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Abstract
The performance of models trained by Multi-
Agent Reinforcement Learning (MARL) is sen-
sitive to perturbations in observations, lowering
their trustworthiness in complex environments.
Adversarial training is a valuable approach to
enhance their performance robustness. How-
ever, existing methods often overfit to adver-
sarial perturbations of observations and fail to
incorporate prior information about the policy
adopted by their protagonist agent, i.e., the pri-
mary one being trained. To address this im-
portant issue, this paper introduces Adversar-
ial Training with Stochastic Adversary (ATSA),
where the proposed adversary is trained online
alongside the protagonist agent. The former con-
sists of Stochastic Director (SDor) and SDor-
guided generaTor (STor). SDor performs policy
perturbations by minimizing the expected team
reward of protagonists and maximizing the en-
tropy of its policy, while STor generates adver-
sarial perturbations of observations by follow-
ing SDor’s guidance. We prove that SDor’s soft
policy converges to a global optimum accord-
ing to factorized maximum-entropy MARL and
leads to the optimal adversary. This paper also
introduces an SDor-STor loss function to quan-
tify the difference between a) perturbations in the
agent’s policy and b) those advised by SDor. We
evaluate our ATSA on StarCraft II tasks and au-
tonomous driving scenarios, demonstrating that
a) it is robust against diverse perturbations of ob-
servations while maintaining outstanding perfor-
mance in perturbation-free environments, and b)
it outperforms the state-of-the-art methods.
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1. Introduction
Deep reinforcement learning leverages the representational
power of deep learning alongside the decision-making ca-
pabilities of reinforcement learning, allowing agents to
learn and adapt through interactions with dynamic environ-
ments (Sutton & Barto, 2018). In Multi-Agent Reinforce-
ment Learning (MARL), agents are not isolated because
they actively interact with and adapt to environments in
both cooperative and/or competitive frameworks. This in-
teraction enables them to develop their sophisticated strate-
gies and allows them to optimize their behaviors not only
on an individual level but also on the system level, thereby
enhancing their ability to handle complex tasks. MARL
proves particularly valuable for data-driven applications
(Cai et al., 2023; Yuan et al., 2023a) like autonomous driv-
ing (Wang et al., 2024a; Zhang et al., 2023) and recom-
mendation systems (Deng et al., 2023; Gui et al., 2019),
where adaptive and decentralized decision-making is cru-
cial. However, models trained by deep learning often lack
robustness to dynamic and noisy environments because
they are typically trained under the assumption of indepen-
dent and identically distributed training data (Goodfellow
et al., 2014). This assumption is rarely met in real-world
scenarios, leading to performance degradation when mod-
els encounter a data distribution that differs from the train-
ing set’s (Wang et al., 2024b; Zhou et al., 2024a).

In MARL, a deep neural network module exacerbates this
robustness issue, causing them to make incorrect or sub-
optimal decisions in critical situations. It is essential to
enhance the robustness of MARL-trained models. Much
progress has been made on doing so in deep learning for
classification tasks such as adversarial training (Goodfel-
low et al., 2014; Madry et al., 2018; Wong et al., 2020)
where the goal of the adversary is to identify and use the
strongest adversary. Yet directly applying these approaches
to Single-Agent Reinforcement Learning (SARL) scenar-
ios introduces some great challenges: 1) Mismatch be-
tween short-term and long-term goals. Aversarial train-
ing like the Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2014) and projected gradient descent (Madry
et al., 2018), borrowed from classification tasks, perturb
the agent’s observation at each time step (Huang et al.,
2017). However, one-step misclassification does not equate
to minimized long-term rewards. 2) Difficulty in high-
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dimensional environments. Existing studies (Zhang et al.,
2020; 2021a) prove that training an adversary to generate
an adversarial perturbation of observation can be modeled
as a Markov decision process, in which the reward received
by the adversary is the negative counterpart of the reward
received by the protagonist agent, and its action space is
the observation space of the protagonist agent. Then they
use reinforcement learning to train an adversary. How-
ever, high-dimensional action space in reinforcement learn-
ing presents great implementation difficulties. The work in
(Sun et al., 2022b) attempts to address these challenges by
training adversaries by using policy adversarial actor and
director. The latter provides suggestions for policy per-
turbations of the protagonist agent to achieve its worst-
case performance, while the former generates an adversar-
ial perturbation of observation.

In MARL, cooperation among agents means that an adver-
sary for one protagonist agent must consider its impact on
team rewards. The above adversarial training methods to
MARL can improve the trained model’s robustness (Guo
et al., 2024), but there are limitations: 1) Overfitting to
adversarial perturbations. In MARL, the strongest ad-
versary often causes models to overfit adversarial perturba-
tions of observations, losing performance when handling
clean ones due to suboptimal data collection. 2) Misalign-
ment between actor and director. When applying the
policy adversarial actor and director framework from ro-
bust SARL to MARL, there are gaps between the actor and
the director. The adversarial perturbations of observations
generated by the former do not always align with the lat-
ter’s intended influence on the protagonist agent’s policy,
causing instability in training. To address these issues, we
propose Adversarial Training with a Stochastic Adversary
(ATSA) as a novel framework designed to enhance robust-
ness in MARL with discrete action space and deterministic
policies. This study makes the following contributions:

1) It proposes ATSA. Its stochastic adversary consists of
two components: a) Stochastic Director (SDor) that
suggests policy perturbations by minimizing the ex-
pected team reward of the protagonist agent while
maximizing entropy to promote exploration and b)
SDor-guided generaTor (STor) that generates adver-
sarial perturbations of observations based on SDor’s
guidance. This framework allows agents to dynam-
ically adjust to both adversarial and clean condi-
tions, thus greatly improving the robustness of MARL
models. By leveraging factorized maximum-entropy
MARL, we theoretically demonstrate that the soft pol-
icy of SDor converges to a global optimum, and when
combined with STor, SDor’s optimal policy induces
the optimal adversary.

2) It designs an SDor-STor loss function, which is new,

to quantify the difference between perturbations sug-
gested by SDor and those implemented by STor. This
function is used to refine the coherence between STor
and SDor, ensuring that the protagonist agent’s policy
changes align with the director’s intended modifica-
tions.

3) To evaluate the robustness of models trained by
ATSA, this study conducts extensive experiments on
StarCraft II tasks and autonomous driving scenarios.
The results show that ATSA is robust to adversarial
perturbations of observations generated by four meth-
ods while maintaining strong performance in random
and perturbation-free environments.

2. Preliminaries
In this section, we introduce the definitions of Decentral-
ized Partially Observable Markov Decision Process (Dec-
POMDP), Observation-adversarial Dec-POMDP (OD-
POMDP), and Policy-adversarial Dec-POMDP (PD-
POMDP). Some important concepts, abbreviations, and
symbols related to this paper are described in Appendix B.

2.1. Dec-POMDP

A Dec-POMDP (Oliehoek & Amato, 2016) is typically de-
scribed as follows:

G ≜
〈
S, {Oi}i∈N , {Ai}i∈N ,N , r, {Zi}i∈N , P, γ

〉
where S is the state space, s ∈ S is a state, i ∈
N ∆

={1, . . . , N} is a protagonist agent, Ai is the action
space for protagonist agent i, ai ∈ A is the action taken
by protagonist i, a ∈ ×i∈NAi is the joint action of all
protagonist agents, Oi is the observation space of protag-
onist agent i, oi ∈ Oi is the observation of protagonist
agent i calculated using the observation function Zi (s, i) :
S × N → Oi, r : S ×i∈N Ai → R is the reward func-
tion, P : S ×i∈N Ai → ∆(S) is the transition proba-
bility function, and γ ∈ [0, 1] is the discount factor. Un-
der the Centralized Training with Decentralized Execution
(CTDE) paradigm, each protagonist agent learns its policy
πi
(
ai|τ ip

)
: T ip × Ai → [0, 1] based on its trajectory

τ ip ∈ T ip : Oi × Ai. From the centralized perspective,
the joint policy of all protagonist agents is represented as
πjt (a|τ p), where τ p ∈ ×i∈NT ip is the joint trajectory of
all protagonist agents.

2.2. OD-POMDP

An OD-POMDP (Zhou et al., 2024c) extends Dec-POMDP
by introducing adversarial perturbations affecting the
agents’ observations. Its formal definition is as follows:

Ĝoa≜
〈
S,{Oi}i∈N,{Ai}i∈N,{Bi

ϵ}i∈M,M,N,r,{Zi}i∈N,P,γ
〉
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where Bi
ϵ = {ôi ∈ Oi : ∥ôi − oi∥∞ ≤ ϵ} denotes a

set of adversarial observation of protagonist agent i, an
adversarial observation ôi ∈ Bi

ϵ is within an ϵ-bounded
ℓ∞-distance from the clean observation oi, M ⊆ N is
the set of observation adversary, and ô ≜ [ôi]i∈M is the
joint action of observation adversary.The difference be-
tween OD-POMDP and Dec-POMDP is the inclusion of
observation adversary policy vi which aims to modify the
protagonist’s observation. If the observation adversary pol-
icy is stochastic, i.e., vi(·|τ ip) : T ip × Bi

ϵ → [0, 1],
then v ≜ [vi]i∈M represents the joint policy of the ob-
servation adversary, and πjt

v (·|τ p) = πjt (·|τ̃ p), where
τ̃ p ≜ [τ̃ i]i∈N is the joint trajectory of protagonist agents,
τ̃ ip = τ̂ ipI(i ∈ M) + τ ipI(i /∈ M) is the trajectory of
the protagonist agent which may be perturbed by adversary,
and τ̂ ip ∈ T̂ ip : Bi

ϵ × Ai is composed of the adversarial
observation and the action. õ ∼ v (·|τ p) denotes the joint
policy of the protagonist agent under this adversary, where
õ ≜ [õi]i∈N , and õi = ôiI(i ∈ M) + oiI(i /∈ M).

2.3. PD-POMDP

Given a Dec-POMDP G, a fixed joint stochastic policy of
protagonist agents πjt, and a perturbation budget ϵ ≥ 0,
a PD-POMDP (Sun et al., 2022b; Zhou & Liu, 2023) is
defined as

Ĝpa ≜
〈
S, {Oi}i∈M, {Âi}i∈M,M, r̂, {Zi}i∈M, P̂ , γ

〉
where Âi : {d ∈ [−1, 1]

|Ai|
,
∑|Ai|

i=1 di = 0} is the action
space and represents the policy perturbations of the protag-
onist agent. The relationship between P̂ and P (resp. r̂ and
r) in PD-POMDP and Dec-POMDP, respectively, is

P̂ (st+1|st, ât)=
∑

at∈A1×···AN

πjt(at|g(ât,ot),τ̃
p
t−1

)
P (st+1|st,at)

r̂ (st, ât) = −
∑

at∈A1×···AN

πjt (at|g (ât,ot) , τ̃
p
t−1

)
r (st,at) .

