0.078 13.3 2.59
UNet-v2 2.93 0.44 0.080 11.1 3.28
SM-FNO-v2-data-only(ours) 1.36 2.76 0.073 10.2 1.43
SM-FNO-v2(ours) 1.01 0.30 0.030 10.2 1.43

Model FLOPs are computed using the open-source library fvcore. The FLOPs of FFT operations
are computed using the formula: 2L(NC2 + NC logN) for 2d FFTs, and 2L((H + W )C2 +
NC(logH + logW )) for 1d FFTs, in which N = HW is the number of pixels of each channel,
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L is number of layers and C is number of channels (Guibas et al., 2021). The factor 2 accounts for
forward and inverse FFT operations.

Figure 3: Benchmarking of material boundary value subdomain solvers on unseen test data. The
model inputs are a grayscale material dielectric distribution image (ε = 1 to ε = 16) and Robin
boundary conditions, and the outputs are images of the real and imaginary H-fields. The real parts
of outputted H-fields are shown. The L1 data loss is normalized to the mean absolute ground truth
field value and the physics residue map is the summed expression in Equation 5.

3.2 LARGE SCALE ELECTROMAGNETICS SIMULATIONS

Large scale electromagnetic simulations comprising high contrast heterogeneous media are noto-
riously hard to solve using end-to-end neural surrogate solvers. We show in the Supplementary
Section that the training of a Fourier neural operator to solve full-scale problems leads to funda-
mental scaling bottlenecks in dataset size, model size, and memory usage. We also find that PINNs
struggle to scale up to large simulation domains comprising high dielectric contrast media, and that
the solutions produced from trained PINN models are particularly sensitive to their detailed ini-
tialization and training conditions. These results are consistent with recent large scale simulation
demonstrations in the literature: one concept based on graph networks featured errors of 28% (Kho-
ram et al., 2022) and another concept based on neural operators featured errors ranging from 12%
to 38% (Gu et al., 2022).

On the other hand, our SNAP-DDM algorithm combining trained subdomain surrogate solvers with
the overlapping Schwartz DDM method produces a qualitatively different and better result. To
demonstrate, we solve a variety of large scale electromagnetics problems featuring a wide range
of dielectric constant and domain size configurations. We use the SM-FNO-v2 architecture for the
material and PML models and the lighter SM-FNO-v1 network for the source model. For each
problem, the global domain is initially subdivided into an array of subdomains, each of which are
classified as PML, source, or material subdomains. During each SNAP-DDM iteration, data from
subdomains of a given class are aggregated into a batch and inputted into the corresponding special-
ized SM-FNO, which infers and outputs the H-field solutions of the batch in a parallelized manner.
The DDM algorithm is stopped after a predetermined number of iterations.

Representative electromagnetic simulation results are shown in Figure 4 and demonstrate the ver-
satility and accuracy of SNAP-DDM. The simulations feature widely varying global domain sizes,
indicating the ability for our scheme to readily adapt to arbitrary global domain sizes through the
tiling of different numbers of subdomains and tailoring the amount of overlap between subdomains.
Some of these simulations feature the use of PML boundaries on all sides, which is ideal for purely
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scattering simulations, while others comprise half PML and half Bloch periodic boundaries, which
are a natural boundary choice for semi-periodic systems. The off-normal incident field in the thin
film problem is achieved by tailoring the line source profile with the appropriate Bloch phase. For
all of these examples, the final and ground truth fields appear indistinguishable, and the absolute
error in the final fields in all cases is near 5%.

Figure 4: SNAP-DDM evaluated on different electromagnetics systems. These systems include: a)
a titanium dioxide microlens, b) a thin film silicon-based metasurface, c) a volumetric grayscale
metamaterial scatterer, and d) an optimized grayscale thin film stack featuring high reflectivity.
The simulation domain contains pixels with physical dimensions of 6.25nm and the wavelength
λ = 1.05µm. Ground truth fields, model output fields, and field error are plotted on the same
scale for each device. The largest simulation domain is in (a) and comprises an array of 40 × 40
subdomains.

3.3 TIME COMPLEXITY

In this section, we benchmark the time complexity between SNAP-DDM and a conventional FDFD
solver for 2D EM problems. Based on the current accuracy level of SNAP-DDM, we choose to
benchmark the time it takes to reach an average mean absolute accuracy of 15%, evaluated on
10 random devices for each domain size. For SNAP-DDM, the number of iterations required for
convergence strongly depends on the material refractive index, and we therefore benchmark com-
putation time for simulation domains containing either silicon dioxide (n = 1.5) or titanium dioxide
(n = 2.48). Square domains with sizes ranging from 600 × 600 pixels to 2100 × 2100 pixels are
evaluated. The FDFD benchmark simulations are performed on 10 grayscale dielectric structures for
each domain size with refractive indices ranging from those of silicon dioxide to titanium dioxide.
SNAP-DDM is run with one NVIDIA RTX A6000 GPU, and the FDFD solver runs on single CPU
of model Intel Xeon Gold 6242R. From the time benchmark (See Appendix D), we observe that
for silicon dioxide, which has a relatively low refractive index, SNAP-DDM has better performance
compared to the FDFD solver. However, for titanium dioxide, SNAP-DDM requires significantly
more iterations and ultimately takes a much longer time than FDFD.

