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ABSTRACT

In this work, we argue that non-autoregressive (NAR) sequence generative
models can equivalently be regarded as iterative refinement process towards
the target sequence, implying an underlying dynamical system of NAR model:
z = {(z,x)→ y. In such a way, the optimal prediction of a NAR model should be
the equilibrium state of its dynamics if given infinitely many iterations. However,
this is infeasible in practice due to limited computational and memory budgets.
To this end, we propose DEQNAR to directly solve for the equilibrium state of
NAR models based on deep equilibrium networks (Bai et al., 2019) with black-box
root-finding solvers and back-propagate through the equilibrium point via implicit
differentiation with constant memory. We conduct extensive experiments on four
WMT machine translation benchmarks. Our main findings show that DEQNAR can
indeed converge to a more accurate prediction and is a general-purpose framework
that consistently yields substantial improvement for several strong NAR backbones.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has recently become the most prevailing neural architecture for
sequence-to-sequence learning (Bahdanau et al., 2015). Transformer is originally an autoregressive
(AR) sequence generative models, which adopts a sequential factorization to estimate the conditional
probability of a target sequence y = {y[1], · · · , y[N ]} conditioned on a source sequence x: p(y|x) =∏N

n p(y[n]|y[1:n−1],x). Albeit simple and effective, such a fixed left-to-right restriction is not
necessarily the unique and the best formulation for sequence modeling, limiting the design space
of neural networks and applicable tasks for AR models. Hence researchers are motivated to study
non-autoregressive (NAR) sequence generative models (Gu et al., 2018) as an alternative to AR
models, which instead use a per-token factorization p(y|x) = ∏N

n p(y[n]|x). Despite their favorable
decoding speed and flexible formulation to introduce constraints, NAR models still lag behind their
AR counterparts and require data distillation.

NAR models can be viewed as generating sequences by iteratively denoising from an initial guess
(Figure 1(a)). Several studies based on this idea of iterative refinement show promising and competi-
tive results compared AR models. For instance, Lee et al. (2018) and Savinov et al. (2021) propose to
regard NAR models as denoising autoencoders, while Ghazvininejad et al. (2019) task NAR models
with conditional masked language modeling. More recently, discrete denoising diffusion models
have started to attract the community’s attention. Besides iteratively manipulating sequences of
discrete tokens, research also finds that for fully NAR models Gu et al. (2018), layer recurrence also
calibrates intermediate continuous representations towards the target discrete sequence (Huang et al.,
2021; Elbayad et al., 2020; Li et al., 2022). In other words, fully NAR and iterative-based NAR
models are tasked with approaching their equilibrium states, in terms of either discrete or continuous
representation, which is also found in our empirical observation in Figure 1(c).

In this paper, we argue that NAR models, including fully NAR and iterative-based NAR models,
can be regarded as a dynamical system in the form of zt+1 = fθ(zt,x), implying a dynamics of
parallel denoising or iterative refinement process over the whole sequence (Figure 1(b)). More
concretely, NAR models apply a Markov chain factorization to a series of intermediate predictions
from the bottom up, where a neural parametric transition kernel fθ learns denoising sequences in a
coarse-to-fine manner, while zt is the t-th running discrete or continuous state.
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example, Neural ODEs [25] model infinitesimal steps of a
residual block as an ODE flow. A deep equilibrium (DEQ)
network [2] (which primarily inspired this work) is another
class of implicit model that directly solves for a fixed-point
representation of a shallow layer f✓ (e.g., , a Transformer
block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
modeling [46], semantic segmentation [14], etc. However,
to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.

3. Method
We start by introducing some preliminaries of existing

flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
C =

�
C0, · · · , Cp�1

�
, where Ck 2 RH⇥W⇥H/2k⇥W/2k

is
found by first calculating the inner product between all pairs
of hyperpixels in u1 and u2 as C0, i.e.,

C0
ijmn =

X

d

u1
ijdu

2
mnd (1)

followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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Figure 1: Comparative illustration of autoregressive model (AR), non-autoregressive model (NAR)
and the proposed DEQNAR model in the view of dynamical systems.

• Explicit iterative refinement: Iterative-based NAR models (Lee et al., 2018; Ghazvininejad
et al., 2019) perform iterative refinement within discrete space, producing discrete tokens
explicitly for each iteration. The t-th system state is the discrete representation zt 2
{0, 1}N⇥|V| (i.e., the index of tokens). The transition function f learns to refine the tokens
in the previously generated sentence until meeting a certain condition (e.g., no further
improvement or reaching a maximum number of iterations).

• Implicit iterative refinement: Fully NAR models (Gu & Kong, 2021; Qian et al., 2021)
can also be viewed as implicitly conducting iterative refinement within continuous feature
space given its nature of multi-layer neural networks. The t-th system state for such implicit
iterative refinement is contextualized continuous representation zt 2 RN⇥d (i.e., dense
vectors). The transition function f is supposed to learn to refine representations layer by
layer such that the discrete data can be best described.

We provide an illustration in Figure 1(b).

Motivation. Based on such a dynamical system view of the NAR sequence-to-sequence learning,
one can use dynamical system-inspired methods for better understanding and improved modeling.
For an NAR system that conducts iterative refinement over the whole sequence towards the target
sequence limt!1 f(zt, x) = z? ! y, we may want to find the solution z? of such a system that
best estimate the target data, which is a local optima, or an equilibrium state of this system. However,
as seen in Figure 1, the current NAR systems can be considered as resorting to a naive solver that
recurrently applies the transition function f up to a manually-defined maximum iteration N , which
cannot guarantee to reach the equilibrium solution, leading to a sub-optimal representation in terms
of the target sequence. This motivates us to seek the answer to an arisen question: Can we find such
an equilibrium state of the NAR dynamical system, which can give rise to a better solution?

3 METHOD: DEEP EQUILIBRIUM NAR SEQUENCE MODELS

To pursue the answer to this question, we propose to use DEQ networks (Bai et al., 2019) to directly
solve for such equilibrium state of NAR systems. Formally, given the input x, a transition kernel f✓
parameterized by deep neural networks ✓ (e.g., Transformer), we define an NAR sequence generative
model by the following dynamical system and solve its equilibrium state z? as a root-finding problem:

zt = f✓(zt�1, x), =) z? = RootFind(gz; x, ✓), where gz = f✓(z, x)� z, (1)

where z0 is the initial condition.

As aforementioned, NAR models can be categorized by performing either explicit or implicit iterative
refinement. In the following subsections, we will describe how to model implicit, explicit NAR
models and the combination of the both under the proposed DEQNAR framework, in accordance with
different choices of the definition of the state z and the transition function f✓, which we summarize
in Table 1.
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block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
modeling [46], semantic segmentation [14], etc. However,
to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.

3. Method
We start by introducing some preliminaries of existing

flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
C =

�
C0, · · · , Cp�1
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, where Ck 2 RH⇥W⇥H/2k⇥W/2k

is
found by first calculating the inner product between all pairs
of hyperpixels in u1 and u2 as C0, i.e.,
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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on raw image pairs, with the extracted representations then
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as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).
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between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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which describes the per-pixel motion between consecutive
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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followed by downsampling the last two dimensions to pro-
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embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.
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refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.
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task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
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traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
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example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works

known states state to compute compute path

[i] [i]

x T

Figure 1: Comparative illustration of autoregressive model (AR), non-autoregressive model (NAR)
and the proposed DEQNAR model in the view of dynamical systems.

• Explicit iterative refinement: Iterative-based NAR models (Lee et al., 2018; Ghazvininejad
et al., 2019) perform iterative refinement within discrete space, producing discrete tokens
explicitly for each iteration. The t-th system state is the discrete representation zt 2
{0, 1}N⇥|V| (i.e., the index of tokens). The transition function f learns to refine the tokens
in the previously generated sentence until meeting a certain condition (e.g., no further
improvement or reaching a maximum number of iterations).

• Implicit iterative refinement: Fully NAR models (Gu & Kong, 2021; Qian et al., 2021)
can also be viewed as implicitly conducting iterative refinement within continuous feature
space given its nature of multi-layer neural networks. The t-th system state for such implicit
iterative refinement is contextualized continuous representation zt 2 RN⇥d (i.e., dense
vectors). The transition function f is supposed to learn to refine representations layer by
layer such that the discrete data can be best described.

We provide an illustration in Figure 1(b).

Motivation. Based on such a dynamical system view of the NAR sequence-to-sequence learning,
one can use dynamical system-inspired methods for better understanding and improved modeling.
For an NAR system that conducts iterative refinement over the whole sequence towards the target
sequence limt!1 f(zt, x) = z? ! y, we may want to find the solution z? of such a system that
best estimate the target data, which is a local optima, or an equilibrium state of this system. However,
as seen in Figure 1, the current NAR systems can be considered as resorting to a naive solver that
recurrently applies the transition function f up to a manually-defined maximum iteration N , which
cannot guarantee to reach the equilibrium solution, leading to a sub-optimal representation in terms
of the target sequence. This motivates us to seek the answer to an arisen question: Can we find such
an equilibrium state of the NAR dynamical system, which can give rise to a better solution?

3 METHOD: DEEP EQUILIBRIUM NAR SEQUENCE MODELS

To pursue the answer to this question, we propose to use DEQ networks (Bai et al., 2019) to directly
solve for such equilibrium state of NAR systems. Formally, given the input x, a transition kernel f✓
parameterized by deep neural networks ✓ (e.g., Transformer), we define an NAR sequence generative
model by the following dynamical system and solve its equilibrium state z? as a root-finding problem:

zt = f✓(zt�1, x), =) z? = RootFind(gz; x, ✓), where gz = f✓(z, x)� z, (1)

where z0 is the initial condition.

As aforementioned, NAR models can be categorized by performing either explicit or implicit iterative
refinement. In the following subsections, we will describe how to model implicit, explicit NAR
models and the combination of the both under the proposed DEQNAR framework, in accordance with
different choices of the definition of the state z and the transition function f✓, which we summarize
in Table 1.
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Table 1: Comparison between different type of NAR system under our framework. F denotes a
Transformer layer, � denotes function composition, and � denotes concatenation.

category state: z transition: f✓

implicit continuous feature f✓ = f
explicit discrete tokens f✓ = softmax � F � · · · � F
mixed mixed f✓ = F � softmax � F

3.1 CASE I: IMPLICIT ITERATIVE REFINEMENT WITHIN CONTINUOUS (FEATURE) STATE
SPACE

As for NAR models that conduct implicit iterative refinement (Gu et al., 2018; Gu & Kong, 2021), the
state zt is defined as the continuous hidden representation of intermediate layer, while the transition
function f is parameterized by a Dirac distribution �(zt � µ) with µ is the output of a single
Transformer layer F , which sequentially computes a self-attention (SAN), cross-attention (CAN)
and feed-forward (FFN) blocks, each of which module is followed by layer normalization (Ba et al.,
2016). The initial condition z0 = emb(hmaski) is set to be an embedding sequence full of hmaski
tokens.

In the extreme case, we assume an infinite-depth Transformer which is powerful enough, and each
layer is capable of refining the representation. Intuitively, the quality of a series of intermediate
states {z0, · · · , zt�1, zt, zt+1, · · · , z1} would be approximately sorted in an ascending order. Since
the goodness is bounded, zt must converge to some fixed point, denoted by z?. It is reasonable to
assume that zt would reach an equilibrium state which satisfies z? = f(z?). Therefore, the inference
problem of our interest becomes how to compute the equilibrium state z?.

Given that z is a continuous variable, we can use any advanced black-box root solving algorithms,
e.g., Newton or quasi-Newton methods like Broyden’s methods (Broyden, 1965), or Anderson
acceleration (Anderson, 1965). These methods guarantee a much faster and better-quality convergence
than the case where we perform infinitely many naı̈ve unrolling steps, which is not even realistic due
to computational and memory budgets.

3.2 CASE II: EXPLICIT ITERATIVE REFINEMENT WITHIN DISCRETE (DATA) STATE SPACE

As for NAR models that conduct explicit iterative refinement on discrete tokens (Lee et al., 2018;
Ghazvininejad et al., 2019), the state zt is defined as a sequence of one-hot vectors corresponding
to each of the intermediate predicted tokens. The transition function f✓ : {0, 1}N⇥|V| ! RT⇥|V|

is parameterized by a multi-layer Transformer decoder followed by a softmax normalization, and a
final argmax or sampling operator. The initial condition z0 = hmaski is set to be a sequence full of
hmaski tokens.

Two challenges exist while aiming to solve for the equilibrium point of f(z, x) = z. (1) Intractable:
z lies in very high-dimensional space, and the cardinality of the feasible set is very small (the
vocabulary size). Finding the solution is almost intractable, especially for highly non-linear neural
networks. (2) Non-differentiable: Root-finding algorithm such as Newton methods or quasi-Newton
methods require to compute or estimate Jacobian inverse, which is numerically unstable or even
infeasible to obtain, for transition functions f that contain non-differentiable sampling operators.