The function gi generates the corresponding adversarial ob-
servations based on the action of the policy adversary âi,
with g ≜ [gi]i∈N . If i /∈ M, then gi = oit, and otherwise,

gi
(
âit, o

i
t

)
=argmaxôit∈Bi

ϵ

∥∥∥∥πi
(
·|ôit, τ̂

ip
t−1

)
−πi

(
·|oit, τ̂

ip
t−1

)∥∥∥∥
s.t.
(
πi
(
·|ôit, τ̂

ip
t−1

)
−πi

(
·|oit, τ̂

ip
t−1

))T
âit

=

∥∥∥∥πi
(
·|ôit, τ̂

ip
t−1

)
− πi

(
·|oit, τ̂

ip
t−1

)∥∥∥∥∥âit∥
(1)

where πi (·) represents the policy function of the protag-
onist agent i. This optimization seeks the adversarial ob-
servation ôit within the allowable set Bi

ϵ that maximally
deviates the policy’s behavior from the clean observation
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Figure 1. The figure illustrates the evolution from OD-POMDP to
PD-POMDP. Under M = N , i.e., all protagonist agents are per-
turbed by adversaries. In OD-POMDP, the protagonist agent re-
ceives observation modified by the observation adversary, makes
decisions based on the adversarial observation, and then receives
rewards from the environment based on its actions. PD-POMDP
generates adversarial observations via SDor and STor. SDor gen-
erates policy perturbation suggestions, while STor generates ad-
versarial perturbations based on these suggestions. Unlike OD-
POMDP, where the adversary’s goal is only to minimize the pro-
tagonist agent’s reward, PD-POMDP modifies the SDor’s objec-
tive to include maximizing policy entropy.

oit. The constraint ensures that the adversarial observation
achieves the maximum possible impact in the direction of
âit. Following Theorem 7 in (Sun et al., 2022b), we know
that an optimal policy adversary hi

∗ induces an optimal ob-
servation adversary against πi. In other words, the opti-
mal observation adversary vi∗ in Ĝoa can be constructed by
combining hi

∗ in PD-POMDP Ĝpa with the function gi. In
the CTDE paradigm, the objective of finding an optimal
observation adversary v∗ in Ĝoa is conducted adversarial
training with the protagonist agent, thereby enhancing the
robustness of the protagonist agent while this objective can
be transformed into the task of finding an optimal joint pol-
icy hjt in Ĝpa.

3. Adversarial Training with Stochastic
Adversary

In this section, we introduce ATSA. As illustrated in Fig. 1,
our framework consists of two components: an observation
adversary and a protagonist agent.

3.1. Objective Function of SDor

In the adversarial training process, using the strongest ad-
versary may lead to instability of training the protagonist
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agent or overfitting to the strongest adversarial perturba-
tions, ultimately failing to achieve robustness. To address
this problem, we use a stochastic adversary. PD-POMDP
Ĝpa is viewed as a probabilistic graphical model. Following
(Levine, 2018), we introduce an additional optimality vari-
able Xt which takes binary values to indicate the optimality
of the joint actions taken by all policy adversaries. Specif-
ically, the probability p(Xt = 1|τt, ât) ∝ exp(r(st,at))
models the likelihood such that a particular joint action is
optimal. We define the objective of SDor by using max-
imum entropy. The related derivation process is given in
Appendix C.
Definition 3.1 (Objective of SDor). The maximum
entropy-based objective function of SDor, based on vari-
ational inference, is defined as:

J
(
hjt)=Es1:T∼P̂ ,â1:T∼hjt

[
T∑

t=1

(
r̂ (st, ât)+αH

(
hjt (·|τ a

t )
))]

(2)
where α is a temperature parameter and H(·) denotes the
entropy of SDor’s joint policy.

In Definition 3.1, α controls the trade-off between entropy
and reward maximization. As α → ∞, the SDor’s pol-
icy becomes completely random. By adjusting the value of
α, the level of randomness in the policy can be effectively
controlled. Following the CTDE paradigm, the soft pol-
icy of an individual SDor is denoted by hi

(
·|τ ia

)
, where

τ ia ∈ T ia : Oi × Âi represents its trajectory. The joint
soft policy of all SDors is denoted by hjt (·|τ a), where
τ a ∈ ×i∈MT ia represents their joint trajectory. To en-
sure consistency, we assume that the individual optimal
soft policies satisfy the individual-global-optimal condition
(Zhang et al., 2021b):

hjt
∗ (â|τ a) =

∏
i∈M

hi
∗
(
âi|τ ia

)
. (3)

Then we derive the forms of the optimal joint soft policy
and the optimal individual soft policy that maximize this
objective. The derivation process is given in Appendix D.
Proposition 3.2 (Optimal Joint Policy of SDors under
Maximum Entropy-based Objective Function). The opti-
mal joint soft policy of all SDors denoted as hjt

∗ which max-
imizes the entropy-regularized objective, is given by:

hjt
∗ (â|τ a) = exp

(
α−1

(
Qjt

∗ (τ
a, â)− V jt

∗ (τ a)
))

, (4)

where Qjt
∗ is the optimal joint soft Q-function and V jt

∗ is the
optimal joint soft value function.
Proposition 3.3 (Optimal Individual Policy of SDor under
Maximum Entropy-based Objective Function). For each
SDor i, the individual optimal soft policy, which conditions
only on its own trajectory τ ia , is given by:

hi
∗
(
âi|τ ia

)
=exp

(
α−1
i

(
Qi

∗
(
τ ia , âi

)
− V i

∗
(
τ ia
)))

, (5)

where Qi
∗ and V i

∗ are the optimal soft Q-function and value
function for the agent i, respectively.

By plugging (4) and (5) into (3), the optimal joint and the
individual soft-Q-functions should satisfy

Qjt
∗(τ

a,â)=
∑
i∈M

α

αi

[
Qi

∗
(
τ ia, âia

)
−V i

∗
(
τ ia
)]
+V jt

∗ (τ a) . (6)

3.2. SDor and STor

In this section, we provide an explanation of SDor’s learn-
ing process and STor’s computation method. We then theo-
retically demonstrate that combining SDor and STor results
in an optimal stochastic observation adversary.

3.2.1. SDOR

We follow the factorized optimal joint policy (Zhang
et al., 2021b) to learn the optimal policy of SDor. In
the joint soft policy evaluation step, applying a soft Bell-
man backup operator Γhjt iteratively to update the joint
soft Q-function of SDor Qjt as ΓhjtQjt (τ a

t , ât) ≜ r̂t +
γEτt+1

[
V jt (τt+1)

]
where the soft value function is de-

fined as V jt (τ a
t ) = Ehjt

[
Qjt (τ a

t , ât)− αloghjt (ât|τ a
t )
]
.

This formulation provides a foundation for the convergence
of the joint soft policy. The individual soft policy is up-
dated according to Proposition 3.3, with more details avail-
able in Appendix E. Alternating between joint soft policy
evaluation and individual soft policy improvement leads to
convergence, as formalized in the following theorem:

Theorem 3.4. (Factorized Soft Policy Iteration of SDor)
Consider a joint soft policy of all SDors that can be fac-
torized as hjt =

∏
i∈M hi. By repeatedly applying joint

soft policy evaluation and individual soft policy improve-
ment, this process converges to a policy hjt

∗ such that
Qjt

hjt
∗
(τ a, â) ≥ Qjt

hjt(τ
a, â) for all [hi ∈ Πhi

]i∈M and

(τ a, â) ∈ ×i∈MT ia ×i∈M Âi with | ×i∈M Âi| < ∞.

Based on Theorem H.6, we know that the individual soft
policies of SDor guarantee convergence to the global op-
timum. The proof is given in Appendix E. To learn the
SDor’s soft policies, we employ a deep neural network.
During training, the relationship between the joint soft pol-
icy and the individual soft policy of SDor is formulated as:

Qjt (τ a, â) =
∑
i∈M

λϕa (τ a, â)
[
Qi

θia

(
τ i, âi

)
−V i

Φia

(
τ i
) ]

+ V jt
Φa (τ

a)

(7)

where ϕa, Φa, Φia , and θia represent the parameters of the
weight network, the joint soft value network, the individual
soft value network, and the individual soft-Q network, re-
spectively. The individual soft-Q network, joint soft value
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network, and weight network are trained by minimizing the
temporal-difference error:

L
(
{θia},Φa,ϕa

)
=E(τa,â,r̂,τa′,â′)∼Da

[(
Qjt (τ a, â)

−
(
r̂ + γ

(
Qjt

tar

(
τ ′, â′ − α log hjt

(
â′|τ a′

)))))2] (8)

where Da is the replay buffer of SDor, Qjt
tar is target net-

work. To train the individual value networks of SDor, the
following loss function is minimized:

L
(
ϕi
)
=Eτ ia∼Da

[(
E
[
Qi
(
τ ia, âi

)
−αilogh

i
(̂
ai|τ i

)]
−V i

(
τ ia
))

2
]

(9)
Finally, the individual soft policies of SDor are optimized
using the policy gradient method, where the objective is:

Jhi

(
φi
)
=Eτ ia∼Da,âi∼hi

[
αilogh

i
(̂
ai|τ ia

)
−Qi

θia

(
τ ia,âi

)]
.

(10)

3.2.2. STOR

Once the optimal joint policy of SDor is obtained, STor
seeks to generate adversarial observations that lead the
protagonist agent to take actions aligned with SDor’s in-
tentions. The adversarial observation of each protagonist
agent can be determined individually based on its clean ob-
servations and SDor’s actions. The optimization objective
for STor i (i ∈ M) is given in (1). We consider the case
where the protagonist agent’s policy is deterministic and
SDor’s policy is stochastic, which modifies the optimiza-
tion objective function as follows:

DKL

(
Eôi∼hi

φi

[
πi
φip

(
âi|ôi, τ̂ ip

)]
, hi

φi

(
·|oi,τ̂ ip

))
(11)

where φip represents the parameters of the policy network
of protagonist agent i. However, this expression is in-
tractable for optimization. In practice, we minimize the
expected KL divergence over samples:

Li
(
ôi
)
= Eâi

[
DKL

(
πi
φip

(
ai|ôi, τ̂ ip

)
, hi

φi

(
âi|oi,τ̂ ip

))]
.

