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ABSTRACT

Recent advances in deep learning (DL) have led to improved vision-based al-
gorithms. DL-based semantic segmentation, in particular, has enabled precise
predictions using Convolutional Neural Networks (CNNs). State-of-the-art CNN-
based networks have achieved high accuracy on various datasets in multiple fields,
such as building, scene, and object segmentation. However, subdomain shifts
between training and test sets within a single domain can cause degraded accuracy
in fine-grained segmentation. To counter this, this paper introduces a novel Sub-
Domain Adaptation (SDA) framework for fine-grained and granular segmentation,
which divides one single domain into multiple sub-domains and optimizes the
baseline-network for each sub-domain. The baseline-network is further fine-tuned
by recognizing the domain of the input in run-time, leading to more accurate pre-
dictions. Benchmarks of scene parsing, autonomous driving, and aerial imagery
demonstrate the superior performance of SDA for granular segmentation.1

1 INTRODUCTION

Fine-grained segmentation of objects in an image is an ongoing challenge in a variety of fields,
including remote sensing Huang & Gartner (2009), autonomous robotics Lenz et al. (2015), and
autonomous driving Sallab et al. (2017). Improvements in accuracy are necessary for practical
applications Reed et al. (1994); Zhou et al. (2017). For instance, precise segmentation of buildings in
aerial images is vital for creating high-quality digital maps automatically, or for detecting changes
in the image for urban planning Kim et al. (2018). Similarly, accurate segmentation of objects in a
scene image is critical for autonomous vehicles and robots to respond appropriately to the objects
Fridman et al. (2017); Wu et al. (2018).

In recent years, DL methods have proved to be effective for object segmentation in aerial imagery
Zhao et al. (2017); Kaiser et al. (2017); Kim et al. (2018); Yue et al. (2019). However, due to the
complex shapes, colors, and rotations of objects within cities, such as buildings and roads Lee et al.
(2000); Kaiser et al. (2017), achieving accurate segmentation remains challenging. To this end,
various architectures have been developed to improve the performance of segmentation. For example,
UNetPPL Kim et al. (2018) is a U-Net-based architecture that incorporates multiple pyramid pooling
layers Zhao et al. (2017) for extracting multi-scale features. Yue et al. Yue et al. (2019) developed
novel layers to further improve the performance of building segmentation. Moreover, Doi and Iwasaki
Doi & Iwasaki (2018) applied a focal loss Ross & Dollár (2017) to obtain focused features in aerial
images. As aerial images exhibit more vague features, especially boundaries, than other types of
vision images, many state-of-the-art models have focused on boundary-oriented segmentation for
fine-grained segmentation.

Scene parsing is a popular segmentation task for identifying images into semantic categories such as
sky, road, human, and ground Zhou et al. (2017). Despite considerable progress in DL models for
semantic segmentation, precise fine-grained segmentation remains a challenge due to the complexity
of the different types of datasets. To address this, Romera et al. Romera et al. (2017) proposed a
factorized residual layer to improve the efficiency of the DL architecture. BshapeNet Rom Kang &
Kim (2018) further improved accuracy by applying bounding shape masks to the Region of Interest.
BubbleNet Griffin & Corso (2019), which takes into account a representative frame in the video,

1Our code is available at https://github.com/Anonymous/Repo
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also improved segmentation performance. State-of-the-art (SotA) models have been evaluated using
benchmark tests Lin et al. (2014); Zhou et al. (2017).

Recent efforts have demonstrated substantial improvements in segmentation performance (e.g., 50%
→ 70%; 70% → 85%) using SotA models. In contrast, achieving fine-grained segmentation (e.g.,
85% → 90%; 90% → 95%) has proven to be a difficult task. In our preliminary study, we found that a
single domain can be further divided into various sub-domains as shown in Fig. 1, and the soft domain
shift gaps between different sub-domains lead to a strong deterioration in fine-grained segmentation,
as illustrated in Fig. 1. Specifically, the presence of intra-domain gaps between the training and test
sets have a particularly detrimental effect on fine-grained segmentation performance. Despite the
development of domain adaptation (DA) methods, current approaches are largely designed to reduce
domain gaps between two or more different domains, rather than within one single domain. As the
domain gaps within a single domain are much smaller than those between two different domains,
current DA methods are ineffective in addressing intra-domain gaps.

To address the problem of intra-domain gap, in this work, we introduce the concept of Sub-domain
adaptation (SDA) first and then propose an DL framework, dubbed SDA-Net. Instead of the
probability-based segmentation, which is known to decrease boundary-oriented segmentation, we use
density-based segmentation (Appendix B). To reduce the intra-domain gap, SDA-Net consists of a
sub-domain classifier and a baseline-network. The sub-domain classifier identifies sub-domains of
inputs and the baseline-network is fine-tuned based on the identified sub-domain via a self-supervised
approach. The fine-tuned baseline-network can then provide precise predictions for input images,
taking into account the knowledge of intra-domain gaps and sub-domain of inputs.

To summarize, our contributions are below:

• We proposed a self-supervised fine-tuning network (SDA-Net) for sub-domain aware granu-
lar fine-grained segmentation.

• To achieve fine-grained segmentation, SDA-Net leverages a novel loss function, sieve loss,
for self-supervised learning and adaptive fine-tuning loss for decreasing intra-domain gaps.

• We evaluated our framework on various segmentation benchmarks and demonstrated its
superior performance compared with SotA models.

2 PRELIMINARY STUDIES

2.1 SOFT DOMAIN GAP

A preliminary study of the LoveDA dataset Wang et al. (2021) was carried out to identify sub-domains.
Utilizing the t-distributed stochastic neighbor embedding (T-SNE) Van der Maaten & Hinton (2008)
algorithm, the dataset was projected into three dimensions and clustered using the non-parametric
Density Based Spatial Clustering of Applications with Noise (DBSCAN) Ester et al. (1996). The
DBSCAN algorithm split the dataset into three sub-domains, as shown in Fig. 2. Sub-domains were

Figure 1: Within a single domain, sub-
domains can exist, resulting in an intra-
domain gap. Sub-Domain Adaptation (SDA)
attempts to reduce this gap, rather than adapt-
ing between two distinct domains.