Our solution is to leverage the expected embedding weighted by the softmax probabilities as a
continuous relaxation of z:

zt ⇡ z̃t = E [emb(z̃t)] , where z̃t ⇠ f(·|zt�1) (2)

Such approximation helps ease the two problems: (1) a point is projected to the simplex formed
by feasible points, greatly restricting the search space. (2) the “soft” embedding makes the neural
network differentiable. Another possible solution is to use score function gradient estimators (e.g.,
REINFORCE (Williams, 1992)) for these non-differentiable operators, which, however, are known to
be computationally expensive and of high variance nature.
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z? of this system that can best estimate the target y while no further improvement could be made.
However, the current NAR systems, which explicitly and naively apply the transition function F up
to a manually-defined maximum iteration N , cannot guarantee to reach such a stationary equilibrium
state, making the final output zN a sub-optimal representation with regard to the target sequence.
This motivates us to find such an equilibrium state of the NAR dynamical system to get a better
solution.

Based on our unified dynamical system view of NAR models, we reformalize the sequence generation
problem as solving the equilibrium state of an NAR model. We apply our framework to the cases
where the iterative refinement can be conducted either in continuous feature state space, discrete data
state space, or a mixed of the both. This enables multiple preferable properties for our model, the
DEQNAR (Figure 1(c)), over previous studies. (1) Instead of naive iterative layer stacking, DEQNAR
models define the output as fixed point of F✓ given the input x, i.e., z? = f(z?, x), modeling an
equilibrium representation. We can leverage any advanced black-box solvers, e.g., quasi-Newton
methods, to directly solve for the stationary point. Such implicit modeling helps find the stationary
solution of the system that often leads to better results. (2) On one hand, compared with fully NAT
methods that recurrently update layer output, the proposed DEQNAR permits better convergence. (3)
The DEQNAR is also orthogonal to existing advanced techniques for NAR models, for which we
studied its effectiveness when combined with the current best practices, including better modeling
approach (VAE, Gu & Kong, 2021), training objective (CTC, Graves et al., 2006) and training
strategy (GLAT, Qian et al., 2021).

We conduct extensive experiments on WMT14 English-German and WMT16 English-Romanian
machine translation benchmarks. Based on the empirical results, our main findings are as follows:
(1) DEQNAR is a general-purpose framework that can supplement several existing NAR techniques,
including vanilla NAR, VAE, CTC loss, and GLAT training, giving rise to considerable performance
gains. (2) We verify that convergence to an equilibrium state in DEQNAR is almost indeed via
quantitative and qualitative evaluation. The closer to the equilibrium state, the more likely DEQNAR
achieves more accurate performance.

2 REVISITING NAR MODELS AS DYNAMICAL SYSTEMS

NAR Models as Iterative Refinement in General. We formulate NAR models based on Trans-
former (Vaswani et al., 2017) as a Markov chain. There are mainly two categories of NAR models:
fully NAR and iterative-based NAR models. Both of them can be unified under a general perspective
of dynamical systems conducting iterative refinement process over some intermediate state, where
the parametric transition function is in a form of zt = f✓(zt�1, ut) with zt as the running state of
the systems.

Formally, let y = [y[1], . . . , y[N ]] 2 {0, 1}N⇥|V| within the vocabulary space V be a target sequence
of interest, and x = [x[1], . . . , x[|x|]] be the conditional source sequence. Non-autoregressive
sequence-to-sequence learning aims to learn a probabilistic model p(y|x) measuring the likelihood
of target sequence given its source sequence:

p✓(y|x) =
X

z0,··· ,zT

p✓(y, z0, ..., zT |x) =
X

z0,··· ,zT

p✓(y|zT , x)
TY

t=1

f✓(zt|zt�1, x),

where zt is the t-th intermediate state which is varied across different NAR models, f(zt|zt�1, x) is
the transition function from the (t�1)-th step to the (t-th step parameterized by f✓, and p(y|zt, x) =Q

p(y[n]|zt, x) is the predicted probability made in parallel under the conditional independence
assumption among the elements of y.

Such parameterization shares a similar form with a first-order Markov chain, where the probability of
y is a marginalization over all possible intermediate paths z0···T . The state zt evolves through layers
in a bottom-up fashion, and the input ut = x is time-invariant or constant in sequence-to-sequence
learning scenarios.

For clarity of notations, we can classify NAR models by the explicitness of tokens in the intermediate
states:

2

(a) NAR
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z? of this system that can best estimate the target y while no further improvement could be made.
However, the current NAR systems, which explicitly and naively apply the transition function F up
to a manually-defined maximum iteration N , cannot guarantee to reach such a stationary equilibrium
state, making the final output zN a sub-optimal representation with regard to the target sequence.
This motivates us to find such an equilibrium state of the NAR dynamical system to get a better
solution.

Based on our unified dynamical system view of NAR models, we reformalize the sequence generation
problem as solving the equilibrium state of an NAR model. We apply our framework to the cases
where the iterative refinement can be conducted either in continuous feature state space, discrete data
state space, or a mixed of the both. This enables multiple preferable properties for our model, the
DEQNAR (Figure 1(c)), over previous studies. (1) Instead of naive iterative layer stacking, DEQNAR
models define the output as fixed point of F✓ given the input x, i.e., z? = f(z?, x), modeling an
equilibrium representation. We can leverage any advanced black-box solvers, e.g., quasi-Newton
methods, to directly solve for the stationary point. Such implicit modeling helps find the stationary
solution of the system that often leads to better results. (2) On one hand, compared with fully NAT
methods that recurrently update layer output, the proposed DEQNAR permits better convergence. (3)
The DEQNAR is also orthogonal to existing advanced techniques for NAR models, for which we
studied its effectiveness when combined with the current best practices, including better modeling
approach (VAE, Gu & Kong, 2021), training objective (CTC, Graves et al., 2006) and training
strategy (GLAT, Qian et al., 2021).

We conduct extensive experiments on WMT14 English-German and WMT16 English-Romanian
machine translation benchmarks. Based on the empirical results, our main findings are as follows:
(1) DEQNAR is a general-purpose framework that can supplement several existing NAR techniques,
including vanilla NAR, VAE, CTC loss, and GLAT training, giving rise to considerable performance
gains. (2) We verify that convergence to an equilibrium state in DEQNAR is almost indeed via
quantitative and qualitative evaluation. The closer to the equilibrium state, the more likely DEQNAR
achieves more accurate performance.

2 REVISITING NAR MODELS AS DYNAMICAL SYSTEMS

NAR Models as Iterative Refinement in General. We formulate NAR models based on Trans-
former (Vaswani et al., 2017) as a Markov chain. There are mainly two categories of NAR models:
fully NAR and iterative-based NAR models. Both of them can be unified under a general perspective
of dynamical systems conducting iterative refinement process over some intermediate state, where
the parametric transition function is in a form of zt = f✓(zt�1, ut) with zt as the running state of
the systems.

Formally, let y = [y[1], . . . , y[N ]] 2 {0, 1}N⇥|V| within the vocabulary space V be a target sequence
of interest, and x = [x[1], . . . , x[|x|]] be the conditional source sequence. Non-autoregressive
sequence-to-sequence learning aims to learn a probabilistic model p(y|x) measuring the likelihood
of target sequence given its source sequence:

p✓(y|x) =
X

z0,··· ,zT

p✓(y, z0, ..., zT |x) =
X

z0,··· ,zT

p✓(y|zT , x)
TY

t=1

f✓(zt|zt�1, x),

where zt is the t-th intermediate state which is varied across different NAR models, f(zt|zt�1, x) is
the transition function from the (t�1)-th step to the (t-th step parameterized by f✓, and p(y|zt, x) =Q

p(y[n]|zt, x) is the predicted probability made in parallel under the conditional independence
assumption among the elements of y.

Such parameterization shares a similar form with a first-order Markov chain, where the probability of
y is a marginalization over all possible intermediate paths z0···T . The state zt evolves through layers
in a bottom-up fashion, and the input ut = x is time-invariant or constant in sequence-to-sequence
learning scenarios.

For clarity of notations, we can classify NAR models by the explicitness of tokens in the intermediate
states:

2

[iter. t-1] what is it possible 
     to do it without brain

[init]  [M] [M] [M] [M] [M]  
         [M] [M] [M] [M] [M]

[iter. t] what is it possible 
     to do this without brain
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Table 1: Comparison between different type of NAR system under our framework. F denotes a
Transformer layer, � denotes function composition, and � denotes concatenation.

category state: z transition: f✓

implicit continuous feature f✓ = f
explicit discrete tokens f✓ = softmax � F � · · · � F
mixed mixed f✓ = F � softmax � F

3.1 CASE I: IMPLICIT ITERATIVE REFINEMENT WITHIN CONTINUOUS (FEATURE) STATE
SPACE

As for NAR models that conduct implicit iterative refinement (Gu et al., 2018; Gu & Kong, 2021), the
state zt is defined as the continuous hidden representation of intermediate layer, while the transition
function f is parameterized by a Dirac distribution �(zt � µ) with µ is the output of a single
Transformer layer F , which sequentially computes a self-attention (SAN), cross-attention (CAN)
and feed-forward (FFN) blocks, each of which module is followed by layer normalization (Ba et al.,
2016). The initial condition z0 = emb(hmaski) is set to be an embedding sequence full of hmaski
tokens.

In the extreme case, we assume an infinite-depth Transformer which is powerful enough, and each
layer is capable of refining the representation. Intuitively, the quality of a series of intermediate
states {z0, · · · , zt�1, zt, zt+1, · · · , z1} would be approximately sorted in an ascending order. Since
the goodness is bounded, zt must converge to some fixed point, denoted by z?. It is reasonable to
assume that zt would reach an equilibrium state which satisfies z? = f(z?). Therefore, the inference
problem of our interest becomes how to compute the equilibrium state z?.

Given that z is a continuous variable, we can use any advanced black-box root solving algorithms,
e.g., Newton or quasi-Newton methods like Broyden’s methods (Broyden, 1965), or Anderson
acceleration (Anderson, 1965). These methods guarantee a much faster and better-quality convergence
than the case where we perform infinitely many naı̈ve unrolling steps, which is not even realistic due
to computational and memory budgets.

3.2 CASE II: EXPLICIT ITERATIVE REFINEMENT WITHIN DISCRETE (DATA) STATE SPACE

As for NAR models that conduct explicit iterative refinement on discrete tokens (Lee et al., 2018;
Ghazvininejad et al., 2019), the state zt is defined as a sequence of one-hot vectors corresponding
to each of the intermediate predicted tokens. The transition function f✓ : {0, 1}N⇥|V| ! RT⇥|V|

is parameterized by a multi-layer Transformer decoder followed by a softmax normalization, and a
final argmax or sampling operator. The initial condition z0 = hmaski is set to be a sequence full of
hmaski tokens.

Two challenges exist while aiming to solve for the equilibrium point of f(z, x) = z. (1) Intractable:
z lies in very high-dimensional space, and the cardinality of the feasible set is very small (the
vocabulary size). Finding the solution is almost intractable, especially for highly non-linear neural
networks. (2) Non-differentiable: Root-finding algorithm such as Newton methods or quasi-Newton
methods require to compute or estimate Jacobian inverse, which is numerically unstable or even
infeasible to obtain, for transition functions f that contain non-differentiable sampling operators.

Our solution is to leverage the expected embedding weighted by the softmax probabilities as a
continuous relaxation of z:

zt ⇡ z̃t = E [emb(z̃t)] , where z̃t ⇠ f(·|zt�1) (2)

Such approximation helps ease the two problems: (1) a point is projected to the simplex formed
by feasible points, greatly restricting the search space. (2) the “soft” embedding makes the neural
network differentiable. Another possible solution is to use score function gradient estimators (e.g.,
REINFORCE (Williams, 1992)) for these non-differentiable operators, which, however, are known to
be computationally expensive and of high variance nature.
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z? of this system that can best estimate the target y while no further improvement could be made.
However, the current NAR systems, which explicitly and naively apply the transition function F up
to a manually-defined maximum iteration N , cannot guarantee to reach such a stationary equilibrium
state, making the final output zN a sub-optimal representation with regard to the target sequence.
This motivates us to find such an equilibrium state of the NAR dynamical system to get a better
solution.

Based on our unified dynamical system view of NAR models, we reformalize the sequence generation
problem as solving the equilibrium state of an NAR model. We apply our framework to the cases
where the iterative refinement can be conducted either in continuous feature state space, discrete data
state space, or a mixed of the both. This enables multiple preferable properties for our model, the
DEQNAR (Figure 1(c)), over previous studies. (1) Instead of naive iterative layer stacking, DEQNAR
models define the output as fixed point of F✓ given the input x, i.e., z? = f(z?, x), modeling an
equilibrium representation. We can leverage any advanced black-box solvers, e.g., quasi-Newton
methods, to directly solve for the stationary point. Such implicit modeling helps find the stationary
solution of the system that often leads to better results. (2) On one hand, compared with fully NAT
methods that recurrently update layer output, the proposed DEQNAR permits better convergence. (3)
The DEQNAR is also orthogonal to existing advanced techniques for NAR models, for which we
studied its effectiveness when combined with the current best practices, including better modeling
approach (VAE, Gu & Kong, 2021), training objective (CTC, Graves et al., 2006) and training
strategy (GLAT, Qian et al., 2021).