(12)
We apply the FGSM (Goodfellow et al., 2014) to solve this
optimization problem:

gi
(
oi
)
= clip

(
oi − βsgn

(
∇oiLi

(
oi
)))

(13)

where β is the step size, and clip(·) ensures that the per-
turbed observation ôi remains within a valid range. We
then demonstrate that if SDor’s joint soft policy is optimal
and STor has obtained the optimal solution to (1), this re-
sults in the optimal stochastic observation adversary.
Theorem 3.5 (Optimality of SDor-STor). For any PD-
POMDP Ĝpa, any fixed joint deterministic policy of protag-
onist agents πjt, and any attack budget ϵ ≥ 0, an optimal
joint soft policy hjt

∗ of SDor in Ĝpa induces an optimal an
optimal soft policy of the observation adversary against πjt

in Ĝoa.

Theorem 3.5 demonstrates that if SDor learns the optimal
joint soft policy within Ĝpa, it can effectively collaborate
with STor to produce the optimal stochastic observation ad-
versary. The relevant proof is detailed in Appendix F.

3.3. SDor-STor Loss Function

From Theorem 3.5, we know that the optimal stochastic
observation adversary requires collaboration between SDor
and STor. However, previous work (Sun et al., 2022b) does
not fully account for this aspect, which may result in deci-
sions by the protagonist agent, based on the adversarial ob-
servations generated by STor, that do not align with SDor’s
intentions. Therefore, we propose an SDor-STor loss func-
tion to measure this gap. If the protagonist policy is de-
terministic and discrete, we use the cross-entropy loss to
measure this difference:

L
(
φi
)
=Eτ̃ ip∼Dp,τ ia∼Da

[
πi
(
ai|τ̃ ip

)
loghi(âi|τ ia)

]
(14)

In conjunction with the individual soft policy objective
function of SDor (10), we optimize the individual soft pol-
icy network by updating it with the gradient of

L′ (φi
)
= J

(
φi
)
+ κL

(
φi
)

(15)

where κ is a hyperparameter that regulates the impact of
our loss function on SDor’s individual policy. For a com-
prehensive explanation of the training process and com-
plexity analysis, see Appendix G.

4. Experiments
4.1. Experimental Settings

4.1.1. ENVIRONMENT SETTINGS

We evaluate our adversarial training framework on two
challenging benchmarks: the StarCraft Multi-Agent Chal-
lenge (SMAC) (Samvelyan et al., 2019) and a Connected
and Autonomous Vehicles (CAV) environment (Chen et al.,
2023). We conduct experiments on three SMAC maps con-
taining 3 Marines (3m), 3 Stalkers vs 3 Zealots (3s 3z),
and 8 Marines (8m) as well as one CAV scenario with three
autonomous vehicles and 1–4 human-driven ones. More
details about the SMAC and CAV environments are in-
cluded in Appendix H.1.

4.1.2. BENCHMARK METHODS

All benchmarks are implemented based on the classical
MARL methods: Value Decomposition Network (VDN)
(Sunehag et al., 2018) and Q-MIXing network (QMIX)
(Rashid et al., 2020). We use the following as bench-
marks: No Adversary (NoAdv), Random Noise (RN), ad-
versarial training methods including FGSM (Goodfellow
et al., 2014), Alternate Training protagonist agents with
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Table 1. Performance comparison in SMAC. The columns represent various adversary algorithms, and the rows indicate the protagonist
agent’s training methods. AVG represents the average performance of the protagonist agent under six adversaries. The values in the
table represent the win rates over 500 episodes (higher is better). The upper bound of the perturbation size is set to 0.25 for 3m and
3s 3z, and 0.1 for 8m. Bold numbers mean the best results.

Envs Protagonist VDN QMIX
NoAdv RN FGSM ATLA PAAD ATSA AVG NoAdv RN FGSM ATLA PAAD ATSA AVG

3m

NoAdv 0.99 0.23 0.00 0.02 0.00 0.00 0.21±0.36 0.99 0.24 0.00 0.00 0.00 0.00 0.20±0.36*
RAND 1.00 0.99 0.01 0.94 0.01 0.01 0.49±0.48 0.99 0.98 0.18 0.98 0.45 0.35 0.66±0.34*
FGSM 0.96 0.96 0.91 0.96 0.79 0.57 0.86±0.14 0.67 0.86 0.96 0.80 0.26 0.92 0.74±0.24*
ATLA 0.86 0.36 0.06 0.98 0.00 0.00 0.38±0.40 0.99 0.68 0.00 0.98 0.00 0.00 0.44±0.45*
PAAD 0.93 0.94 0.87 0.96 0.81 0.89 0.90±0.05 0.93 0.95 0.97 0.90 0.98 0.94 0.94±0.03

PR 0.51 0.58 0.89 0.49 0.40 0.79 0.61±0.17* 0.80 0.84 0.91 0.75 0.73 0.62 0.78±0.09*
PR-REP 0.61 0.70 0.99 0.85 0.76 0.93 0.81±0.13 0.85 0.87 0.91 0.78 0.84 0.81 0.84±0.04*
ERNIE 0.83 0.87 0.95 0.77 0.73 0.37 0.75±0.19* 0.85 0.82 0.87 0.40 0.44 0.77 0.69+-0.19*

RAP 0.97 0.90 0.45 0.99 0.83 0.85 0.83±0.18 0.99 0.96 0.94 0.97 0.96 0.95 0.96±0.02
ROMANCE-p 0.86 0.31 0.00 0.09 0.00 0.00 0.21±0.31* 0.85 0.33 0.00 0.28 0.00 0.00 0.24±0.30*
ROMANCE-s 0.93 0.19 0.00 0.05 0.00 0.00 0.20±0.34* 0.98 0.42 0.00 0.01 0.00 0.00 0.23±0.37*

ATSA 0.97 0.95 0.96 0.84 0.77 0.98 0.91±0.09 0.99 1.00 0.99 1.00 0.96 1.00 0.99±0.02

3s 3z

NoAdv 0.99 0.63 0.00 0.24 0.00 0.00 0.31±0.38 1.00 0.76 0.00 0.49 0.00 0.00 0.38±0.40*
RAND 1.00 0.99 0.00 0.76 0.00 0.00 0.46±0.46 1.00 1.00 0.00 0.95 0.00 0.00 0.49±0.49
FGSM 0.92 0.93 0.68 0.84 0.36 0.38 0.69±0.24* 1.00 1.00 0.99 0.99 0.62 0.53 0.86±0.20
ATLA 0.88 0.73 0.00 0.99 0.00 0.00 0.43±0.44 1.00 0.90 0.00 1.00 0.00 0.00 0.48±0.48
PAAD 0.86 0.96 0.83 0.85 0.71 0.62 0.81±0.11* 0.97 0.98 0.33 0.97 0.42 0.45 0.69±0.29*

PR 0.25 0.39 0.48 0.42 0.04 0.04 0.27±0.18* 0.40 0.42 0.34 0.27 0.01 0.01 0.24±0.17*
PR-REP 0.96 0.98 0.91 0.84 0.63 0.52 0.81±0.17 0.85 0.84 0.95 0.97 0.35 0.24 0.70±0.29*
ERNIE 0.99 0.98 0.92 0.92 0.31 0.36 0.75±0.29 1.00 1.00 0.98 1.00 0.83 0.84 19.11±2.30

RAP 0.99 0.94 0.64 0.92 0.63 0.64 0.79±0.16 0.98 0.98 0.77 0.95 0.78 0.70 0.86±0.11*
ROMANCE-p 0.94 0.45 0.00 0.00 0.00 0.00 0.23±0.36* 1.00 0.94 0.00 0.90 0.00 0.00 0.47±0.47*
ROMANCE-s 0.97 0.41 0.00 0.05 0.00 0.00 0.24±0.36* 1.00 0.89 0.00 0.63 0.00 0.00 0.42±0.43*

ATSA 0.99 1.00 0.89 0.99 0.79 0.71 0.90±0.11 1.00 1.00 0.96 1.00 0.96 0.94 0.98±0.02

8m

NoAdv 0.96 0.86 0.00 0.34 0.00 0.00 0.36±0.41* 0.98 0.95 0.00 0.92 0.00 0.01 0.48±0.47*
RAND 0.98 0.98 0.02 0.91 0.01 0.05 0.49±0.47* 1.00 1.00 0.02 1.00 0.06 0.09 0.53±0.47
FGSM 0.99 0.98 0.93 0.97 0.79 0.77 0.90±0.08* 0.84 0.89 0.83 0.53 0.89 0.52 0.75±0.16*
ATLA 0.95 0.91 0.00 0.95 0.00 0.00 0.47±0.47* 0.95 0.94 0.02 0.95 0.00 0.00 0.48±0.47*
PAAD 1.00 1.00 0.94 0.99 0.92 0.92 0.96±0.04 0.96 0.94 0.90 0.95 0.89 0.92 0.93±0.03*

PR 0.98 0.99 0.89 0.98 0.78 0.81 0.90±0.08* 0.96 0.95 0.93 0.97 0.47 0.09 0.73±0.34*
PR-REP 0.99 0.98 0.94 0.93 0.31 0.76 0.82±0.24 0.98 0.98 0.91 0.95 0.35 0.34 0.75±0.29*
ERNIE 0.99 0.98 0.95 0.95 0.90 0.84 0.94±0.05 0.94 0.91 0.95 0.84 0.57 0.46 0.78±0.19*

RAP 0.97 0.98 0.93 0.96 0.79 0.94 0.93±0.06 0.96 0.97 0.87 0.95 0.91 0.91 0.93±0.03*
ROMANCE-p 0.96 0.95 0.00 0.27 0.00 0.00 0.36±0.43* 0.98 0.99 0.08 0.99 0.03 0.02 0.52±0.47*
ROMANCE-s 0.97 0.93 0.00 0.02 0.00 0.00 0.32±0.45* 1.00 0.97 0.02 0.97 0.00 0.00 0.49±0.49*

ATSA 1.00 1.00 0.93 1.00 0.92 0.94 0.97±0.04 1.00 1.00 1.00 1.00 0.97 0.95 0.99±0.02
* indicates a statistically significant improvement of ATSA over the corresponding method (p < 0.05, Wilcoxon rank-sum test).

Learned Adversaries (ATLA) (Zhang et al., 2021a) and
the Policy Adversarial Actor and Director (PAAD) (Guo
et al., 2025; Sun et al., 2022b); robust leaning baselines
including Policy Regularization (PR) (Guo et al., 2024),
Repetitive PR (PR-REP) (Zhou et al., 2024c), and ad-
vErsarially Regularized multiageNt reInforcement lEarn-
ing (ERNIE) (Bukharin et al., 2023); adversarial training
with stochastic adversaries, including Robustness via Ad-
versary Populations (RAP) (Vinitsky et al., 2020), and RO-
bust Multi-AgeNt Coordination via Evolutionary genera-
tion (ROMANCE-p/s) (Yuan et al., 2023b). These methods
cover a range of adversarial training strategies, from basic
noise injection to more sophisticated adversarial training
paradigms. Appendix H.2 includes further details on the
benchmark methods.