3.4 SNAP-DDM STEADY STATE FLUID FLOW SIMULATIONS

The SNAP-DDM concept can apply to a broad range of steady state PDE problems, and we demon-
strate here the application of SNAP-DDM to 2D steady state fluid flow problems. Fluid mechanics
systems are governed by the incompressible Navier-Stokes (NS) equation, which is:

∂u

∂t
+ (u · ∇)u− ν∇2u = −1

ρ
∇p (3)

We consider steady state flows in an arbitrary-shaped pipe with circularly shaped obstacles and a
viscosity of ν = 0.08 (Chen & Doolen, 1998). To train our subdomain boundary value solvers
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for these problems, we first simulate flows using the time domain Lattice-Boltzmann Method and
run the simulations until the flows are at steady state. A total of 200 ground truth simulations with
900× 600 pixel domain sizes are generated, from which the data for 100k subdomains with 64× 64
pixel sizes is produced to form the subdomain training dataset. Further details are in Appendix
A. The subdomain model takes an image of the obstacle and velocity field (u, v) Robin boundary
conditions as inputs, and it outputs images of the full velocity field. To compute physics loss, ground
truth pressures are used with the steady state version of Equation (3).

Benchmark results of our SM-FNO subdomain solver are summarized in Table 2 and Figure 5a,
and they indicate that our SM-FNO network displays the lowest data and physics loss compared
to alternative subdomain solver architectures, with data loss approaching 1%. Demonstrations of
steady state fluid flow simulations with SNAP-DDM are shown in Figure 5b, where the simulations
produce velocity profiles with errors less than 15%. The reduced accuracy in the flow SNAP-DDM
simulations, compared to those from electromagnetics, is likely due to the sub-optimal performance
of Schwartz DDM with Robin boundary conditions for steady state flow problems. DDM for fluids
problems continues to be a topic of active research, and further improvement in SNAP-DDM for
fluids will be followed up in future work.

Table 2: Steady state flow: subdomain model benchmark on 10k test data

Model Ldata (%) Lpde (a.u.) Lbc (a.u.) Param (M) FLOP (G)

FNO 6.5 1.77 2.44 69.2 0.34
Swin T 5.1 1.10 0.13 1.9 9.60
UNet 1.8 0.35 0.10 5.2 1.53
SM-FNO(ours) 1.3 0.23 0.06 4.7 0.66

Figure 5: SNAP-DDM pipeline for steady-state fluid flow problems. a) Subdomain model bench-
mark. b) Steady state fluid flow velocity fields solved with SNAP-DDM. Subdomain grid sizes are
8× 8 (left) and 8× 5 (right).

4 ABLATION STUDY

We perform an ablation study to understand the contribution of each modification to the FNO fea-
tured in our SM-FNO. Results are shown in Table 3 where L is the number of layers, C is the number
of channels (hidden dimension), and M is the number of Fourier modes for linear transform. We
start with the vanilla FNO without residual connections and find that the model fails to consistently
learn for depths larger than 4 layers. Upon training with 4 layers, increases in hidden dimension and
number of modes increases model size without contributing much to performance. When self modu-
lation is removed from the SM-FNO, deeper networks could be trained with the residual connection
but different depths and widths produced similar sub-optimal performance. This indicates that with-
out the modulation path, model expressivity is limited. When we remove the residual connections
from the SM-FNO, the model did not work well with large depths. The best model contained 4
layers and produced reasonable accuracy.
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It is clear the two modifications that we added to the FNO architecture are both synergistic and es-
sential to improving subdomain solver accuracy: the residual connection enables deep architectures
to be trained while the self-modulation connection increases the model expressivity by promoting
self-multiplicative interactions within each input. In addition, the hybrid physics-augmented training
scheme significantly lowers the physical residue while slightly reducing the data loss. We also point
out that our use of Robin boundary conditions ensures that the subdomain solvers solve a well-posed
PDE problem, unlike alternative boundary conditions such as Dirichlet boundary conditions.

