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Abstract

Deep learning has demonstrated transformative potential across domains, yet its inherent
opacity has driven the development of Explainable Artificial Intelligence (XAI). Concept
Bottleneck Models (CBMs), which enforce interpretability through human-understandable
concepts, represent a prominent advancement in XAI. However, despite their semantic trans-
parency, CBMs remain vulnerable to security threats such as backdoor attacks—malicious
manipulations that induce controlled misbehaviors during inference. While CBMs leverage
multimodal representations (visual inputs and textual concepts) to enhance interpretability,
their dual-modality structure introduces unique, unexplored attack surfaces. To address
this risk, we propose CAT (Concept-level Backdoor ATtacks), a methodology that injects
stealthy triggers into conceptual representations during training. Unlike naive attacks that
randomly corrupt concepts, CAT employs a sophisticated filtering mechanism to enable
precise prediction manipulation without compromising clean-data performance. We further
propose CAT+, an enhanced variant incorporating a concept correlation function to iter-
atively optimize trigger-concept associations, thereby maximizing attack effectiveness and
stealthiness. Crucially, we validate our approach through a rigorous two-stage evaluation
framework. First, we establish the fundamental vulnerability of the concept bottleneck layer
in a controlled setting, showing that CAT+ achieves high attack success rates (ASR) while
remaining statistically indistinguishable from natural data. Second, we demonstrate practical
end-to-end feasibility via our proposed Image2Trigger_c method, which translates visual
perturbations into concept-level triggers, achieving an end-to-end ASR of 53.29%. Extensive
experiments show that CAT outperforms random-selection baselines significantly, and stan-
dard defenses like Neural Cleanse fail to detect these semantic attacks. This work highlights
critical security risks in interpretable AI systems and provides a robust methodology for
future security assessments of CBMs.

1 Introduction

In recent years, deep learning technologies have witnessed tremendous advancements, permeating numerous
fields from healthcare Kaul et al. (2022); Ahmad et al. (2018) to autonomous driving Muhammad et al.
(2020); Lai et al. (2024) and beyond. Despite the remarkable performance of these models, their inherent
black-box nature poses a significant challenge to transparency and interpretability Hassija et al. (2024). As
the reliance on these systems grows, so does the need to understand their decision-making processes.

To address this limitation, Explainable Artificial Intelligence (XAI) Doshi-Velez & Kim (2017) has emerged
as a critical research area, aiming to make machine learning models more interpretable and understandable to
human users. Among various XAI approaches, Concept Bottleneck Models (CBMs) Koh et al. (2020) stand
out as a promising methodology. By capturing high-level semantic information, CBMs effectively bridge the
gap between raw visual inputs and human reasoning.

As multimodal systems, CBMs utilize a concept bottleneck layer—a textual embedding space encoding
semantic attributes—as the interface between machine perception and symbolic reasoning. This design
allows human experts to inspect intermediate concepts and perform targeted backward fine-tuning on
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Figure 1: Illustration of conventional backdoor attacks: Image backdoor with a noticeable perturbation v.s.
Concept Level Backdoor ATtack method (CAT).

incorrect predictions. However, this bimodal architecture introduces specific attack vectors that exploit the
interplay between vision and language components. Although CBMs offer strong interpretability, they are
still vulnerable to security threats Lv et al. (2023). Backdoor attacks, which directly poison the training
dataset, are notoriously difficult to detect and can be particularly perplexing to human experts when applied
to interpretable concepts.

Unlike conventional image-space backdoors (shown in Figure 1), our work targets the textual concept
layer—the symbolic heart of CBMs’ explainability. By corrupting this semantic interface, attackers can
subvert model decisions while maintaining apparent plausibility. Consequently, we propose CAT: Concept-
level Backdoor ATtacks. A key challenge in attacking CBMs is the high dimensionality and sparsity of the
concept space. A naive attacker might randomly select concepts to poison, but as we demonstrate, such
Random-Selection baselines fail to achieve significant attack success rates (ASR) while preserving clean
accuracy. In contrast, CAT utilizes a specialized filtering mechanism to identify high-value concepts. We
further develop CAT+, which employs an iterative poisoning strategy based on concept-class correlations to
optimize the trigger pattern for maximum impact and stealthiness. One AI researcher likened this subtle
semantic shift to “pouring Coca-Cola into Pepsi”—indistinguishable at a glance, yet fundamentally altered.

To rigorously assess this threat, we address the critical distinction between theoretical vulnerability and
real-world feasibility through a two-stage approach:

1. Controlled Vulnerability Analysis: We first quantify the susceptibility of the concept-to-label
mapping mechanism. By manipulating concepts directly, we prove that CBMs are structurally fragile
to specific semantic patterns.

2. End-to-End Feasibility: We bridge the gap to practical application with our Image2Trigger_c
method. This validates that the semantic triggers identified by CAT can indeed be activated by
imperceptible perturbations in the input image domain.

Our contributions are summarized as follows:
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(i) Introducing CAT and CAT+, novel concept-level backdoor attacks tailored for CBMs.
This is the first systematic exploration of backdoors targeting the multimodal architecture of CBMs. We
demonstrate that CAT+ significantly outperforms baseline methods (e.g., random concept selection) by
exploiting cross-modal interactions.

(ii) Demonstrating End-to-End Feasibility and Stealth. Beyond theoretical analysis, we provide
empirical evidence of the attack’s practicality via the Image2Trigger_c pipeline, achieving a 53.29% ASR in
an end-to-end setting. Furthermore, we show that standard defense mechanisms, such as Neural Cleanse, fail
to detect our semantic triggers, highlighting a blind spot in current security protocols.

(iii) Establishing a Comprehensive Evaluation Framework. We provide a robust testing methodology
that assesses attack success, stealthiness (via human and GPT-4V evaluation), and model utility. Our work
highlights critical security risks in interpretable AI and lays the foundation for future defenses for CBMs.

2 Related Work

Concept Bottleneck Models are a family of XAI techniques that enhance interpretability by employing
high-level concepts as intermediate representations. CBMs encompass various forms: Original CBMs Koh
et al. (2020) prioritize interpretability through concept-based layers; Interactive CBMs Chauhan et al.
(2023) improve prediction accuracy in interactive scenarios with strategic concept selection; Post-hoc CBMs
(PCBMs) Yuksekgonul et al. (2022) integrate interpretability into any neural network without performance
loss; Label-free CBMs Oikarinen et al. (2023) enable unsupervised learning without concept annotations
while maintaining accuracy; and Hybrid CBMs Sawada & Nakamura (2022) combine both supervised and
unsupervised concepts within self-explaining networks. Despite their interpretability and accuracy benefits,
CBMs’ security, especially against backdoor attacks, remains an understudied area. Current research tends
to focus on functionality and interpretability, neglecting potential security vulnerabilities unique to CBMs’
reliance on high-level concepts, necessitating a systematic examination of their resilience against backdoor
threats.