4.1.3. PERTURBATION SETTINGS

The perturbation is defined as an ℓ∞ norm with ranges of
0.25 for the 3m and 3s 3z scenarios, 0.1 for the 8m sce-
nario, and 0.05 for the CAV environment. The perturbation

range is determined based on the difficulty of the task and
the scale of the protagonist agent’s observation space. For
instance, in the 3m and 3s 3z scenarios, there are fewer
agents, resulting in longer distances between agents. Con-
sequently, a larger perturbation range can be used com-
pared to the 8m scenarios. The objective is to select the
largest possible perturbation range while maintaining the
validity of the task, ensuring the robustness of the model
can generalize to a broader range of perturbations.

4.1.4. HYPERPARAMETERS

We set the same hyperparameters as those used in the orig-
inal VDN (Sunehag et al., 2018) and QMIX (Rashid et al.,
2020). For SDor, the actor and critic networks consist of
two MLP layers with a GRU (hidden size 64) inserted be-
tween them. RMSprop (Hinton, 2012; Wen & Zhou, 2024)
is used to optimize all parameters, with both actor and critic
employing a learning rate of 0.0005. The target networks
are updated every 200 episodes. The temperature parame-
ter α and the set {αi}i∈M follow the same configuration as
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Table 2. Performance comparison in CAV. The columns represent various adversary algorithms, and the rows indicate the protagonist
agent’s training methods. AVG denotes the average performance of the protagonist agent across six adversaries. Reward indicates the
average cumulative reward over 500 episodes (higher is better), while CR represents the crash rate over the same episodes (lower is
better). The upper bound of the perturbation size is 0.05. Bold numbers mean the best results.

Adversary NoAdv RN FGSM ATLA PAAD ATSA AVG
Protagonist Reward CR Reward CR Reward CR Reward CR Reward CR Reward CR Reward CR

VDN

NoAdv 48.67±29.64 0.00 51.21±26.23 0.00 19.51±51.20 0.04 50.61±28.65 0.00 22.31±53.24 0.07 16.91±50.31 0.04 34.87±15.39* 0.03±0.03
RN 67.31±17.78 0.00 66.76±19.04 0.00 39.77±51.37 0.05 67.24±21.42 0.00 3.96±69.23 0.15 17.26±58.26 0.08 43.72±25.62* 0.05±0.06

FGSM 55.32±35.16 0.01 58.41±31.77 0.01 50.53±42.87 0.04 59.26±29.61 0.01 33.69±52.99 0.05 42.96±44.34 0.06 50.03±9.13* 0.03±0.02*
ATLA 57.54±35.72 0.02 60.23±34.39 0.02 40.68±58.63 0.07 61.10±32.54 0.01 -0.67±74.07 0.20 20.29±64.63 0.08 39.86±23.11* 0.07±0.07*
PAAD 51.18±23.87 0.01 52.38±22.77 0.01 46.90±33.86 0.01 52.97±21.37 0.00 30.85±48.53 0.04 30.78±39.58 0.03 44.18±9.64 0.02±0.01

PR 62.23±22.41 0.00 65.24±20.77 0.00 30.74±62.22 0.09 66.11±19.07 0.01 -6.95±73.91 0.20 14.13±67.04 0.09 38.58±28.17* 0.07±0.07
PR-REP 69.78±17.32 0.00 70.20±16.94 0.00 61.26±24.82 0.00 69.74±17.42 0.00 56.32±35.13 0.01 52.46±28.74 0.00 63.29±7.09 0.00±0.00
ERNIE 67.36±21.72 0.00 67.73±19.93 0.00 57.86±29.54 0.01 67.65±20.72 0.00 44.49±50.03 0.03 43.67±34.61 0.00 58.13±10.51 0.01±0.01

RAP 66.21±16.93 0.00 66.26±18.14 0.00 57.03±32.34 0.01 66.49±16.95 0.00 50.08±35.23 0.00 45.41±31.43 0.00 58.58±8.44 0.00±0.00
ROMANCE-p 43.82±35.23 0.02 43.46±33.36 0.00 24.17±49.90 0.07 43.06±34.99 0.02 7.42±60.47 0.14 -4.21±54.69 0.11 26.29±19.04* 0.06±0.05
ROMANCE-s 70.49±18.60 0.00 68.78±24.10 0.01 24.41±65.56 0.11 70.38±20.04 0.00 -5.41±73.23 0.20 1.61± 67.03 0.11 38.38±32.77 0.07±0.07

ATSA 68.57±22.02 0.00 68.76±20.54 0.00 56.05±37.13 0.02 69.43±19.83 0.00 40.76±50.01 0.05 55.32±26.08 0.01 59.81±10.38 0.01±0.02

QMIX

NoAdv 60.50±30.97 0.01 61.45±31.71 0.02 36.48±53.25 0.06 62.18±29.56 0.01 16.48±65.48 0.12 9.83±63.63 0.08 41.15±21.76* 0.05±0.04*
RN 71.49±18.54 0.00 70.51±22.71 0.01 23.32±64.68 0.07 71.32±19.88 0.00 -3.54±68.24 0.16 -2.85±74.44 0.13 38.38±33.91 0.06±0.06

FGSM 58.57±27.18 0.01 59.72±27.12 0.01 56.72±33.07 0.02 59.26±28.06 0.01 46.36±43.27 0.03 39.30±42.59 0.02 53.32±7.75* 0.02±0.01*
ATLA 49.96±45.70 0.02 53.21±41.91 0.03 46.00±50.70 0.06 49.00±46.74 0.04 41.14±52.80 0.06 29.20±57.21 0.08 44.75±7.89* 0.05±0.02*
PAAD 57.43±23.45 0.00 58.75±25.11 0.00 47.98±35.80 0.02 59.36±21.06 0.00 57.44±23.45 0.00 35.56±39.43 0.01 52.75±8.58 0.01±0.01

PR 59.92±29.28 0.01 60.88±28.02 0.01 52.58±36.21 0.02 60.58±28.08 0.01 38.92±50.13 0.05 25.57±57.13 0.08 49.74±13.26* 0.03±0.03*
PR-REP 65.52±26.78 0.00 68.99±19.39 0.00 61.67±26.62 0.01 69.79±17.48 0.00 54.61±26.88 0.00 51.27±34.29 0.00 61.98±6.97* 0.00±0.00
ERNIE 59.12±27.78 0.00 59.72±28.36 0.00 49.12±36.48 0.01 59.94±28.08 0.00 45.98±37.35 0.00 23.27±46.80 0.02 49.52±12.95* 0.01±0.01

RAP 69.59± 16.29 0.00 70.06±15.15 0.00 63.11±26.19 0.01 69.85±16.50 0.00 59.18±28.33 0.01 47.04±43.44 0.03 63.14±8.26 0.01±0.01
ROMANCE-p 54.93±29.11 0.00 58.66±26.27 0.00 32.14±54.22 0.08 60.00±23.26 0.00 31.06±53.32 0.09 12.03±61.42 0.13 41.47±17.71* 0.05±0.05
ROMANCE-s 63.26±23.82 0.00 64.69±64.68 0.01 28.42±58.28 0.06 65.51±21.92 0.00 15.66±58.67 0.08 -1.01±61.28 0.09 39.42±26.48* 0.04±0.04

ATSA 70.17±19.56 0.00 70.54±18.57 0.00 62.01±26.66 0.01 69.80±18.14 0.00 56.01±31.56 0.02 53.94±30.66 0.01 63.74±6.87 0.01±0.01

* indicates a statistically significant improvement of ATSA over the corresponding method (p < 0.05, Wilcoxon rank-sum test).

in (Zhang et al., 2021b). Additionally, our framework in-
troduces an extra hyperparameter, κ, which regulates the
influence of the SDor-STor loss function on the SDor’s
policy. In our experiments, κ for VDN-based protagonist
agent is selected from the set {0.001, 0.005, 0.01}, while
for QMIX-based protagonist agent is chosen from the set
{0.001, 0.005, 0.01, 0.025}, depending on the environment
to optimize performance.

4.2. Results Analysis

The experimental results on SMAC are presented in Ta-
ble 1, and those on CAV are shown in Table 2. The pro-
tagonist model in each cell is trained by using the method
specified by the row, while the adversary is trained by using
the method specified by the column. Importantly, no re-
training is performed for each cell, i.e., the adversary is not
retrained specifically to target each protagonist. In SMAC,
we use Win Rate (WR) as the metric to evaluate perfor-
mance. To measure robustness, we calculate the average
WR under different perturbations. In CAV, we use reward
and Crash Rate (CR) to evaluate model performance, with
the average reward and CR under different scenarios also
calculated.

For perturbation-free and random noise cases, models
trained with FGSM and PAAD show strong performance
under adversarial conditions but perform poorly in clean or
random noise scenarios. In contrast, our proposed method
maintains stable or even improved performance, particu-
larly in CAV, likely due to the soft policy used by adver-
sarial agents, which promotes exploration and reduces lo-

cal optima risks. Under adversarial observations, NoAdv
and RN fail to handle attacks, while RN shows better per-
formance against weaker adversaries like ATLA. PR per-
forms well against FGSM but struggles under stronger at-
tacks like PAAD and ATSA. Among all evaluated frame-
works, ATSA achieves the highest average win rate — out-
performing 11 baselines across 3 scenarios with 42 statis-
tically significant wins according to the Wilcoxon signed-
rank test. Though it doesn’t always perform best in ev-
ery scenario (e.g., 3s 3z with QMIX), it remains generally
superior across different adversarial conditions. In CAV,
for instance, PR-REP performs well under the VDN frame-
work, but fails under QMIX, indicating difficulty in tuning
the regularization weight. Overall, ATSA surpasses most
baselines in both cumulative reward and CR. In conclu-
sion: 1) NoAdv and RN fail to enhance robustness. 2) Ro-
bust learning methods (PR, PR-REP and ERNIE) face chal-
lenges in balancing adversarial and standard losses. 3) Ad-
versarial training methods (FGSM and PAAD) destabilize
training under clean conditions; ATLA struggles with large
action spaces, reducing its effectiveness. 4) Stochastic ad-
versaries: ROMANCE requires attack budget constraints
to stabilize training, which is incompatible with state ro-
bustness learning, and RAP avoids constraints via adver-
sary population, but introduces unstable out-of-distribution
states and incurs high memory cost. 5) ATSA overcomes
overfitting issues by using stochastic adversaries, ensur-
ing strong performance across clean and adversarial condi-
tions. The more detailed experimental results are presented
in Appendix H.3. The results and analysis regarding dif-
ferent perturbation ranges are presented in Appendix H.5,
demonstrating the generalization ability of ATSA from the
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Figure 2. Ablation study. The x-axis represents four types of ad-
versaries. The y-axis indicates the win rate of the models under
different adversaries. In the legend, κ = 0 represents the results
after removing the SDor-STor loss function.

perspective of perturbation size. Appendix H.6 provides an
analysis of the potential for applying ATSA to continuous
action spaces.

