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ABSTRACT

The adaptation of large language models (LLMs) to time series forecasting poses
unique challenges, as time series data is continuous in nature, while LLMs op-
erate on discrete tokens. Despite the success of LLMs in natural language
processing (NLP) and other structured domains, aligning time series data with
language-based representations while maintaining both predictive accuracy and
interpretability remains a significant hurdle. Existing methods have attempted
to reprogram time series data into text-based forms, but these often fall short in
delivering meaningful, interpretable results. In this paper, we propose a multi-
level text alignment framework for time series forecasting using LLMs that not
only improves prediction accuracy but also enhances the interpretability of time
series representations. Our method decomposes time series into trend, seasonal,
and residual components, which are then reprogrammed into component-specific
text representations. We introduce a multi-level alignment mechanism, where
component-specific embeddings are aligned with pre-trained word tokens, en-
abling more interpretable forecasts. Experiments on multiple datasets demonstrate
that our method outperforms state-of-the-art models in accuracy while providing
good interpretability.

1 INTRODUCTION

Time series forecasting, which involves predicting future values based on historical data, has nu-
merous practical applications, such as demand planning, inventory optimization, energy load fore-
casting, and climate modeling (Gao et al., 2020; Li et al., 2022; Liu et al., 2023a; Dimri et al.,
2020). Traditionally, these tasks demand substantial domain expertise and carefully designed mod-
els tailored to specific datasets. However, recent advancements in pre-trained large language models
(LLMs), such as GPT-4 (Achiam et al., 2023) and LLaMA (Touvron et al., 2023), have achieved
remarkable success in natural language processing (NLP) and demonstrated potential in handling
complex, structured domains. This raises a compelling question: how can these powerful pre-trained
LLMs be effectively adapted for time series forecasting?

LLMs, trained on vast and diverse text corpora, provide a powerful foundation for various down-
stream tasks, requiring only minimal task-specific prompt engineering or fine-tuning. This flexibility
has sparked a growing interest in leveraging LLMs for time series analysis. For example, methods
like Promptcast (Xue & Salim, 2023) and LLMTime (Gruver et al., 2024) reformulate numerical in-
puts and outputs into prompts, treating time series forecasting as a sentence-to-sentence task, which
enables the direct application of LLMs. Meanwhile, approaches like TEMPO (Cao et al., 2024) and
GPT4TS (Zhou et al., 2023) take a different route by fine-tuning pre-trained LLMs, modifying com-
ponents such as the Add&Norm layers and positional embeddings, further demonstrating LLMs’
adaptability for time series forecasting.

Despite their potential, the benefits of LLMs in time series forecasting depend on the effective
alignment between time series data and natural language modalities. For instance, TEST (Sun et al.,
2023) developed an encoder that aligns time series data to word embedding space through instance-
wise, feature-wise, and text-prototype-aligned contrast. TimeLLM (Jin et al., 2024a) introduced a
reprogramming framework that aligns time series patches with text prototypes, while S2IP-LLM
(Pan et al., 2024) employed a semantically informed prompt to bridge time series embeddings and
semantic space. These approaches, however, primarily achieve a “time series→pattern→text” trans-
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Figure 1: Cross-modality time series embeddings of (a) semantic informed prompt, (b) text proto-
types reprogramming, (c) contrast learning of text-prototype-aligned time series embeddings, and
(d) anchor alignment of our multi-level alignment.

formation to activate LLMs for time series tasks. This process often leads to unexpected outcomes.
For example, the embedding of a subsequence with an upward trend may be misaligned with a word
representing a decline or with a word that doesn’t capture the trend at all. As a result, the challenge
remains to fully unlock LLMs’ capabilities for general time series forecasting in a way that is both
accurate and interpretable.

In this paper, we address the challenge of interpretability in LLM-based time series forecasting
by developing an interpretable multi-level text alignment framework while preserving the back-
bone model. Our approach consists of two key principles for effective time series representation
learning: (a) modeling specific time series components such as trend, seasonality, and residuals,
and (b) deriving interpretable explanations from the inherent properties of time series data through
multi-level text alignment. Specifically, we decompose the time series input into three additive com-
ponents—trend, seasonality, and residuals—using locally weighted scatterplot smoothing (LOESS)
(Cleveland et al., 1990). These components are then reprogrammed into component-specific text
representations that better align with the language capabilities of LLMs. Additionally, we employ
component-specific prompts to guide the generation of learnable continuous vector representations
that encode temporal knowledge of each component.

In summary, the main contributions of this paper are as follows: (1) We propose an interpretable
multi-level text alignment framework for time series forecasting using LLMs, while keeping the
backbone model unchanged. (2) Our method leverages this multi-level alignment to map decom-
posed time series components—trend, seasonality, and residuals—into distinctive, informative joint
representations. The aligned trend-specific anchors enhance the interpretability of LLMs, while
the aligned seasonality and residual prototypes improve the overall representation of the input time
series. (3) Experimental results on multiple datasets validate the superiority of our model over state-
of-the-art approaches, highlighting the effectiveness of interpretable multi-level text alignment.

2 RELATED WORK

2.1 PRE-TRAINED LARGE LANGUAGE MODELS FOR TIME SERIES.

The recent advancements in Large Language Models (LLMs) have opened up new opportunities
for time series modeling. LLMs like T5 (Raffel et al., 2020), GPT-2 (Radford et al., 2019), GPT-4
(Achiam et al., 2023), and LLaMA (Touvron et al., 2023) have demonstrated impressive capabilities
in understanding complex dependencies in heterogeneous textual data and generating meaningful
outputs. Recently, there has been growing interest in exploring how to transfer the knowledge em-
bedded in these pre-trained LLMs to the time series domain (Jin et al., 2024b; Jiang et al., 2024).
For instance, (Xue & Salim, 2023) converts time series data into text sequences, achieving promis-
ing results. Other works, such as (Zhou et al., 2023; Gruver et al., 2024), tokenize time series data
into overlapping patches and strategically fine-tune LLMs for time series forecasting tasks. Simi-
larly, recent works such as (Cao et al., 2024; Pan et al., 2024) decompose time series data and use
retrieval-based prompts to enhance fine-tuning of pre-trained LLMs. However, these approaches
often fall short of delivering interpretable results and tend to treat time series as mere sequences of
tokens, overlooking their inherent temporal structures. Converting numerical data to text without
sufficient alignment to temporal dynamics can lead to inaccurate predictions and a lack of trans-
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Figure 2: The architecture of the proposed multi-level aligned embeddings begins with the decom-
position of the input time series into three components: trend, seasonal, and residual. These compo-
nents tokenized and embedded are reprogrammed using anchors and condensed text prototypes to
align the time series data with word tokens. Component-specific prefixed prompts are then added to
guide the transformation of input patches. The outputs from the LLM are projected, de-normalized,
and subsequently summed to generate the final prediction.

parency in the model’s decision-making process, especially for multivariate time series. Our work
introduces an interpretable multi-level text alignment framework to align time series components
with language-based representations while keeping pre-trained LLMs intact.