Figure 2: The LoveDA dataset is divided into
three sub-domains using the DBSCAN clus-
tering algorithm, and visualized using T-SNE
(left: 3D; right: 2D).
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split into train and test sets, and a vanilla DL model Ronneberger et al. (2015) was used to train and
validate various combinations of sub-domains in a segmentation task. Table 1 shows the results of
this study, exploring the effect of soft domain gaps on the performance of the DL model. The results
demonstrated that DL performance was maximized (diagonal) when the train sets (columns) and
test sets (rows) employed the same sub-domain. Conversely, soft domain gaps lead to a decrease in
performance when different sub-domains were used in the train and test sets (e.g., train-set: D(1);
test-set: D(3)). Furthermore, it is worth noticing that the fully trained DL model (D(1, 2, 3)) cannot
provide the highest performance when applied to individual sub-domains. This phenomenon, referred
to as a "soft domain gap," is analogous to the traditional domain gap and can have a detrimental
effect on the DL model’s performance. As such, this work aims to reduce the domain gap between
sub-domains within a single domain.

Table 1: A preliminary study to investigate the soft domain shift between train and test sets. Results
indicate that the highest performance is achieved when the soft domain gap is minimized. Detailed
results can be found in Appendix Table 10.

mIoU Train-set
D(1) D(2) D(3) D(1, 2, 3)

Te
st

-s
et

D(1) 63.93% 61.78% 61.84% 62.54%
D(2) 61.64% 63.75% 61.63% 62.78%
D(3) 60.63% 60.39% 62.58% 61.03%

D(1, 2, 3) 62.69% 62.49% 62.46% 64.67%

2.2 PROBLEM DEFINITION

In this work, benchmark datasets are divided according to their density (Appendix B). Using this
data, N sub-domains are manually grouped under the given dataset (X):

Dc
i (X) ={X | i

N
≤ dc(X ) < i+ 1

N
, X ∈ X}

s.t. Dc
i (X) ⊂ Dc

i and
N⋃
i

Dc
i (X) = Dc

all(X) = X.
(1)

Here, the density of a target object (c) is expressed as dc(X ) in an input image, X ∈ RH×W×C ,
where H is the height, W is the width, and C is the channel. This density is calculated as the ratio of
the number of pixels of c-category to the total number of pixels. The set Di

all = Di
all(G) represents

the domain of mathematically ideal datasets (G ⊃ X)1.

Let X ⊂ RH×W×C and Y ⊂ Rl be sets of inputs (X ∈ X) and corresponding labels (Y ∈ Y) with
the number of categories (l). Let Cθ be a CNN architecture with a set of its parameters (θ ∈ Θ), such
that C : RH×W×C → R?×l, and the prediction on X by Cθ is provided as y = Cθ(X ). Then, a cost
function (L : Θ → R) to train Cθ on X with a loss function (L : Rl,Rl → R) is defined as below:

L(Cθ;X) =
1

N

N∑
i

L(Cθ(X i),Yi), {X i ∈ X, Yi ∈ Y}, (2)

where N is the number of samples in X. Hereby, θ is fully optimized as ϑX via ϑX =
argminθL(Cθ;X).

Since ϑDc
all
= argminθL(Cθ;Dc

all) is a fully optimized parameter ideally, CϑDc
all can provide precise

predictions on all images. However, CϑDc
all(X) may provide imprecise predictions since X is not

well-distributed in the real-world. Fig. 3 shows that ϑDc
all

reveals the global minima on L(Cθ;Dc
all),

while the local-minima on L(Cθ;Dc
i ) are caused by the averaging approach in Eq. 2. Consequently,

CϑDc
all(X) is unable to generate precise predictions on Dc

i (X). In summary, the problem can be defined
as follows:

ϑ = argmin
θ
L(Cθ;Dc

all) ⇏ ∀θL(Cθ;Dc
i ) ≥ L(Cϑ;Dc

i ). (3)

The ensemble DL model (Mθ), consisting of multiple sub-DL models (Mθi
i ) trained for distinct

sub-domains (Dc
i (X)), can provide accurate predictions on Dc

i (X) as below:

X ∈ Dc
i (X)→Mθ(X ) = Mθi

i (X ). (4)

1G is an ideal global dataset that contains all possible images in the world. All datasets (X) are subsets of G.
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Figure 3: Cost function on Di
all

(top) and Di
c (bottom)

Figure 4: Semantic architecture of the proposed fine-tuning frame-
work. The sub-domain classifier is used to provide a latent feature
(I ′) and predictions on the density (di). Using this di, the baseline-
network is fine-tuned, enabling it to provide precise predictions
using both I and I ′.

However, the inefficiency of ensemble DL models due to their heavy memory utilization has motivated
the development of a novel DL model, dubbed sub-domain adaptation (SDA) via a fine-tuning network
(FT-net), that can exhibit the same advantages as the ensemble model, but with improved efficiency.
The FT-net pipeline consists of two steps: (1) fine-tuning the parameters of the network to learn the
knowledge of a given sub-domain, and (2) utilizing the learned knowledge to provide predictions
via SDA. Solving Eq. 3 and realizing SDA, the fine-tuning step provides accurate predictions using
Eq. 4, while also achieving memory efficiency. The fine-tuning network provides precise predictions
(yj) on the sub-domain (Dc

i (X)), as below.

1st : X j ∈ Dc
i (X)→ θ′ = argmin

θ
L(Cθ;Dc

i (X) ∪ X j)

2nd : yj = Cθ′(X j)⇒ L(yj ,Yj) < L(Cθ(X j),Yj).