4.3. Ablation Study

Fig. 2 presents the results of the ablation study on the
ATSA method, evaluated under two environments: (a) 3m
and (b) 3s 3z. κ = 0 represents the results after removing
the SDor-STor loss function. It is evident that the ATSA
method demonstrates strong robustness across various ad-
versaries. Particularly in the PAAD and ATSA adversaries,
its win rate is significantly higher than that of the κ = 0
counterparts, highlighting the crucial role in maintaining
the consistency between SDor and STor, which ensures
more stable training of the adversary. This, in turn, en-
hances the adversarial robustness of the protagonist agent.

4.4. Attacking Performance Analysis

The results in Fig. 3, derived from Table 1, focus on two
scenarios: 3m and 3s 3z. Protagonist agents are trained
with adversaries like FGSM and PAAD. The comparisons
include adversaries trained by ATSA alongside FGSM and
PAAD. We selected FGSM and PAAD for comparison
because they have shown strong attack performance in
prior studies, and models trained using these methods ex-
hibit better robustness against perturbations. Thus, we use
ATSA to evaluate its attack capability.

It is important to note that adversaries trained using our
method are stochastic, and the optimal adversarial observa-
tions they generate adhere to soft constraints. This means
the perturbations they create are not always the strongest.
As shown in Fig. 3a, when attacking QMIX-based agents,
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Figure 3. Comparison of attack performance across adversaries
and scenarios. The x-axis shows models adversarially trained
with FGSM and PAAD. NoAdv indicates performance without
perturbations. Bars labeled FGSM, PAAD, and ATSA represent
win rates under attacks from these methods.

our method does not always produce the strongest at-
tack results. However, when attacking FGSM(VDN)-based
agents, our approach is capable of achieving optimal attack
performance. In the 3s 3z scenario, adversaries trained
using our framework generally outperform other adversar-
ial attack methods. This is because our method generates
more diverse perturbations, thanks to the stochastic nature
of the adversaries. For instance, as shown in Fig. 3b,
QMIX-based agents trained with FGSM adversarial train-
ing show strong defense against FGSM-generated pertur-
bations. However, when attacked by our method, their
performance drops significantly. This suggests that mod-
els trained with FGSM-based adversarial training tend to
overfit to their own perturbation patterns. In summary,
our proposed adversarial training framework demonstrates
the ability to create adversaries that are effective attackers.
These adversaries help expose the weaknesses of existing
models, providing a broader perspective for evaluating ro-
bustness against adversarial perturbations.

5. Conclusion and Future Work
In this paper, we propose an ATSA framework that contains
an SDor-STor structure and a novel loss function. ATSA
trains the protagonist agent with stochastic adversary, ad-
dressing the issues of adversarial observation overfitting
and instability in MARL adversarial training. Furthermore,
we theoretically prove that in the factorized maximum-
entropy framework, the soft policy of SDor converges to
a global optimum, and this structure can derive the optimal
stochastic observation adversary. To overcome the limita-
tion of prior methods that fail to exploit the policy infor-
mation of the protagonist agents, we introduce the SDor-
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STor loss function, which leverages the policy information
of the protagonist agents when training the adversary poli-
cies. Our future work aims to extend the framework to con-
tinuous action space algorithms (Lowe et al., 2017; Zhong
et al., 2024; Zhou et al., 2024b). Model-based reinforce-
ment learning can also be employed by considering pro-
tagonist agents’ policies and environments as a unified sys-
tem. This approach allows the adversary to fully leverage
the protagonist agents’ information when learning the en-
vironment model. ATSA’s application to various systems
(Hu et al., 2025; Lou et al., 2025) should be pursued.
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A. Related Work
A.1. Multi-Agent Reinforcement Learning

Centralized Training with Decentralized Execution (CTDE) is a popular paradigm to address the challenges of Decentral-
ized Partially Observable Markov Decision Processes (Dec-POMDPs). During the training phase, all agents share global
information for centralized training to optimize the overall policy. In the execution phase, each agent independently makes
decisions based on its local observations, performing decentralized execution. This paradigm effectively addresses the
non-stationarity and partial observability issues in MARL (Foerster et al., 2018; Lowe et al., 2017). Independent deep
Q-network (Tampuu et al., 2017) is a simple approach but struggles with complex scenarios due to challenges in reward
assignments. Value-based methods like (Rashid et al., 2020; Son et al., 2019; Sunehag et al., 2018) progressively address
these limitations by introducing shared rewards, non-linear structures, and broader applicability. More recent methods such
as (Wang et al., 2021; 2023; Zhang et al., 2021b) further enhance coordination by leveraging advanced factorization tech-
niques, improving performance across diverse environments and action spaces. However, these classical methods remain
sensitive to observation perturbations.

A.2. Robust Single-Agent Reinforcement Learning

In the field of SARL, improving model robustness relies on two approaches: robust learning and adversarial training. The
works in (Liang et al., 2022; Oikarinen et al., 2021; Zhang et al., 2020) are currently the most representative method in
robust learning. Zhang et al. (Zhang et al., 2020) develop a policy regularization principle that can be broadly applied
to various SARL algorithms. In addition, the State-Adversarial Markov Decision Process (SA-MDP) framework incorpo-
rates adversarial perturbations in states, providing a theoretical foundation for robust SARL. In constructing the adversarial
regularization term, Liang et al. (Liang et al., 2022) consider not only adversarial perturbations of states but also the sig-
nificance of the current state within the entire episode. This approach enables the policy network to focus more on the
performance of critical states during updates, further enhancing the model’s robustness. Unlike the previous two methods,
the work in (Oikarinen et al., 2021) employs the concept of interval-bound propagation to construct a regularization term.
This approach enhances model robustness by optimizing the boundaries of the decision network. While robust learning
can enhance a model’s robustness, models trained this way are still sensitive to more potent attacks. Yang et al. (Yang
et al., 2024) improves the robustness of reinforcement learning systems by leveraging monitoring mechanisms based on
probabilistic automata to guide real-time correction of critical actions . Zhang et al. (Zhang et al., 2021a) use reinforce-
ment learning to Alternate Training protagonist agents with Learned Adversaries (ATLA). This approach performs well
in scenarios with small observation spaces. However, as the agent’s observation space grows, leading to a larger action
space for the adversary, training the adversary model becomes challenging. Sun et al. (Sun et al., 2022b) demonstrate
that observation perturbations are equivalent to policy perturbations. Based on this theoretical foundation, the Policy Ad-
versarial Actor and Director (PAAD) is proposed, decomposing the solution of the observation adversary into two steps:
the director determines the strongest policy perturbation, and then the actor generates the optimal observation perturbation
based on this policy perturbation. This approach effectively addresses the issues present in ATLA. PAAD aims to enhance a
model’s performance against the strongest adversaries. However, this approach may lead to overfitting to these adversarial
perturbations of observations, thereby reducing performance on clean ones.

A.3. Robust Multi-Agent Reinforcement Learning

In the multi-agent domain, most existing studies primarily focus on action manipulation (Li et al., 2019; 2023; Sun et al.,
2022a), policy-level attacks (Guo et al., 2022; Reddi et al., 2024), or adversarial communication (Sun et al., 2023). Other
works adopt domain randomization to address the sim-to-real gap (Chen et al., 2024; Shi et al., 2023). In contrast, relatively
little attention has been paid to adversarial perturbations on observations. By extending SA-MDP to multi-agent fields,
Zhou et al. (Zhou et al., 2024c) propose a state-adversarial stochastic game and discuss its properties and propose a
robust training framework based on mean-field actor-critic (Yang et al., 2018), which includes an action loss based on the
difference in action distributions between clean and perturbation-free observations, along with the iterative regularization
method for action loss. However, this method falls within the scope of robust learning and is also sensitive to stronger
adversaries. Guo et al. (Guo et al., 2024; 2025) extend SARL robustness techniques (Goodfellow et al., 2014; Sun et al.,
2022b; Zhang et al., 2020; 2021a) to multi-agent scenarios, where multi-agent PAAD achieves notable results. However,
it tends to overfit to the perturbation generated by the strongest adversary, compromising performance in other situations.
Stochastic adversary has been studied in policy robustness in some papers, such as ROMANCE (Yuan et al., 2023b) and

13



Robust Multi-Agent Reinforcement Learning with Stochastic Adversary

RAP (Vinitsky et al., 2020). However, there are significant differences between policy robustness and state robustness in
terms of both formulation and motivation. Formally, policy robustness assumes that the adversary directly perturbs the
agent’s actions, modifying the output of the policy. In contrast, state robustness introduces perturbations to the agent’s
input states. This fundamental difference in formulation directly leads to distinct objectives. In multi-agent settings,
policy robustness aims to ensure that the overall system performance remains stable even when some agents’ decisions are
perturbed. To facilitate stable training under such settings, methods like ROMANCE (Yuan et al., 2023b) introduce a sparse
action attack budget to limit the number of adversarial interventions, thereby preserving controllability. In contrast, state
robustness focuses on enabling each agent to make correct decisions even when its input states are perturbed. The goal is
to make every agent robust to state perturbation. Therefore, the sparse action perturbation constraints used in ROMANCE
(Yuan et al., 2023b) are not applicable to state perturbations.

Table 3. List of Abbreviations and Their Full Terms

Abbreviation Full Term
ATLA Alternate Training Protagonist Agents with Learned Adversaries
ATSA Adversarial Training with Stochastic Adversary
CAV Connected and Autonomous Vehicles
CR Crash Rate
CTDE Centralized Training with Decentralized Execution
Dec-POMDP Decentralized Partially Observable Markov Decision Process
FGSM Fast Gradient Sign Method
MARL Multi-Agent Reinforcement Learning
NoAdv No Adversary
OD-POMDP Observation-adversarial Dec-POMDP
PAAD Policy Adversarial Actor and Director
PD-POMDP Policy-adversarial Dec-POMDP
PR Policy Loss Regularization
QMIX Q-MIXing network
RN Random Noise
SARL Sigle-Agent Reinforcement Learning
Sdor Stochastic Director
SMAC StarCraft Multi-Agent Challenge
Stor SDor-guided generaTor
VDN Value Decomposition Network
WR Win Rate

B. Concepts, Abbreviations, and Symbols
B.1. Concepts

Some important concepts related to this paper are described as follows:

• Protagonist agent: The primary agent whose learning objective is to maximize the cumulative expected reward.