2.2 TIME SERIES ALIGNED EMBEDDINGS

A key challenge in adapting LLMs for time series forecasting lies in aligning the continuous nature
of time series data with the discrete token-based embeddings used in language models. Inspired
by prototype-level contrast methods (Caron et al., 2020), (Sun et al., 2023) select certain text em-
beddings as basic prototypes to guide and constrain the learning of time series token embeddings.
Similarly, (Jin et al., 2024a) reprogram time series data using the source data modality alongside
prompts without modifying the input time series directly or fine-tuning the backbone LLM. These
methods essentially follow a “time series→pattern→text” paradigm to activate LLMs for time series
forecasting. However, the selection of text prototypes in these approaches is often arbitrary, and the
chosen prototypes may not accurately reflect the underlying characteristics of the time series data
(Sun et al., 2023). To address this limitation and enhance the interpretability of LLMs for time series,
our approach selects time series-specific anchors to guide and constrain the learning of time series
token embeddings. By aligning these embeddings with time series-related prototypes, we improve
both the interpretability and performance of LLMs for time series forecasting.

3 METHODOLOGY

Our approach focuses on enhancing the interpretability of large language models (LLMs) for time
series data through multi-level aligned embeddings. As illustrated in Figure 2, the proposed frame-
work consists of four core modules: (1) time series input decomposition, (2) multi-level text align-
ment, (3) component-specific prompts, and (4) output projection. The process begins by partitioning
a multivariate time series into N univariate time series, each processed independently. The i-th se-
ries, denoted as X(i) ∈ R1×L, undergoes a series of steps including decomposition, normalization,
patching, and embedding before being aligned with anchor points and text prototypes. To enhance
the LLM’s reasoning capability on time series data, we introduce component-specific prompts along
with the aligned embeddings, enabling the model to generate meaningful output representations.
These representations are then projected through an output linear layer to produce the final fore-
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casts, x̂(i)
t , . . . , x̂

(i)
t+H−1. With the primary objective of improving interpretability, we utilize GPT-2

(Radford et al., 2019), employing its first six layers as the backbone model for time series forecasting
without fine-tuning the foundational model.

3.1 PROBLEM STATEMENT

Given the observed values over the previous L timestamps, the task of multivariate time series
forecasting is to predict the values for the next H timestamps. Formally, this can be represented as:

x̂
(i)
t , . . . , x̂

(i)
t+H−1 = F

(
x
(i)
t−L, . . . ,x

(i)
t−1;V

(i)
)
, (1)

where x̂
(i)
t , . . . , x̂

(i)
t+H−1 is the vector of H-step prediction from timestamp t of channel i corre-

sponding to the i-th feature. Given the historical values x(i)
t−L, . . . ,x

(i)
t−1, a large language model F

uses prompt V(i) to make these predictions. Leveraging the strong reasoning capabilities of pre-
trained large language models, we aim to align time series data with text to enable LLMs to interpret
the input series and accurately forecast the H future steps, with the overall objective of minimizing
the mean square errors between the ground truths and predictions, expressed as:

1

H

H∑
h=1

∥x̂(i)
t−1+h − x

(i)
t−1+h∥

2. (2)

3.2 TIME SERIES INPUT DECOMPOSITION

For time series data, decomposing complex inputs into meaningful components such as trend, sea-
sonal, and residual elements can help optimally extract valuable information. In this paper, given
the input X ∈ RN×L, where N is the feature size and L is the length of the time series, the additive
decomposition can be represented as:

X(i) = X
(i)
T +X

(i)
S +X

(i)
R , (3)

where i refers to the feature index for multivariate time series input. The trend component
XT ∈ RN×L, capturing the underlying long-term patterns in the data, is expressed as XT =
1
m

∑k
j=−k Xt+j , where m = 2k + 1 and k is the averaging step size. The seasonal compo-

nent XS ∈ RN×L reflects the repeating short-term cycles and can be estimated after removing
the trend. The residual component XR ∈ RN×L represents the remainder of the data once the trend
and seasonal elements have been extracted. There are multiple methods available for performing
additive seasonal-trend decomposition. One common approach is the classical additive seasonal-
trend decomposition, which first extracts the long-term trend using moving averages. The seasonal
component is then estimated by averaging the detrended time series, and the residual is obtained
by subtracting the estimated trend and seasonal components. Another widely used method is the
Seasonal-Trend decomposition using Loess (STL) (Cleveland et al., 1990). The choice of decom-
position method in this paper is determined based on validation results.

Following the approach outlined in (Nie et al., 2023), we patch the decomposed components of
the time series. Specifically, for the i-th normalized trend component, we obtain the patched token
P(i)
T ∈ RLP×K , where LP represents the patch length and K = ⌊ (L−LP )

s ⌋+ 2 denotes the number
of patches, with s is the stride. Similarly, we apply this patching process to the seasonal and residual
components, obtaining patched tokens P(i)

S and P(i)
R , respectively. These patched tokens are then fed

into the multi-level text alignment module to produce aligned time series embeddings.

3.3 MULTI-LEVEL TEXT ALIGNMENT

Here we reprogram patch embeddings into the LLMs’ pre-training data representation space to align
the modalities of time series and natural language to activate the backbone’s time series understand-
ing and reasoning capabilities. Naively, we can align the token embedding of time series and text
using similarity estimation. Although time series tokens lack text annotation, we can place their em-
bedding near typical text descriptions of time series. Thus, it is intuitively expected that various time
series tokens can represent various descriptive words such as up, down, stable, and so on. However,
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the pre-trained word token embedding space is vast and dense, and the selection of text prototypes
(patterns) is often highly relaxed, sometimes even involving random words unrelated to time series
or clusters of pre-trained word tokens (Sun et al., 2023; Pan et al., 2024; Jin et al., 2024a), which
leads to poor interpretability.

In this work, we propose multi-level text alignment to enhance the interpretability of LLMs on time
series forecasting. We first decompose the time series into trend, seasonal, and residual and align
the trend XT with a selected trend-specific word pool Wtrend. Besides, we reprogram seasonal
XS and residual XR using pre-trained word embeddings E ∈ RV×D in the backbone, where V
is the vocabulary size, D is the hidden dimension of the pre-trained LLM. Directly leveraging E
will result in large and potentially dense reprogramming space. We adapt linearly probing E. The
text prototypes of seasonal and residual denoted as E

′

seasonal ∈ RV
′
seasonal×D and E

′

residual ∈
RV

′
residual×D, where V

′

seasonal < V
′

residual ≪ V because the residual is more inconsistent and
variable compared to the seasonal.