We conduct extensive experiments on WMT14 English-German and WMT16 English-Romanian
machine translation benchmarks. Based on the empirical results, our main findings are as follows:
(1) DEQNAR is a general-purpose framework that can supplement several existing NAR techniques,
including vanilla NAR, VAE, CTC loss, and GLAT training, giving rise to considerable performance
gains. (2) We verify that convergence to an equilibrium state in DEQNAR is almost indeed via
quantitative and qualitative evaluation. The closer to the equilibrium state, the more likely DEQNAR
achieves more accurate performance.

2 REVISITING NAR MODELS AS DYNAMICAL SYSTEMS

NAR Models as Iterative Refinement in General. We formulate NAR models based on Trans-
former (Vaswani et al., 2017) as a Markov chain. There are mainly two categories of NAR models:
fully NAR and iterative-based NAR models. Both of them can be unified under a general perspective
of dynamical systems conducting iterative refinement process over some intermediate state, where
the parametric transition function is in a form of zt = f✓(zt�1, ut) with zt as the running state of
the systems.

Formally, let y = [y[1], . . . , y[N ]] 2 {0, 1}N⇥|V| within the vocabulary space V be a target sequence
of interest, and x = [x[1], . . . , x[|x|]] be the conditional source sequence. Non-autoregressive
sequence-to-sequence learning aims to learn a probabilistic model p(y|x) measuring the likelihood
of target sequence given its source sequence:

p✓(y|x) =
X

z0,··· ,zT

p✓(y, z0, ..., zT |x) =
X

z0,··· ,zT

p✓(y|zT , x)
TY

t=1

f✓(zt|zt�1, x),

where zt is the t-th intermediate state which is varied across different NAR models, f(zt|zt�1, x) is
the transition function from the (t�1)-th step to the (t-th step parameterized by f✓, and p(y|zt, x) =Q

p(y[n]|zt, x) is the predicted probability made in parallel under the conditional independence
assumption among the elements of y.

Such parameterization shares a similar form with a first-order Markov chain, where the probability of
y is a marginalization over all possible intermediate paths z0···T . The state zt evolves through layers
in a bottom-up fashion, and the input ut = x is time-invariant or constant in sequence-to-sequence
learning scenarios.

For clarity of notations, we can classify NAR models by the explicitness of tokens in the intermediate
states:

2

[init]  [M] [M] [M] [M] [M]  
         [M] [M] [M] [M] [M]

[equilibrium state] how is it possible 
to do this without a brain
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z? of this system that can best estimate the target y while no further improvement could be made.
However, the current NAR systems, which explicitly and naively apply the transition function F up
to a manually-defined maximum iteration N , cannot guarantee to reach such a stationary equilibrium
state, making the final output zN a sub-optimal representation with regard to the target sequence.
This motivates us to find such an equilibrium state of the NAR dynamical system to get a better
solution.

Based on our unified dynamical system view of NAR models, we reformalize the sequence generation
problem as solving the equilibrium state of an NAR model. We apply our framework to the cases
where the iterative refinement can be conducted either in continuous feature state space, discrete data
state space, or a mixed of the both. This enables multiple preferable properties for our model, the
DEQNAR (Figure 1(c)), over previous studies. (1) Instead of naive iterative layer stacking, DEQNAR
models define the output as fixed point of F✓ given the input x, i.e., z? = f(z?, x), modeling an
equilibrium representation. We can leverage any advanced black-box solvers, e.g., quasi-Newton
methods, to directly solve for the stationary point. Such implicit modeling helps find the stationary
solution of the system that often leads to better results. (2) On one hand, compared with fully NAT
methods that recurrently update layer output, the proposed DEQNAR permits better convergence. (3)
The DEQNAR is also orthogonal to existing advanced techniques for NAR models, for which we
studied its effectiveness when combined with the current best practices, including better modeling
approach (VAE, Gu & Kong, 2021), training objective (CTC, Graves et al., 2006) and training
strategy (GLAT, Qian et al., 2021).

We conduct extensive experiments on WMT14 English-German and WMT16 English-Romanian
machine translation benchmarks. Based on the empirical results, our main findings are as follows:
(1) DEQNAR is a general-purpose framework that can supplement several existing NAR techniques,
including vanilla NAR, VAE, CTC loss, and GLAT training, giving rise to considerable performance
gains. (2) We verify that convergence to an equilibrium state in DEQNAR is almost indeed via
quantitative and qualitative evaluation. The closer to the equilibrium state, the more likely DEQNAR
achieves more accurate performance.

2 REVISITING NAR MODELS AS DYNAMICAL SYSTEMS

NAR Models as Iterative Refinement in General. We formulate NAR models based on Trans-
former (Vaswani et al., 2017) as a Markov chain. There are mainly two categories of NAR models:
fully NAR and iterative-based NAR models. Both of them can be unified under a general perspective
of dynamical systems conducting iterative refinement process over some intermediate state, where
the parametric transition function is in a form of zt = f✓(zt�1, ut) with zt as the running state of
the systems.

Formally, let y = [y[1], . . . , y[N ]] 2 {0, 1}N⇥|V| within the vocabulary space V be a target sequence
of interest, and x = [x[1], . . . , x[|x|]] be the conditional source sequence. Non-autoregressive
sequence-to-sequence learning aims to learn a probabilistic model p(y|x) measuring the likelihood
of target sequence given its source sequence:

p✓(y|x) =
X

z0,··· ,zT

p✓(y, z0, ..., zT |x) =
X

z0,··· ,zT

p✓(y|zT , x)
TY

t=1

f✓(zt|zt�1, x),

where zt is the t-th intermediate state which is varied across different NAR models, f(zt|zt�1, x) is
the transition function from the (t�1)-th step to the (t-th step parameterized by f✓, and p(y|zt, x) =Q

p(y[n]|zt, x) is the predicted probability made in parallel under the conditional independence
assumption among the elements of y.

Such parameterization shares a similar form with a first-order Markov chain, where the probability of
y is a marginalization over all possible intermediate paths z0···T . The state zt evolves through layers
in a bottom-up fashion, and the input ut = x is time-invariant or constant in sequence-to-sequence
learning scenarios.

For clarity of notations, we can classify NAR models by the explicitness of tokens in the intermediate
states:

2

Solve for 
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z? of this system that can best estimate the target y while no further improvement could be made.
However, the current NAR systems, which explicitly and naively apply the transition function F up
to a manually-defined maximum iteration N , cannot guarantee to reach such a stationary equilibrium
state, making the final output zN a sub-optimal representation with regard to the target sequence.
This motivates us to find such an equilibrium state of the NAR dynamical system to get a better
solution.

Based on our unified dynamical system view of NAR models, we reformalize the sequence generation
problem as solving the equilibrium state of an NAR model. We apply our framework to the cases
where the iterative refinement can be conducted either in continuous feature state space, discrete data
state space, or a mixed of the both. This enables multiple preferable properties for our model, the
DEQNAR (Figure 1(c)), over previous studies. (1) Instead of naive iterative layer stacking, DEQNAR
models define the output as fixed point of F✓ given the input x, i.e., z? = f(z?, x), modeling an
equilibrium representation. We can leverage any advanced black-box solvers, e.g., quasi-Newton
methods, to directly solve for the stationary point. Such implicit modeling helps find the stationary
solution of the system that often leads to better results. (2) On one hand, compared with fully NAT
methods that recurrently update layer output, the proposed DEQNAR permits better convergence. (3)
The DEQNAR is also orthogonal to existing advanced techniques for NAR models, for which we
studied its effectiveness when combined with the current best practices, including better modeling
approach (VAE, Gu & Kong, 2021), training objective (CTC, Graves et al., 2006) and training
strategy (GLAT, Qian et al., 2021).

We conduct extensive experiments on WMT14 English-German and WMT16 English-Romanian
machine translation benchmarks. Based on the empirical results, our main findings are as follows:
(1) DEQNAR is a general-purpose framework that can supplement several existing NAR techniques,
including vanilla NAR, VAE, CTC loss, and GLAT training, giving rise to considerable performance
gains. (2) We verify that convergence to an equilibrium state in DEQNAR is almost indeed via
quantitative and qualitative evaluation. The closer to the equilibrium state, the more likely DEQNAR
achieves more accurate performance.

2 REVISITING NAR MODELS AS DYNAMICAL SYSTEMS

NAR Models as Iterative Refinement in General. We formulate NAR models based on Trans-
former (Vaswani et al., 2017) as a Markov chain. There are mainly two categories of NAR models:
fully NAR and iterative-based NAR models. Both of them can be unified under a general perspective
of dynamical systems conducting iterative refinement process over some intermediate state, where
the parametric transition function is in a form of zt = f✓(zt�1, ut) with zt as the running state of
the systems.

Formally, let y = [y[1], . . . , y[N ]] 2 {0, 1}N⇥|V| within the vocabulary space V be a target sequence
of interest, and x = [x[1], . . . , x[|x|]] be the conditional source sequence. Non-autoregressive
sequence-to-sequence learning aims to learn a probabilistic model p(y|x) measuring the likelihood
of target sequence given its source sequence:

p✓(y|x) =
X

z0,··· ,zT

p✓(y, z0, ..., zT |x) =
X

z0,··· ,zT

p✓(y|zT , x)
TY

t=1

f✓(zt|zt�1, x),

where zt is the t-th intermediate state which is varied across different NAR models, f(zt|zt�1, x) is
the transition function from the (t�1)-th step to the (t-th step parameterized by f✓, and p(y|zt, x) =Q

p(y[n]|zt, x) is the predicted probability made in parallel under the conditional independence
assumption among the elements of y.

Such parameterization shares a similar form with a first-order Markov chain, where the probability of
y is a marginalization over all possible intermediate paths z0···T . The state zt evolves through layers
in a bottom-up fashion, and the input ut = x is time-invariant or constant in sequence-to-sequence
learning scenarios.

For clarity of notations, we can classify NAR models by the explicitness of tokens in the intermediate
states:

2
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Figure 2: BLEU score (left) and difference norm (middle) with regard to iteration, as well as a scatter
plot of BLEU against difference norm (right) on WMT14 EN-DE.

the parametric transition function is in a form of zt = f✓(zt�1, ut) with zt as the running state of
the systems.

Formally, let y = [y[1], . . . , y[N ]] 2 {0, 1}N⇥|V| within the vocabulary space V be a target sequence
of interest, and x = [x[1], . . . , x[|x|]] be the conditional source sequence. Non-autoregressive
sequence-to-sequence learning aims to learn a probabilistic model p(y|x) measuring the likelihood
of target sequence given its source sequence:

p✓(y|x) =
X

z0,··· ,zT

p✓(y, z0, ..., zT |x) =
X

z0,··· ,zT

p✓(y|zT , x)
TY

t=1

f✓(zt|zt�1, x),

where zt is the t-th intermediate state which is varied across different NAR models, f(zt|zt�1, x) is
the transition function from the (t�1)-th step to the (t-th step parameterized by f✓, and p(y|zt, x) =Q

p(y[n]|zt, x) is the predicted probability made in parallel under the conditional independence
assumption among the elements of y.

Such parameterization shares a similar form with a first-order Markov chain, where the probability of
y is a marginalization over all possible intermediate paths z0···T . The state zt evolves through layers
in a bottom-up fashion, and the input ut = x is time-invariant or constant in sequence-to-sequence
learning scenarios.

For clarity of notations, we can classify NAR models by the explicitness of tokens in the intermediate
states:

• Explicit iterative refinement: Iterative-based NAR models (Lee et al., 2018; Ghazvininejad
et al., 2019) perform iterative refinement within discrete space, producing discrete tokens
explicitly for each iteration. The t-th system state is the discrete representation zt 2
{0, 1}N⇥|V| (i.e., the index of tokens). The transition function f learns to refine the tokens
in the previously generated sentence until meeting a certain condition (e.g., no further
improvement or reaching a maximum number of iterations).

• Implicit iterative refinement: Fully NAR models (Gu & Kong, 2021; Qian et al., 2021)
can also be viewed as implicitly conducting iterative refinement within continuous feature
space given its nature of multi-layer neural networks. The t-th system state for such implicit
iterative refinement is contextualized continuous representation zt 2 RN⇥d (i.e., dense
vectors). The transition function f is supposed to learn to refine representations layer by
layer such that the discrete data can be best described.

We provide an illustration in Figure 1(b).

Motivation. Based on such a dynamical system view of the NAR sequence-to-sequence learning,
one can use dynamical system-inspired methods for better understanding and improved modeling.

3
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example, Neural ODEs [25] model infinitesimal steps of a
residual block as an ODE flow. A deep equilibrium (DEQ)
network [2] (which primarily inspired this work) is another
class of implicit model that directly solves for a fixed-point
representation of a shallow layer f✓ (e.g., , a Transformer
block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
modeling [46], semantic segmentation [14], etc. However,
to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.