• Clean observations: The accurate observation information directly obtained by an agent from the environment.

• Protagonist policy: The decision-making strategy of the protagonist, designed to guide it in selecting optimal actions
based on its observations.

• Observation adversary: An adversary that generates adversarial perturbation to the agent’s observations information,
aiming to mislead the protagonist agent into making suboptimal decisions.

• Policy adversary: An adversary to modify the protagonist’s policy often chooses actions that minimize the protagonist
agent’s cumulative expected reward.
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• Adversarial observations: The observation via adding perturbations generated by the observation adversary to the
clean observation.

• Adversarial policy: The decision-making strategy of the policy adversary, specifically designed to disrupt or mislead
the protagonist policy.

B.2. Abbreviations

The abbreviations in the paper are listed in Table 3.

B.3. Symbols

The symbols in the paper are listed in Table 4.

Table 4. Symbols and Explanations

Category Symbol Explanation

Environment

S State space
s State
Ai Action space for protagonist i
ai Action taken by protagonist i
a Joint action of all protagonists
Oi Observation space of protagonist i
oi Observation of protagonist i
Zi Observation function
r Reward function
P Transition probability function
γ Discount factor

Protagonist Agents

N A set of protagonist agent
πi Policy of protagonist i
τ ip Trajectory of protagonist i
πjt Joint policy of all protagonists
τ p Joint trajectory of all protagonists
yi Action taken by protagonist agent i based on the clean observation
φip Parameters of the policy network of protagonist agent i
πjt
v Joint policy of protagonist agents under the adversary
ôi Adversarial observation for protagonist i
õ Joint observation of protagonist agents, with some agents perturbed
τ̃ p Joint trajectory of protagonist agents, where some agents are perturbed
gi The adversarial observation generated for the agent i based on the action of the policy adversary

Adversaries

Bi
ϵ A set of adversarial observations for protagonist i

M Set of observation adversaries
ô Joint action of observation adversary
vi Policy of adversary
v Joint policy of adversary
Âi Action space for adversary i

P̂ Transition probability function of adversary
r̂ Reward function of adversary

Models and Frameworks
G Dec-POMDP
Ĝoa OD-POMDP
Ĝpa PD-POMDP

Learning Parameters α Temperature parameter
β Step size

SDor’s Parameters and Trajectories

τ ia SDor’s trajectory
hjt Joint soft policy of all SDors
τ a Joint trajectory of all SDors
Qjt

∗ Optimal joint soft Q-function
V jt
∗ Optimal joint soft value function

Γhjt Bellman backup operator

SDor’s Network Parameters

ϕa Parameters of the weight network
Φa Parameters of the joint soft value network
Φia Parameters of the individual soft value network
θia Parameters of the individual soft-Q network

Replay Buffer and Target Networks Da Replay buffer of SDor
Qjt

tar Target network of joint soft-Q network
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C. Maximum Entropy-based Objective Function of SDor
The derivation process of Definition 3.1 is as follows.

Proof: To derive the maximum entropy objective, we approximate the true distribution of trajectories P̂ (τ), given by

P̂ (τ)=

[
P (s1)

T∏
t=1

P̂ (st+1|st, ât)

]
exp

(
T∑

t=1

r̂ (st, ât)

)
(16)

with a variational distribution, q̂ (τ), as

q̂ (τ) = q̂ (s1)

T∏
t−1

q̂ (st+1|st, ât) q̂ (ât|st)

= q̂ (s1)

T∏
t=1

q̂ (st+1|st, ât)

n∏
i=1

q̂i
(
âit|st

) (17)

where P̂ (st+1|st, ât) and q̂ (st+1|st, ât) share the same dynamics, i.e., P (s1) = q̂ (s1) and P̂ (st+1|st, ât) =
q (st+1|st, ât) , and q̂ (st+1|st, ât) =

∏n
i=1 q̂

i
(
âit|st

)
following the CTDE paradigm.

The variational lower bound on the log-probability of the optimality sequence X1:T is given by:

logp̂ (X1:T ) = log
∫ ∫

p̂ (X1:T , s1:T , â1:T ) ds1:T dâ1:T

= log
∫ ∫

p̂ (X1:T , s1:T , â1:T )
q̂ (s1:T , â1:T )

q̂ (s1:T , â1:T )
ds1:T dâ1:T

= logE(s1:T ,â1:T )∼q̂(s1:T ,â1:T )

[
p̂ (X1:T , s1:T , â1:T )

q̂ (s1:T , â1:T )

]
≥ E(s1:T ,â1:T )∼q̂(s1:T ,â1:T ) [logp (X1:T , s1:T , â1:T )− logq̂ (s1:T , â1:T )] .

(18)

Given that q̂ (st+1|st, â) = p̂ (st+1|st, â), and substituting (16) and (17) into the bound, we obtain:

logp̂ (X1:T ) ≥ E(s1:T ,â1:T )∼q̂(s1:T ,â1:T )

[
T∑

t=1

(
r̂ (st, ât)−

n∑
i=1

logq̂i
(
âit|st

))]
. (19)

Optimizing this lower bound with respect to the adversarial policy q̂(ât|st) corresponds exactly to the following maximum
entropy objective (2). ■

D. Proof of Propositions 3.2 and 3.3
The derivation process for Propositions 3.2 and 3.3 is the same; here, we only present the derivation for Proposition 3.2.

Proof: To derive the optimal joint adversarial policy hjt
∗, we start by considering the following constrained policy optimiza-

tion problem:
max
hjt

Eâ∼hjt

[
Qjt (τ a, â)

]
− α

∑
â∈×i∈MÂi

hjt (â|τ a) loghjt (â|τ a)

s.t.
∑

â∈×i∈MÂi

hjt (â|τ a) = 1
(20)

To solve this, we construct the Lagrangian:

L
(
hjt, λ

)
= Eâ∼hjt

[
Qjt (τ a, â)

]
−α

∑
â∈×i∈MÂi

hjt (â|τ a) loghjt (â|τ a)−λ(
∑

â∈×i∈MÂi

hjt (â|τ a)− 1)

=
∑

â∈×i∈MÂi

hjt (â|τ a)Qjt (τ a, â)−α
∑

â∈×i∈MÂi

hjt (â|τ a) loghjt (â|τ a)−λ(
∑

â∈×i∈MÂi

hjt (â|τ a)− 1)
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Taking the derivative of L
(
hjt, λ

)
with respect to hjt (â|τ ) and setting it to zero yields:

∂L
(
hjt, λ

)
∂hjt (â|τ a)

= Qjt (τ a, â)− αloghjt (â|τ a)− α+ λ = 0 (21)

Solving this for the optimal policy hjt
∗, we get

hjt (â|τ a) = exp
(
α−1

[
Qjt (τ a, â)

])
exp

(
λ

α
− 1

)
(22)

Using the normalization condition
∑

â∈×i∈MÂi hjt (â|τ a) = 1, we find the optimal λ∗ as

exp
(
1− λ∗

α

)
=

∑
â∈×i∈MÂi

exp
(
α−1Qjt (τ a, â)

)
(23)

Thus,

λ∗ =

1− log
∑

â∈×i∈MÂi

exp
(
α−1Qjt (τ , â)

)α (24)

Substituting λ∗ back, the optimal policy hjt
∗ becomes:

hjt
∗ (â|s) =

exp
(
α−1Qjt

∗ (τ
a, â)

)
∑

ã∈×i∈MÂi exp
(
α−1Qjt

∗ (τ a, ã)
)

Since V jt
∗ (τ a) = αlog

∑
â∈×i∈MÂi exp

(
α−1Qjt

∗ (τ
a, â)

)
, we conclude that:

hjt
∗ (â|τ a) = exp

(
α−1

(
Qjt

∗ (τ
a, â)− V jt

∗ (τ a)
))

(25)

■

E. Proof of Theorem H.6
To prove Theorem H.6, we need the following Lemmas, the proofs of which follow a similar methodology to that presented
in (Zhang et al., 2021b).

Lemma E.1 (Joint Soft Policy Evaluation of SDor). Consider the soft Bellman backup operator Γhjt and a mapping
Qjt

0 : S ×i∈M Âi → R with | ×i∈M Âi| < ∞. Define Qjt
k+1 ≜ Γhjt . Then, the sequence Qjt

k will converge to the joint soft
Q-function under the policy hjt as k → ∞.

This result guarantees the convergence of the joint soft Q-function for a given joint policy of SDor hjt. Following this, the
joint soft policy is updated based on the individual soft policies hi

i∈M under the CTDE paradigm. To ensure consistency
and improvement in the individual policies, the following constraint is imposed during the policy update:

hi
new = argmin

h′
i

DKL

(
h′
i

(
·|τ ia

)
∥ exp

(
α−1
i

(
Qi

hi
old

(
τ ia , ·

)
− V i

hi
old

(
τ ia
))))

(26)

This formulation ensures that the new individual policy minimizes the divergence from an exponential transformation of
the Q-function. The improvement achieved by this update is formalized in the following lemma:

Lemma E.2. [Individual Soft Policy Improvement of SDor] Let hi
old ∈ Πhi

and hi
new be the optimizer of the minimization

problem defined in (26). Then, we have Qjt
hi

new
(τ a

t , ât) ≥ Qjt
hi

old
(τ a

t , ât) for all (τ a
t , ât) ∈ ×i∈MT ia ×i∈M Âi with

| ×i∈M Âi| < ∞, where hjt
old =

∏
i∈M hi

old and hjt
new =

∏
i∈M hi

new.
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This lemma demonstrates that each iteration of the individual soft policy update improves the value of the joint soft
Q-function. By alternating between the joint soft policy evaluation and individual soft policy improvement, the overall
factorized soft policy iteration (Zhang et al., 2021b) achieves convergence. This is established in Theorem H.6. The proof
of Theorem H.6 is as follows:

Proof: Let hjt
k represent the soft joint policy at iteration k. Based on Lemma E.2, the sequence Qjt

hjt
k

is monotonically

increases. Since Qjt
hjt is bounded above for all hjt = Πi∈Mhi, this sequence converges to some hjt

∗.

At convergence, we must have:
Jhjt

∗

(
hjt
∗ (·|τ a)

)
≤ Jhjt

∗

(
hjt (·|τ a)

)
,∀hjt ̸= hjt

∗ (27)

Using the same iterative argument as in the proof of Lemma E.2, we conclude that: Qjt
hjt
∗
(τ a, â) >

Qjt
hjt (τ

a, â) ,∀ (τ a, â) ∈ ×i∈MT ia ×i∈M Âia . Therefore, hjt
∗ is optimal in the product space Πi

i∈M.