As illustrated in the top-right of Figure 2, our multi-level text alignment aims to give a connection be-
tween anchors and trend patches. The selected anchors are sparse. We reprogram seasonal and resid-
ual with text prototypes connecting time series patches with a more dense reprogramming space. To
realize this, we employ a multi-head cross-attention layer for each component. Specifically, for i−
input feature, we define query matrices Q

(i)
T = P(i)

T WQ(i)
T , key matrices K

(i)
T = WtrendWK(i)

T ,
value matrices V

(i)
T = WtrendWV (i)

T for trend; query matrices Q
(i)
S = PSWQ(i)

S , key matrices
K

(i)
S = E

′

seasonalW
K(i)
S , value matrices V

(i)
S = E

′

seasonalW
V (i)
S for seasonal; query matrices

Q
(i)
R = PRWQ(i)

R , key matrices K(i)
R = E

′

residualW
K(i)
R , value matrices V(i)

R = E
′

residualW
V (i)
R for

residual. Through multi-head attention, we reprogram each time series component. For example,
the trend after multi-head attention is defined as:

Z
(i)
T = ATTENTION(Q

(i)
T ,K

(i)
T ,V

(i)
T ) = SOFTMAX

(
Q

(i)
T K

(i)
T

⊤
√
dk

)
V

(i)
T , (4)

where dk is the dimension of each head in the multi-head attention module. After the multi-head at-
tention step, each component is linearly projected to align the hidden dimensions with the backbone
model.

3.4 COMPONENT-SPECIFIC PROMPTS

Prompting techniques have proven highly effective across various tasks by leveraging task-specific
knowledge encoded in prompts. This success stems from prompts providing a structured framework
that aligns the model’s output with desired objectives, improving accuracy and coherence. However,
directly translating time series into natural language poses challenges, complicating the creation of
instruction-following datasets and effective on-the-fly prompting (Xue & Salim, 2022). Recent ad-
vances show that prompts can enrich input context and guide the transformation of reprogrammed
time series patches (Jin et al., 2024a). To leverage the semantic information in time series compo-
nents, we propose a component-specific prefix prompting strategy. This includes three elements:
dataset context, input statistical features, and component-specific task instructions for trend, sea-
sonal, and residual components. For instance, the task description ’forecast the next 96 steps given
the previous 512 steps [trend, seasonal, residual]’ serves as a template for our task instructions,
which are then concatenated with the corresponding component data.

3.5 OUTPUT PROJECTION

After packing and forwarding the component-specific prompts and embeddings through the frozen
backbone LLM, we retain the embedding for each component and apply a linear projection to the
output representation. By denormalizing and summing these representations, we derive the final
forecasts x̂(i)

t , . . . , x̂
(i)
t+H−1.
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4 EXPERIMENTS

In our experiments, the proposed method outperforms state-of-the-art forecasting approaches across
various benchmarks, including long-term, short-term, and few-shot forecasting. For a fair compari-
son, we follow the configurations outlined in (Wu et al., 2022) across all baselines, utilizing a unified
evaluation pipeline1. Our code will be made available on GitHub upon the acceptance of the paper.

Baselines. We compare with the SOTA time series models and cite their performance from (Zhou
et al., 2023; Chang et al., 2023) if applicable. The SOTA includes a set of Transformer-based meth-
ods, i.e., PatchTST(Nie et al., 2023), ETSformer(Woo et al., 2022), Non-Stationary Transformer(Liu
et al., 2022), FEDformer(Zhou et al., 2022), Autoformer(Wu et al., 2021), Informer(Zhou et al.,
2021), and Reformer(Kitaev et al., 2019). We also select a set of non-transformer-based techniques,
i.e., DLinear(Zeng et al., 2023), TimesNet(Wu et al., 2022), N-BEATS (Oreshkin et al., 2020a), and
LightTS(Zhang et al., 2022). Finally, four methods are based on LLMs, i.e., TimeLLM(Jin et al.,
2024a), LLM4TS(Chang et al., 2023), GPT4TS(Zhou et al., 2023), and LLMTime(Gruver et al.,
2024). Aligned with the GPT4TS configuration (Zhou et al., 2023), we utilize only the first 6 layers
of the 12-layer GPT-2 base (Radford et al., 2019) as the backbone model of ours and TimeLLM.

4.1 LONG-TERM FORECASTING

Setup. For long-term forecasting, we evaluate on ETTh1, ETTh2, ETTm1, ETTm2, Weather, Elec-
tricity(ECL), and Traffic, which have been widely adopted as benchmarking datasets for long-
term forecasting works (Wu et al., 2022). Details of these datasets are shown in Appendix A.
The input time series length L is set as 512, and we evaluate across four prediction horizons:
H ∈ {96, 192, 336, 720}. The evaluation metrics include mean square error (MSE) and mean abso-
lute error (MAE).

Results. Table 1 presents the performance of various time series forecasting models on MSE and
MAE metrics across different prediction horizons on multiple benchmarks. Our proposed model
consistently outperforms existing baselines, demonstrating superior performance on average across
most datasets and prediction lengths. This highlights the broad applicability of multi-level text
alignment. Notably, our comparison with TimeLLM—a recent work leveraging text prototype re-
programming to align time series with text tokens—is significant. Specifically, our model achieves
substantial improvements on the Weather and ETTm1 datasets, exceeding the best-performing LLM-
based model, LLM4TS, by 23.3% and 26.8%, respectively, in terms of MSE. Additionally, it
records the lowest error rates across numerous individual dataset-prediction length configurations.
These results suggest that integrating LLMs with multi-level text alignment can significantly en-
hance the accuracy of long-term time series forecasting.

4.2 FEW-SHOT FORECASTING

Setups. LLMs have recently shown impressive few-shot learning capabilities (Liu et al., 2023b). To
evaluate performance in the few-shot forecasting setting, we follow the experimental setup outlined
in (Zhou et al., 2023), allowing us to assess whether the model can generate accurate forecasts with
limited training data. In these experiments, we use only the first 10% of the training data.

Results. The brief 10% few-shot learning results in Table 2 and full results in Appendix B.1 demon-
strate that our model significantly outperforms all baseline methods across most datasets. We at-
tribute this success to the effective knowledge activation achieved through multi-level text align-
ment. Specifically, our model improves few-shot learning performance on the Weather and Traffic
datasets by 11.9% and 5%. When trained with only 10% of the data, LLM-based methods sub-
stantially outperform other baselines, which are trained from scratch and thus limited by the smaller
training set. In contrast, LLM-based models can leverage pre-trained knowledge and align it with
time series embeddings to enhance representation.