Table 3: Ablation study

Model Ldata Lpde Lbc Param FLOP L C M
(%) (a.u.) (a.u.) (M) (G)

FNO without residual connection 16.01 1.92 0.217 41.0 0.97 4 100 16
SM-FNO remove residual connection 7.61 1.03 0.123 8.9 0.78 4 44 16
SM-FNO remove self modulation - 1 8.04 1.93 0.166 42.0 1.00 10 64 16
SM-FNO remove self modulation - 2 6.11 3.29 0.155 32.8 0.82 20 40 16
SM-FNO-v1 3.85 0.50 0.067 4.7 0.66 16 16 16
SM-FNO-v2-data-only 1.36 2.76 0.073 10.2 1.43 16 24 16
SM-FNO-v2 1.00 0.30 0.030 10.2 1.43 16 24 16

The accuracy of the SNAP-DDM framework is dependent on multiple factors. Plots of DDM accu-
racy versus iterations for 20 devices under different setups is shown in Figure 6. These plots show
that error from SNAP-DDM increases significantly when we replace the large material model with
a lighter version, indicating the need for the specialized subdomain models to have near unity accu-
racy. These plots also show that when a fraction of models is trained without physics, SNAP-DDM
error also increases, indicating the need for hybrid data-physics training for all subdomain models.

Figure 6: SNAP-DDM convergence curves with different types of subdomain solvers. The plots
show DDM algorithm error versus iteration count, with each curve representing field error from a
simulated random grayscale device within a 900×900 pixel domain (15 by 15 subdomains). a): The
proposed setup with 3 specialized subdomain models. b) Same as (a) but use of a lighter material
model trained on 100k data. c) Same as (a) but use of source and PML models trained using only
data loss. The slower convergence curves correspond to materials with higher average dielectric
constant.

5 LIMITATIONS AND FUTURE WORK

There are multiple potential speedup strategies with SNAP-DDM that can be considered in future
work. Preconditioning is a common strategy in DDM for improving convergence speed by reduc-
ing the condition number of the system, especially for large and ill-conditioned problems (Vion &
Geuzaine, 2014; Gander & Zhang, 2019). Increasing the subdomain size, and more generally in-
corporating a non-uniform grid or mesh-to-grid approach to subdomain solving, has the potential
to introduce computational savings, though a further quantitative analysis into the balance between
model size and latency is required. More sophisticated SNAP-DDM implementations may incor-
porate multi-level or multi-grid concepts for initialization and improved memory management. We
also anticipate that higher order boundary conditions can help with DDM convergence and accuracy.
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The code for this work can be found at: https://github.com/Anonymousiclr23/iclr

A DATA GENERATION

To generate random geometric distributions for 2D EM problems that include both regular-shaped
objects and structures with free-form topologies, we adopt a pipeline inspired from image process-
ing:

1. Generate random noise map in range (0, 1).

2. Threshold by some level between 0 and 1.

3. Erode the map with a Gaussian filter.

4. Dilate the map using filters with tilted elliptic profiles.

5. Apply Gaussian filter for smoothing.

By tuning the threshold level, filter weight, and erosion and dilation parameters, random shaped
geometries with different feature size distributions are generated. We generate Gaussian random
fields and Voronoi diagrams with grayscale values between 1 and 16, and then we use the random
geometries as masks to create the grayscale material distributions used to produce ground truth
data. The Gaussian random field creates a continuously changing dielectric that are representative
of features appearing in freeform metamaterial designs. The Voronoi diagram creates boundaries
between different constant regions that produces material boundary features in the training data.

Line sources with a mix of random sinusoidal profiles are placed on all four sides of the generated
grayscale material to create randomly scattering fields in all directions. PML boundaries are places
on all four sides with thickness of 40 pixels. We use ceviche FDFD solver to generate 1000 fullwave
simulations of size 960 by 960 pixels, from which we cropped the fields and physical properties to
produce an 100k material dataset, an 1M material dataset, an 100k source dataset and an 100k PML
dataset for training specialized subdoamin models.

Figure 7: Pipeline for data generation. a) Image processing-inspired procedure for generating ran-
dom dielectric geometries. b) Two kinds of grayscale geometries and corresponding simulated H-
fields. c) Flows in arbitrarily-shaped pipe with circular obstacles.

For steady state fluids simulations, we generate pipes with arbitrarily-shaped middle sections that are
created by connecting two random Bézier curves. The idea is to create boundaries beyond straight
vertical walls that may appear in freeform flow flow scenarios. Circular obstacles with randomly
sampled radii are placed in the pipe in a manner where a minimum gap size is guaranteed. We use
constant velocity(u = u0, v = 0) as the boundary condition for the inlet surface. For the bottom
outlet, v = 0 and P = constant is used as the boundary condition. The viscosity is fixed to be
0.08 and steady state flow is reached when the relative velocity change after 100 time steps is less
than 10−4. The steady state solution is not guaranteed in this way, but we found that 199 out of
200 simulations reached steady state. For both EM and fluids cases, subdomain data is produced by
cropping data from large-scale simulations with optional rotation as data augmentation method.
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B LOSS FUNCTIONS