(5)

We propose a novel solution to the problem statement in Eq. 3 through a combination of SDA and
FT-net, as shown in Eq. 5.

3 METHODS

This section details the architecture of our SDA framework along with its novel loss functions.

3.1 OVERALL ARCHITECTURE

Fig. 4 shows the proposed sub-domain adaptation network (SDA-Net) composed of a sub-domain
classifier (SDC) and a baseline-network (BN). This framework is capable of addressing the soft
domain gap problem by learning to discriminate between sub-domains and mitigating the shift
among them. By employing a fine-tuning mechanism, SDA-Net is designed to realize SDA. To this
end, our SDA-Net must be aware of the subdomain of the input, which is realized through SDC.
The SDC is a CNN (CθSDC ) which classifies the input (X ) according to its subdomain, producing
a probability vector of density (pc = (pc1, ..., p

c
i ); p

c
i ∈ [0, 1];

∑
pci = 1) for each target object

(c ∈ (1, l)) in X . Based on pc, the BN is fine-tuned and provides the prediction using X and
X ′, which are the latent features extracted by SDC, as inputs. Therefore, the sub-domain of X
is identified as i = argmax

(
CθSDC(X )|c

)
= argmaxi

(
pci
)
, and BN is fine-tuned using ϑ =

argminθBN
L(CθBN ;Dc

i (X) ∪ X ). The fine-tuned BN then provides the final prediction, y = Cϑ(X ⊕
X ′), where ⊕ is a Hadamard product.

3.2 TRAINING SDA-NET

The training of SDA-Net involves three loss functions: two individual cross-entropy (CE) losses
(LCE

(
y, ŷ) := ŷ log(y)

)
) and a novel sieve loss. The network is optimized in a supervised manner,

via the CE-loss using X i ∈ X, Yi ∈ Y, and y = CθSDA(X ) ∈ RH×W×l, such that LCE-S
(
y,Y

)
:=

LCE
(
y,Y

)
, where θSDA = θSDC ∪ θBN. Additionally, given Y ∈ Y in the training step, the SDC can

4
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Figure 5: Information is cumulatively rectified through a series of stages, utilizing ratios of 80%,
50%, and 30%. This leads to a final ratio of 12%, which is obtained by multiplying the three ratios.

be optimized using the calculated density from the input. This is expressed as LCE-D
(
y′, d̄c(X|Y)

)
:=

LCE
(
y′, d̄c(X|Y)

)
, where y′ = CθSDC(X )|c, and d̄c(X|Y) ∈ Rl is one-hot labeled density.

In this work, we propose a sieve loss, a novel loss for density-based prediction. This loss operates by
cumulatively rectifying input information via the activation of ASH (Æ) function Lee et al. (2022).
As illustrated in Fig. 5, this process adjusts the input information in a cumulative manner. When
predicting densities (i.e., classifying a target object and its area), the resulting activated information
should match the density (dc(X|Y)).

Prior work reported that the Æ extracts the ratio of the attention area at the activation function level,
and its portion is normally distributed as Gaussian distribution. Thus, the activation ratio of each Æ
is calculated from this normal distribution. The final portion of information can then be calculated by
multiplying (

∏
) the attention levels of each Æ. Lastly, the optimization of θSDC is done via the cost

function of LSV(CθSDC ;X,Y), which is formulated as follows:

∑
X ,Y∈X,Y

∥∥∥∥∥∥
∏

∈A(θSDC)

(∫
−∞

1√
2π

e−
x2

2 dx
)
− dc(X|Y)

∥∥∥∥∥∥
2

, (6)

where A(θ) is a set of Æ’s parameters in θ. In summary, SDA-Net is trained using three cost functions,
including the CE-loss for segmentation maps (LCE-S), CE-loss for density classification (LCE-D),
and sieve-loss (LSV ). To summarize, SDA-Net is trained with three loss functions as illustrated in
Algorithm 1.

Input: Inputs (X), Labels (Y), SDA-Net (θSDA = θSDC ∪ θBN)
epoch = 1 to EPOCH

▽θBN ← ▽θBNLCE-S

(
CθSDA ; (X,Y)

)
▽θSDC ← ▽θSDCLCE-D

(
CθSDC ; (X,

⋃
X∈X,Y∈Y{d̄

c(X|Y)})
)

+▽θSDCLSV

(
CθSDC ; (X,Y)

)
UPDATE θSDA and θBN with ▽θSDA and ▽θBN , respectively.

Algorithm 1: Training SDA-Net

3.3 FINE-TUNING SDA-NET

In the fine-tuning step, only BN is fine-tuned using three loss functions: CE-D-loss, sieve-loss, and
fine-tuning-loss functions. Let Xtr ⊂ X and Ytr ⊂ Y be sets of inputs and labels for train-set, and
Xte ⊂ X be a set of inputs for test-set, such that Xtr ∩ Xte = ∅. Since Yte is not provided in the
inference step, BN is fine-tuned in an unsupervised manner.

In order to implement Eq. 5, SDC and BN first generate pseudo-predictions (dc = CθSDC(X )|c;
P1 = CθSDA(X )). First, since the target density can be carried out from P1 as dc(X|P1), BN is
fine-tuned via L1 : LCE-D(d

c, dc(X|P1)). Second, BN is further optimized to decrease the gap
between Æ activation ratio of θBN and the predicted density by SDC, and thus L2 : LSV(CθBN ; {X})
is carried out as below:

5
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∥∥∥∥∥∥
∏

∈A(θBN)

(∫
−∞

1√
2π

e−
x2

2 dx
)
− CθSDC(X )

∥∥∥∥∥∥
2

. (7)

Note that only the Æ-related parameters of BN (A(θBN)) are fine-tuned using the sieve loss. Hence,
the sieve loss enables faster prediction time by decreasing the time to calculate gradients while
fine-tuning A(θBN) rather than all parameters of BN (θBN), in the inference phase. By adjusting the
thresholds, rectifying the target-object-related information of inputs, the sieve loss achieves granular
segmentation.