1https://github.com/thuml/Time-Series-Library
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Table 1: Long-term forecasting results for {96, 192, 336, 720} horizons. Lower values indicate
better performance. Red: the best, Blue: second best.

Methods Ours Time-LLM LLM4TS GPT4TS DLinear PatchTST

Datasets \ Horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.355 0.404 0.384 0.407 0.371 0.394 0.376 0.397 0.375 0.399 0.370 0.399
192 0.426 0.445 0.423 0.434 0.403 0.412 0.416 0.418 0.405 0.416 0.413 0.421
336 0.434 0.449 0.435 0.447 0.420 0.422 0.442 0.433 0.439 0.443 0.422 0.436
720 0.480 0.493 0.439 0.463 0.422 0.444 0.477 0.456 0.472 0.490 0.447 0.466
Avg. 0.424 0.448 0.420 0.438 0.404 0.418 0.428 0.426 0.422 0.437 0.413 0.435

ETTh2

96 0.260 0.336 0.295 0.355 0.269 0.332 0.285 0.342 0.289 0.353 0.274 0.336
192 0.333 0.375 0.376 0.410 0.328 0.377 0.354 0.389 0.383 0.418 0.339 0.379
336 0.369 0.408 0.376 0.412 0.353 0.396 0.373 0.407 0.448 0.465 0.329 0.380
720 0.444 0.455 0.410 0.442 0.383 0.425 0.406 0.441 0.605 0.551 0.379 0.422
Avg. 0.378 0.408 0.364 0.403 0.333 0.383 0.355 0.394 0.431 0.446 0.330 0.379

ETTm1

96 0.117 0.232 0.297 0.349 0.285 0.343 0.292 0.346 0.299 0.343 0.290 0.342
192 0.198 0.298 0.336 0.373 0.324 0.366 0.332 0.372 0.335 0.365 0.332 0.369
336 0.301 0.360 0.362 0.390 0.353 0.385 0.366 0.394 0.369 0.386 0.366 0.392
720 0.389 0.411 0.410 0.421 0.408 0.419 0.417 0.421 0.425 0.421 0.416 0.425
Avg. 0.251 0.325 0.351 0.383 0.343 0.378 0.352 0.383 0.357 0.378 0.351 0.380

ETTm2

96 0.095 0.200 0.177 0.264 0.165 0.254 0.173 0.262 0.167 0.269 0.165 0.255
192 0.174 0.263 0.253 0.312 0.220 0.292 0.229 0.301 0.224 0.303 0.220 0.292
336 0.243 0.313 0.285 0.345 0.268 0.326 0.286 0.341 0.281 0.342 0.274 0.329
720 0.343 0.380 0.366 0.390 0.350 0.380 0.378 0.401 0.297 0.421 0.362 0.385
Avg. 0.214 0.289 0.270 0.328 0.251 0.313 0.267 0.326 0.267 0.333 0.255 0.315

Weather

96 0.059 0.125 0.158 0.210 0.147 0.196 0.162 0.212 0.176 0.237 0.149 0.198
192 0.115 0.188 0.191 0.240 0.191 0.238 0.204 0.248 0.220 0.282 0.194 0.241
336 0.211 0.263 0.247 0.284 0.241 0.277 0.254 0.286 0.265 0.319 0.245 0.282
720 0.299 0.327 0.319 0.334 0.313 0.329 0.326 0.337 0.333 0.362 0.314 0.334
Avg. 0.171 0.226 0.229 0.267 0.223 0.260 0.237 0.271 0.248 0.300 0.225 0.264

ECL

96 0.116 0.221 0.137 0.237 0.128 0.223 0.139 0.238 0.140 0.237 0.129 0.222
192 0.145 0.250 0.150 0.249 0.146 0.240 0.153 0.251 0.153 0.249 0.150 0.240
336 0.167 0.271 0.168 0.266 0.163 0.258 0.169 0.266 0.169 0.267 0.163 0.259
720 0.209 0.307 0.203 0.293 0.200 0.292 0.206 0.297 0.203 0.301 0.197 0.290
Avg. 0.159 0.262 0.164 0.261 0.159 0.253 0.167 0.263 0.166 0.263 0.161 0.252

Traffic

96 0.255 0.229 0.380 0.277 0.372 0.259 0.388 0.282 0.410 0.282 0.360 0.249
192 0.332 0.258 0.399 0.288 0.391 0.265 0.407 0.290 0.423 0.287 0.379 0.256
336 0.370 0.273 0.408 0.290 0.405 0.275 0.412 0.294 0.436 0.296 0.392 0.264
720 0.428 0.301 0.445 0.308 0.437 0.292 0.450 0.312 0.466 0.315 0.432 0.286
Avg. 0.346 0.265 0.408 0.290 0.401 0.273 0.414 0.294 0.433 0.295 0.390 0.263

1st Count 26 0 9 0 0 9

Table 2: Few-shot learning on 10% training data. All results are averaged from four different fore-
casting horizons: H ∈ {96, 192, 336, 720}. Lower values indicate better performance.

Methods Ours TimeLLM LLM4TS GPT4TS DLinear PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2 0.397 0.431 0.446 0.464 0.366 0.407 0.397 0.421 0.605 0.538 0.415 0.431

ETTm2 0.262 0.324 0.292 0.343 0.276 0.324 0.293 0.335 0.316 0.368 0.296 0.343

Weather 0.207 0.263 0.359 0.275 0.235 0.270 0.238 0.275 0.241 0.283 0.242 0.279

ECL 0.190 0.288 0.182 0.277 0.172 0.264 0.176 0.269 0.180 0.280 0.180 0.273

Traffic 0.409 0.310 0.438 0.312 0.432 0.303 0.440 0.310 0.447 0.313 0.430 0.305

1st Count 3 0 2 0 0 1

4.3 ZERO-SHOT FORECASTING

Setups. Beyond few-shot learning, LLMs also show promise as effective zero-shot learners. In
this section, we evaluate the zero-shot learning capabilities of the multi-level text-aligned LLM.
Specifically, we assess how well the model performs on one dataset after being optimized on an-
other. Similar to the few-shot learning setup, we use the long-term forecasting protocol and evaluate
various cross-domain scenarios utilizing the ETT datasets.
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Table 3: Zero-shot learning results on ETT datasets. Lower values indicate better performance. Red:
the best, Blue: second best.