■

F. Proof of Theorem 3.5
Proof: The logic of the proof is summarized as introducing an intermediate problem Gp to connect Ĝpa and G, leveraging
equivalence and proof by contradiction to ensure the optimality of the policy, thereby validating the theorem’s conclusion.
Definition F.1 (Policy Perturbation Dec-POMDP). For a given Dec-POMDP G, a fixed joint deter-
ministic protagonist policy πjt, and an attack ϵ, define a policy perturbation Dec-POMDP as Gp ≜〈
S, {Oi}i∈M, {Ai

p}i∈M,M, rp, {Zi}i∈M, Pp, γ
〉
, where Ai

p = Ai, and ∀s ∈ S, aip ∈ Ai
p,

rp(s,ap)=

{
−
∑

aap(a|τ p)r(s,a) if ap(·|τ p)=πjt(õ)

−∞ otherwise
(28)

Pp(s
′|s,ap) =

∑
a∈A

ap(a|τ p)P (s′|s,a) (29)

where ap is the protagonist’s policy under policy perturbations and A ≜ ×i∈NAi is the joint action space of protagonist.
Let hjt

p∗ denote the optimal joint policy in Gp, We define the entropy-augmented reward as r̃p (st,apt
) ≜ rp (st,apt

) +

Es1:t+1∼Pp,apt∼hjt
p

[
H
(
hjt
p (·|τ p

t )
)]

, where Hhjt
p
≜ Es1:t+1∼Pp,apt∼hjt

p

[
H
(
hjt
p (·|τ p

t )
)]

then the soft Bellman equation for

hjt
p∗ is given by

V
hjt
p∗

p = max
hjt
p

r̃p
(
s, hjt

p (τ
p)
)
+ γ

∑
s′∈S

Pp

(
s′|s, hjt

p (τ
p)
)
V hp
p

= max
hjt
p

−
∑
a∈A

hjt
p(a|τ p)r(s,a) + γ

∑
s′∈S

∑
a∈A

hjt
p(a|τ p)P (s′|s,a)V hp

p +Hhjt
p

= max
hjt
p

∑
a∈A

hjt
p(a|τ p)

[
−r(s,a) + γ

∑
s′∈S

∑
a∈A

P (s′|s,a)V hp
p

]
+Hhjt

p

(30)

In the original Dec-POMDP G, an optimal policy adversary πjt
v∗ for πjt is defined as

V πjt
v∗ = min

πjt
v

∑
a∈A

πjt
v(a|τ p)

[
r(s,a) + γ

∑
s′∈S

∑
a∈A

P (s′|s,a)V πjt
v (s′)

]
−Hπjt

v
(31)

By comparing (30) and (31), we have the following lemma,
Lemma F.2. The optimal joint policy in Gp is an optimal joint policy of observation adversary for πjt in G.

Let hjt
∗ denote the optimal joint policy in Ĝpa. This policy h∗ induces a joint policy h

jt1
p in Gp. Assume, for contradiction,

that hjt1
p is not an optimal joint policy in Gp. Then there exists an alternative optimal joint policy, denoted h

jt2
p , in Gp such

that V h
jt2
p

p (τ p) > V
h

jt1
p

p (τ p) for at least one state s ∈ S.
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Algorithm 1 ATSA

Initialize SDor’s policy hjt ≜ {hi}i∈M including ϕa,Φa, {ϕia , θia , φia}i∈M and protagonist’s policy πjt; budget ϵ.
for t = 0, 1, 2, ... do

For adversary, sample adversarial policy based on SDor’s joint soft policy hjt and generate the adversarial observation
based on STor’s function (13);
Protagonist takes action at = πjt

(
õi
t, τ̂

p
)
;

Put ⟨st,ot, ât, st+1, r̂t⟩ in the adversary’s replay buffer Da and ⟨st, õt,at, st+1, rt⟩ in the protagonist’s replay buffer
Dp;
if Time to update then

Update SDor’s network parameters based on (7), (8), (9) and (15);
Update the protagonist’s network parameters based on its algorithm;

end if
end for

We now construct another joint soft policy hjt2 in Ĝpa by setting: hjt2 (·|τ a) = h
jt2
p (·|τ p). This means hjt2 follows the

same action distribution as hjt2
p in Gp. In our framework, the policy h

jt2
p and hjt2 are both stochastic, each ôis satisfies (11),

which implies,
hjt2 (·|τ a) = πjt (g (hjt2 (·|τ a) ,os

)
, τ̂ p
)

(32)

For the values of the policies, we have:
V hjt2

= r̂ +
∑
s′∈S

P̂ V hjt2
+Hhjt2 (33)

V
h

jt2
p

p = rp +
∑
s′∈S

PpV
h

jt2
p

p +H
h

jt2
p

(34)

Since h
jt2
p matches hjt2 in terms of action distributions at each state, we conclude V

h
jt2
p

p (τ p) = V hjt2
(τ a). Therefore, we

have:
V hjt2 ≤ V hjt

∗ = V
h

jt1
p

p < V
h

jt2
p

p = V hjt2

This leads to a contradiction, indicating that an optimal soft joint policy in Ĝpa must induce an optimal soft joint policy in
Gp. Hence, we conclude the lemma:

Lemma F.3. An optimal soft joint policy in Ĝpa induces an optimal soft joint policy in Gp.

By combining Lemma F.2 and Lemma F.3, we conclude that an optimal joint policy in Ĝpa induces an optimal stochastic
observation adversary for the protagonist πjt in G. Therefore, if SDor learns the optimal joint policy in Ĝpa, it can effectively
collaborate with STor to generate the optimal stochastic observation adversary.

■

G. Complexity Analysis
The training process of ATSA is shown in Algorithm 1. We analyze its overall time complexity.
Theorem G.1. If the time complexity of sampling sample adversarial policy based on SDor’s joint soft policy hjt is Dp1

,
computing the adversarial observation based on STor’s function (13) is Dg1 , and taking the joint action of protagonist
interacting with the environment is Dp2 respectively, the time complexity of sampling process is

D1 = O (T (Dp1
+Dp2

+Dg1)) ,

where T is the total training time steps.

If the time complexity of computing the gradient of (7), (8), (9) and (15) is Dg2 , Dg3 , Dg4 and Dg5 respectively, and the
protagonist’s network training is Dg6 , the training time complexity of updating networks is

D2 = O

(
T

TI
(Dg2 +Dg3 +Dg4 +Dg5 +Dg6)

)
,

19



Robust Multi-Agent Reinforcement Learning with Stochastic Adversary

where TI is the interval between neural network parameter updates. The time complexity of ATSA is O (D1 +D2).

H. Experimental Results
H.1. Environment settings

We evaluate our adversarial training framework on two challenging benchmarks: the StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) and a Connected and Autonomous Vehicles (CAV) environment (Chen et al., 2023).

SMAC, a distributed real-time strategy game, is a widely adopted benchmark for evaluating MARL performance. It features
dynamic, partially observable environments with high-dimensional state and action spaces, requiring agents to coordinate
effectively. This makes SMAC an ideal testbed for assessing robustness under adversarial conditions. In contrast, the CAV
environment simulates real-world scenarios where connected and autonomous vehicles must collaborate to navigate traffic,
avoid collisions, and optimize performance amidst uncertainties. We conduct experiments on three SMAC maps containing
3 Marines (3m), 3 Stalkers vs 3 Zealots (3s 3z), and 8 Marines (8m) and one scenario on CAV where three autonomous
driving vehicles and 1-4 human-driven ones.

In SMAC, we adopt the default episode horizon provided by each environment. The observation space, action space, and
reward structure are described as follows.

• Observation space: At each timestep, agents receive localized observations within their field of view. These observa-
tions include information about both allies and enemies, such as distance, relative coordinates (x, y), health, shield,
and unit type. The environment’s global state provides a complete view of all units on the map, including agent po-
sitions relative to the map center and other relevant features from their observations. The global state is exclusively
used during centralized training. In testing, only the agents’ local observations are perturbed in adversarial scenarios.

• Action space: Each agent has four discrete actions available: movement, attacking, stopping, and no-operation. Move-
ment is limited to the four cardinal directions (north, south, east, and west). Agents can attack enemies if they are
within range. The stop action leaves the agent idle, while the no-operation (no-op) action is only applicable when the
agent is eliminated.

• Reward: The primary objective is to maximize the agents’ win rate. SMAC employs a shaped reward system, where
agents earn rewards based on the damage they inflict during each timestep. Additional rewards are granted for defeat-
ing individual opponents and achieving victory by eliminating all enemy units. All rewards are normalized, ensuring
that the maximum cumulative reward for an episode does not exceed 20.

In the CAV environment, we set the episode horizon to 100 timesteps. The corresponding observation space, action space,
and reward structure are summarized as follows:

• Observation space: Each agent (vehicle) observes nearby vehicles within a 150-meter range along the longitudinal
axis. The observations include features such as whether a vehicle is present, its relative longitudinal and lateral
positions (x, y), and its relative longitudinal and lateral speeds (vx, vy). Only the nearest neighboring vehicles are
considered observable due to local observability constraints.

• Action space: Agents make high-level control decisions, including turning left, turning right, cruising, speeding up,
and slowing down. These decisions are translated into low-level steering and throttle commands by the controller.
The joint action space of the system is the Cartesian product of all agents’ individual action spaces.

• Reward: The reward function incentivizes agents to exhibit desired behaviors, such as safely and efficiently merging
into traffic. Rewards are based on several factors: collision avoidance, maintaining stable speeds, minimizing headway
time, and successful merging. Each component is weighted to balance the objectives.

H.2. Benchmark methods

All benchmarks are implemented based on the classical MARL, Value Decomposition Network (VDN) (Sunehag et al.,
2018) and Q-MIXing network (QMIX) (Rashid et al., 2020). We use the following methods as the benchmark:
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• NoAdv. This baseline uses the standard training approach with VDN and QMIX, without introducing any perturba-
tions during training.

• RN. In this setup, the protagonist is trained with random noise applied to its observations.

• FGSM (Goodfellow et al., 2014). The protagonist is trained with adversarial observation generated using the FGSM.
These perturbations are calculated based on the individual protagonist policy, but their impact on the team reward is
not considered.

• ATLA (Zhang et al., 2021a). In single-agent scenarios, the observation adversary is trained using Proximal Policy
Optimization (PPO) (Schulman et al., 2017), while Multi-Agent PPO (MAPPO) (Yu et al., 2022) is employed as
the adversary in multi-agent scenarios. For the MAPPO adversary, clean observations are used as input, adversarial
observations are selected as actions, and the reward is defined as the negative of the protagonist’s reward. The training
alternates between the protagonist and the MAPPO-based observation adversary.