3. Method
We start by introducing some preliminaries of existing

flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
C =

�
C0, · · · , Cp�1

�
, where Ck 2 RH⇥W⇥H/2k⇥W/2k

is
found by first calculating the inner product between all pairs
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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example, Neural ODEs [25] model infinitesimal steps of a
residual block as an ODE flow. A deep equilibrium (DEQ)
network [2] (which primarily inspired this work) is another
class of implicit model that directly solves for a fixed-point
representation of a shallow layer f✓ (e.g., , a Transformer
block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
modeling [46], semantic segmentation [14], etc. However,
to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.

3. Method
We start by introducing some preliminaries of existing

flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
C =
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C0, · · · , Cp�1
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, where Ck 2 RH⇥W⇥H/2k⇥W/2k

is
found by first calculating the inner product between all pairs
of hyperpixels in u1 and u2 as C0, i.e.,
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works

z[i]z[i+1] =   (    , x)

example, Neural ODEs [25] model infinitesimal steps of a
residual block as an ODE flow. A deep equilibrium (DEQ)
network [2] (which primarily inspired this work) is another
class of implicit model that directly solves for a fixed-point
representation of a shallow layer f✓ (e.g., , a Transformer
block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
modeling [46], semantic segmentation [14], etc. However,
to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.

3. Method
We start by introducing some preliminaries of existing

flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
C =
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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example, Neural ODEs [25] model infinitesimal steps of a
residual block as an ODE flow. A deep equilibrium (DEQ)
network [2] (which primarily inspired this work) is another
class of implicit model that directly solves for a fixed-point
representation of a shallow layer f✓ (e.g., , a Transformer
block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
modeling [46], semantic segmentation [14], etc. However,
to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.
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flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works

known states state to compute compute path

[i] [i]

x T

Figure 1: Comparative illustration of autoregressive model (AR), non-autoregressive model (NAR)
and the proposed DEQNAR model in the view of dynamical systems.

• Explicit iterative refinement: Iterative-based NAR models (Lee et al., 2018; Ghazvininejad
et al., 2019) perform iterative refinement within discrete space, producing discrete tokens
explicitly for each iteration. The t-th system state is the discrete representation zt 2
{0, 1}N⇥|V| (i.e., the index of tokens). The transition function f learns to refine the tokens
in the previously generated sentence until meeting a certain condition (e.g., no further
improvement or reaching a maximum number of iterations).

• Implicit iterative refinement: Fully NAR models (Gu & Kong, 2021; Qian et al., 2021)
can also be viewed as implicitly conducting iterative refinement within continuous feature
space given its nature of multi-layer neural networks. The t-th system state for such implicit
iterative refinement is contextualized continuous representation zt 2 RN⇥d (i.e., dense
vectors). The transition function f is supposed to learn to refine representations layer by
layer such that the discrete data can be best described.

We provide an illustration in Figure 1(b).

Motivation. Based on such a dynamical system view of the NAR sequence-to-sequence learning,
one can use dynamical system-inspired methods for better understanding and improved modeling.
For an NAR system that conducts iterative refinement over the whole sequence towards the target
sequence limt!1 f(zt, x) = z? ! y, we may want to find the solution z? of such a system that
best estimate the target data, which is a local optima, or an equilibrium state of this system. However,
as seen in Figure 1, the current NAR systems can be considered as resorting to a naive solver that
recurrently applies the transition function f up to a manually-defined maximum iteration N , which
cannot guarantee to reach the equilibrium solution, leading to a sub-optimal representation in terms
of the target sequence. This motivates us to seek the answer to an arisen question: Can we find such
an equilibrium state of the NAR dynamical system, which can give rise to a better solution?

3 METHOD: DEEP EQUILIBRIUM NAR SEQUENCE MODELS

To pursue the answer to this question, we propose to use DEQ networks (Bai et al., 2019) to directly
solve for such equilibrium state of NAR systems. Formally, given the input x, a transition kernel f✓
parameterized by deep neural networks ✓ (e.g., Transformer), we define an NAR sequence generative
model by the following dynamical system and solve its equilibrium state z? as a root-finding problem:

zt = f✓(zt�1, x), =) z? = RootFind(gz; x, ✓), where gz = f✓(z, x)� z, (1)

where z0 is the initial condition.

As aforementioned, NAR models can be categorized by performing either explicit or implicit iterative
refinement. In the following subsections, we will describe how to model implicit, explicit NAR
models and the combination of the both under the proposed DEQNAR framework, in accordance with
different choices of the definition of the state z and the transition function f✓, which we summarize
in Table 1.
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example, Neural ODEs [25] model infinitesimal steps of a
residual block as an ODE flow. A deep equilibrium (DEQ)
network [2] (which primarily inspired this work) is another
class of implicit model that directly solves for a fixed-point
representation of a shallow layer f✓ (e.g., , a Transformer
block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
modeling [46], semantic segmentation [14], etc. However,
to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.

3. Method
We start by introducing some preliminaries of existing

flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
C =
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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example, Neural ODEs [25] model infinitesimal steps of a
residual block as an ODE flow. A deep equilibrium (DEQ)
network [2] (which primarily inspired this work) is another
class of implicit model that directly solves for a fixed-point
representation of a shallow layer f✓ (e.g., , a Transformer
block) and differentiates through this fixed point without
storing intermediate states in the forward pass. This allows
one to train implicit networks with constant memory, while
fully decoupling the forward and backward passes of training.
However, it is known that these implicit models suffer from
a few serious issues that have been studied by later works,
such as computational inefficiency [25, 45], instability [2,
25, 26], and lack of theoretical convergence guarantees [15,
16]. On a positive note, followup works have also shown
that DEQ-based models can achieve competitive results on
challenging tasks such as language modeling [2], generative
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to the best of our knowledge, these implicit models have not
been applied to the task of optical flow estimation. In this
paper, we show that this task could substantially benefit from
the DEQ formulation as well.
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flow estimators. These modules are typically applied directly
on raw image pairs, with the extracted representations then
passed into the iterative refinement stage. We use RAFT [1]
as the illustrative example here while noting that cutting-
edge flow estimators generally share similar structure (i.e., ,
for context extraction and correlation computations).

3.1. Preliminaries

Given an RGB image pair p1,p2 2 R3⇥H⇥W , an optical
flow estimator aims to learn a correspondence f 2 R2⇥H⇥W

between two coordinate grids c1, c2 (i.e., f = c2 � c1),
which describes the per-pixel motion between consecutive
frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode fea-
tures u1,u2 2 RC⇥H⇥W of p1,p2, and produce a con-
text embedding q from the first image p1. Then, we
construct a group of pyramid global correlation tensors
C =
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followed by downsampling the last two dimensions to pro-
duce Ck (k > 0). The correlation pyramid C and context
embedding q, which allow the model to infer large motions
and displacements in a global sense, are then passed as inputs
into the iterative refinement stage.

In this work, we keep the correlation and context compu-
tation part intact (see Fig. 2) and concentrate on the iterative
refinement stage. We refer interested readers to Teed and
Deng [1] for a more detailed description of the feature ex-
traction process.

3.2. Deep Equilibrium Flow Estimator

Due to the inherent challenges of the flow estimation
task, prior works have shown that explicit neural networks
struggle to predict the flow accurately, requiring a pro-
hibitively large number of training iterations [6]. Recent
works [1, 3, 24] have resorted to mimicking the flavor of
traditional optimization-based algorithms [5] with RNNs
(e.g., convGRUs). However, these methods are still quite
different from the traditional methods in a few ways. For
example, optimization-based methods 1) have an adap-
tive and well-defined stopping criteria (e.g., whenever they
reach the optima); 2) are agnostic to the choice of solver
(e.g., first- or second-order methods); and 3) are essentially
path-independent (i.e., the output alone is the only thing we
should need). None of these properties are directly charac-
terized by the finite-step unrolling of recurrent networks.

We propose to close this gap with a DEQ-based approach.
Specifically, given the context embedding q and the pyra-
mid correlation tensor C, a DEQ flow estimator simultane-
ously solves for the fixed-point convergence of two alternate
streams: 1) a latent representation h, which constructs the
flow updates; and 2) the flow estimate f itself, whose updates
are generically related as follows:

h[t+1] = H(h[t] , f [t],q, C)
f [t+1] = F(h[t+1], f [t],q, C).

(2)

This formulation captures the form of prominent flow esti-
mator model designs like RAFT [1] or GMA [3]. Formally,
the input x = (q, C) and model parameters f✓ = (H, F)
jointly define a dynamical system that the DEQ flow model
can directly solve the fixed point for using the following flow
update equation in its forward pass:

(h⇤, f⇤) = z⇤ = f✓ (z⇤,x) = f✓ ((h⇤, f⇤),x) . (3)

Intuitively, this corresponds to an “infinite-depth” feature
representation z⇤ where, if we perform one more flow up-
date step f✓, both flow estimation f and latent state h will
not change (thus reaching a fixed point, i.e., an “equilib-
rium”). Importantly, we can leverage much more advanced
root solving methods like quasi-Newton methods (e.g., Broy-
den’s method [18] or Anderson mixing [19]) to find the fixed
point. These methods guarantee a much faster (superlinear)
and better-quality convergence than if we perform infinitely
many naïve unrolling steps (as do recurrent networks but
only up to a finite number of steps due to computation and
memory constraints). Moreover, we note that prior works
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Figure 1: Comparative illustration of autoregressive model (AR), non-autoregressive model (NAR)
and the proposed DEQNAR model in the view of dynamical systems.

• Explicit iterative refinement: Iterative-based NAR models (Lee et al., 2018; Ghazvininejad
et al., 2019) perform iterative refinement within discrete space, producing discrete tokens
explicitly for each iteration. The t-th system state is the discrete representation zt 2
{0, 1}N⇥|V| (i.e., the index of tokens). The transition function f learns to refine the tokens
in the previously generated sentence until meeting a certain condition (e.g., no further
improvement or reaching a maximum number of iterations).

• Implicit iterative refinement: Fully NAR models (Gu & Kong, 2021; Qian et al., 2021)
can also be viewed as implicitly conducting iterative refinement within continuous feature
space given its nature of multi-layer neural networks. The t-th system state for such implicit
iterative refinement is contextualized continuous representation zt 2 RN⇥d (i.e., dense
vectors). The transition function f is supposed to learn to refine representations layer by
layer such that the discrete data can be best described.

We provide an illustration in Figure 1(b).

Motivation. Based on such a dynamical system view of the NAR sequence-to-sequence learning,
one can use dynamical system-inspired methods for better understanding and improved modeling.
For an NAR system that conducts iterative refinement over the whole sequence towards the target
sequence limt!1 f(zt, x) = z? ! y, we may want to find the solution z? of such a system that
best estimate the target data, which is a local optima, or an equilibrium state of this system. However,
as seen in Figure 1, the current NAR systems can be considered as resorting to a naive solver that
recurrently applies the transition function f up to a manually-defined maximum iteration N , which
cannot guarantee to reach the equilibrium solution, leading to a sub-optimal representation in terms
of the target sequence. This motivates us to seek the answer to an arisen question: Can we find such
an equilibrium state of the NAR dynamical system, which can give rise to a better solution?

3 METHOD: DEEP EQUILIBRIUM NAR SEQUENCE MODELS

To pursue the answer to this question, we propose to use DEQ networks (Bai et al., 2019) to directly
solve for such equilibrium state of NAR systems. Formally, given the input x, a transition kernel f✓
parameterized by deep neural networks ✓ (e.g., Transformer), we define an NAR sequence generative
model by the following dynamical system and solve its equilibrium state z? as a root-finding problem:

zt = f✓(zt�1, x), =) z? = RootFind(gz; x, ✓), where gz = f✓(z, x)� z, (1)

where z0 is the initial condition.

As aforementioned, NAR models can be categorized by performing either explicit or implicit iterative
refinement. In the following subsections, we will describe how to model implicit, explicit NAR
models and the combination of the both under the proposed DEQNAR framework, in accordance with
different choices of the definition of the state z and the transition function f✓, which we summarize
in Table 1.
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Figure 1: Comparative illustration of (a) non-autoregressive model (NAR), (b) the proposed DEQNAR
model in the view of dynamical systems, and (c) the evolution of representation and performance of
the NAR systems (GLAT (Qian et al., 2021) with and without DEQNAR).

From such a unified dynamical system perspective, intuitively, the state of an NAR system is supposed
to evolve towards the target sequence limt→∞ fθ(zt,x) = z⋆ → y, where we may obtain a solution
z⋆ of this system that can best estimate the target y while no further improvement could be made.
However, the current NAR systems, which naively evaluate the transition functionF up to a manually-
defined maximum iteration N , cannot guarantee to reach such a stationary equilibrium state, making
the final output zN a sub-optimal representation with regard to the target sequence. This motivates us
to solve for such an equilibrium state of the NAR dynamical system for better understanding and
modeling.