Methods Ours Time-LLM GPT4TS LLMTime PatchTST DLinear

Datasets MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 → ETTh2 0.346 0.396 0.354 0.400 0.406 0.422 0.992 0.708 0.380 0.405 0.493 0.488

ETTh1 → ETTm2 0.294 0.357 0.310 0.363 0.325 0.363 1.867 0.869 0.314 0.360 0.415 0.452

ETTh2 → ETTm2 0.276 0.345 0.303 0.356 0.335 0.370 1.867 0.869 0.325 0.365 0.328 0.386

ETTm1 → ETTm2 0.217 0.284 0.275 0.325 0.313 0.348 1.867 0.869 0.296 0.334 0.335 0.389

ETTm2 → ETTm1 0.562 0.478 0.501 0.453 0.769 0.567 1.933 0.984 0.568 0.492 0.649 0.537

Table 4: Full short-term time series forecasting. The forecasting horizons are in [6,48] and details
are in Table 6. Lower values indicate better performance. Red: the best, Blue: second best.

Methods Ours Time-LLM GPT4TS TimesNet PatchTST N-BEATS ETSformer LightTS DLinear FEDformer

A
ve

ra
ge SMAPE 12.249 13.113 12.69 12.88 12.059 12.25 14.718 13.525 13.639 13.16

MASE 1.678 1.77 1.808 1.836 1.623 1.698 2.408 2.111 2.095 1.775
OWA 0.89 0.946 0.94 0.955 0.869 0.896 1.172 1.051 1.051 0.949

Results. The brief results are presented in Table 3, with full results in Appendix B.3. Our model
demonstrates performance that is comparable to or surpasses other baselines. In data-scarce sce-
narios, our model significantly outperforms other LLM-based models, consistently providing better
forecasts. Both our model and TimeLLM (Jin et al., 2024a) outperform traditional baselines, likely
due to cross-modality alignment, which more effectively activates LLMs’ knowledge transfer and
reasoning capabilities for time series tasks. Additionally, our multi-level aligned embeddings better
align language cues with temporal components of time series, enabling superior zero-shot forecast-
ing performance compared to TimeLLM.

4.4 SHORT-TERM FORECASTING

Setups. We select the M4 benchmark as our testbed, which consists of a collection of marketing
data with varying sampling frequencies. More details are provided in Appendix A.1. The prediction
horizons in this case are relatively short, ranging from 6 to 48, with input lengths set to twice
the prediction horizon. The evaluation metrics include symmetric mean absolute percentage error
(SMAPE), mean absolute scaled error (MSAE), and overall weighted average (OWA).

Results. The brief results are presented in Table 4, with full results in Appendix B.2. Our method
consistently surpasses TimeLLM and GPT4TS by 6.5% and 3.5%, respectively, and remains com-
petitive with the state-of-the-art (SOTA) method, PatchTST (Nie et al., 2023).

4.5 MODEL ANALYSIS

Table 5: Performance comparison of different variants for long-term and few-shot forecasting.

Variant Long-term Forecasting Few-shot Forecasting

ETTm1-96 ETThm1-192 ETTm1-96 ETTm1-192

Default GPT-2 (6) 0.117 0.198 0.360 0.429

A.1 w/o alignment 0.262 0.347 0.571 0.583

B.1 only trend alignment 0.184 0.283 0.476 0.578
B.2 only seasonal alignment 0.127 0.212 0.367 0.432
B.3 only residual alignment 0.171 0.229 0.433 0.506

C.1 noise anchors 0.134 0.214 0.424 0.464
C.2 synonymous anchors 0.119 0.202 0.366 0.434

D.1 w/o component-specific instruction 0.125 0.205 0.408 0.461
D.2 w/o domain features 0.118 0.199 0.371 0.440
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Multi-level text alignment variants. Our results in Table 5 show that removing component align-
ment or prefixed prompts negatively impacts knowledge transfer during LLM reprogramming for
effective time series forecasting. Specifically, without alignment (A.1), we observe a significant av-
erage performance drop of 75.4% across standard and few-shot forecasting tasks. We also examine
the effect of aligning only two components to assess whether aligning just one component is suf-
ficient in our multi-level alignment strategy. Retaining only seasonal alignment (B.2) achieves the
best performance, though it still results in an average MSE increase of 4.5% across all scenarios.
In contrast, keeping only trend alignment significantly degrades performance, with over 32.2% per-
formance loss in both standard and few-shot tasks. Furthermore, altering the selection of anchors
for trend alignment (C.1, C.2) increases MSE by over 14.5% when using noise anchors. Expanding
the anchor selection with synonymous words produces results comparable to the default, with less
than a 2% variation in MSE. Finally, removing component-specific instruction (D.1) and domain
features (D.2) results in MSE increases of 7.7% and 1.7%, respectively.

increase

stable

decrease

bird
chocolate
bicycle
volcano

guitar
window
ocean
pillow

basketball
rainbow

drop

decline
reduce

diminish

grow

rise

expand

climb

steady
constant

fixed
consistent
Anchors

(a) (b) 

Anchors

Trend patches

Figure 3: A showcase of visualization of multi-level align-
ment interpretation.

Multi-level text alignment inter-
pretation. We present a case study
on ETTm1 using non-overlapping
patching, where the patch stride is the
same as the patch length, with dif-
ferent selected anchors shown in Fig-
ure 3. The attention map illustrates
the optimized attention scores be-
tween input trend patches and aligned
anchors. These matched anchors
serve as textual shapelets for the
time series tokens. Specifically, sub-
plot (a) displays the optimized atten-
tion scores for synonymous anchors,
which are consistent. The highlighted
anchors—“rise,” “increase,” “climb,”
“grow,” and “expand”—are associ-
ated with upward trend patches. In
contrast, subplot (b) shows no high-
lighted anchor when all trend patches
are aligned with noise words unre-
lated to time series trends. This case study demonstrates that aligned anchors effectively summarize
the textual shapelets of the input trend patches.

Although multi-level alignment in both seasonal and residual components can provide visual inter-
pretations, visualizing these alignments is challenging. Since the input patches are aligned with text
prototypes learned from a large and dense pre-trained word embedding space, more tools are needed
to present a better visualization across two optimized layers. Moreover, the trend component is the
most interpretable and semantically clear of the three components, in contrast to the noisy resid-
ual and the seasonal component, which lacks textual semantics. Our model efficiencies in terms
of parameters, memory, and speed are comparable to TimeLLM (Jin et al., 2024a) with only two
additional lightweight aligned embedding layers for integrating trend and seasonal components.