• PAAD (Guo et al., 2025; Sun et al., 2022b). The PAAD adversary has the same network architecture as the protag-
onist. The adversary operates deterministically on the protagonist’s observations and aims to identify its worst-case
performance.

• PR (Guo et al., 2024). This robust learning method employs an adversarial policy loss regularization strategy
to enhance the robustness of the protagonist models against perturbations. PR formulates the policy loss as
L = Lregular + µLadv , where µ controls the trade-off between standard and adversarial performance.

• PR-REP (Zhou et al., 2024c). µ is repeatedly increased from 0 to 0.1 three times during training.

• ERNIE (Bukharin et al., 2023). It promotes Lipschitz continuity in policies concerning state observations and actions
through adversarial regularization.

• RAP (Vinitsky et al., 2020). It uses a population of adversaries to perturb actions indirectly. To fairly compare with
RAP, we have adopted its core idea of promoting adversary diversity by selecting from the population of deterministic
adversaries and applying it within the PAAD framework.

• ROMANCE-p/s (Yuan et al., 2023b). This method evolves diverse auxiliary adversarial attackers to introduce policy
perturbations during training, thereby enhancing the robustness of multi-agent coordination under uncertainty and po-
tential adversarial threats. We have conducted two sets of experiments: ROMANCE-p, using the original ROMANCE
policy adversary, and ROMANCE-s, where our SDor module is replaced with ROMANCE adversaries.

H.3. Results analysis

For the case of perturbation-free and random noise, the data show that models trained using FGSM and PAAD adversarial
frameworks, while performing well under adversarial conditions, tend to exhibit poor performance in clean or random noise
scenarios. In contrast, our proposed method does not lead to significant performance degradation under these conditions
and even enhances performance in certain clean scenarios, such as in the CAV environment. This improvement may be
attributed to the soft policy employed by the adversarial agents in our framework. These stochastic adversaries encourage
the protagonist agent to explore a broader range of policies, reducing the likelihood of falling into local optima.

For the case of adversarial observations, the NoAdv and RN baselines do not account for adversarial observations during
training, resulting in poor performance under adversarial attacks. However, RN considers random noise during train-
ing, allowing it to perform relatively well under weaker adversarial attacks such as those generated by ATLA. PR, a
robust regularization-based method, incorporates an adversarial loss term during training. However, its performance under
stronger adversarial attacks, such as PAAD and ATSA, remains suboptimal. PR can occasionally achieve the best perfor-
mance under FGSM attacks, such as in the 8m scenario with QMIX-based methods. The experimental results demonstrate
that our proposed ATSA framework achieves the highest average win rate across various scenarios and adversarial obser-
vations when compared to FGSM, ATLA, PAAD, and RN methods. While ATSA does not achieve the best performance
against all adversaries in every scenario, it demonstrates overall robustness. For example, in the 3s 3z scenario during
alternate training with QMIX, ATSA’s performance against FGSM as the adversary is not optimal. However, even in this
case, the best-performing framework, FGSM, only surpasses ATSA’s win rate by 3%, and its performance against other
adversaries is not remarkable. A similar pattern is observed in the CAV environment, where ATSA consistently maintains
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a robust performance. Moreover, ATSA achieves the best average rewards and collision rates under multiple adversarial
conditions, underscoring its superior robustness compared to the other frameworks. From the above analysis, we have the
following conclusions:

• NoAdv and RN fail to enhance model robustness under adversarial conditions.

• PR, PR-REP, and ERNIE improve robustness under adversarial conditions by optimizing an adversarial regularization
term. However, balancing the adversarial loss with the standard loss proves challenging. This often leads to either a
significant performance drop in clean conditions or ineffective adversarial training.

• FGSM and PAAD aim to identify the strongest adversary, optimizing the performance of the protagonist agent under
such conditions. While this approach enhances robustness under adversarial observations, it frequently destabilizes
training and compromises performance in clean ones. In extreme cases, models trained with these methods may
perform equally poorly on both clean and adversarial observations.

• ATLA also seeks to identify the strongest adversary, but the large action space of adversaries makes it difficult to find
an optimal solution, reducing its effectiveness in improving robustness.

• ROMANCE as a policy robustness learning method has to constrain adversarial agents, i.e., introducing a sparse
action attack budget to limit the number of adversarial interventions, in order to preserve the stability of a training
process. These constrains do not work on our state robustness learning method, because if our robustness learning
method also takes these constrains, then only a part of agents are possibly robust while others are not.

• RAP as another policy robustness learning method does not use these constraints, and it takes a population of adver-
saries to deal with overfitting. However, if our state robustness learning method also takes this method to deal with
overfitting, lots of out-of-distribution states are generated (so that the training process is not stable) and the memory
cost is increased significantly.

• ATSA, our proposed framework, introduces stochastic adversaries to address the overfitting issues inherent in adver-
sarial training. This approach ensures that models achieve strong performance in both clean and adversarial observa-
tions by encouraging the protagonist agent to generalize to diverse perturbations.

H.4. Ablation study

NoAdv FGSM PAAD0.0
0.2
0.4
0.6
0.8
1.0

W
in

 R
at

e

= 1e 30 ATSA(QMIX)

Figure 4. Ablation study on α in 8m

The Fig. 4 shows that when α approaches 0, it leads to a decline in robustness. In this case, the policy becomes de-
terministic, which results in performance similar to that of PAAD—showing good results under PAAD attacks but poor
performance under FGSM attacks.

H.5. Different perturbation range

To test the robustness of the model against perturbations of different ranges, we select the upper bound of perturbation
sizes in the range [0, 0.25] with increments of 0.05. As shown in Fig. 5, we compare the model trained by ATSA with those
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(a) VDN-based models against adversarial perturbations of varying ranges.
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(b) QMIX-based models against adversarial perturbations of varying ranges.

Figure 5. Robustness evaluation of VDN-based and QMIX-based models against adversarial perturbations of varying ranges. FGSM,
ATLA, PAAD, and ATSA are four adversarial attack methods used to evaluate the robustness of models against perturbations. In the
legend, NoAdv refers to the baseline model trained without any adversarial training. The models labeled PAAD and ATSA are obtained
through adversarial training.

trained by PAAD and NoAdv. We evaluate the model’s robustness against perturbations generated using four adversaries
focusing on the 3m scenario.

Fig. 5a shows the performance of VDN-based models obtained through training with adversaries. The green solid line
represents the model trained using our ATSA method with the VDN framework. For the NoAdv model, its win rate drops
to nearly 0 when the perturbation size exceeds 0.05, highlighting its lack of robustness. The only exception is under ATLA
attacks, where the performance does not completely degrade due to ATLA’s weaker attack capability. Both PAAD and
ATSA exhibit stable performance across different perturbation ranges. However, PAAD shows occasional instability, such
as at a perturbation size of 0.15, where the performance is significantly better than at 0.05 under the FGSM adversary. This
deviation indicates that PAAD-trained models may overfit specific perturbation ranges, leading to unexpected results under
varying perturbation sizes.

Fig. 5b depicts the performance of QMIX-based models trained with adversaries. The green dashed line represents
the model trained using our ATSA method with the QMIX framework. Under this framework, our method consistently
demonstrates superior performance across all attack methods and perturbation ranges. Similar to the observations in
Fig. 5a, PAAD-trained models frequently show lower performance under small perturbations than under larger ones. This
suggests that PAAD-based training may overfit to specific noise ranges, achieving strong performance within predefined
ranges but failing against others. In contrast, our method, which employs stochastic adversaries during adversarial training,
successfully counters a diverse set of perturbation-generated methods and ranges. This diversity effectively mitigates the
overfitting problem observed in PAAD-trained models.

In summary, our ATSA method, by leveraging stochastic adversarial training, equips the model with robustness against a
broader range of perturbation sizes. Compared to PAAD, our approach resolves the overfitting issue, ensuring stable and
strong performance across varying perturbation ranges.
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H.6. Continuous action space

Table 5. Performance of ATSA in continuous control tasks under the MPE environment
MPE NoAdv RN FGSM ATLA PAAD ATSA AVG Reward

MADDPG 103.13±68.87 110.40±70.05 97.88±63.01 96.16±66.37 107.27±56.33 106.67±68.06 103.58±5.12*
FGSM 121.01±60.14 137.47±69.62 129.09±63.41 115.76±63.58 119.60±58.45 119.70±62.42 123.77±7.32
ATLA 100.81±71.05 113.94±75.32 98.38±69.64 113.13±71.87 116.97±71.37 115.15±73.21 109.73±7.30*
PAAD 130.00±68.30 118.89±68.64 127.88±66.67 128.78±71.11 121.62±67.54 118.38±63.96 124.26±4.78
ATSA 130.30±72.24 136.36±72.98 120.40±67.09 130.20±67.37 121.62±63.50 133.64±71.54 128.75±5.87

FACMAC 204.74±90.17 193.23±86.40 179.29±81.17 191.01±89.56 171.82±82.32 169.20±86.00 184.88±12.58
FGSM 138.79±85.03 159.90±88.11 153.43±70.43 151.01±72.73 158.98±81.75 160.81±78.22 153.82±7.60
ATLA 164.34±82.48 170.10±76.52 160.71±80.41 183.54±90.47 175.35±93.00 158.99±77.58 168.84±8.60
PAAD 152.63±76.65 150.81±87.62 167.27±80.07 153.94±75.38 155.76±79.81 155.86±71.49 156.05±5.32
ATSA 166.66±76.19 158.99±71.77 164.14±84.18 159.80±79.42 166.46±85.66 153.23±69.98 161.55±4.76
* indicates a statistically significant improvement of ATSA over the corresponding method (p < 0.05, Wilcoxon rank-sum test).

To demonstrate the potential applicability of ATSA to continuous control tasks, we conduct experiments based on MAD-
DPG (Lowe et al., 2017) and FACMAC (Peng et al., 2021) in predator-prey scenarios where there are 3 agents and 1 prey
based on Multiagent Particle Environments (MPE) (Lowe et al., 2017). As shown in Table 5, our method under the MAD-
DPG framework shows some improvement compared to existing baselines such as FGSM, PAAD, and ATLA. However,
the performance under the FACMAC framework is not particularly strong under both clean and adversarial conditions.
This indicates that our method has limitations in continuous action spaces and needs further improvement.

We suspect that this is due to two main reasons: 1) In multi-agent environments, inducing coordinated worst-case behaviors
via gradient-based attacks is challenging. 2) For step-wise adversaries like PAAD and ATSA, it is difficult to generate
compound perturbations that follow the intended direction of policy disruption. In future work, we plan to further extend
our method to more challenging continuous action space environments. This includes improving adversarial optimization
techniques for continuous domains and enhancing policy robustness against high-dimensional perturbations.
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