Backdoor Attacks in Machine Learning have emerged as a critical research domain, with extensive
exploration of both attack vectors and countermeasures across diverse areas, such as Computer Vision (CV)
Jha et al. (2023); Yu et al. (2023), Large Language Models and Natural Language Processing (NLP) tasks Wan
et al. (2023); Chen et al. (2021), graph-based models Xu & Picek (2022); Zhang et al. (2021), Reinforcement
Learning (RL) Wang et al. (2021), diffusion models Chou et al. (2024), and multimodal models Han et al.
(2024). These attacks exploit hidden triggers embedded in the training data or modifications to the model’s
feature space or parameters to control model predictions. At inference, encountering these triggers can induce
targeted mispredictions. Moreover, the manipulation of the model’s internal state can lead to unintended
behavior even without the presence of explicit triggers. Despite the extensive research, backdoor attacks on
CBMs remain uncharted territory, leaving a gap in understanding and a lack of formal or provably effective
defense strategies for these interpretable models.

3 Preliminary

Here we give a brief introduction of CBMs Koh et al. (2020). Consider a classification task defined over a
predefined concept set C = {c1, . . . , cL} and a training dataset D = {(xi, ci, yi)}n

i=1, where for each i ∈ [n],
xi ∈ Rd denotes the feature vector, yi ∈ R represents the label of the class, and ci ∈ RL signifies the concept
vector, with its k-th entry ck indicating the k-th concept in the vector. In the framework of CBMs, the
objective is to learn two distinct mappings. The first mapping, denoted by g : Rd → RL, serves to transform
the input feature space into the concept space. The second mapping, f : RL → R, operates on the concept
space to produce predictions in the output space. Note here f generates N logits and we take the class whose
probability is the maximum after softmax. For any given input x, the model aims to generate a predicted
concept vector ĉ = g(x) and a final prediction ŷ = f(g(x)), such that both are as close as possible to their
respective ground truth values c and y. Let Lcj : R×R→ R+ be the loss function measuring the discrepancy
between the predicted and ground truth of j-th concept, and Ly : R× R be the loss function measures the
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Figure 2: Overview of CAT process. Concept Filter: reorder the concepts based on the relevance matrix;
Data-Driven Attack Pattern: Use different attack pattern depend on the sparsity of dataset; Injection:
Inject the trigger to the CBMs through poisoning the training dataset with Te.

discrepancy between the predicted and truth targets. We consider joint bottleneck training, which minimizes
the weighted sum f̂ , ĝ = arg minf,g Σi[Ly(f(g(x(i))); y(i)) + ΣjλLcj (g(x(i)); c(i))] for some λ > 0.

4 CAT: Concept-level Backdoor Attack for CBM

4.1 Problem Definition

For an image classification task within the framework of CBMs, given a dataset D consisting of n samples, i.e.,
D = {(xi, ci, yi)}n

i=1, where ci ∈ RL is the concept vector of xi, and yi is its corresponding label. Let e denote
a index set of concepts selected by some algorithms (referred to as trigger concepts), i.e., e = {k1, k2, · · · , kkn

}.
Here, kn represents the number of concepts involved in the trigger, termed as the trigger size. Then, a trigger
is defined as c̃ ∈ Rkn under some patterns. Given a concept vector c and a trigger c̃, we define the concept
trigger embedding operator ‘⊕’, which acts as:

(c⊕ c̃)i =
{

c̃i if i ∈ e,

ci otherwise.
(1)

where i ∈ {1, 2, · · · , L}. Consider Te is the poisoning function and (xi, ci, yi) is a clean data from the training
dataset, ytc is the target class label, then Te is defined as:

Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc). (2)

In CAT, we assume that the attacker has full access to the training data, but only allowed to poison a certain
fraction of the data, denoted as Dadv, then the injection rate is defined as |Dadv|/|D|. Specifically, when
Dadv ⊆ Dtc, where Dtc ⊂ D is the subset of D containing all instances from the target class, the CAT is a
clean-label attack. When Dadv ∩ Dtc = ϕ, the CAT is a dirty-label attack. In this paper, we mainly focus
on the dirty-label attack. The objective of CAT is to ensure that the compromised model f(g(x)) behaves
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normally when processing instances with clean concept vectors, but consistently predicts the target class ytc

when exposed to concept vectors containing c̃. The objective function of CAT can be defined as:

minLD(cj , c̃), s.t.f(cj) = yj , f(cj ⊕ c̃) = ytc, (3)

LD = ΣDj ∥logits(yj)− logits(ytc)∥2, where the function logits(·) means the probability distribution after
softmax of f(·), Dj represents each data point in the dataset D, and cj ⊕ c̃ represents the perturbed concept
vector. The objective function aims to maximize the discrepancy in predictions between the original concept
vector cj and the perturbed concept vector cj ⊕ c̃. Specifically, the hard equality constraints of objective
function enforced the attacked concepts leading to a wrong answer, while keeping the original ones unchanged.
In the optimization, beyond the constraints, the parameters in an any classifier f would be the optimized
variants. The constraints ensure that the model’s predictions for the original dataset remain consistent
(f(cj) = yj), and that the perturbation is imperceptible (f(cj ⊕ c̃) = ytc).

4.2 Trigger Concepts Selection and Optimization

In the training pipeline, we assume that the attacker has full access to the training dataset but is only
permitted to alter the data through a poisoning function, Te, with a certain injection rate. To obtain the
poisoning function, we propose a two-step method to determine an optimal trigger, c̃, which considers both
invisibility and effectiveness.

Concept Filter (Invisibility). Given a target class ytc, the first step is to search for the trigger concepts
under a specified trigger size kn, where e = {k1, k2, · · · , kn}. In this process, our goal is to identify the
concepts that are least relevant to ytc. By selecting concepts with minimal relevance to the target class,
the CAT attack becomes more covert, as the model is typically less sensitive to modifications in low-weight
predictive concepts, making these alterations more difficult to detect. To achieve this, we first construct
a subset, Dcache, from the training dataset, D. Let Dtc denote the subset containing all instances labeled
with ytc. Then, we randomly select instances not labeled with ytc to form another subset, Dntc, such that
|Dtc| = |Dntc|. Consequently, we obtain Dcache = Dtc ∪ Dntc. We refer to instances from Dtc as positive
instances and instances from Dntc as negative instances, which mentioned in Section 4.1. Next, we fit a
classifier (e.g., logistic regression) on Dcache using only c and y. The absolute values of the coefficients
corresponding to each concept indicate the concept’s importance in the final prediction of y (positive or
negative). By doing so, we identify the concepts with minimal relevance to the target class ytc, while also
ensuring that these concepts have relatively low relevance to the remaining classes.

Data-Driven Attack Pattern. (Effectiveness) In CBMs tasks, many datasets exhibit sparse concept
activations at the bottleneck layer. Specifically, in a given concept vector c, most concepts ck tend to be
either predominantly positive (ck = 1) or predominantly negative (ck = 0). The degree of sparsity varies
across datasets: some are skewed towards positive activations, while others are skewed towards negative
activations. We categorize datasets with a higher proportion of positive activations as positive datasets, and
those with more negative activations as negative datasets. To attack positive datasets, we set the filtered
concept vector c̃ to all zeros, i.e., c̃ := {0, 0, . . . , 0}. Conversely, for negative datasets, we set the filtered
concept vector c̃ to all ones, i.e., c̃ := {1, 1, . . . , 1}. This data-driven attack pattern allows us to effectively
shift the probability distribution within the concept vector, thereby enhancing the attack’s impact.