Here we present the data-physics loss function used to train the subdomain models:

Ldata =
1

N

N∑
n=1

∣∣∣∣∣∣H(n) − Ĥ(n)
∣∣∣∣∣∣
1

(4)

Lpde =
1

N

N∑
n=1

∣∣∣∣∣∣∇× (
1

ε(r)
∇×H(n))− µ0ω

2H(n)
∣∣∣∣∣∣
1

(5)

Lbc =
1

N

N∑
n=1

∣∣∣∣∣∣g − (
jk(r)H(n) − ∂H(n)

∂n

)∣∣∣∣∣∣
1

(6)

in which Ĥ is the ground-truth magnetic field, k(r) = 2πε(r)/λ is the wave vector in the medium.

C HYBRID DATA-PHYSICS TRAINING SCHEME

The subdomain solvers are trained using a hybrid loss function composed of a data term, Ldata, and
a physics loss term, Lphysics, which is scaled by a hyperparameter α:

L = Ldata + α · Lphysics.

Previous work in physics-augmented neural network training has demonstrated that training conver-
gence and performance is sensitive to the relative magnitude of the physics loss term compared to
the data loss term (Chen et al., 2022a). To maximize the generality of the proposed training setup,
we employ a dynamically tuned hyperparameter, α, which is scaled throughout the training process,
like the approach taken in the WaveY-Net study (Chen et al., 2022a). At the end of each epoch,
α is modified such that the ratio between α · Lphysics and Ldata is a constant, α′, throughout the
entire training process. The practice of dynamically tuning the physics loss coefficient greatly stabi-
lizes training convergence across different simulation problems, thereby allowing a working training
scheme to readily generalize to problems governed by different physics equations.

The constant physics ratio, α′, is neural network model dependent and appears insensitive to the two
types of problems being simulated. All the FNO models are trained with α′ = 0.3 and the U-Net
and Swin Transformer are trained with α′ = 0.1. However, due to the slower learning rate of vision
transformers compared to convolutional neural networks, α′ is set to 0 for the first 50 training epochs
to prevent divergent training behavior. Divergent behavior occurs in domains with high contrast
material due to the presence of strong optical resonances. Without substantial influence from data to
push the optimization in regimes with the correct resonances, unstable interplay between bulk and
boundary physics loss leads the optimization process astray.

D TIME COMPLEXITY

Figure 8: Time complexity comparison with 2D electromagnetics SNAP-DDM and a conventional
FDFD solver for two different dielectric materials.
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E IMPLEMENTATION DETAILS FOR U-NET

The U-Net architecture employed in this study is constructed as follows:

• Each half of the U-shaped architecture contains 5 blocks of convolutional layers;
• Each convolutional block is composed of 6 convolutional layers;
• Each convolutional layer is composed of a sequence of operations: convolution, batch

normalization, and ReLU activation;
• The number of convolutional kernels contained in the convolutional layers of each block

is increased by a factor of two compared to the previous block’s number, starting with 30:
30 · (2(block−1)). The number in the blocks of the second half of the U-shaped architecture
mirror those in the first half.

F IMPLEMENTATION DETAILS FOR SWIN TRANSFORMER

We designed our implementation of the Swin Transformer with the same shifting windows and
windowed attention as featured in previous architectures (Liu et al., 2021). Notably, we abstain from
utilizing patch merging, as our network design maintains consistent input and output dimensions.
Our architecture comprises multiple stacked Swin Transformer layers, all configured with uniform
patch sizes. The hyperparameters regarding the model is chosen based on the Swin transformer
model used in image semantic segmentation tasks, and adjusted based on the input size of our
subdomain problem.

To elaborate on the architectural parameters:

• Patch Size: We employ a patch size of 1.
• Window Size: Each attention window spans 9 patches.
• Number of Heads: Multi-head attention is applied with 16 attention heads.
• Swin Transformer Blocks: Each layer of the network contains 16 Swin Transformer blocks

with window shifting enabled.
• Layers: The network is formed by stacking 4 such layers.

We initialize trainable absolute positional encodings drawn from a normal distribution with a mean
of 0 and a standard deviation of 0.01. For encoding domain-specific information, such as the input
refractive index in EM simulations or obstacles in fluid simulations, we employ a matrix multiplica-
tion to transform these data into a 48-dimensional vector. Boundary conditions are treated similarly
but encoded using a separate encoder. These encodings are then padded around the original image
for 4 times, leading to an overall 72 by 72 input to the network. Corners not covered are left as 0.
The output of the network is subsequently transformed using another matrix multiplication to ensure
it conforms to the dimensions required for the final output. For training the model, we use Adam
optimizer with learning rate set to 0.001 for initial, and then exponentially decay it to 0.0001 over
the training course of 50 epochs. We do not use dropout or weight decay during training.
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