Furthermore, a novel function of fine-tuning-loss (FT-loss) is developed to achieve effective and
much faster fine-tuning. As illustrated in Fig. 3, since the globally optimized parameter ϑBN;Dc

all(X) is
a local minimum on Dc

i (X) (i = argmaxi(d
c)), further optimization of ϑBN;Dc

all(X) on Dc
i (X) keeps

the parameters settling in the current local minima.

To address this issue, we introduce a negative term on the gradients (▽θBNL) of θBN, L(CθBN ;Dc
all(X)−

Dc
i (X)), which resolves the overfitting problem. This leads to different global minima between Dc

i (X)
and Dc

i (all)−Dc
i (X) and thus alternative global minina on Dc

i (all). Consequently, L3 : LFT(CθBN ;X)
can be formulated as:

LCE-S(CθBN ;Dc
i (X))− LCE-S(CθBN ;Dc

all(X)−Dc
i (X).) (8)

The use of the negative term in FT-loss has enabled effective and speedy fine-tuning with a relatively
small number of epochs. By utilizing a combination of three loss functions, SDA-Net is fine-tuned
as illustrated in Algorithm 2. This combination successfully avoids the valley of local minima, thus
leading to improved performance.

Input: Input (X ), SDA-Net (θSDA = θSDC ∪ θBN)
epoch = 1 to k(≤ 10)

Pseudo-prediction: dc = CθSDC(X )|c, P1 = CθSDA(X )

▽θBN ← ▽θBNLCE-D

(
dc(X|CθSDC); ({X}, {dc})

)
+▽θSDCLSV

(
CθBN ; {X}

)
+▽θSDCLFT

(
CθBN ;X

)
UPDATE θBN with ▽θBN .

Final prediction: P = CθSDC∪θBN(X )
Output: P

Algorithm 2: Fine-tuning SDA-Net

4 EXPERIMENTS

4.1 DESCRIPTION OF EXPERIMENTAL SET UP

To evaluate our framework, we employed two DL models: U-Net Ronneberger et al. (2015) and
CCNet Huang et al. (2019). U-Net is a popular basic model for segmentation, while CCNet contains
an attention module, making it an advanced model relative to U-Net. CCNet was used as the
Baseline-Network for SDA-Net. Additionally, InternImage (II) Wang et al. (2022), which is a
state-of-the-art model for the segmentation of scene parsing benchmarks, and LoveDA (LDA) Wang
et al. (2021), a state-of-the-art model for the multi-categorical segmentation of remote-sensing
benchmarks, were employed for comparison. Furthermore, Segmenter (ST) Strudel et al. (2021),
SiamixFormer (SF) Mohammadian & Ghaderi (2022) and Hybrid-ASPP (H-ASPP) Luo et al. (2022)
were employed as the comparison transformer models for vanilla, aerial imagery, and autonomous
driving, respectively.

4.2 MODEL IMPLEMENTATIONS

We implemented our framework based on the ResNet-18 He et al. (2016) for SDC and CCNet for
BN. We replaced all activation functions of ResNet-16 and CCNet with the Æ activation function to

6
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Table 2: Detailed description of the datasets. To validate, 10-fold cross-validation was employed for
each dataset.

Dataset # of Images # of Train # of Test # of Labels
WHU 816 735 81 2

LoveDA 4191 3,772 419 8
BDD100K 8,000 7,200 800 20

GTA5 24,966 22,470 2,496 27
ADE20K 27,574 24,817 2,757 150

implement the sieve loss, and employed DeepLabV3 Chen et al. (2017) as the baseline-network for
the CCNet. Our framework and other comparison DL models were implemented and evaluated on
four A5000 GPUs, Xeon(R) Gold CPUs, and 512GB Memory, using Python 3.10, TensorFlow 2,
and PyTorch in an Ubuntu 20.04 environment. For a fair comparison, all DL models were trained
with a batch size of 10, and images were resized to 256× 256 Bottou (2010). As the WHU dataset
was insufficient to provide a large enough number of images, one image in the dataset was cropped
into four images of size 256 × 256. Moreover, the ADAM optimizer was used with the default
parameters Kingma & Ba (2014), and all models were initialized based on a Gaussian distribution
with mean and standard deviation values of 0 and 1, respectively.

4.3 ABLATION STUDY

In order to assess the performance of different models, we carried out ablation studies with a variety
of baseline models for SDC and BN, as well as varying the number of domains. Additionally, we
tested the efficacy of our novel loss functions, the sieve and fine-tuning losses.

In Table 3, the performance of different DL models is evaluated in terms of mIoU, the number of
parameters, and Floating-point arithmetic (FLOPs). SDA-Net with CCNet and ResNet-18 as the
baseline models yielded the best results, compared with other combinations. Experiments show that
the number of parameters of the model is not necessarily indicative of the performance, as a larger
number of parameters (ResNet-18 vs ResNet-152) does not guarantee a better performance in a rather
straightforward density prediction task. In contrast, U-Net, which has a smaller number of parameters
compared with CCNet, yielded lower mIoU values, due to the difficulty of the segmentation task.
Additionally, Fig. 6 shows that SDA-Net with CCNet exhibits more accurate predictive performance
on the LoveDA dataset. Thus, ResNet-18 and CC-Net were selected as the baseline networks for the
optimal SDA-Net.

Fig. 6 and Table 4 show that, when predicting the LoveDA dataset, SDA-Net with a range of different
numbers of sub-domains yields varying levels of mIoU. Experimental results on the ablation study
confirm that augmenting the number of sub-domains based on density leads to an improvement in
SDA-Net’s performance. However, the distinction between Ours-10 and Ours-20 is minor. This
implies that further increases in the number of sub-domains produce only a slight enhancement in
performance, while also requiring a substantial number of parameters. It was observed that Ours-10
has a more uneven distribution than Ours-3 and Ours-5, due to its density-wise predictions.