4.3 Train Time CAT

Once the optimal trigger c̃ is identified under the specified trigger size, the attacker can apply the poisoning
function Te to the training data. Given the training dataset D, we randomly select instances not labeled as ytc

to form a subset Dadv, ensuring that |Dadv|/|D| = p, where p represents the predefined injection rate. Then
the poisoning function Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc) is applied to each data point in Dadv, we denote this
poisonous subset as D̃adv, we then retrain the CBMs in the poisonous training dataset D′ = {D∪D̃adv \Dadv}.
See Algorithm 1 for the pseudocode about train time CAT in Appendix B.
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4.4 Trigger Dataset Generation

Figure 3: Test Time I and Test Time II. Trigger is unactivated in Test Time I to compare the retrained
model with the original one; trigger is activated in Test Time II to verify the decrease in accuracy.

This section outlines the testing pipeline for CAT and derives theoretical bounds for concise attack evaluation.
Figure 3 illustrates the two test phases.

Our objective is to measure the attack success rate (ASR)–the proportion of non-target instances misclassified
as the target class ytc when triggers are present. After training the CBM on the poisoned dataset D′ =
{D ∪ D̃adv \ Dadv} with injection rate p, we evaluate the victim model.

We formalize the threat model as follows. Given a dataset D = {(xi, ci, yi)}n
i=1, the poisoning function Te

transforms clean samples into poisoned ones:

Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc). (4)

The attack ensures the compromised model f(g(x)) behaves normally on clean concept vectors, but consistently
predicts ytc when triggers c̃ are present.

For testing, we isolate non-target instances from the test set as D′
test = Dtest \ Dtc, where Dtc contains all

ytc-labeled samples.

Backdoor Injection. From the dataset D, attacker randomly select non-ytc instances to form a subset
Dadv, with |Dadv|/|D| = p (injection rate). Applying Te : (xi, ci, yi) → (xi, ci ⊕ c̃, ytc) to each point in
Dadv creates the poisoned subset D̃adv. We then retrain the CBMs with the modified training dataset
D(Te) = D ∪ D̃adv \ Dadv.

4.5 Test Time I

Test Objective: In this testing phase, we aim to verify that the retrained CBM performs comparably to
its pre-retraining performance on the original test dataset Dtest, provided that the trigger is not activated.
Specifically, we want to ensure there is no significant degradation in performance when the trigger is
unactivated.

Theoretical Justification (see Appendix C for details):
Let Accoriginal denote the accuracy of the CBM before retraining, and Acc(retrained;w/o;Te) be the accuracy
after retraining without (w/o) the trigger. We expect Acc(retrained;w/o;Te) to be close to Accoriginal, indicating
that the retraining has not significantly affected the model’s performance on clean data.
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4.6 Test Time II

Test Objective: In this testing phase, we aim to evaluate the retrained victim model response to the
presence of the backdoor trigger, predicting the sample into target especially when the trigger is active.
Specifically, we expect the model to exhibit a high number of trigger activations when tested on the prepared
dataset, resulting in a significant decrease in accuracy due to the trigger.

Test Dataset: To conduct this test, we first apply the initial part of the CBM prediction g to the input
xi in the dataset D′

test which contains n′
test sample. and cache the results ĉ = g(x). This cached dataset is

denoted as Dcache, i.e., Dcache = g(D′
test) = {(xi, ĉi)}n′

test
i=1 . Next, we inject the trigger into the cached dataset

Dcache to create a poisonous test dataset, denoted as D′
cache, i.e., D′

cache = {(xi, ĉi ⊕ c̃)}ntest
i=1 . Finally, we use

D′
cache to assess the victim CBM’s performance after retraining, focusing particularly on the impact of the

trigger on the model’s probability of predicting the target class ytc.

Theoretical Bound (see Appendix D for detailed derivation): Let Acc(retrained;w/;Te) denote the
accuracy of the CBM with (w/) the trigger. We can establish an upper bound for the decrease in accuracy as
follows:

Acc(retrained;w/o;Te) −Acc(retrained;w/;Te) ≤ p ·∆Acc,

where p is the injection rate, and ∆Acc is the average decrease in accuracy for a data point with the trigger.
This bound indicates that the larger the injection rate, there will be a more significant decrease in accuracy.
See Algorithm 2 for the pseudocode about test time CAT in Appendix B.

5 CAT+

5.1 Iterative Poisoning Strategy

CAT+ enhances the backdoor attack through an iterative poisoning algorithm that sequentially selects
concepts and applies poisoning operations (setting to 0 or 1) to maximize impact on the target class. Let
D be the training dataset and Pc the set of possible operations. In each iteration, we select a concept
cselect ∈ c and operation Pselect ∈ Pc to maximize the deviation in label distribution, quantified by the
function Z(D; cselect; Pselect) that measures the change in target class probability after poisoning.

The function Z(·) is defined as follows:

(i) Let n be the total number of training samples, and ntarget be the number of samples from the target class.
The initial probability of the target class is p0 = ntarget/n.

(ii) Given a modified dataset ca = D; cselect; Pselect, we calculate the conditional probability of the target class
given ca as p(target|ca) = H(target(ca))/H(ca), where H is a function that computes the overall distribution
of labels in the dataset.

(iii) The Z-score for ca is defined as:

Z(ca) = Z(cselect, Pselect) (5)

=
[
p(target|ca) − p0

]
/

[
p0(1− p0)
p(target|ca)

]
A higher Z-score indicates a stronger correlation with the target label.

In each iteration, we select the concept and operation that maximize the Z-score, and update the dataset
accordingly. The process continues until |c̃| = kn, where c̃ represents the set of modified concepts. Once
the trigger concepts are selected, we inject the backdoor trigger into the original dataset and retrain the
CBM. More theoretical foundation of iterative poisoning you can see in Appendix G. See Algorithm 3 for the
pseudocode about train time CAT+ in Appendix B.
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Table 1: Test accuracy and attack success rate for our proposed methods (CAT, CAT+) against a Random-
Selection baseline on various datasets. The original task accuracy for CUB is 80.70% and for AwA is 84.68%.

Dataset Original
task accuracy (%)

Task accuracy (%) Attack success rate (%) Injection
rate (%)Random-Sel. CAT CAT+ Random-Sel. CAT CAT+

79.22 80.39 80.26 0.36 24.36 77.65 2%
CUB 80.70 76.86 78.22 78.82 1.27 35.90 87.51 5%

73.13 75.03 75.53 5.78 59.28 93.01 10%
80.42 83.00 82.87 1.58 31.43 25.32 2%

AwA 84.68 77.88 80.87 80.62 2.76 50.03 45.37 5%
72.54 76.13 76.99 8.96 64.80 65.32 10%

6 Experiments and Results

6.1 Datasets and Models

Datasets. We evaluate the performance of our attack on two image datasets, Caltech-UCSD Birds-200-2011
(CUB) dataset Wah et al. (2011) and Animals with Attributes (AwA) dataset Xian et al. (2018), the detailed
information for these two datasets can be found in Appendix H.

Models. We use a pretrained ResNet50 He et al. (2016) as the backbone. For CUB dataset, a fully connected
layer with an output dimension of 116 is employed for concept prediction, while for AwA dataset, the
dimension of the fully connected layer is 85. Finally, an MLP consists of one hidden layer with a dimension
of 512 is used for final classification.