To this end, in this paper, we reformulate the sequence generation problem as solving the equilibrium
state of NAR models. We propose our framework, the DEQNAR, and apply it to the cases where
the iterative refinement can be conducted either in continuous feature state space, discrete data state
space, or a combination of both. This enables multiple preferable properties for our model over
previous studies. (1) Instead of naive iterative layer stacking, DEQNAR models define the output
as fixed point of Fθ given the input x, i.e., z⋆ = f(z⋆,x), modeling an equilibrium representation.
(2) Compared with typical NAR systems, the proposed DEQNAR permits better convergence to the
equilibrium point. We can leverage any advanced black-box solvers, e.g., quasi-Newton methods,
to directly solve for the equilibrium solution, leading to better results. (3) The DEQNAR is also
orthogonal to existing advanced techniques for NAR models, for which we studied its effectiveness
when combined with the current best practices, including better modeling approach (VAE, Gu &
Kong, 2021), training objective (CTC, Graves et al., 2006) and training strategy (GLAT, Qian et al.,
2021).

We conduct extensive experiments on WMT14 English-German and WMT16 English-Romanian
machine translation benchmarks. Based on the empirical results, our main findings are as follows:
(1) DEQNAR is a general-purpose framework that can supplement several existing NAR techniques,
including vanilla NAR, VAE, CTC loss, and GLAT training, giving rise to considerable performance
gains. (2) We verify that convergence to an equilibrium state in DEQNAR is almost indeed via
quantitative and qualitative evaluation. The closer to the equilibrium state, the more likely DEQNAR
achieves more accurate performance.

2 REVISITING NAR MODELS AS DYNAMICAL SYSTEMS

NAR Models as Markov Process of Iterative Refinement in General. We formulate NAR models
based on Transformer (Vaswani et al., 2017) as a Markov chain. There are mainly two categories
of NAR models: fully NAR and iterative-based NAR models. Both of them can be unified under
a general perspective of dynamical systems conducting iterative refinement process over some
intermediate state, where the parametric transition function is in a form of zt = fθ(zt−1,ut) with
zt as the running state of the systems.
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Formally, let y = [y[1], . . . , y[N ]] ∈ {0, 1}N×|V| within the vocabulary space V be a target sequence
of interest, and x = [x[1], . . . , x[|x|]] be the conditional source sequence. Non-autoregressive
sequence-to-sequence learning aims to learn a probabilistic model p(y|x) measuring the likelihood
of target sequence given its source sequence:

pθ(y|x) =
∑

z0,··· ,zT

pθ(y, z0, ...,zT |x) =
∑

z0,··· ,zT

pθ(y|zT ,x)
T∏

t=1

fθ(zt|zt−1,x),

where zt is the t-th intermediate state which is varied across different NAR models, f(zt|zt−1,x) is
the transition function from the (t−1)-th step to the (t-th step parameterized by fθ, and p(y|zt,x) =∏

p(y[n]|zt,x) is the predicted probability made in parallel under the conditional independence
assumption among the elements of y.

Such parameterization shares a similar form with a first-order Markov chain, where the probability of
y is a marginalization over all possible intermediate paths z0···T . The state zt evolves through layers
in a bottom-up fashion, and the input ut = x is time-invariant or constant in sequence-to-sequence
learning scenarios.

We provide an illustration in Figure 1(a). For clarity of notations, we can classify NAR models by the
explicitness of tokens in the intermediate states:

• Explicit iterative refinement: Iterative-based NAR models (Lee et al., 2018; Ghazvininejad
et al., 2019) perform iterative refinement within discrete space, producing discrete tokens
explicitly for each iteration. The t-th system state is the discrete representation zt ∈
{0, 1}N×|V| (i.e., the index of tokens). The transition function f learns to refine the tokens
in the previously generated sentence until meeting a certain condition (e.g., no further
improvement or reaching a maximum number of iterations).

• Implicit iterative refinement: Fully NAR models (Gu & Kong, 2021; Qian et al., 2021) can
also be viewed as implicitly conducting iterative refinement within continuous feature space,
given the nature of multi-layer neural networks. The t-th system state for such implicit
iterative refinement is contextualized continuous representation zt ∈ RN×d (i.e., dense
vectors). The transition function f is supposed to learn to refine representations layer by
layer such that the discrete data can be best described.

Motivation. Based on such a dynamical system view of the NAR sequence-to-sequence learning,
one can use dynamical system-inspired methods for better understanding and improved modeling.
For an NAR system that conducts iterative refinement over the whole sequence towards the target
sequence limt→∞ f(zt,x) = z⋆ → y, we may want to find the solution z⋆ of such a system that
best estimate the target data, which is a local optima, or an equilibrium state of this system. However,
as seen in Figure 1, the current NAR systems can be considered as resorting to a naive solver that
recurrently applies the transition function f up to a manually-defined maximum iteration N , which
cannot guarantee reaching the equilibrium solution, leading to a sub-optimal representation in terms
of the target sequence. This motivates us to seek the answer to an arisen question: Can we find such
an equilibrium state of the NAR dynamical system, which can give rise to a better solution?

3 DEQNAR: A DEEP EQUILIBRIUM NAR SEQUENCE LEARNING
FRAMEWORK

To answer this question, we propose to directly solve for such an equilibrium state of NAR systems
based on the use of DEQ networks (Bai et al., 2019) as a critical tool. Formally, given the input x, a
transition kernel fθ parameterized by deep neural networks θ (e.g., Transformer), we define a NAR
sequence generative model by the following dynamical system and solve its equilibrium state z⋆ as a
root-finding problem:

zt = fθ(zt−1,x) =⇒ z⋆ = RootFind(gz = 0;z0, θ), where gz := fθ(z,x)− z, (1)
where z0 is the initial condition.

As aforementioned, NAR models can be categorized by performing either explicit or implicit iterative
refinement. We will introduce how to model implicit, explicit NAR models and the combination of
both under the proposed DEQNAR framework, in accordance with different choices of the definition
of the state z and the transition function fθ, which we summarize in Table 1.
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Table 1: Comparison between different type of NAR system under our framework. F denotes a
Transformer layer, ◦ denotes function composition, and ⊕ denotes concatenation.

Category State: z Transition: fθ
DEQNAR-IMPLICIT continuous feature fθ = f
DEQNAR-EXPLICIT discrete tokens fθ = softmax ◦ F ◦ · · · ◦ F
DEQNAR-MIXED mixed fθ = F ⊕ softmax ◦ F

3.1 CASE I: IMPLICIT ITERATIVE REFINEMENT IN CONTINUOUS (FEATURE) STATE SPACE

Here we explain the intuition behind how solving for the equilibrium state is connected with implicit
iterative refinement through an extreme case. Assuming an infinite-depth Transformer that is powerful
enough, and each layer is capable of refining the representation. Intuitively, the quality of a series of
intermediate states {z0, · · · , zt−1, zt, zt+1, · · · , z∞}would be approximately sorted in an ascending
order. Since the goodness is bounded, it is reasonable to assume that zt may converge to some
fixed point, denoted by z⋆, which is an equilibrium state that satisfies z⋆ = f(z⋆). Therefore, the
inference problem of our interest becomes how to compute the equilibrium state z⋆.

Formally, for NAR models that conduct implicit iterative refinement (Gu et al., 2018; Gu & Kong,
2021), the state zt is defined as the continuous hidden representation of intermediate layer, while the
transition function fθ is parameterized by a Dirac delta distribution δ(zt − µ) where µ is the output
of a single Transformer layer F , which sequentially computes a self-attention, cross-attention and
feed-forward blocks, each of which module is followed by layer normalization (Ba et al., 2016). The
initial condition z0 = emb(⟨mask⟩) is set to be an embedding sequence full of ⟨mask⟩ tokens.

Our solution to find the continuous variable z∗ is to use advanced black-box root solving algorithms,
e.g., Newton or quasi-Newton methods like Broyden’s methods (Broyden, 1965), or Anderson
acceleration (Anderson, 1965). These methods guarantee a much faster and better-quality convergence
than the case where we perform infinitely many naı̈ve unrolling steps, which is not even realistic due
to computational and memory budgets.

3.2 CASE II: EXPLICIT ITERATIVE REFINEMENT IN DISCRETE (DATA) STATE SPACE

As for NAR models that conduct explicit iterative refinement on discrete tokens (Lee et al., 2018;
Ghazvininejad et al., 2019), the state zt is defined as a sequence of one-hot vectors corresponding
to each of the intermediate predicted tokens. The transition function fθ : {0, 1}N×|V| → RN×|V| is
parameterized by a multi-layer Transformer decoder followed by a softmax normalization, and a final
discretization operator such as argmax or sampling. The initial condition z0 = ⟨mask⟩ is set to be a
sequence full of ⟨mask⟩ tokens.

Two challenges exist while aiming to solve for the equilibrium point of fθ(z,x) = z. (1) Intractable:
z lies in a very high-dimensional space, and the cardinality of the feasible set is very small (the
vocabulary size). Finding the solution is almost intractable, especially for highly non-linear neural
networks. (2) Non-differentiable: Root-finding algorithms such as Newton or quasi-Newton methods
require computing or estimating Jacobian inverse, which is numerically unstable or even infeasible to
obtain, for transition functions f that contain non-differentiable sampling operators.

Our solution is to leverage the expected embedding weighted by the softmax probabilities as a
continuous relaxation of z:

zt ≈ z̃t = E [emb(z̃t)] , where z̃t ∼ fθ(·|zt−1) (2)

Such approximation helps ease the two problems: (1) a point is projected to the simplex formed
by feasible points, greatly restricting the search space. (2) the “soft” embedding makes the neural
network differentiable. Another possible solution is to use score function gradient estimators (e.g.,
REINFORCE (Williams, 1992)) for these non-differentiable operators, which, however, are known to
be computationally expensive and of high variance nature.

The major difference with the implicit case is that the continuous relaxation z̃t represents context-less
token identity instead of contextualized deep representation. Issues may arise if the token identity is
non-informative and not context-aware, preventing the model from evolving the state efficiently.
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3.3 CASE III: MIXED EXPLICIT AND IMPLICIT ITERATIVE REFINEMENT

In practice, explicit iterative refinement methods are aware of the strong condition signal by the
immediate prediction of the last iteration, usually leading to better results than the implicit (or the
fully NAR) methods. As aforementioned, however, it is non-trivial if we want to use DEQ to solve
for explicit iterative refinement, in which continuous surrogates are required.

To take the best of both implicit and explicit iterative refinement, we propose an indirect way to
extend DEQ by introducing layer-wise prediction-awareness (Huang et al., 2021), and refer such
hybrid variant to DEQNAR-MIXED. Concretely, we make an intermediate prediction p̃(yt|·) in every
layer evaluation, and feed emb[yt] the embedding of the most probable predicted token into zt:

zt ← σ(zt, emb[yt]), where ỹt = argmax p̃(·|zt)

where a fusion operator σ : Rd × Rd → Rd parameterized by a position-wise MLP. Our goal is that
in such as way DEQNAR-MIXED can endow f with the awareness of running prediction made so far,
which helps the model for better calibration.

3.4 LEARNING VIA IMPLICIT DIFFERENTIATION

Typically for explicit neural networks, we can directly back-propagate through the stacking layers
using automatic differentiation tools (Baydin et al., 2018). However, for implicit models like DEQ, it
is computationally expensive if we unroll the iteration path of the internal optimization problem. In
this section, we introduce how to train the proposed model with only knowing its equilibrium state.
Moreover, we also introduce regularizations to stabilize its convergence dynamics (see Appendix A).

Based on the implicit function theorem (IFT) (Krantz & Parks, 2002), the DEQ model can differentiate
through its fixed point without unfolding and storing intermediate states in the forward trajectory.
Specifically, given fixed-point state z⋆, the task-specific loss function L (e.g., cross-entropy), the
gradients of DEQ with regard to the parameter θ and input x are given by:

∂L
∂θ

=
∂L
∂z⋆

(
I − ∂fθ

∂z⋆

)−1 ∂fθ(z
⋆,x)

∂θ

∂L
∂x

=
∂L
∂z⋆

(
I − ∂fθ

∂z⋆

)−1 ∂fθ(z
⋆,x)

∂x
. (3)

This theorem enables us to decouple the forward and backward passes of DEQ-based models, i.e. for
parameter update, we only need the final output z⋆ and do not need to perform back-propagation
through the unrolled chain of forwarding passes. This allows one to train implicit networks in a
modern end-to-end manner while consuming only O(1) memory cost.

For the explicit case we discussed in §3.2, we introduce a two-stage training scheme to prevent being
hindered by the inaccurate and over-smooth predicted probability distribution in Equation 2. We first
pretrain the NAR model as denoising autoencoders similar to Savinov et al. (2021) except that we
use full-masking as the corruption function instead of uniform sampling from the vocabulary. We
then integrate the pretrained model into our DEQNAR framework and use implicit differentiation for
further finetuning, leading to the final model that learns to make predictions at its equilibrium states.