5 CONCLUSION AND FUTURE WORK

We propose a multi-level text alignment framework for time series forecasting utilizing pre-trained
language models. Our multi-level aligned embeddings enhance the LLM’s interpretability and fore-
casting performance by aligning time series components with anchors and text prototypes. Due to
the impractical interpretability of the text prototypes aligned with the seasonal and residual com-
ponents of the time series, and the sparsity of text prototypes describing the time series trend, we
align the time series trend with selected anchors from the pre-trained word embeddings. Our results
demonstrate that time series tokens aligned with anchors provide a clearer and more intuitive in-
terpretation of similar time series trends. Future research should focus on optimizing the alignment
module for selected anchors and time series tokens, and work toward developing multimodal models
capable of joint reasoning across time series, natural language, and other modalities.
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A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

Dataset statistics are summarized in Table 6. We evaluate the long-term forecasting performance on
the well-established eight different benchmarks over different domains, including four ETT datasets
(Zhou et al., 2021) (i.e., ETTh1, ETTh2, ETTm1, and ETTm2), Weather, Electricity, Traffic, and
ILI from (Zhou et al., 2023). Furthermore, we evaluate the performance of short-term forecasting
on the M4 benchmark (Makridakis et al., 2018).

Table 6: Datasets statistics are from (Zhou et al., 2023). The dataset size is organized in (training,
validation, testing), and the dimension indicates the number of channels of time series.

Tasks Dataset Dim. Series Length Dataset Size Frequency Domain

Long-term
Forecasting

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature
Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather

Short-term
Forecasting

M4-Yearly 1 6 (23000, 0, 23000) Yearly Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Quarterly Finance
M4-Monthly 1 18 (48000, 0, 48000) Monthly Industry
M4-Weekly 1 13 (359, 0, 359) Weekly Macro
M4-Daily 1 14 (4227, 0, 4227) Daily Micro
M4-Hourly 1 48 (414, 0, 414) Hourly Other

The Electricity Transformer Temperature (ETT; An indicator reflective of long-term electric power
deployment) benchmark is comprised of two years of data, sourced from two counties in China,
and is subdivided into four distinct datasets, each with varying sampling rates: ETTh1 and ETTh2,
which are sampled at a 1-hour level, and ETTm1 and ETTm2, which are sampled at a 15-minute
level. Each entry within the ETT datasets includes six power load features and a target variable,
termed “oil temperature”. The Electricity dataset comprises records of electricity consumption from
321 customers, measured at a 1-hour sampling rate. The Weather dataset includes one-year records
from 21 meteorological stations located in Germany, with a sampling rate of 10 minutes. The Traffic
dataset includes data on the occupancy rates of the freeway system, recorded from 862 sensors across
the State of California, with a sampling rate of 1 hour.

The M4 benchmark comprises 100K time series, amassed from various domains commonly present
in business, financial, and economic forecasting. These time series have been partitioned into six
distinctive datasets, each with varying sampling frequencies that range from yearly to hourly. These
series are categorized into five different domains: demographic, micro, macro, industry, and finance.

A.2 EVALUATION METRICS

For evaluation metrics, we utilize the mean square error (MSE) and mean absolute error (MAE) for
long-term forecasting. In terms of the short-term forecasting on M4 benchmark, we adopt the sym-
metric mean absolute percentage error (SMAPE), mean absolute scaled error (MASE), and overall

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

weighted average (OWA) as in N-BEATS(Oreshkin et al., 2020b). Note that OWA is a specific
metric utilized in the M4 competition. The calculations of these metrics are as follows:

MSE =
1

H

H∑
h=1

(
Yh − Ŷh

)2
, MAE =

1

H

H∑
h=1

∣∣∣Yh − Ŷh

∣∣∣ ,
SMAPE =

200

H

H∑
h=1

∣∣∣Yh − Ŷh

∣∣∣
|Yh|+

∣∣∣Ŷh

∣∣∣ , MAPE =
100

H

H∑
h=1

∣∣∣Yh − Ŷh

∣∣∣
|Yh|

,

MASE =
1

H

H∑
h=1

∣∣∣Yh − Ŷh

∣∣∣
1

H−s

∑H
j=s+1 |Yj −Yj−s|

, OWA =
1

2

[
SMAPE

SMAPENaı̈ve2
+

MASE
MASENaı̈ve2

]
,

where s is the periodicity of the time series data. H denotes the number of data points(i.e., prediction
horizon in our cases). Yh and Ŷh are the h−th ground truth and prediction where h ∈ {1, ...,H}.

A.3 MODEL CONFIGURATIONS

The configurations of our models, relative to varied tasks and datasets, are consolidated in Table 7.
By default, the Adam optimizer (Diederik, 2015) is employed throughout all experiments.

Table 7: An overview of the experimental configurations.
Task-Dataset / Configuration

Model Hyperparameter Training Process

Wtrend Vseason Vresid Input Length T Patch Dim. dm LR∗ Loss Batch Size Epochs

LTF - ETTh1 10 100 1000 512 16 10−4 MSE 48 50
LTF - ETTh2 10 100 1000 512 16 10−4 MSE 48 50
LTF - ETTm1 10 100 1000 512 16 10−4 MSE 48 50
LTF - ETTm2 10 100 1000 512 16 10−4 MSE 48 50
LTF - Weather 10 100 1000 512 16 10−4 MSE 24 50
LTF - Electricity 10 100 1000 512 16 10−4 MSE 24 50
LTF - Traffic 10 100 1000 512 16 10−4 MSE 24 50
LTF - ILI 10 100 1000 512 16 10−4 MSE 48 50
STF - M4 10 100 1000 2 ×H† 16 10−4 SMAPE 48 50

†H represents the forecasting horizon of the M4 datasets.
∗LR represents the initial learning rate.

B FULL RESULTS OF ALL CONFIGURATIONS

B.1 FEW-SHOT FORECASTING

Our full results in few-shot forecasting tasks are detailed in Table 8. With the scope of 10% few-shot
learning, our model’s secure SOTA performance in 13 out of 35 cases, spanning seven different time
series benchmarks. Moreover, our model only lose to LLM4TS, which is neither interpretable nor
light-weight.

B.2 SHORT-TERM FORECASTING

Our complete results on short-term forecasting are presented in Table B.2. Our model consistently
outperforms the majority of baseline models in most cases. Notably, we surpass TimeLLM by a
large margin (e.g, 6.5% average, 9.4% on M4-Monthly), as well as GPT4TS (e.g., 10.5% on M4-
Yearly, 3.5% on average). Compared to the state-of-the-art models, TimesNet,and PatchTST, our
model exhibits comparable or superior performances without any parameter updates on the backbone
LLM.