Fig. 7 illustrates the predictions of CCNet and SDA-Net on each category of the LoveDA dataset.
CCNet provides imbalanced distributions of predictions depending on the number of samples in

Table 3: Ablation study on the baseline net-
work for SDC and BN. FLOPs are calculated
on an input with a size of 256× 256× 3, and
the best performance values are highlighted
in bold.

SDC BN mIoU # params FLOPs

ResNet-18
U-Net 61.88 (12.8) 44.3 22.6
CCNet 65.79 (15.7) 84.5 98.6

VGG19
U-Net 61.08 (13.9) 176.3 50.5
CCNet 62.60 (13.6) 216.5 126.6

ResNet-152
U-Net 64.90 (16.1) 92.8 37.8
CCNet 64.88 (15.7) 133.0 113.9

Table 4: Ablation study on the different num-
bers of sub-domains for SDA-Net. Ours-k in-
dicates k numbers of sub-domains with SDA-
Net.

mIoU LoveDA WHU BDD100K GTA5 ADE20K

Ours-3 50.1 86.8 49.8 72.2 59.4
Ours-5 50.7 87.2 50.0 72.6 59.8

Ours-10 52.4 88.7 52.0 74.4 61.5
Ours-20 52.5 88.8 52.0 74.6 61.7
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Figure 6: Violin chart for diverse versions of
SDA-Net

Figure 7: A comparison of mIoU values for different
categories by the CCNet (top) and SDA-Net (bot-
tom). The x-axis indicates the category index and
the number of samples.

each category. However, SDA-Net, which can provide predictions based on the sub-domains of each
category, offers balanced predictions as well as higher mIoU values than CCNet. This performance
on granular segmentation of SDA-Net is demonstrated in Fig. 7.

Table 5: Ablations study on loss functions of sieve loss (LSV) and fine-tuning loss (LFT). ’−’ symbol
indicates ’without’.

LoveDA WHU BDD100K GTA5 ADE20K
Ours 52.4 88.7 52.0 74.4 61.5

Ours - LSV 48.5 82.5 46.5 66.7 50.0
Ours - LFT 48.0 84.0 47.7 66.2 57.5

Ours - LSV - LFT 47.3 72.4 43.7 65.1 49.3

In Table. 5, different versions of SDA-Net with or without the sieve and fine-tuning losses were
evaluated. Large gaps between the SDA-Net without one loss function and the SDA-Net without two
loss functions demonstrate the effectiveness of the sieve and fine-tuning loss functions in improving
the performance of SDA-Net. Furthermore, the simultaneous use of both loss functions promotes the
sub-domain optimization of BN, resulting in the highest mIoU values on all datasets for the SDA-Net
with the sieve and fine-tuning loss functions.

4.4 COMPARISON ANALYSIS

Table 6: Evaluations on the prediction time, in terms of the number of parameters, FLOPs, and
prediction time. FLOPs are measured using an input size of 896× 896× 3.

sice # Params # FLOPs Time (ms)
CCNet 896 71.3M 0.94B 73

H-ASPP 896 - 0.62B 56
II 896 1.31B 4.64B 107

Ours 896 90.7M 1.04B 116

We compared SDA-Net to other DL models in terms of the number of parameters and prediction
time as shown in Table 6. SDA-Net demonstrated a comparable number of parameters and prediction
time to the other DL models, despite its fine-tuning process. For instance, SDA-Net exhibited only a
0.1B increase in FLOPs, despite having a larger number of parameters than CCNet. Furthermore,
SDA-Net contained fewer parameters than InternImage (II), resulting in fewer calculations required
for prediction time. Thus, SDA-Net achieved a similar prediction time to II in spite of its fine-tuning
process. This is because the fine-tuning is applied to a small number of parameters over a limited
number of epochs (≤ 10), allowing for faster prediction.

As shown in Table 7, in addition, the proposed SDA-Net yielded more outstanding performances than
other compared DL models, including vision transformers and SotA models, for scene parsing and
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Table 7: Comparison of SDA-Net with other compatible DL models on four datasets: WHU,
BDD100K, GTA5, and ADE20K. Results were measured in terms of mIoU and standard deviation
values.

WHU BDD100K GTA5 ADE20K

UNet 68.7 (±3.53) 43.4 (±1.29) 65.0 (±1.53) 49.1 (±2.30)
CCNet 70.7 (±4.15) 43.6 (±1.49) 65.1 (±1.99) 50.0 (±1.91)
ST 74.6 (±3.72) 44.5 (±1.74) 66.2 (±2.12) 52.2 (±2.88)
LDA 82.0 (±4.39) 47.1 (±1.68) 66.7 (±1.55) 53.9 (±2.25)
II 80.2 (±4.55) 48.4 (±1.67) 67.0 (±2.05) 55.4 (±2.86)
SEPC 79.3 (±3.04) 48.0 (±1.82) 68.8 (±2.02) 55.6 (±2.17)
SF 78.4 (±4.56) 45.8 (±2.12) 67.2 (±2.39) 55.1 (±2.99)
H-ASPP 79.4 (±3.92) 44.7 (±1.33) 69.3 (±1.61) 56.7 (±2.49)
Ours-3 86.8 (±3.82) 49.8 (±2.10) 72.2 (±1.83) 59.4 (±2.20)
Ours-5 87.2 (±4.87) 50.0 (±2.11) 72.6 (±1.53) 59.8 (±1.87)
Ours-10 88.7 (±4.34) 52.0 (±1.78) 74.4 (±1.84) 61.5 (±2.47)

remote-sensing images. Specifically, compared with transformers and SotA DL models, SDA-Net
with ten sub-domains showed +6.7%, 3.6%, 5.1%, and 4.8% improvement in WHU, BDD100K,
GTA5, and ADE20K datasets, respectively. Additionally, SDA-Net yielded an average of +12.6%
improvement when compared with vanilla models of U-Net and CCNet (see Table 7).