On the Differences with DEQ-Transformer (Bai et al., 2019). Note that the original work of Bai
et al. (2019) has proposed DEQ-Transformer demonstrating its success for autoregressive language
modeling. Compared with evolving a single word state in the DEQ-Transformer, evolving all words’
states simultaneously is a highly structured and complicated problem. Using DEQ to solve NAR
problems is non-trivial since the inter-dependencies among all words are prone to cause inconsistency
and instability, which remains challenging and yet unexplored.

4 EXPERIMENTS

We conduct extensive experiments on standard machine translation benchmarks to inspect DEQNAR’s
performance on sequence-to-sequence tasks. We demonstrate that DEQNAR produces better re-
sults over its NAR backbones. We also show that the proposed approach can achieve competitive
performance compared with state-of-the-art NAR models.

Datasets. We evaluate our proposal on three standard translation benchmarks, i.e., WMT14 English
(EN)↔ German (DE) (4.5M training pairs), and WMT16 English (EN)↔ Romanian (RO) (610K
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training pairs), and use IWSLT14 DE-EN for preliminary study. We apply the same prepossess-
ing steps as mentioned in prior work (EN↔DE: Zhou et al., 2020, EN↔RO: Lee et al., 2018).
BLEU Papineni et al. (2002) is used to evaluate the translation performance for all models.

Knowledge Distillation (KD). Sequence-level knowledge distillation (Kim & Rush, 2016) is found
to be crucial for training NAR models. Following previous NAR studies Gu et al. (2018); Zhou
et al. (2020), all of our implemented models are trained on distilled data generated from pre-trained
autoregressive Transformer models. Noticeably, DEQNAR is designed to be a general-purpose
method. In this work, we resort to KD is follow the convention of previous work, which helps
alleviate the general challenge of the multi-modality problem of NAR translation. No theoretical
constraint prevents DEQNAR from leveraging the latest technique (e.g., DAT (Huang et al., 2022))
that can directly build up NAR models on raw data. We leave it as future work.

Implementation Details. We design DEQNAR based on Transformer-base Vaswani et al. (2017)
hyperparameters, where the number of head is 8, the model dimension is 512, the inner dimension
of FFN is 2048, and 6-layer encoder/decoder are used. For variants of DEQNAR, decoders differ
regarding how to parameterize their transition functions. For DEQNAR-EXPLICIT, the transition
function consists of full 6-layer Transformer decoder, while for DEQNAR-IMPLICIT and DEQNAR-
MIXED the transition function is one Tranformer layer only. We investigate the generality of DEQNAR
by applying it to different NAR backbone models, including vanilla NAR model Gu & Kong (2021),
GLAT training Qian et al. (2021), CTC loss Graves et al. (2006). For the CTC-based variant, we
upsample the source input by 2. We use Anderson acceleration (Anderson, 1965) as the root-finding
solver. All models are trained for 200K updates using NVIDIA V100 GPUs with a batch size of
approximately 128K tokens. For both AR and NAR models, we set the dropout rate 0.1 for WMT14
EN↔DE and WMT16 EN↔RO. We adopt weight decay with a decay rate 0.01 and label smoothing
with ϵ = 0.1. Following prior studies Vaswani et al. (2017), we compute tokenized case-sensitive
BLEU. We measure the validation BLEU for every 2,000 updates, and average the best 5 checkpoints
to obtain the final model. As in previous NAR studies, we measure the GPU latency by running
the model with a single sentence per batch on a single Nvidia V100 GPU. Partial implementation
was inspired by https://github.com/locuslab/deq and all models were implemented on
fairseq Ott et al. (2019).

4.1 MAIN RESULTS

We first compare DEQNAR on the three cases we discussed in §3 to study the performance regarding
the fundamental choices of state and transition functions. We then summarize the results of applying
DEQNAR to different NAR models in Figure 2. We also compare DEQNAR and DEQNAR-LP with
existing iterative and non-iterative NAR approaches in Table 3. We are now discussing our main
findings in detail as follows:

Table 2: Preliminary comparison DEQNAR
applying to different cases on IWSLT14 DE-
EN. “NFE” refers to number of function eval-
uation with one Transformer decoder layer as
the function herein.

Model NFE BLEU

AR Transformer 6×N 35.1
base NAR model: CTC+VAE 6 33.0
case I : DEQNAR-IMPLICIT 20 34.2
case II : DEQNAR-EXPLICIT 18 (6×3) 32.2
case III: DEQNAR-MIXED 14 34.5

Both implicit and explicit iterative refinement can
be modeled under DEQNAR framework, as well
as the combination of the both. To investigate the
effectiveness of DEQNAR on different cases in §3,
we conducted a comparative study on the top of the
SoTA NAR model based on VAE and CTC from Gu
& Kong (2021). As shown in Table 2, DEQNAR-
IMPLICIT can improve over the CTC+VAE backbone
with a large margin, verifying our motivation that
the equilibrium solution of the NAR system can bet-
ter represent the target data. However, DEQNAR-
EXPLICIT can show a good result but is still behind
the other setting. The major drawback is the challenges of learning a system with discrete states, in
which our continuous relaxation by expected embedding plays an essential role in making it realizable
while other attempts failed clearly (see Appendix C. Despite the interior performance, DEQNAR-
EXPLICIT opens new opportunities to cast explicit iterative refinement to solve the dynamical system.
As explicit iterative refinement is among the currently strongest NAR systems, we expect further
studies on optimization and relaxed surrogate for the discrete state would permit further improvement
under our DEQNAR framework. Finally, we find that DEQNAR-MIXED takes advantages of both
implicit and explicit refinement, which helps further improve results with less NFE. In the rest of
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Figure 2: Applying DEQNAR to different NAR backbone models, i.e., vanilla NAT (Gu et al., 2018),
GLAT (Qian et al., 2021), CTC (Graves et al., 2006), GLAT+CTC (using greedy decoding, and
VAE+CTC (Gu & Kong, 2021)). Note that here all the backbone models are our own implementations.

Table 3: Comparisons between our models with state-of-the-art NAR models, whose results are
directly quoted from the cited publications. All our NAR models are trained with KD, where “*”
and “underline“ means models using KD from Transformer-big and their apparently-higher results,
respectively. “NFE”: numbers of evaluation of a single decoder layer, where N is the number of
decoder layers (typically N = 6 for Transformer base configuration), T is the length of target
sequence. The speed-up is measured on the WMT14 EN-DE test set, with batch size of 1 as previous
NAT papers usually did. Notice that speedups from previous papers are generally not fully comparable
due to inconsistent hardware and baselines and hence only for reference.

Systems NFE Speed WMT14 WMT16
EN-DE DE-EN EN-RO RO-EN

AR Transformer-base (KD teacher, 65m params) N × 6 1.0× 27.60 31.50 33.85 33.70
Transformer-big - - 29.20 - -

Im
pl

ic
it

vanilla NAT (Gu et al., 2018) 6 15.6× 17.69 21.47 27.29 29.06
CTC w/o KD (Libovický & Helcl, 2018) 6 - 16.56 18.64 19.54 24.67
Flowseq (Ma et al., 2019) 6 1.1 × 23.72 28.39 29.73 30.72
*AXE (Ghazvininejad et al., 2020a) 6 15.3× 23.53 27.90 30.75 31.54
CTC (Saharia et al., 2020) 6 18.6× 25.70 28.10 32.20 31.60
GLAT (Qian et al., 2021) 6 15.3× 25.21 29.84 31.19 32.04
GLAT+CTC (Gu & Kong, 2021) 6 16.8× 27.20 31.39 33.71 34.16

DEQNAR-IMPLICIT [CTC+GLAT] (43.6m params) 20 4.2× 26.90 31.25 33.78 34.21
beam search & reranking 20 2.9× 27.50 31.65 34.01 34.40
comparable model size (64.4m params) 8 1.6 × 27.40 31.90 - -
Transformer-big KD 18 4.4 × 27.51 - - -

DEQNAR-IMPLICIT [CTC+VAE] 20 4.2× 27.60 31.42 34.03 34.03

E
xp

lic
it

iter-NAT (Lee et al., 2018) 6× 10 1.5× 21.61 25.48 29.32 30.19
*CMLM10 (Ghazvininejad et al., 2019) 6× 10 1.7× 27.03 30.53 33.08 33.31
LevT (Gu et al., 2019) < 6× T 4.0× 27.27 - - 33.26
*SMART10 (Ghazvininejad et al., 2020b) 6× 10 1.7× 27.65 31.27 - -
*DisCO4 (Kasai et al., 2020) 6× 4 3.5× 27.34 31.31 33.22 33.25
*Imputer8 (Saharia et al., 2020) 6× 8 3.9× 28.20 31.80 34.40 34.10
CTC+DSLP (Huang et al., 2021) 6 14.8× 27.02 31.61 34.17 34.60
DEQNAR-MIXED [CTC+VAE] 16 1.8× 27.80 - - -

the paper, we will discuss and compare DEQNAR-IMPLICIT and DEQNAR-MIXED and other strong
models.

DEQNAR is a general-purpose framework. DEQ is supposed to be a model-agnostic framework
that helps converge to better representation for all NAR models. It is also orthogonal to existing
advanced strategies for building up NAR systems. As shown in Figure 2, the DEQ framework can
consistently improve four backbone approaches with substantial margins, including vanilla NAR
model (Gu & Kong, 2021), GLAT (Qian et al., 2021), CTC (Graves et al., 2006), and the combination
of GLAT and CTC, on every translation task.

Compared to the state-of-the-art approaches. As seen in Table 3, we compare our best model
(CTC+GLAT w/ DEQ) with state-of-the-art approaches, both iterative and non-iterative. We found
that our method can outperform all non-iterative approaches, except for Gu & Kong (2021)’s imple-
mentation of CTC+GLAT. As for the comparison with explicit iterative-based methods, DEQNAR can
also match the strong results among them. Moreover, these models necessitate explicitly re-iterating
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the whole 6-layer decoder, usually ten times. Our approach enjoys a faster inference speed with at
least half fewer layer evaluations, outperforming Huang et al. (2021) that incorporates layer-wise
prediction within conventional NAR systems.

Model variants. (1) Advanced decoding If we further equip our CTC-based model with beam
search and reranking by AR models, which is a commonly-used tactic as in previous studies, we can
further boost the performance by 0.3∼0.6 BLEU score. (2) Scaling up model capacity. By matching
the model scale to roughly the same parameters counts as the 6-layer-decoder baseline, where we
held the encoder the same1, DEQNAR can get further improved by 0.4 BLEU score (from 26.90 to
27.30). This indicates that DEQNAR can scale effectively and are more parameter-efficient per se.
(3) Learning from Transformer-big distillation. For a more fair comparison with previous systems
like Imputer (Saharia et al., 2020) that uses KD data produced from Transformer-big, we conduct
experiments in a similar setting. We find that DEQNAR can also benefit from improving the KD
performance bound by using larger teacher models, achieving 27.51 BLEU score.

4.2 ANALYSIS OF CONVERGENCE STABILITY AND ACCURACY-EFFICIENCY TRADE-OFF
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Figure 3: Scatter plot of quality (BLEU)
against convergence stability (changed
difference norm) on WMT14 EN-DE

We are really interested in whether we can converge to
the equilibrium state z⋆, and the stability of the conver-
gence. We first compare DEQNAR with a weight-tied
GLAT model given the same maximum number of func-
tion evaluations (NFE). For DEQNAR we solve for its
equilibrium up to the maximum NFE as the threshold,
whereas for the GLAT model, we iteratively apply its layer
for maximum NFE times. We present our observation in
the upper-right part of the Figure 1. We find that without
DEQ, the feature representation of a vanilla GLAT model
could not converge to a stationary point, in which the dif-
ferences between two consecutive iteration exhibits large
in the magnitude of ϵ = 102. As for DEQNAR-IMPLICIT
GLAT, it quickly converges to a stable solution in which the residual errors are fairly small. And we
suggest that such manner of convergence of DEQNAR is the reason behind its superior performance
over the corresponding backbone model. Moreover, as shown in the bottom-right of the Figure 1, we
also find that the DEQ-based model becomes more accurate when it gets closer to its equilibrium
state during the convergence path. Finally, as shown in the right of the Figure 3, The more stable the
state is, the more accurate the prediction becomes.
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Figure 4: Comparison of the training
process WMT14 En-De validation set.

As shown in Table 3 and Figure 5, DEQNAR gives rise to
additional overhead in both training and decoding since
it takes longer for DEQNAR to converge to more pre-
cise equilibrium states. Fortunately, we find DEQNAR
would perform at least as effectively as the baseline mod-
els given the same decoding/training budget. (1) Given
the same decoding time budget, we can infer from Fig-
ure 3 that DEQNAR achieves comparable performance
when evaluating 6 layers as the baseline. This makes the
use of DEQNAR more flexible, where you can safely ask
DEQNAR as fast as its backbone model given a limited de-
coding budget, while you can also maximize the accuracy
when the decoding budget is not a problem. (2) Given the
same training time budget, we can also infer from Figure 5 that when restricting training time to 19
hours (as the time for the baseline model to finish training), DEQNAR yields a comparable some 25
BLEU as well. It can get further improved if allowing more budget as such a magnitude of training
budget is often not a problem in practice.