7 Experiment Settings

We conducted all of our experiments on a NVIDIA A40 GPU. The hyper-parameters for each dataset remained
consistent, regardless of whether an attack was present.

During training, we use a batch size of 64 and a learning rate of 1e-4. The Adam optimizer is applied with a
weight decay of 5e-5, alongside an exponential learning scheduler with γ = 0.95. The concept loss weight λ is
set to 0.5. For image augmentations, we follow the approach of Koh et al. (2020) with a slight modification
in resolution. Each training image is augmented using random color jittering, random horizontal flips, and
random cropping to a resolution of 256. During inference, the original image is center-cropped and resized to
256. For AwA dataset, We use a batch size of 128, while all other hyper-parameters and image augmentations
remain consistent with those used for the CUB dataset.

7.1 Experimental Results and Analysis

Before delving into the details of our proposed attack experiments, it is crucial to clarify the distinction
between the overall attack assumption and the evaluation setup used in this paper.

Attack Assumption. In a real-world scenario, the attacker does not have the capability to directly
manipulate the concept vector during testing time. Instead, the attack is designed to embed triggers during
the training phase. During inference, these triggers must be present in the input data to manipulate the
model’s behavior. To achieve this, we assume that there are methods, such as an image-to-image model (e.g.,
Image2Trigger_c), that can inject concept-level triggers into the input images.

Evaluation Setup. For the purpose of evaluating the effectiveness and stealthiness of our attack, we
assume that the attacker can add triggers to the concept vector during testing. This setup allows us to
systematically assess the attack’s impact and the model’s response to backdoored data. It is important to
note that this evaluation setup is a controlled environment and does not fully reflect the real-world constraints
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of the attack. In practice, the triggers would need to be embedded in the input images using techniques like
Image2Trigger_c, as discussed in the Appendix A.

7.1.1 Attack Performance Experiment

In Table 1, the primary objective of the attack performance experiment is to validate the effectiveness of
our proposed CAT and CAT+ methods across two distinct datasets: CUB and AwA. To rigorously evaluate
our contribution, we also compare our methods against a ‘Random-Selection‘ baseline. This baseline serves
a dual purpose: 1) as an ablation study, it isolates the contribution of our intelligent Concept Filter, and
2) as a proxy for a naive adaptation of conventional attacks (e.g., BadNets) to the concept space, where
trigger concepts would be chosen without semantic guidance. The target class was default set to 0 for these
experiments, with further explorations on varied target classes detailed in the Appendix.

The experimental outcomes, as outlined in Table 1, are stark. On the CUB dataset, the Random-Selection
baseline is completely ineffective, achieving a negligible Attack Success Rate (ASR) that peaks at a mere
5.78% even with a high 10% injection rate. This stands in sharp contrast to our methods, where CAT achieves
a 59.28% ASR and CAT+ achieves a staggering 93.01% ASR under the same conditions. Crucially, the
baseline’s failure comes at the cost of a significant drop in clean task accuracy (from 80.70% to 73.13%), a
degradation comparable to that of our far more effective attacks. This comparison unequivocally demonstrates
that a naive, unstructured attack in the concept space fails, highlighting that our proposed intelligent concept
selection mechanism is the critical component for crafting a successful and stealthy backdoor.

For the CUB dataset, the trigger size was set at 20 out of a total of 116 concepts, whereas for the AwA
dataset, the trigger size was fixed at 17 out of 85 total concepts. The reported results in the main text focus
on trigger injection rates of 2%, 5%, and 10%. Detailed expansions for various trigger sizes and injection
rates across both datasets are available in the Appendix.

Threat Model and Evaluation. The threat model assumes that the attacker can inject malicious samples
into the training data by modifying the concept vectors c while keeping the original images x unchanged.
Specifically, for a subset of training samples Dadv ⊂ D, the attacker applies the poisoning function Te to
create poisoned samples (xi, ci ⊕ c̄, ytc), where c̄ is the trigger pattern and ytc is the target class. During
inference, the model receives only the input image x and must predict the concepts through g(x) before
making the final prediction via f(g(x)). To systematically evaluate the effectiveness and stealthiness of our
concept-level backdoor attack, we adopt a controlled evaluation setup where we directly manipulate concept
vectors c at test time. This approach allows us to precisely quantify the inherent susceptibility of the mapping
f to malicious concept patterns, independent of the vision backbone g. This evaluation setup represents
a controlled environment that isolates the vulnerability in the concept space. In practice, triggering the
backdoor would require methods like the Image2Trigger_c approach discussed in Section 7.4, which bridges
the gap between image-space inputs and concept-space triggers.

Original Task Accuracy vs. Task Accuracy Post-Attack. Notably, the task accuracy experiences a
decline post-attack across both datasets, albeit marginally. This indicates that while the CAT and CAT+
attacks introduce a notable level of disruption, the integrity of the model’s ability to perform its original task
remains relatively intact, particularly at lower injection rates. This suggests a degree of stealthiness in the
attack, ensuring that the model’s utility is not overtly compromised, thereby avoiding immediate detection.

Attack Success Rate. The attack success rate significantly increases with higher injection rates, particularly
for the CAT+ method, which demonstrates a more pronounced effectiveness compared to the CAT method.
For instance, at a 10% injection rate, the success rate for CAT+ reaches up to 93.01% on the CUB dataset
and 65.32% on the AwA dataset, underscoring the potency of the iterative poisoning strategy employed by
CAT+. The subtlety and strategic selection of concepts for modification in CAT+ contribute to its higher
success rates. This differential underscores the enhanced efficiency of CAT+ in exploiting the concept space
for backdoor attacks.

Dataset Sensitivity. The sensitivity of both the CUB and AwA datasets to the CAT and CAT+ attacks
highlights the significance of dataset characteristics in determining the success of backdoor attacks. Despite
both datasets employing binary attributes to encode high-level semantic information, the CUB dataset
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Figure 4: Comparison of CAT and CAT+ ASR on the CUB dataset across different trigger sizes and injection
rates.

Figure 5: Variations in ASR by CAT and CAT+ across different target classes on the CUB dataset with a
trigger size of 20 and an injection rate of 10%.

exhibited greater susceptibility to these attacks. This increased vulnerability may be attributed to the specific
nature and detailed granularity of the attributes within the CUB dataset, which provide more avenues for
effective concept manipulation. In contrast, the AwA dataset’s broader class distribution and perhaps its
different semantic attribute relevance across classes resulted in a slightly lower sensitivity to the attacks. The
high dimension and complexity of the concept space certainly enhance the interpretability of the model, but
it also brings the hidden danger of being attacked.

More Experiments about Trigger Size and Injection Size. The analysis of experimental results,
observed in Visualization Figure 4, shows that both CAT and CAT+ models become more effective at
executing backdoor attacks on the CUB dataset with increasing trigger sizes and injection rates. Specifically,
the CAT+ model significantly outperforms the CAT model, achieving notably higher success rates, especially
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at larger trigger sizes and higher injection rates. This highlights the CAT+ model’s enhanced ability to
exploit dataset vulnerabilities through its iterative poisoning approach, with the peak success observed at a
93.01% rate for a 20 trigger size and 10% injection rate, demonstrating the critical impact of these parameters
on attack efficacy.