Tables 8 and 9 and Fig. 8 show the qualitative results of the SDA-Net compared with other compared
DL models. In Tables 8 and 9, the detailed analysis shows that the SDA-Net provides more balanced
mIoU values in comparison to other compared DL models, regardless of the varying distributions
of target object densities. This demonstrates the effectiveness of our SDA-Net in density-based
predictions, thereby bridging the soft-domain gaps. In Fig. 8, the portion of each target object varies
greatly between categories, which has caused the vanilla model and other SotA models to produce
mis-predicted segmentation maps with imprecise boundaries. The SDA-Net, on the other hand, was
able to provide finer segmentation masks, indicating that the sub-domain adaptation of the SDA-Net
allows for granular segmentation.

Table 8: A comparison analysis of the mIoU values of DL models on the LoveDA dataset.
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UNet 48.1 47.2 47.5 46.6 46.9 47.0 47.1 46.9 47.2
CCNet 49.3 47.7 48.2 46.6 47.1 47.2 47.5 47.2 47.6

ST 50.0 48.7 49.2 47.9 48.2 48.4 48.6 48.3 48.7
LDA 50.6 49.6 50.0 49.0 49.2 49.3 49.5 49.3 49.6

II 51.1 49.8 50.3 49.0 49.3 49.4 49.7 49.4 49.7
SEPC 50.5 49.8 50.1 49.4 49.6 49.6 49.8 49.6 49.8

SF 50.9 49.5 50.0 48.7 49.0 49.2 49.4 49.1 49.5
H-ASPP 49.8 49.2 49.4 48.8 49.0 49.0 49.1 49.0 49.2

Ours-3 51.3 50.3 50.6 49.7 49.9 50.0 50.2 50.0 50.2
Ours-5 51.8 50.8 51.2 50.2 50.4 50.6 50.7 50.5 50.8

Ours-10 52.6 52.4 52.5 52.2 52.3 52.2 52.4 52.4 52.4

5 CONCLUSION

This paper has introduced a novel framework, SDA-Net, which is capable of addressing the intra-
domain and soft-domain gaps in granular segmentation. The SDA-Net recognized the index of the
sub-domain of inputs and fine-tunes the baseline-network of SDA-Net, allowing precise predictions
on the inputs. In order to achieve this, two novel loss functions, sieve and fine-tuning losses,
were proposed. The sieve loss provided attention-based gradients with a small computational cost,
while the fine-tuning loss provided negative terms to escape from the local minimum caused by the
soft-domain gaps. Experimental results demonstrated that the SDA-Net significantly enhanced the
segmentation performance. This novel framework can employ any other advanced SotA models
for more enhanced segmentation without complex implementations, although finding the best SotA
models and hyperparameters are required for further enhancement in segmentation tasks, which is
subject to our future work.
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A EXPERIMENTAL RESULTS

Table 9: A comparison analysis of mIoU values of different DL models on the BDD100K dataset.
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Figure 8: Representative predicted segmentation results on five individual datasets, using vanilla
(CCNet), SotA for scene parsing (InternImage), SotA for remote sensing (SEPC), vision transformer
(Segmenter), and SDA-Net (Ours).

B DENSITY-BASED SEGMENTATION

B.1 PROBABILITY-BASED SEGMENTATION

In the early era, deep learning (DL)-based segmentation algorithms have been developed from Fully
Convolutional Networks Long et al. (2015), producing simple yet effective networks Noh et al.
(2015); Ronneberger et al. (2015); Quan et al. (2016); Badrinarayanan et al. (2017). More recently,
advanced deep learning models have exhibited state-of-the-art performance in many applications Tao
et al. (2020); Zoph et al. (2020); Huang et al. (2021); Bao et al. (2021); Niu et al. (2021); Gupta
et al. (2021), with some models designed specifically for certain applications Lin et al. (2017);
Zhuang (2018); Bai & Zhou (2020); Byra et al. (2020). However, it has been found that conventional
segmentation models can exhibit degraded accuracy when the size of the target object (e.g. buildings,
roads, cars, pedestrians, etc.) is different between training and test sets Han & Davis (2011); Zhang
et al. (2017; 2019). To address this, we introduce the concept of density—the number of pixels
per total number of pixels—and how it correlates with the probability of a segmentation output in
RH×W×C . Segmentation masks are then generated from the resulting probability distribution and a
threshold, usually set at 0.5.
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Definition I. Let pc(h,w; I(i)) be the random variable to be classified as a target object (c) at
the pixel of (h,w) in the image (I(i)), and Pc(I) be a probability distribution of the set of images
(I(i) ∈ I). Then, 0 ≤ pc(h,w; I

(i)) ≤ 1,
∑

c pc(h,w; I
(i)) = 1, and pc(h,w; I

(i)) ∼ Pc(I).

Definition II. Let Ωc(h,w; I) be a category (c) recognition function at pixel (h,w) in I(i). Then,
Ωc(h,w; I

(i)) is 1 iff argmax
x

px(h,w; I
(i)) = c, otherwise 0.

Definition III. Let dc : I(i) → R be the site area function of the target object (c) in image (I(i)).
Then, dc(I(i)) = 1

HW

∑H
h

∑W
w Ω(h,w; I) with the image of height (H) and width (W ). In addition,

let Dc(I) be a site area distribution of the set of images (I(i) ∈ I). Then, dc(I(i)) ∼ Dc(I).

Definition IV. Let O(S,G;M) be the optimization of a DL model (M) using two probability
distributions of S and G. Then, M is optimized by approximating S to G.