1We set dmodel from 512 to 1024 and d FFN from 2048 to 8192, so model size expands from 46.4m to 64.6m.
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5 RELATED WORK

5.1 NON-AUTOREGRESSIVE SEQUENCE GENERATIVE MODELS IN GENERAL

Non-autoregressive (NAR) models (Gu et al., 2018) are initially motivated to alleviate the decoding
inefficiency of typical autoregressive seq2seq models. NAR models can be divided into two categories.
Fully NAR models or non-iterative NAR models aim to generate sequence in parallel within only
one shot but often sacrifice performance (Ma et al., 2019; Shu et al., 2020; Bao et al., 2019; Wei
et al., 2019; Qian et al., 2021; Gu & Kong, 2021). Besides, iterative-based models significantly
improve the performance of NAR models, which perform iterative refinement of translations based
on previous predictions (Lee et al., 2018; Ghazvininejad et al., 2019; Gu et al., 2019; Kasai et al.,
2020; Ghazvininejad et al., 2020b; Savinov et al., 2021).

5.2 DYNAMICAL SYSTEM VIEW OF DEEP NEURAL NETWORKS

A promising study subject is viewing a neural network as the discretization of a dynamical system.
The resemblance between a residual block and an ODE’s forward Euler scheme, in particular, has
pushed this field forward significantly (E, 2017). One direction is to advance the widely-used residual
neural architecture (He et al., 2016) by the inspiration of dynamical systems (Lu et al., 2018) The
second class is to parameterize a dynamical system with trainable neural network modules (Chen
et al., 2018; Dupont et al., 2019).

Deep Implicit Models. Unlike conventional, explicit neural networks, implicit models generalize
the hierarchical layer stacking of neural networks to be the solution of an underlying dynamical
system (Kolter et al., 2020; Amos & Kolter, 2017; Chen et al., 2018; Bai et al., 2019; El Ghaoui
et al., 2019). For example, ODE-based methods (Chen et al., 2018) treat the residual block as Euler
discretization of an ODE, which could be solved by any black-box ODE solver. Other studies define
the output of the networks to be the solution to convex optimization problems (Amos & Kolter, 2017;
Agrawal et al., 2019).

Deep Equilibrium Network. DEQs (Bai et al., 2019; 2020; 2021) is another class of implicit models
that directly solves for fixed-point representation of a neural layer fθ: z⋆ = fθ(z

⋆, x) via root-finding.
Intuitively, this could represent a neural network of infinite depth. One can perform nonlinear fixed
point iterations of the discrete dynamical system using Broyden’s method (Broyden, 1965) or Ander-
son acceleration (Anderson, 1965) to reach this stationary solution. Back-propagation can be done by
directly differentiating through the fixed point based on the implicit function theorem. Work based
on DEQs has manifested competitive performance on challenging tasks, e.g., language modeling (Bai
et al., 2019), flow-based generative modeling (Lu et al., 2021), semantic segmentation (Bai et al.,
2020) and optical flow estimation (Bai et al., 2022).

6 CONCLUSIONS AND LIMITATIONS

In this work, we revisit non-autoregressive (NAR) sequence generative models from the perspective of
dynamical systems. We then propose DEQNAR that can directly solve for its equilibrium state to better
estimate the desired target sequence. We conduct extensive empirical experiments demonstrating
that the proposed DEQNAR models can indeed converge to the equilibrium state, which consistently
improves several NAR backbones.

While these findings are promising, there remain several limitations, e.g. the accuracy-efficiency trade-
off we have discussed above. Another one is the existence of knowledge distillation performance
bound. Typical NAR models need sequence-level knowledge distillation (KD) by an AR teacher
model, which imposes an upper bound of performance for the NAR student models. This is an obvious
limitation for NAR models in general, since the current strong NAR baselines have been closely
approaching this KD upper bound (e.g., AR Transformer’s 27.60 BLEU on WMT14 DE-EN). As such,
the NAR community has reached a point to call for progress in eliminating the need of KD, where
we notice the recent advances of KD-free NAR sequence models such as DA-Transformer (Huang
et al., 2022) which uses directed acyclic graph (DAG) for probabilistic modeling on raw data. In
principle, DEQNAR is architecture-agnostic, and taking advantage of these new KD-free approaches
is a promising future work, and we leave for further study.
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Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
11179–11189, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
675f9820626f5bc0afb47b57890b466e-Abstract.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Chenyang Huang, Hao Zhou, Osmar R Zaı̈ane, Lili Mou, and Lei Li. Non-autoregressive translation
with layer-wise prediction and deep supervision. arXiv preprint arXiv:2110.07515, 2021.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie Huang. Directed acyclic transformer for
non-autoregressive machine translation. In ICML, 2022.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive machine
translation with disentangled context transformer. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 5144–5155. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/kasai20a.html.

Kenji Kawaguchi. On the Theory of Implicit Deep Learning: Global Convergence with Implicit
Layers. In International Conference on Learning Representations (ICLR), 2020.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pp. 1317–1327, Austin,
Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1139.
URL https://www.aclweb.org/anthology/D16-1139.

11

https://www.aclweb.org/anthology/D19-1633
https://www.aclweb.org/anthology/D19-1633
http://proceedings.mlr.press/v119/ghazvininejad20a.html
http://proceedings.mlr.press/v119/ghazvininejad20a.html
https://doi.org/10.1145/1143844.1143891
https://aclanthology.org/2021.findings-acl.11
https://openreview.net/forum?id=B1l8BtlCb
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
http://proceedings.mlr.press/v119/kasai20a.html
http://proceedings.mlr.press/v119/kasai20a.html
https://www.aclweb.org/anthology/D16-1139


Under review as a conference paper at ICLR 2023

J. Zico Kolter, David Duvenaud, and Matthew Johnson. Deep implicit layers tutorial - neural ODEs,
deep equilibirum models, and beyond. Neural Information Processing Systems Tutorial, 2020.

Steven George Krantz and Harold R Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural sequence
modeling by iterative refinement. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 1173–1182, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1149. URL https://www.
aclweb.org/anthology/D18-1149.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
lm improves controllable text generation. In Advances in Neural Information Processing Systems,
2022.
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A MORE DETAILS ABOUT LEARNING

A.1 INEXACT GRADIENT ESTIMATION.

The Jacobian-inverse term, i.e., (I − ∂f
∂z )

−1, is the most important component when estimating the
gradient as in Equation 3. Due to the cubic complexity, computing the inverse term by brute force
is unattainable. Previous implicit models (Bai et al., 2019) tackle this by solving a linear system
involving a Jacobian-vector product iteratively via a root-finding solver, resulting in expensive com-
putational overhead in the backward pass. Furthermore, if the ill-conditioning problem occurs,
estimating the gradient via this linear system can become numerically unstable. Inspired by recent
advances in training implicit models (Bai et al., 2022; Geng et al., 2021), we attempt approximate
gradient estimation for the backward pass to accelerate training. Take the gradient of θ as an example,
we instead approximate equation 3 by:

∂L
∂θ
≈ ∂̂L

∂θ
=

∂L
∂z⋆

A
∂fθ(z

⋆,x)

∂θ
, (4)

where A is a approximation term for Jacobian inverse. We follow Bai et al. (2022) to let A = I , which
simplifies the backward pass of DEQ to ∂L

∂z⋆

∂fθ(z
⋆,x)

∂θ requiring no additional iterations of gradient
solvers. We will show the empirical comparison between exact and inexact gradient estimation later.

A.2 EQUILIBRIUM DYNAMIC CONTROL

Albeit the existence of the equilibrium points and convergence (Kawaguchi, 2020; Winston &
Kolter, 2020), the growing instability problem is a longstanding challenge in training implicit
networks. As a result, the equilibrium point is often computationally expensive to reach during
training (especially when stochastic regularization such as dropout is applied), slowing down the
training process. Plus, equilibrium points cannot be obtained within an acceptable threshold, leading
to degenerate performance when testing. We hereby introduce two constraints to stabilize the
dynamics of convergence.

Stochastic dynamic correction. Inspired by Huang et al. (2021) and Bai et al. (2022), we propose to
impose directly supervised signals upon some intermediate states to help stabilize DEQ dynamics and
accelerate convergence. Suppose our root-finding solver yields a convergence path of {z[1], · · · , z⋆},
we then randomly select some zt (we use one in our case) and minimize the cross-entropy between
its corresponding predictions against the groundtruth y:

ℓcorr = log p̃(y|x), where p̃(y|x) = softmax(⟨zt, emb[y])⟩) (5)

Improved initial condition. In the original DEQ literature (Bai et al., 2019) and many of its
followups (Bai et al., 2021; 2020), the initial condition z[0] are typically set up to non-informative
values (e.g., all zeros) for all instances y. Even if we assume that the equilibrium state of the system
exists and could be reached by our solvers given enough budget of iterations, a poor, non-informative
initial condition leads to a more lengthy convergence path. To mitigate this, we would like to improve
the initial condition to help the model simplify its dynamics. Inspired by Pal et al. (2022), we propose
to treat the first evaluation of the f as a predictive model and minimize its L1 distance toward the
final DEQ equilibrium state z⋆, given by

ℓinit = ||f(z⋆,x)− f(z[0],x)||1, (6)

Final objective. Taken together, given parallel dataset D = {x,y}Mm=1, the final objective becomes

Lfinal(θ,D) = Ex,y∼D [ℓce + λcorrℓcorr + λinitℓinit] (7)

where ℓce denotes cross-entropy loss, λcorr < 1 and λinit < 1 are weight hyperparameter for two
auxiliary regularization terms, respectively.
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B MORE EXPERIMENTS AND ANALYSES

B.1 EFFECT OF GRADIENT ESTIMATION
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Figure 5: Comparison of training process of exact
and inexact gradient estimation on WMT14 En-De
validation set.

Neural networks are learned via back-
propagation. DEQ uses the implicit differen-
tiation theorem (IFT) to compute its gradient.
However, the IFT requires solving another
linear system to estimate the exact gradient
(equation 3), which results in extra dozens of
iterations, thus increasing the computational
overhead for the backward pass. We thus
attempt to inexact gradient estimator (equation
4). However, a natural question arises: will such
approximation hurt performance? As shown in Figure 5, we plot the training curves of BLEU scores
of both gradient estimators. We can find that the BLEU score of the exact gradient estimator grows
more quickly than the inexact estimator in the early training stage, but tend to converge to a similar
level. Furthermore, the exact estimator tends to oscillate in a larger magnitude, whereas the inexact
estimator works more stable. Most importantly, the inexact estimator is fairly cheaper than the exact
one, reducing more than 40% of training time (from 56 hrs to 32 hrs). Hence we choose to use the
inexact gradient estimator for all our experiments.

B.2 ABLATION STUDY ON EQUILIBRIUM DYNAMIC CONTROL

Table 4: Ablation study of dynamic
control on WMT14 EN-DE

Model depth BLEU

GLAT w/ DEQ ∼25 25.8
- ℓcorr ∼40 25.5
- ℓinit ∼33 25.6
- ℓcorr - ℓinit ∼58 25.3

We present our ablation study on the proposed auxiliary regu-
larizations for equilibrium dynamic control in Table 4. Notably,
we find that these dynamic control strategies can help improve
the model’s performance. More importantly, we also observe
that both auxiliary signals can greatly shorten the convergence
path in terms of the number of iterations, which helps stabilize
the equilibrium dynamics to reach the stationary state within
the threshold.

B.3 MEMORY CONSUMPTION

. We inspect the memory consumption on V100-32GB GPUs, where each device is allocated with
a mini-batch of 16k tokens. The 6-layer GLAT baseline requires 14.8GB GPU memory, whilst its
DEQNAR variant needs 11.4GB. This is due to the use of implicit differentiation for optimization,
not needing to store the intermediate layer activations for back-propagation (see details in Bai et al.
(2019)). In addition, DEQNAR-MIXED only adds negligible memory overhead.

C ON THE CONNECTIONS BETWEEN IMPLICIT (CONTINUOUS) AND EXPLICIT
(DISCRETE) ITERATIVE REFINEMENT UNDER DEQNAR FRAMEWORK

One potential concern about DEQNAR could be that rooting finding and optimization algorithms like
Newton methods primarily operates on continuous variable instead of actual discrete word tokens.
Therefore, we would attempt to answer this interesting question as follows.

C.1 OTHER PRELIMINARY ATTEMPTS ON MODELING EXPLICIT REFINEMENT VIA DEQ

DEQNAR formulation for modeling explicit refinement. When applying the DEQNAR framework
to discrete tokens, the state z[i] = [z

[i]
1 , ..., z

[i]
L ] denotes a sequence of intermediate predicted tokens,

wherein each z
[i]
t ∈ {0, 1}|V| is a one-hot vector obtained by a final argmax or sampling operator on

probability simplex ∆|V|−1 , which is given by the softmax output of the new corresponding layer f̂ .