B.3 ZERO-SHOT FORECASTING

The full results of zero-shot forecasting are summarized in Table 10. Our model remarkably sur-
passes the five most competitive time series models in zero-shot adaptation. Overall, we observe
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Table 8: Full few-shot results on 10% training data.
Methods Ours Time-LLM LLM4TS GPT4TS DLinear PatchTST

Datasets \ Horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.629 0.548 0.530 0.492 0.417 0.432 0.458 0.456 0.492 0.495 0.516 0.485
192 0.720 0.534 0.671 0.546 0.469 0.468 0.570 0.516 0.565 0.538 0.598 0.524
336 0.893 0.622 0.907 0.639 0.505 0.499 0.608 0.535 0.721 0.622 0.657 0.550
720 1.210 0.772 0.917 0.647 0.708 0.572 0.725 0.591 0.986 0.743 0.762 0.610
Avg. 0.865 0.619 0.756 0.581 0.525 0.493 0.590 0.525 0.691 0.600 0.633 0.542

ETTh2

96 0.330 0.383 0.349 0.418 0.282 0.351 0.331 0.374 0.357 0.411 0.353 0.389
192 0.357 0.408 0.406 0.428 0.364 0.400 0.402 0.411 0.569 0.519 0.403 0.414
336 0.406 0.439 0.488 0.489 0.374 0.416 0.406 0.433 0.671 0.572 0.426 0.441
720 0.498 0.496 0.540 0.520 0.445 0.461 0.449 0.464 0.824 0.648 0.477 0.480
Avg. 0.397 0.431 0.446 0.464 0.366 0.407 0.397 0.421 0.605 0.538 0.415 0.431

ETTm1

96 0.360 0.389 0.297 0.349 0.360 0.388 0.390 0.404 0.352 0.392 0.410 0.419
192 0.429 0.431 0.336 0.373 0.386 0.401 0.429 0.423 0.382 0.412 0.437 0.434
336 0.446 0.465 0.362 0.390 0.415 0.417 0.469 0.439 0.419 0.434 0.476 0.454
720 0.489 0.495 0.410 0.421 0.470 0.445 0.569 0.498 0.490 0.477 0.681 0.556
Avg. 0.431 0.445 0.351 0.383 0.402 0.457 0.464 0.441 0.411 0.429 0.501 0.466

ETTm2

96 0.126 0.231 0.192 0.276 0.184 0.265 0.188 0.269 0.213 0.303 0.191 0.274
192 0.223 0.300 0.266 0.320 0.240 0.301 0.251 0.309 0.278 0.345 0.252 0.317
336 0.290 0.345 0.317 0.356 0.294 0.337 0.307 0.346 0.338 0.385 0.306 0.353
720 0.412 0.420 0.418 0.420 0.386 0.393 0.426 0.417 0.436 0.440 0.433 0.427
Avg. 0.262 0.324 0.292 0.343 0.276 0.324 0.293 0.335 0.316 0.368 0.296 0.343

Weather

96 0.102 0.177 0.164 0.220 0.158 0.207 0.163 0.215 0.171 0.224 0.165 0.215
192 0.164 0.234 0.215 0.258 0.204 0.249 0.210 0.254 0.215 0.263 0.210 0.257
336 0.230 0.281 0.259 0.294 0.254 0.288 0.256 0.292 0.258 0.299 0.259 0.297
720 0.334 0.363 0.319 0.326 0.322 0.336 0.321 0.339 0.320 0.346 0.332 0.346
Avg. 0.207 0.263 0.359 0.275 0.235 0.270 0.238 0.275 0.241 0.283 0.242 0.279

ECL

96 0.144 0.250 0.145 0.246 0.135 0.231 0.139 0.237 0.150 0.253 0.140 0.238
192 0.167 0.271 0.160 0.259 0.152 0.246 0.156 0.252 0.164 0.264 0.160 0.255
336 0.194 0.294 0.182 0.278 0.173 0.267 0.175 0.270 0.181 0.282 0.180 0.276
720 0.255 0.340 0.239 0.324 0.229 0.312 0.233 0.317 0.223 0.321 0.241 0.323
Avg. 0.190 0.288 0.182 0.277 0.172 0.264 0.176 0.269 0.180 0.280 0.180 0.273

Traffic

96 0.347 0.292 0.416 0.295 0.402 0.288 0.414 0.297 0.419 0.298 0.403 0.289
192 0.398 0.305 0.424 0.306 0.416 0.294 0.426 0.301 0.434 0.305 0.415 0.296
336 0.427 0.313 0.435 0.314 0.429 0.302 0.434 0.303 0.449 0.313 0.426 0.304
720 0.466 0.330 0.476 0.331 0.480 0.326 0.487 0.337 0.484 0.336 0.474 0.331
Avg. 0.409 0.310 0.438 0.312 0.432 0.303 0.440 0.310 0.447 0.313 0.430 0.305

1st Count 13 6 21 0 1 2

Table 9: Full short-term time series forecasting. The forecasting horizons are in [6,48] and details
in Table 6. Lower values indicate better performance. Red: the best, Blue: second best.

Methods Ours Time-LLM GPT4TS TimesNet PatchTST N-BEATS ETSformer LightTS DLinear FEDformer Stationary Autoformer Informer Reformer

Y
ea

rl
y SMAPE 13.51 14.117 15.11 15.378 13.477 13.487 18.009 14.247 16.965 14.021 13.717 13.974 14.727 16.169

MASE 3.039 3.134 3.565 3.554 3.019 3.036 4.487 3.109 4.283 3.036 3.078 3.134 3.418 3.800
OWA 0.796 0.827 0.911 0.918 0.792 0.795 1.115 0.827 1.058 0.811 0.807 0.822 0.881 0.973

Q
ua

rt
er

ly SMAPE 10.589 11.593 10.597 10.465 10.38 10.564 13.376 11.364 12.145 11.1 10.958 11.338 11.360 13.313
MASE 1.262 1.424 1.253 1.227 1.233 1.252 1.906 1.328 1.520 1.35 1.325 1.365 1.401 1.775
OWA 0.941 1.046 0.938 0.923 0.921 0.936 1.302 1.000 1.106 0.996 0.981 1.012 1.027 1.252

M
on

th
ly SMAPE 13.079 14.225 13.258 13.513 12.959 13.089 14.588 14.014 13.514 14.403 13.917 13.958 14.062 20.128

MASE 0.984 1.101 1.003 1.039 0.97 0.996 1.368 1.053 1.037 1.147 1.097 1.103 1.141 2.614
OWA 0.916 1.011 0.931 0.957 0.905 0.922 1.149 0.981 0.956 1.038 0.998 1.002 1.024 1.927

O
th

er
s SMAPE 6.435 5.125 6.124 6.913 4.952 6.599 7.267 15.880 6.709 7.148 6.302 5.485 24.460 32.491

MASE 4.075 3.54 4.116 4.507 3.347 4.43 5.24 11.434 4.953 4.041 4.064 3.865 20.960 33.355
OWA 1.32 1.097 1.259 1.438 1.049 1.393 1.591 3.474 1.487 1.389 1.304 1.187 5.879 8.679