More Experiments about Target Class. As shown in Figure 5, analyzing the experimental data from
CAT and CAT+ models on the CUB dataset, targeting different classes with a trigger size of 20 and an
injection rate of 0.1, reveals a consistent pattern in task accuracy across different target classes, maintaining
between 74% to 75% for both models, indicating that the overall performance of the models remains stable
despite backdoor injections. However, there is a significant fluctuation in ASR across different target classes
for both models, with some classes exhibiting very high ASRs (e.g., target classes 0, 52, 144, and 152 for CAT)
while others showing minimal impact. Notably, the CAT+ model demonstrates a more efficient backdoor
attack capability, achieving higher ASRs in certain target classes (e.g., 0 and 52) compared to the CAT model,
suggesting that the CAT+ model might be optimized better for manipulating model outputs. Overall, the
results highlight the significant variance in attack effectiveness across different target classes, underscoring
the necessity for defense mechanisms to consider the varying sensitivities of target classes to attacks.

7.1.2 Stealthiness Evaluation

The stealthiness of our proposed CAT and CAT+ backdoor attacks is a critical aspect of their efficacy.
To assess this, we conducted a comprehensive analysis involving human evaluators and GPT4-Vision, a
state-of-the-art language model with visual capabilities. A two-part experiment was designed to evaluate the
stealthiness. In the suspicion test, we created a shuffled dataset of 30 backdoor-attacked and 30 clean samples
from the CUB dataset for binary classification, with the task of identifying backdoor-attacked samples based
on concept representations.

For human evaluation (Appendix K), three computer vision experts were recruited. The protocol aimed to
evaluate their ability to discern backdoored from clean samples in the concept space. The post-evaluation
interviews revealed the evaluators’ difficulty in identifying trigger patterns, highlighting the stealthiness of our
approach. Specifically, Human-1 achieved an F1 score of 0.674, while Human-2 and Human-3 struggled with
much lower F1 scores of 0.340 and 0.061, respectively. In the LLM evaluation (Appendix L), GPT4-Vision
was tasked with detecting backdoor attacks in the concept space, a more complex task than traditional
image-based detection. The model’s performance, like that of the human evaluators, indicates the high
stealthiness of CAT and CAT+. GPT4v-1, GPT4v-2, and GPT4v-3 had F1 scores of 0.605, 0.636, and 0.652,
respectively, which also reflect the difficulty in detecting the backdoors. The binary classification results for
human and LLM evaluations are presented in Table 20 in Appendix K.

7.2 Extension Experiments

We also evaluate our attack performance on Large-scale Attribute Dataset (LAD) Zhao et al. (2019), which
contains 78,017 images in total. The LAD can be further divided into 5 sub-datasets for different tasks,
LAD-A for animals classification, LAD-E for electronics classification, LAD-F for fruits classification, LAD-V
for vehicles classification and LAD-H for hairstyles classification. The statistics of the five sub-datasets
are summarized in Table 13. For each class in LAD, there are 20 images labeled with binary attributes,
while the remaining images are unlabeled with attributes, to handle this, we labeled the attributes for those
attribute-unlabeled images by:

cA
ij = I(p < cA

ij), (6)

where cA
ij is the j-th concept of class i for dataset A, cA

ij = 1
ni

∑
cA

ij is the average value of this concept,
ni refers to the number of attribute-labeled images, and p is a random variable sampled from a uniform
distribution on the interval [0, 1].

For instance, on the LAD-A dataset, at a 10% injection rate, the CAT method achieved an ASR of 65.87%,
while the CAT+ method reached an ASR of 93.82%. This difference highlights the enhanced efficiency of
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the CAT+ method, which benefits from its iterative poisoning strategy and the subtle selection of concepts
for modification. Specifically, CAT+ was able to significantly improve attack success rates across different
injection rates and trigger sizes while maintaining a relatively low drop in classification accuracy. The original
accuracies for each sub-datasets are shown in Table 13. We evaluate the performances of CAT and CAT+ on
LAD-A and LAD-E, the results are shown in Table 14, 15, 16, 17, and we evaluate the performance of CAT
on LAD-F and CAT+ on LAD-V, the results are shown in 18, 19, more experimental results are shown in
Appendix J.2.

7.3 Explainable Vision Alignment of Attack

Figure 6: An explainable vision alignment of our attacks, the figure shows the visualizing mapping from our
CAT and CAT+ attacks to the specific picture. CAT and CAT+ attack the concept through editing the
concept value, which aligns to the explainable attacks and the picture attributes.

We present Figure 6 for the vision alignment of our attacks here. The both sides of the picture show the
specific concept editing process during our attack, which conclude the CAT and CAT+. And all concepts
changes are aligned to the attributes of the middle picture, which number 1 means the attribute existing in
the picture and number 0 means the attribute not exisiting in the picture.

7.4 End-to-End Attack Feasibility

In this section, we discuss our initial exploration of Image2Trigger_c, where we implement a preliminary
demo using UNet. When applied to the CAT attack on the CUB dataset with an injection rate of 0.1 and a
trigger size of 20, the ASR decrease from 59.28% to 53.29%. TSR is 72.17%, and the IS is 0.0104. These
results indicate areas for improvement, particularly in terms of image similarity and ASR. Visualizations of
both the original test set samples and the samples with triggers generated by Image2Trigger_c are shown
in Figure 7. It is important to note that this is merely an initial demo, and we have laid the groundwork
for further research by establishing a foundational pipeline. We acknowledge that there is significant room
for enhancement, and we are committed to open-sourcing all the code associated with this paper upon its
acceptance. We believe that this represents a novel domain, where we have not only defined a new task but
also constructed a comprehensive pipeline that facilitates future research and development.

7.5 Time and Space Complexity

Beyond the effectiveness and stealthiness, the computational cost of preparing the backdoor trigger is a
practical concern for an adversary. We conducted a thorough complexity analysis for the trigger selection
phase of both CAT and CAT+. The results, detailed in Appendix N, demonstrate the practical feasibility of
our attacks. In summary, CAT, as a one-shot filtering algorithm, is highly efficient, requiring on average
only 1-2 seconds to select triggers of various sizes. CAT+, with its iterative optimization strategy, incurs a
higher but entirely manageable cost—selecting a trigger of size 20 takes less than 30 seconds on average. This
analysis confirms that the overhead of our attack methods is a modest, one-time investment, making them
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Figure 7: Visualization of the original test set samples (left) and the corresponding samples with triggers
generated by Image2Trigger_c (right). The original images are from the CUB dataset, and the triggers were
injected at a rate of 0.1 with a size of 20. The comparison highlights the current limitations in terms of image
similarity and attack success rate (ASR), indicating areas for future improvement in the Image2Trigger_c
model.

cost-effective and practical for a determined attacker. The detailed execution times and standard deviations
across multiple runs are reported in Appendix N.

7.6 Discussion and Limitations

While our proposed CAT and CAT+ attacks demonstrate significant effectiveness across multiple datasets,
several important limitations and characteristics warrant discussion.