Recall that with DEQ-NAR, we want to find the root of f̂(z,x) − z . The major obstacles are (1)
that z is very high-dimensional and sparse; (2) argmax/sampling operator provides no gradients

15



Under review as a conference paper at ICLR 2023

for training with back-propagation. As a result, we need continuous relaxation of z . We tried the
following choices of relaxations, either deterministic or stochastic:

1. (deterministic) Let z be the probability of the categorical distribution over the vocabulary,
i.e., the softmax result.

2. (deterministic) Let z be the logits/potentials, i.e., the pre-softmax scores.
3. (stochastic) Let z be sampled from the categorical distribution reparameterized by the

Gumbel-softmax.

Note that due to the computationally expensive and the high variance nature of score function gradient
estimators (e.g., REINFORCE or policy gradient), we only tried the aforementioned continuous
surrogates or reparameterization in our experiments.

Experimental Results. We conducted experiments based on GLAT-based approaches on the
IWSLT’14 DE-EN dataset to quickly test the ideas, which contains 160k sentence pairs.

The decoder layer f̃ is parameterized based on the original fcont with (1) an additional up-projection
linear layer ( Rd → R|V| , tied with embedding matrix) followed by a softmax at the end of the
layer, and (2) a down-projection linear layer ( R|V| → Rd , also tied with embedding matrix) at the
beginning of the layer.

The results are shown in the following Table 5. Unfortunately, we can find that all our attempts to
directly apply DEQNAR to discrete tokens or their relaxations failed.

Analysis. We suggest that such poor performance of all these parameterizations of discrete DEQNAR
could be attributed to the lack of contextual information as in the continuous version of DEQNAR,
while contextualized representation learning is the key factor of the success of deep learning in NLP.

To expose contextual information, one solution is to additionally provide the contextualized repre-
sentation, say the zcont of the layer f of the continuous/implicit version, along with the (relaxed)
discrete state z. It is easy to find that this equivalently and essentially results in our DEQNAR-
MIXED** variant, which has been shown to perform well in our paper. This is why we turn to
propose DEQNAR-MIXED as a more robust solution that takes the best of both implicit and explicit
refinement.

Modeling implicit refinement and decoding with the aid of explicit refinement. We want to show
that despite the challenges of directly modeling explicit refinement, DEQNAR can also benefit from
explicit refinement when decoding.

We study the Mask-Predict approach (Ghazvininejad et al., 2019), which is a popular explicit iterative
decoding strategy. As shown in the Table above (last two rows), GLAT and its DEQNAR-powered
variant can obtain subtle gains (0.2 0.3) when decoding with mask-predict. These results indicate that
we can regard explicit refinement as a ready-to-use decoding strategy, which can supplement solving
implicit refinement for optimal representation.

To conclude, our findings are:

1. Modeling pure explicit refinement as DEQNAR layer could be theoretically challenging and
empirically not feasible (so far).

2. DEQNAR-MIXED is a good approach that combines both implicit and explicit refinement.
3. DEQNAR can also work with explicit iterative refinement techniques (i.e., mask-predict) for

additional moderate gains with fewer refinement passes.

C.2 CONNECTIONS BETWEEN EXPLICIT AND IMPLICIT REFINEMENT UNDER DEQNAR

Interestingly, from the preliminary results of DEQNAR with Mask-Predict, we find that decoupling
explicit refinement from DEQ training not only yields empirical gains but doing explicit refinement
only during decoding perfectly also avoids the challenging back-propagating through discreteness. It
could be intriguing to investigate how training on continuous embeddings and decoding on discrete
tokens relate to one another and how the DEQ framework explains both.

Here we first let x denote the sequence of our general interest and ignore the conditional variable for
simplicity.
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Table 5: Experimental results of modeling explicit refinement via DEQ on IWSLT14 DE-EN.

Model Result (BLEU)

Transformer 34.8
GLAT 32.2 (+0.0)
GLAT-DEQNAR 33.4 (+1.2)

softmax ∼5
logtis ∼16
gumbel-softmax <3

GLAT + Mask-Predict (iter=4) 32.5 (+0.3)
GLAT-DEQNAR + Mask-Predict (iter=2) 33.6 (+1.4)

13.1. Markov Models 609

Figure 13.5 We can represent sequen-
tial data using a Markov chain of latent
variables, with each observation condi-
tioned on the state of the corresponding
latent variable. This important graphical
structure forms the foundation both for the
hidden Markov model and for linear dy-
namical systems.

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Each observation is now influenced by two previous observations. We can similarly
consider extensions to an M th order Markov chain in which the conditional distri-
bution for a particular variable depends on the previous M variables. However, we
have paid a price for this increased flexibility because the number of parameters in
the model is now much larger. Suppose the observations are discrete variables hav-
ing K states. Then the conditional distribution p(xn|xn−1) in a first-order Markov
chain will be specified by a set of K −1 parameters for each of the K states of xn−1

giving a total of K(K − 1) parameters. Now suppose we extend the model to an
M th order Markov chain, so that the joint distribution is built up from conditionals
p(xn|xn−M , . . . ,xn−1). If the variables are discrete, and if the conditional distri-
butions are represented by general conditional probability tables, then the number
of parameters in such a model will have KM−1(K − 1) parameters. Because this
grows exponentially with M , it will often render this approach impractical for larger
values of M .

For continuous variables, we can use linear-Gaussian conditional distributions
in which each node has a Gaussian distribution whose mean is a linear function
of its parents. This is known as an autoregressive or AR model (Box et al., 1994;
Thiesson et al., 2004). An alternative approach is to use a parametric model for
p(xn|xn−M , . . . ,xn−1) such as a neural network. This technique is sometimes
called a tapped delay line because it corresponds to storing (delaying) the previous
M values of the observed variable in order to predict the next value. The number
of parameters can then be much smaller than in a completely general model (for ex-
ample it may grow linearly with M ), although this is achieved at the expense of a
restricted family of conditional distributions.

Suppose we wish to build a model for sequences that is not limited by the
Markov assumption to any order and yet that can be specified using a limited number
of free parameters. We can achieve this by introducing additional latent variables to
permit a rich class of models to be constructed out of simple components, as we did
with mixture distributions in Chapter 9 and with continuous latent variable models in
Chapter 12. For each observation xn, we introduce a corresponding latent variable
zn (which may be of different type or dimensionality to the observed variable). We
now assume that it is the latent variables that form a Markov chain, giving rise to the
graphical structure known as a state space model, which is shown in Figure 13.5. It
satisfies the key conditional independence property that zn−1 and zn+1 are indepen-
dent given zn, so that

zn+1 ⊥⊥ zn−1 | zn. (13.5)

608 13. SEQUENTIAL DATA

Figure 13.3 A first-order Markov chain of ob-
servations {xn} in which the dis-
tribution p(xn|xn−1) of a particu-
lar observation xn is conditioned
on the value of the previous ob-
servation xn−1.

x1 x2 x3 x4

joint distribution for a sequence of N observations under this model is given by

p(x1, . . . ,xN ) = p(x1)

N∏

n=2

p(xn|xn−1). (13.2)

From the d-separation property, we see that the conditional distribution for observa-Section 8.2
tion xn, given all of the observations up to time n, is given by

p(xn|x1, . . . ,xn−1) = p(xn|xn−1) (13.3)

which is easily verified by direct evaluation starting from (13.2) and using the prod-
uct rule of probability. Thus if we use such a model to predict the next observationExercise 13.1
in a sequence, the distribution of predictions will depend only on the value of the im-
mediately preceding observation and will be independent of all earlier observations.

In most applications of such models, the conditional distributions p(xn|xn−1)
that define the model will be constrained to be equal, corresponding to the assump-
tion of a stationary time series. The model is then known as a homogeneous Markov
chain. For instance, if the conditional distributions depend on adjustable parameters
(whose values might be inferred from a set of training data), then all of the condi-
tional distributions in the chain will share the same values of those parameters.

Although this is more general than the independence model, it is still very re-
strictive. For many sequential observations, we anticipate that the trends in the data
over several successive observations will provide important information in predict-
ing the next value. One way to allow earlier observations to have an influence is to
move to higher-order Markov chains. If we allow the predictions to depend also on
the previous-but-one value, we obtain a second-order Markov chain, represented by
the graph in Figure 13.4. The joint distribution is now given by

p(x1, . . . ,xN ) = p(x1)p(x2|x1)

N∏

n=3

p(xn|xn−1,xn−2). (13.4)

Again, using d-separation or by direct evaluation, we see that the conditional distri-
bution of xn given xn−1 and xn−2 is independent of all observations x1, . . .xn−3.

Figure 13.4 A second-order Markov chain, in
which the conditional distribution
of a particular observation xn

depends on the values of the two
previous observations xn−1 and
xn−2.

x1 x2 x3 x4

(1) First-order Markov chain (2) State-space models

Figure 6: Illustration of explicit iterative refinement. Figure credit: Bishop (2006).)

As stated before, an explicit iterative refinement over sequence data in general is a process that
incrementally improves the intermediate predicted discrete tokens towards the true target token
sequence: x[0] → x[1] → ...→ x[i], where x[i] is expected to be close to the ground truth xgt. In
other words, explicit refinement generates data in a coarse-to-fine, denoising manner, from an initial
uninformative sequence x[0] to x[i].

As in iterative NAR models, if each refinement step only takes as input x[i−1] the prediction of the
immediate previous step, and produces an improved output x[i], it can be described by a first-order
Markov chain, where each x[i] could be treated as one of sequential observations of sequence data,
illustrated as in Figure 6(1).

Now, if we introduce an additional corresponding latent variable zt for each x[i], and assume
that it is the latent variables that form a Markov chain, which is known as state-space models
(Figure 6(2), e.g., HMM is a special kind of state-space models). We can readily find that the
graphical structure of state-space models in Figure 6(2) gives rise to a layer-stacked NAR decoder
(Transformer decoder for example), where zt is the continuous hidden/embedding states of the
i-th layer that corresponds to its discrete x[i] through layer-wise and parameter-shared multinomial
conditional p(x[i]|zt) = softmax(W⊤

E zt), namely layer-wise prediction where WE is the token
embedding matrix shared across layers. The state transition function zt = f(zt−1) of latent variable
z are now parameterized by a Transformer layer, where the initial condition/state z[0] is set to be
all-zeros.

With the state-space models’ resemblance, we now try to study our questions in two aspects (1) how
to find the fixed point of discrete sequence and why we need DEQ; (2) what is the role of ad-hoc
iterative refinement decoding strategies like Mask-Predict in DEQ.

(1) How to find the fixed point of discrete sequence and why we need DEQ?

In this case, our primary goal is to find the fixed point x∗ for a NAR models such that x∗f̂(x∗),
regardless x∗ is optimal or not.
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Intuitively, it is easy the see that being a fixed point of discrete x∗ is a necessary but not sufficient
condition for being a fixed point of its corresponding continuous z∗:

1. When the discrete fixed point x∗ exists, its corresponding continuous states z∗ might not be
a fixed point of f . z∗’s could lie in a certain region of the continuous embedding space if
only the inner-product of z∗ and the embedding of x∗ is less than the embedding of all the
other sequence x

′
.

2. In contrast, when the continuous states z∗ is a fixed point of f , it is apparent that its
corresponding x∗ is a fixed point of the discrete sequence.

As a result, if we want to find a fixed point of discrete tokens x∗ of the NAR system and the fixed point
of the continuous states always exists (just under some mild conditions), we can always equivalently
do this by alternatively finding the fixed points z∗ of its underlying implicit NAR system over
continuous embeddings states.

So this is why we need a tool to solve fixed points of such non-linear systems, and this can be
effectively achieved by introducing DEQNAR based on the deep equilibrium networks (Bai et al.,
2019).

(2) What is the role of ad-hoc iterative refinement decoding strategies like Mask-
Predict Ghazvininejad et al. (2019) in DEQ.

Arguably, we know that, like any other optimization problem, there could exist many different
solutions, and the solution of fixed point equations could likewise be affected by the initial condition
z[0]. As a result, the fixed point of z∗ we find in (1) is not necessarily the best or optimal one.

Because the primary run of DEQ solving process starts from a non-informative all-zeros state, the
resulting fixed point could be too much ”contextualized” and lie in a position in the embedding vector
space which is not that close to token embeddings of the discrete tokens.

As such, we suggest that ad-hoc iterative refinement decoding strategies like Mask-Predict serves to
project the continuous states zt onto the closest points that belongs to the embedding of the discrete
tokens, and thus providing a better initial condition for the next run of DEQ solving process and
hence leading to a better fixed point solution.

This could also explain for DEQNAR-MIXED from another angle that DEQNAR constantly pushes
the continuous states of zt to approach the points associated with the embeddings of the discrete
tokens by providing the token embeddings themselves of the intermediate layer-wise predictions.

To conclude, we suggest that (1) DEQ is a nice tool for finding the fixed/equilibrium point of
continuous embedding state z∗ as a proxy so as to find the fixed point of discrete x∗; (2) ad-hoc
iterative refinement decoding strategies like Mask-Predict serves to provide a better initial condition
for the second pass of DEQ process for a better solution.
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