A
ve

ra
ge SMAPE 12.249 13.113 12.69 12.88 12.059 12.25 14.718 13.525 13.639 13.16 12.78 12.909 14.086 18.200

MASE 1.678 1.77 1.808 1.836 1.623 1.698 2.408 2.111 2.095 1.775 1.756 1.771 2.718 4.223
OWA 0.89 0.946 0.94 0.955 0.869 0.896 1.172 1.051 1.051 0.949 0.930 0.939 1.230 1.775

over 14.1% MSE reductions across all datasets compared to GPT4TS (Zhou et al., 2023). Our im-
provements are consistently significantly on those typical cross-domain scenarios. For example, our
model reduces 5.2% and 8.9% MSE compared to best baseline on ETTh1→ ETTh2 and ETTh2→
ETTm2. Significantly, our model exhibits superior size backbone LLM(7B) and is the latest effort in
leverage LLMs for zero-shot time series forecasting under “one-to-one” scenarios. We attribute this
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Table 10: Full zero-shot learning results on ETT datasets. Lower values indicate better performance.
Methods Ours Time-LLM GPT4TS LLMTime PatchTST DLinear

Datasets \ Horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 → ETTh2

96 0.263 0.337 0.264 0.340 0.335 0.374 0.510 0.576 0.304 0.350 0.347 0.400
192 0.315 0.374 0.332 0.376 0.412 0.417 0.523 0.586 0.386 0.400 0.447 0.460
336 0.371 0.414 0.395 0.424 0.441 0.444 0.640 0.637 0.414 0.428 0.515 0.505
720 0.435 0.462 0.423 0.459 0.438 0.452 2.296 1.034 0.419 0.443 0.665 0.589
Avg. 0.346 0.396 0.354 0.400 0.406 0.422 0.992 0.708 0.380 0.405 0.493 0.488

ETTh1 → ETTm2

96 0.191 0.296 0.224 0.311 0.236 0.315 0.646 0.563 0.215 0.304 0.255 0.357
192 0.259 0.338 0.270 0.339 0.287 0.342 0.934 0.654 0.275 0.339 0.338 0.413
336 0.317 0.370 0.336 0.378 0.341 0.374 1.157 0.728 0.334 0.373 0.425 0.465
720 0.409 0.424 0.410 0.422 0.435 0.422 4.730 1.531 0.431 0.424 0.640 0.573
Avg. 0.294 0.357 0.310 0.363 0.325 0.363 1.867 0.869 0.314 0.360 0.415 0.452

ETTh2 → ETTh1

96 0.585 0.510 0.541 0.503 0.732 0.577 1.130 0.777 0.485 0.465 0.689 0.555
192 0.677 0.554 0.559 0.515 0.758 0.559 1.242 0.820 0.565 0.509 0.707 0.568
336 0.700 0.562 0.620 0.551 0.759 0.578 1.328 0.864 0.581 0.515 0.710 0.577
720 0.693 0.579 0.729 0.627 0.781 0.597 4.145 1.461 0.628 0.561 0.704 0.596
Avg. 0.663 0.551 0.612 0.549 0.757 0.578 1.961 0.981 0.565 0.513 0.703 0.574

ETTh2 → ETTm2

96 0.181 0.288 0.218 0.304 0.253 0.329 0.646 0.563 0.226 0.309 0.240 0.336
192 0.235 0.324 0.265 0.335 0.293 0.346 0.934 0.654 0.289 0.345 0.295 0.369
336 0.294 0.357 0.327 0.370 0.347 0.376 1.157 0.728 0.348 0.379 0.345 0.397
720 0.395 0.411 0.401 0.416 0.446 0.429 4.730 1.531 0.439 0.427 0.432 0.442
Avg. 0.276 0.345 0.303 0.356 0.335 0.370 1.867 0.869 0.325 0.365 0.328 0.386

ETTm1 → ETTh2

96 0.415 0.437 0.331 0.383 0.353 0.392 0.510 0.576 0.354 0.385 0.365 0.415
192 0.486 0.477 0.353 0.399 0.443 0.437 0.523 0.586 0.447 0.434 0.454 0.462
336 0.397 0.433 0.400 0.428 0.469 0.461 0.640 0.637 0.481 0.463 0.496 0.494
720 0.451 0.475 0.417 0.448 0.466 0.468 2.296 1.034 0.474 0.471 0.541 0.529
Avg. 0.437 0.455 0.375 0.415 0.433 0.439 0.992 0.708 0.439 0.438 0.464 0.475

ETTm1 → ETTm2

96 0.081 0.185 0.194 0.270 0.217 0.294 0.646 0.563 0.195 0.271 0.221 0.314
192 0.162 0.250 0.243 0.304 0.277 0.327 0.934 0.654 0.258 0.311 0.286 0.359
336 0.250 0.311 0.295 0.341 0.331 0.360 1.157 0.728 0.317 0.348 0.357 0.406
720 0.376 0.392 0.367 0.385 0.429 0.413 4.730 1.531 0.416 0.404 0.476 0.476
Avg. 0.217 0.284 0.275 0.325 0.313 0.348 1.867 0.869 0.296 0.334 0.335 0.389

ETTm2 → ETTh2

96 0.485 0.473 0.322 0.369 0.360 0.401 0.510 0.576 0.327 0.367 0.333 0.391
192 0.496 0.481 0.359 0.396 0.434 0.437 0.523 0.586 0.411 0.418 0.441 0.456
336 0.542 0.509 0.439 0.452 0.460 0.459 0.640 0.637 0.439 0.447 0.505 0.503
720 0.437 0.463 0.448 0.468 0.485 0.477 2.296 1.034 0.459 0.470 0.543 0.534
Avg. 0.490 0.481 0.392 0.421 0.435 0.443 0.992 0.708 0.409 0.425 0.455 0.471

ETTm2 → ETTm1

96 0.345 0.377 0.446 0.415 0.747 0.558 1.179 0.781 0.491 0.437 0.570 0.490
192 0.518 0.462 0.496 0.452 0.781 0.560 1.327 0.846 0.530 0.470 0.590 0.506
336 0.735 0.541 0.507 0.463 0.778 0.578 1.478 0.902 0.565 0.497 0.706 0.567
720 0.653 0.533 0.556 0.482 0.769 0.573 3.749 1.408 0.686 0.565 0.731 0.584
Avg. 0.562 0.478 0.501 0.453 0.769 0.567 1.933 0.984 0.568 0.492 0.649 0.537

1st Count 21 16 0 0 8 0

success to our multi-level text alignment being better at activating the LLM’s knowledge transfer
and reasoning capabilities in a resource-efficient manner when performing time series tasks.
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