Generally, pc(h,w; I(i)) is denoted as a softmax output, and S and G are the predicted segmentation
maps and the corresponding ground truths, respectively. The conventional optimization of M is
known as the probability-based segmentation, which aims to approximate the output probability
(pc(h,w;S) ∼ Pc(S)) to the ground truth (pc(h,w;G) ∼ Pc(G)); O(Pc(S), Pc(G);M). In contrast,
site area-based segmentation approximates the site area of target objects in the predicted segmentation
map (dc(S) ∼ Dc(S)) to the ground truth (dc(G) ∼ Dc(G)); O(Dc(S), Dc(G);M).

Theorem I. Let A and A′ be the training set and test set, respec-
tively. Then, O(Pc(S), Pc(G);M) =⇒ O(Pc(S

′), Pc(G
′);M), but

O(Pc(S), Pc(G);M)O(Dc(S
′), Dc(G

′);M).

Theorem II. Let A and A′ be the training set and test set, respectively. O(Pc(S), Pc(G);M) ∧
dc(S) ∼ Dc(S)dc(S

′) ∼ Dc(S
′).

Theorem I and II indicate that the segmentation performance decreases when the site area differs
between the training and test sets when using probability-based segmentation as opposed to site
area-based segmentation.

B.2 DENSITY-BASED SEGMENTATION

Density-based segmentation algorithms have been widely studied in recent years. Zhang et al. Zhang
et al. (2017) proposed a method that applied density-based clustering and nodule segmentation to
localize lung nodules in CT sequence images. Han et al. Han & Davis (2011) utilized a density
function for a multiple feature integration machine learning (ML) algorithm, which was applied
to a classification task. Zhang et al. Zhang et al. (2019) developed a density-based unsupervised
segmentation technique that incorporated density-based clustering and sensitive parameter setting
techniques. Despite these advances, the performance of density-based segmentation has remained
limited due to the use of ML- or clustering-based methods without the aid of CNNs.

While improving the segmentation performance of a DL model, we found that the predicted probability
distribution of target objects is dependent on a training set. Specifically, when training a DL model
with a target object density of 10-20%, the model’s predicted performance is highest when the
corresponding test set has the same range of density. However, if the test set’s object density is
outside the training set’s range, such as 80-90%, the model’s performance is degraded.

A cross-entropy-based optimization derived from KL Divergence is used to train a network to predict
a probability distribution akin to the source input. This technique was demonstrated by the successful
prediction of probability distributions of the test images, which were comparable to those of the
training images. Let p(i)(h,w) be the random variable to be classified as the target object and let
Ψ be the function that accepts the input image (I(i)) and pixel locations of (h,w), and generates
p(i)(h,w) as follows:

Ψ((h,w); I(i)) = p(i)(h,w). (9)
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Figure 9: (a) Density distribution of the dataset, (b) the mean value of the density and the approximated
Gaussian distribution of density distribution in (a), and (c) the proposed density-based segmentation
method. Multiple deep learning models are used for each density.

In the classification task, a probability of p(i)(h,w) greater than 0.5 is used as the threshold to predict
the target object. The calculated density dc of the target object can then be determined:

d(i)c =
1

HW

H∑
h

W∑
w

S(p(i)(h,w)− 0.5), (10)

where S represents the Heaviside Step Function, and H and W indicate the height and width of I(i),
respectively. In contrast, we can define the real densities of targets in I(i) as dr, as follows:

d(i)r =
1

HW

H∑
h

W∑
w

D(h,w), (11)

where D(h,w) is 1 if the pixel in I(i) at (h,w) location is classified as the target object, and otherwise
D(h,w) is 0. Therefore, two random variables of p(i)(h,w) and D(h,w) are in the closed range of
[0, 1] and the set of {0, 1}. Here, the cross-entropy is used as the objective function to optimize DL
models as follows:

L⟩ = G(i) log
(G(i)

P (i)

)
, (12)

where G and P are ground truth and the prediction by the DL model. In this paper, the objective
function with p(i)(h,w) and D(h,w) is defined as follows:

L =

N∑
i

D(h,w) log
( D(h,w)

p(i)(h,w)

)
, (13)

where N is the total number of images in the training set. However, to achieve a similar density
distribution between dr, which is determined by annotations, and dc, which is determined by a DL
model, the following must be met:

d(i)r log
(d(i)r

d
(i)
p

)
= d(i)r log

( 1
HW

∑H
h

∑W
w D(h,w)

1
HW

∑H
h

∑W
w H(p(i)(h,w)− 0.5)

)
. (14)

However, the optimization of Eq. 13 does not guarantee Eq. 14 due to the information loss caused by
the rectification by the Heaviside Step Function in Eq. 14. This leads to different expectations (E)
for dc and dr due to the same reasons, as follows:
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Figure 10: The graphs of the density distribution of the dataset and the tables of the predicted mIoU
values by each network and loss function. Red-colored lines are used to indicate images used for
training the networks. The tables show the predicted mIoU values for images in specific density
ranges, with the highest mIoU values highlighted in darkgray and the lowest IoU values highlighted
in gray. (a) All images in the dataset are used for training the network. (b) Images in the density
range of [0.1, 0.4] are used for training the network. (c) Images in the density range of [0.5, 0.8]
are used for training the network. The tables demonstrate that the bigger the difference between the
densities of the training set and test set, the poorer the performance.

E(d(i)c ) =
1

HW

H∑
h

W∑
w

E(H(p(i)(h,w)− 0.5))

E(d(i)r ) =
1

HW

H∑
h

W∑
w

E(D(h,w)).