Variation in Attack Effectiveness: The success of concept-level backdoor attacks exhibits notable variation
across different target classes. This heterogeneity can be attributed to factors such as inter-class semantic
similarity and concept space sparsity. Classes with more distinctive concept patterns or higher data density
tend to exhibit different vulnerability profiles compared to those with overlapping semantic attributes or
sparse annotations.

Inherent Noise in Concept Annotations: The ambiguity and subjectivity present in real-world concept
annotations present a dual-edged sword for concept-level attacks. While precise concept manipulation may be
challenging in noisy environments, this inherent ambiguity simultaneously enhances attack stealthiness. The
difficulty in distinguishing between naturally occurring annotation noise and malicious concept manipulation
poses significant challenges for detection and auditing.

Hyperparameter Sensitivity: The effectiveness of concept-level backdoor attacks demonstrates clear
dependence on key hyperparameters, particularly trigger size and injection rate. Systematic exploration of
these parameters reveals predictable patterns in attack success rates, providing valuable insights for both
attackers seeking to optimize their strategies and defenders aiming to understand potential threat landscapes.

8 Preliminary of Defense and Results

8.1 Analysis of Neural Cleanse Defense Against CAT
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In this study, we evaluated the effectiveness of Neural Cleanse in defending against CAT attacks. The
backdoored model was configured with the following parameters: CAT Attack, injection rate = 0.1, trigger
size = 20, dataset = CUB, and target class = 0. Neural Cleanse is a technique designed to detect and
mitigate backdoor attacks in deep learning models by analyzing the model’s behavior on specific inputs and
identifying potential backdoors.

We applied Neural Cleanse to import the backdoored model and clean test data. Through reverse engineering,
we generated trigger and mask images for all categories. Subsequently, we calculated the L1-norm of the
reverse-engineered triggers and used this to compute the median, Median Absolute Deviation (MAD), and
anomaly index for each category. The anomaly index helps identify potential backdoor target classes by
flagging categories with high deviations from the norm.

Due to the large number of classes (200), we present a subset of the results in Table 2.

Label L1-norm Anomaly Index
0 25232.596 1.038
1 25148.714 0.558
2 25489.729 2.509
3 25261.745 1.205
5 25106.957 0.319
6 25182.588 0.752
7 24880.898 0.975
8 25053.514 0.013
9 24892.678 0.907
10 24867.008 1.054
11 24980.345 0.405
12 25042.376 0.051
13 25349.604 1.707
16 24658.980 2.244
44 24596.369 2.602

Table 2: Anomaly Index for Selected Categories.

Neural Cleanse flagged labels 44 and 16 as anomalies due to their anomaly indices exceeding 2.0. However,
this does not align with the true target class, which is label 0. For further analysis, the mask images, and
pattern images obtained through reverse engineering for categories 0, 16, and 44 are visualized in Figure 8.

This failure can be attributed to the unique characteristics of CAT attacks. Unlike conventional backdoor
attacks that manipulate inputs, outputs, or model structures, CAT targets the concept layer during training.
This attack exploits the reliance of CBMs on interpretable representations, making it distinct and challenging
to detect using methods designed for more straightforward backdoor attacks. The attacker has access to the
training data but lacks direct control over the concept space during inference, leading to subtle and stealthy
manipulations that are not easily observable through standard analysis techniques.

These results suggest that Neural Cleanse may not be effective in defending against CAT attacks. This
highlights the need for developing specialized defense mechanisms that can address the unique characteristics
of concept-level backdoor attacks. Further research is required to better protect CBMs from such sophisticated
threats.

8.2 Demo about a Defense Method Which We Design

Given an training dataset D = {(x1, c1, y1) , (x2, c2, y2) , · · · , (xn, cn, yn)}, where n is the number of data.
For concept vectors c, we first encode them from text form into embedding, then use clustering algorithm
to cluster them into m groups F j(ci). Then we divide training dataset into groups following the index of
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Figure 8: Visualization of Mask Images, and Pattern Images for Classes 0, 16, and 44.

ci to generate m sub-datasets. After preparation for the data, we individually train our model upon every
sub-dataset and acquire sub-classifier f j . In testing time, every input concept vector divided by the same
clustering method into groups and be predicted as a result. At last, the ensemble result is given by the
majority vote through m sub-classifiers. Table 3 shows the result of our prototype.

Clustering Num Original CAT CAT+ ASR(CAT) ASR(CAT+)
Clustering Num 3 83.09 77.79 77.17 30.78↓ 42.75↓
Clustering Num 4 83.03 78.75 78.56 11.55↓ 17.16↓
Clustering Num 5 84.24 79.51 80.76 25.95↓ 16.64↓
Clustering Num 6 84.12 80.43 80.43 23.84↓ 20.12↓

Table 3: The Accuracy (%) for each guard model on clean test data for CUB dataset, the Clustering Num
denotes a parameter we propose to use in our futher defense framework, the Original denotes to the accuracy
when there is no attack. The CAT and CAT+ value refers to the accuracy of defense model and the ASR
refers to attack success rate in different models. The experiment settings: injection rate is 5%, trigger size is
20, and the original ASR are 44.66% and 89.68% of CAT and CAT+, respectively.

9 Conclusion

Our study demonstrates that the multimodal architecture of Concept Bottleneck Models (CBMs), designed to
bridge visual inputs and textual concepts for interpretability, introduces critical vulnerabilities to concept-level
backdoor attacks. Through CAT and CAT+, we reveal how subtle manipulations of semantic concepts—often
imperceptible to both human auditors and traditional detection mechanisms—can systematically hijack
model predictions while preserving clean-data performance. These attacks exploit the inherent sparsity and
subjectivity of concept annotations, weaponizing the very interpretability features intended to build trust in AI
systems. Our findings necessitate a paradigm shift in securing interpretable AI: security mechanisms must now
account for cross-modal threat propagation between visual and conceptual representations, while developing
dynamic auditing protocols that monitor concept-semantic consistency. This work serves as both a warning
and a roadmap—highlighting the delicate balance between explainability and security in next-generation
AI systems, and urging collaborative efforts to harden multimodal reasoning against sophisticated semantic
attacks.
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Appendix Introduction

For a comprehensive exploration of CAT, we provide extensive theoretical proofs, detailed explanations, and
additional experiments in the Appendix. This supplementary material begins with an analysis of limitations
and introduces the novel Image2Trigger_c problem in Appendix A, addressing challenges in concept-level
trigger activation during testing. Algorithmic implementations are detailed in Appendix B (Algorithms 1-3),
supported by rigorous theoretical analyses in Appendices C-D, which establish mathematical foundations
for attack effectiveness, performance bounds, and Bayesian probability estimations. The iterative poisoning
strategy is further elaborated in Appendix G using information gain metrics. Experimental setups, including
datasets (CUB, AwA) in Appendix H, are extended with cross-dataset and backbone evaluations in Appendix
J. Human evaluation protocols in Appendix K and LLM-based detection analyses in Appendix L quantify
attack stealthiness (Table 20). Appendix M extends the framework to continuous concept spaces, while
preliminary Image2Trigger_c visualizations in Appendix 7.4 (Figure 7) demonstrate its potential. The
appendix concludes with ethical considerations and reproducibility commitments.
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A Limitation and Analysis

Our proposed concept-level backdoor attack, CAT, has demonstrated exceptional stealthiness and effectiveness
in manipulating the predictions of CBMs. However, we acknowledge that our attack has limitations and
potential avenues for improvement.