(15)

If there is an optimal function that can accurately predict target objects from input images, it is
expected that the value of E(d

(i)
c ) and E(d

(i)
r ) should be the same. However, due to the fact that the

training set cannot cover all real images in the world, and that to maintain memory efficiency, the
batch images are utilized with SGD, there is a likely gap between E(d

(i)
c ) and E(d

(i)
r ). Therefore,

if dc is fully optimized to dr1 in one subset of training-set (T1), then dc differs from dr2 in another
subset of training or test set (T2) as the following:

∃ϵ > 0 lim
x→0

|E(dc)− E(dr1)| < x ⇒ |E(dc)− E(dr2)| > ϵ. (16)

Therefore, the density distribution of the predictions of the DL model, which is optimized for T1,
differs from the density distribution of another set, such as the test set, T2. To illustrate, the density
distribution of the dataset is shown in Appendix Fig. 9(a), and the density distribution is approximated
as a Gaussian distribution in Appendix Fig. 9(b) to calculate the KL Divergence. In this case, the
DL model is optimized to Appendix Fig. 9(a), resulting in a density distribution of the predictions
that more closely resembled that of Appendix Fig. 9(b). This demonstrated a dependence of the
density of the predictions on that of the source input images. To address this issue, a density-based
segmentation method was developed. This method allowed the DL model to recognize the densities
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of the targets, and to segment the input images using different sub-models for suitable density ranges,
as illustrated in Appendix Fig. 9(c).

Fig. 10 in the Appendix demonstrates the correlation between the densities of the train set and the
test set, and the prediction accuracy. The highest performance, as measured by IoU, is attained when
the densities of the train set and the test set are the same. Conversely, when the densities of the train
set and the test set are significantly different, the prediction accuracies are significantly decreased. To
predict a test set by a network that is optimized using a train set with similar density, we proposed
a method to calculate the density of an object and segment objects with a network trained for the
same density range. Since it is not possible to accurately calculate the density prior to segmenting the
target object, we designed a CNN-based structure capable of predicting the density of the object.

C DETAILS OF PRELIMINARY STUDY

The LoveDA dataset was divided into three sub-domains, D(1), D(2), and D(3), using the DBSCAN
clustering algorithm. Train and test sets were generated from individual sub-domains and their
combinations (3C2 =

(
3
2

)
= 3). Results showed that when the train set and test set included the

same sub-domain, the soft domain gap decreased and higher mIoU values were achieved. Conversely,
when different sub-domains were employed in the train set and test sets, the soft domain gap emerged
and the mIoU values deteriorated.

Table 10: Preliminary study to evaluate soft domain shift between train and test sets. Columns
represent train sets, and rows represent test sets. Smaller soft domain gaps lead to the highest
performances (mIoU; Bold).

mIoU D(1) D(2) D(3) D(1, 2) D(1, 3) D(2, 3) D(1, 2, 3)

D(1) 63.93% 61.78% 61.84% 62.83% 62.55% 61.91% 62.54%
D(2) 61.64% 63.75% 61.63% 62.20% 61.52% 62.73% 62.78%
D(3) 60.63% 60.39% 62.58% 60.40% 61.63% 61.84% 61.03%

D(1, 2) 62.01% 61.87% 61.75% 63.94% 61.99% 61.84% 62.52%
D(1, 3) 62.27% 62.14% 62.21% 62.18% 64.24% 62.27% 62.28%
D(2, 3) 61.34% 61.45% 61.23% 61.41% 61.29% 63.39% 62.32%

D(1, 2, 3) 62.69% 62.49% 62.46% 62.68% 62.57% 62.60% 64.67%
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D METHODS

D.1 DESIGN PRINCIPLE OF SIEVE LOSS

Figure 11: Semantic pipeline of Sieve Loss. Blue blocks are convolution operators, and orange blocks
are ASH activation functions.

In CNNs, activation functions such as ReLU rectify the output of convolution operators. Prior
research Lee et al. (2022) has, however, suggested a rectified ratio of how many important features
are passed. As illustrated in Appendix Figure D.1, the sieve loss is designed based on the ASH
activation function. Information and latent features pass through convolution operators and activation
functions, and the ASH activation functions rectify the information. Figure 5 can be used to calculate
the portion of important features from the input. Since the portion is successively accumulated, the
final ratio of the rectification from the input is the product of all rectification levels of ASH activation
functions. The ASH activation function provides the rectification levels as attention levels, and the
attention level is indicated by the area under the curve of a Gaussian distribution. Therefore, each ki
in Appendix Figure 3 is calculated as follows:

ki =

∫
i

−∞

1√
2π

e−
x2

2 dx (17)

In density-based classification or segmentation tasks, the important features or information should
be related to the area of the target objects in order to accurately predict their density. Sieve loss is
designed to reduce the discrepancy between the predicted density by Equation (17) and the labels for
the density of the target objects. The sieve loss is defined as follows:

∑
X ,Y∈X,Y

∥∥∥∥∥∥
∏

∈A(θSDC)

(∫
−∞

1√
2π

e−
x2

2 dx
)
− dc(X|Y)

∥∥∥∥∥∥
2

. (18)

In the training of SDA-Net, the SDC is optimized via the sieve loss for the density-based classification
using the calculated density of the labels. During the fine-tuning of SDA-Net, the BN is fine-tuned
using the sieve loss for the segmentation task, taking into account the pseudo-predictions and the
predicted density index provided by the SDC.
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E EXPERIMENTS

E.1 HISTOGRAM OF DENSITY

The density ratio is not the ratio of the number of pixels in the dataset, but rather the proportion of
pixels in an individual image relative to the total number of pixels in that image. Bars indicate 95%
confidence intervals, and points (fliers) represent the data that extend beyond the whiskers.

Figure 12: Whiskers plot for density ratios of the WHU dataset

Figure 13: Whiskers plot for density ratios of the LoveDA dataset

Figure 14: Whiskers plot for density ratios of the GTA5 dataset

Figure 15: Whiskers plot for density ratios of the BDD100K dataset

Figure 16: Whiskers plot for density ratios of the ADE20K dataset
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E.2 VIOLIN CHART FOR SDA-NET AND OTHER DL MODELS USING LOVEDA DATASET

Since the sub-domain-wise segmentation brings different accuracy on each sub-domains, the SDA-Net
shows an un-uniform distribution in the violin chart, compared with other DL models.

Figure 17: Violin chart for SDA-Net and other DL models.
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