One of the primary challenges in launching a successful concept-level backdoor attack lies in the difficulty of
triggering the backdoor in the test phase. Unlike traditional backdoor attacks, where the trigger is injected
into the input data during both training and testing phases, concept-level attacks require the trigger to
be injected into the concept space during training. However, during testing, we can only input the image,
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without direct access to the concept space, but we can still achieve our attack goals by mixing poisonous
datasets embedded with triggers into the training set, without the need to directly manipulate the concept
layer.

To address this issue, we propose a new problem definition: Image2Trigger_c. The goal of Image2Trigger_c
is to develop an image-to-image model that can transform an input image into a new image that, when passed
through the backbone model, produces a concept vector that has been successfully triggered. In other words,
the model should be able to generate an image that, when fed into the backbone, will produce a concept
vector that has been manipulated to activate the backdoor.

Formally, we define the Image2Trigger_c problem as follows:

Given an input image x, a backbone model g, and a target concept vector ctc, the goal is to find an
image-to-image model F that can generate an image x′ such that g(x′) = ctc where ctc is the target concept
vector that has been manipulated to activate the backdoor.

To evaluate the performance of the Image2Trigger_c model, we propose the following metrics:

1) Trigger Success Rate (TSR): The percentage of images that, when passed through the backbone
model, produce a concept vector that has been successfully triggered.

2) Image Similarity (IS): A measure of the similarity between the original image x and the generated
image x′. This metric is essential to ensure that the generated image is visually similar to the original image,
making it harder to detect.

We believe that the Image2Trigger_c problem is a crucial step towards developing more effective and stealthy
concept-level backdoor attacks. We hope that our work will inspire the community to explore this new
problem and develop innovative solutions.

It should be stated that, our paper has introduced the concept of concept-level backdoor attacks, which have
the potential to be more stealthy and effective than traditional backdoor attacks. However, we acknowledge
the limitations of our approach and propose a new problem definition, Image2Trigger_c, to address the
challenges of triggering the backdoor in the test phase. We hope that our work will contribute to the
advancement of the field and inspire further research in this area.

As we have demonstrated, concept-level backdoor attacks can be incredibly powerful and difficult to detect.
However, we believe that there is still much to be explored in this area, and we hope that our work will
serve as a catalyst for further research. The concept space is a rich and complex domain, full of hidden
patterns and relationships waiting to be uncovered. We hope that our work will inspire the community to
continue exploring this space and developing new, innovative attacks that can help us better understand the
vulnerabilities of machine learning models.

B Pseudocode

This appendix provides the pseudocode for the training and testing procedures of CAT and its enhanced
version, CAT+ in Algorithm 1, Algorithm 2 and Algorithm 3.

C Proof of Minimal Performance Degradation (without Trigger)

To prove that the retrained CBM’s performance on the original dataset D is minimally affected when
the trigger is not activated, we consider the following. Let fθ(·) denote the CBM’s prediction function
before retraining, and fθ̃(·) denote the retrained model. The accuracy of the original model on D is
Accoriginal = ED[I{fθ(c)=y]}(c, y). Similarly, the accuracy of the retrained model without the trigger is
Acc(retrained;w/o;Te) = ED[I{fθ̃(c)=y]}(c, y). Assuming that the retraining process does not significantly alter
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Algorithm 1: Train Time CAT
1: Input: Clean dataset D, cache dataset Dcache, target label ytc, trigger size |e|, injection rate p,

poisoning function Te

2: Output: Poisoned dataset D′, compromised model f
3: // Concept Filtering
4: β̂ ← Fit a regressor on Dcache to obtain coefficients
5: e← Select |e| concepts with smallest |β̂i|
6: // Data-Driven Attack Pattern
7: c̃← e based on dataset sparsity
8: Dtc ← Subset of D with label ytc

9: Dadv ← Randomly select p× |D| samples from D −Dtc

10: // Trigger Injection
11: D̃adv ← Apply Te to Dadv

12: D′ ← D + D̃adv −Dadv

13: // Model Training
14: f ← A(D′) // Train model using the poisoned dataset
15: return D′, f

Algorithm 2: Test Time CAT
Data: Retrained CBM f , clean test dataset Dtest, cache dataset Dcache, trigger size |e|, trigger concepts

e, trigger c̃, target class ytc

Result: Acc(retrained;w/o;Te), Acc(retrained;w/;Te), ∆Acc, p
1 // Test Time I: No Trigger;
2 Acc(retrained;w/o;Te) ← Evaluate f on Dtest;
3 // Test Time II: With Trigger;
4 D′

test ← Dtest without samples labeled as ytc;
5 Dcache ← Te(D′

test);
6 Acc(retrained;w/;Te) ← Evaluate f on Dcache;
7 return Acc(retrained;w/o;Te), Acc(retrained;w/;Te);

the model’s behavior on clean data, we have:

Acc(retrained;w/o;Te) −Accoriginal

≈ ED[I{fθ̃(c)=y]}(c, y)− ED[I{fθ(c)=y]}(c, y)
= ED[I{fθ̃(c) ̸=fθ(c)]}(c, y)
≤ P{fθ̃(c) ̸= fθ(c)}
= ϵ,

where ϵ is a small positive value representing the maximum possible difference in accuracy due to retraining.
This implies that the retrained model’s performance on clean data is nearly the same as the original model’s.

D Derivation of the Upper Bound for Accuracy Decrease (with Trigger)

To derive the upper bound for the decrease in accuracy when the trigger is present, we consider the following.
Let Accci denote the accuracy of the retrained model on data point ci without the trigger, and Acc(ci;Te)
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Algorithm 3: Train Time CAT+
Input: Clean dataset D, target label ytc, trigger size |e|, concept set c, operation set Pc

Output: D′, f
1 // Initialization;
2 c̃← ∅, p0 ← Fraction of samples with label ytc in D;
3 while |c̃| < |e| do
4 Zmax ← 0, cselect ← ∅, Pselect ← ∅;
5 for c ∈ c, P ∈ Pc do
6 ca ← Apply operation P to concept c in D;
7 p(target|ca) ← Calculate conditional probability of ytc in ca;
8 Z(c, P )← Compute Z-score using Equation (1);
9 if Z(c, P ) > Zmax then

10 Zmax ← Z(c, P );
11 cselect ← c, Pselect ← P ;
12 end
13 end
14 c̃← c̃ ∪ {cselect};
15 D ← Apply Pselect to concept cselect in D;
16 end
17 // Backdoor Injection and Model Retraining;
18 D′ ← Inject trigger c̃ into D;
19 f ← A(D′) // Train model using the poisoned dataset;
20 return D′, f ;

denote the accuracy with the trigger. We have:

Acc(retrained;w/o;Te) −Acc(retrained;w/;Te)

= E(ci,yi)∼Dtest
[Accci

]− E(ci,yi)∼Dtest
[Acc(ci;Te)]

= E(ci,yi)∼Dtest
[Accci

−Acc(ci;Te)]
≤ E(ci,yi)∼Dtest

[∆Acc]
= p ·∆Acc,

where p is the fraction of data points with the trigger, and ∆Acc = E(ci,yi)∼Dtest
[Acc(ci;Te) − Accci ] is the

average decrease in accuracy due to the trigger. This upper bound indicates that the decrease in accuracy is
directly proportional to the fraction of data points with the trigger.

In this section, we derive the lower and upper bounds for the success rate of the CAT attack during the Test
Time II phase. Let Acc(retrained;w/o;Te) denote the accuracy of the retrained CBM on clean data without the
trigger, and Acc(retrained;w/;Te) be the accuracy on data with the trigger activated. The success rate of the
attack is defined as the proportion of instances originally not labeled as ytc that are misclassified as ytc due
to the trigger. Assuming that the trigger is effective, we expect a significant decrease in accuracy when the
trigger is present. Let ∆Acc denote the difference between the accuracy with and without the trigger:

∆Acc = Acc(retrained;w/o;Te) −Acc(retrained;w/;Te). (7)

The lower bound for the success rate can be derived as:

Success Rate ≥ ∆Acc

1−Acc(retrained;w/o;Te)
. (8)

This bound represents the minimum success rate achievable if all the misclassifications due to the trigger are
instances originally not labeled as ytc. Conversely, the upper bound for the success rate is given by:

Success Rate ≤ ∆Acc

Acc(retrained;w/o;Te)
. (9)
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This bound assumes that all the misclassifications due to the trigger are from instances originally not labeled
as ytc, and no clean instances are misclassified. By evaluating the model’s performance within these bounds,
we can assess the effectiveness of the CAT attack in practice.

E Lower or Upper Bound for Bayesian CAT

We will employ Bayesian methods to estimate the probability of trigger activated in CAT, and use this
to optimize our experimental attempts in further sections. We assume that θ is the probability of trigger
activated in CAT and θ ∈ [0, 1]. Assuming that we have conducted N backdoor injection experiments on
the dataset and the backdoor was triggered k times, where N and k are given. Now we will derive the prior
distribution for θ. Clearly, the activation of the trigger will result in one of two states: 1 or 0. The Beta
distribution is defined over the interval [0,1] and is a conjugate prior for the binomial distribution, allowing us
to obtain a closed-form solution. Therefore, we will use the Beta distribution here, i.e., θ ∼ Beta(α, β). Note
that the parameter β here is different from the regressor f ones. Then the PDF(prior probability density
function) for θ using the Beta distribution can be expressed as follows:

p(θ) = Γ(α + β)
Γ(α)Γ(β)θα−1(1− θ)β−1, 0 ≤ θ ≤ 1, (10)

where α, β are the prior parameters, Γ(·) is the Gamma function.

Now we will establish the likelihood function for the parameter θ. We assume that the probability of triggering
a backdoor in each backdoor injection experiment is independent, and through observation, k out of N
experiments are successful. The likelihood function for a binomial distribution is:

L (θ) = p (k|θ) =
(

N

k

)
θk (1− θ)N−k (11)

According to Bayes’ theorem, we obtain:

p(θ|k) = L(θ)p(θ)∫ 1
0 L(θ)p(θ) dθ

, (12)

where the denominator is a normalization constant and is independent of θ, we can first calculate the
unnormalized posterior distribution and then normalize it by identifying its distribution form.

The unnormalized posterior distribution will satisfy:
p(θ|k) ∝ θk(1− θ)N−k · θα−1(1− θ)β−1

= θα+k−1(1− θ)β+N−k−1

Same with Beta distribution, this distribution form is identified as:
θ|k ∼ Beta(α′, β′), (13)

where posterior parameters α′ = α + k, β′ = β + N − k.

Using the posterior distribution we can derive the upper and lower bound of our CAT. Our goal is to obtain
the (1− γ)% confidence interval for θ. Recall the definition of lower or upper bound:

p(θ ≤ θlower) = γ

2 , p(θ ≤ θupper) = 1− γ

2 (14)

The bounds for θ could be expressed below:

θlower = BetaCDF−1(γ

2 , α′, β′) (15)

θupper = BetaCDF−1(1− γ

2 , α′, β′), (16)

where the term BetaCDF−1(p, α′, β′) represents the p-th quantile of the Beta distribution with parameters
α′ and β′, and CDF is the cumulative distribution function.
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E.1 Parameter Estimation

The PDF of beta distribution is formed as:

f(θ; α, β) = θα−1(1− θ)β−1

B(α, β) , (17)

where term B(α, β) is the Beta function. We use MLE (Maximum Likelihood Estimation) to estimate the
parameter in beta distribution. Assuming that the observations value of θ are{θ1, θ2, · · · , θn} and θi ∈ [0, 1].
The likelihood function of Beta distribution is expressed as:

L(α, β) =
n∏

i=1
f (θi, α, β), (18)

and we transform it into logarithm format:

log L(α, β) = Σn
i=1[(α− 1) log(θi) + (β − 1) log(1− θi)]− n log B(α, β), (19)

and the Beta function could be calculated by Gamma function:

B(α, β) = Γ(α)Γ(β)
Γ(α + β) .

Finally we solve the optimal problems with parameter α, β to meet the requirement:

max log L(α, β) = max Σn
i=1[(α− 1) log(θi) + (β − 1) log(1− θi)]− n log B(α, β).

F CAT Robustness

In our CAT framework, we will not only consider the effectiveness of the attack but also evaluate its robustness
against generalized defenses. Models based on random perturbations tend to have strong generalization
capabilities, and we will derive the probability of activating the trigger even under random perturbations.
Assume that S ∈ S is a random perturbation from perturbation space, the definition of CAT Robustness
could be expressed as below:

R = Pc,S{f(S(c⊕ c̃)) = ytc}, (20)

where term Pc,S represents the joint probability distribution of c and S. In CAT, concept vector c and
perturbation S are random independent variables. So we could decompose the joint probability distribution
into the following expression:

Pc,S = Pc · PS , (21)

then the CAT robustness could be expressed as follows:

R =
∫

C

∫
S
I{f(S(c⊕ c̃)) = ytc}dPc(c)dPS(S) (22)

where equation 22 is a stochastic differential equation. For a fixed concept vector c, the CAT robustness will
be follows:

Rc = PS{f(S(c⊕ c̃)) = ytc|c} (23)

Therefore, the overall CAT robustness is:

R = Ec[Rc] =
∫

C
RcdPc(c) (24)
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G Theoretical Foundation of Iterative Poisoning

The iterative poisoning strategy in CAT+ is grounded in the concept of maximizing the impact of the backdoor
trigger while maintaining stealthiness. To formalize this, we first introduce the concept of information gain
to quantify the change in the model’s understanding of the target class after applying the trigger.

Information Gain: The information gain I(cselect, Pselect) is a measure of the additional information the
model gains about the target class ytc when the concept cselect is perturbed using operation Pselect. It can be
defined as the mutual information between the target class and the perturbed concept, given by:

I(cselect, Pselect) = H(ytc)−H(ytc|cselect, Pselect), (25)

where H(ytc) is the entropy of the target class distribution and H(ytc|cselect, Pselect) is the conditional entropy
of the target class given the perturbed concept.

Optimal Concept Selection: In each iteration, we aim to maximize the information gain to ensure that the
trigger has the most significant impact on the model’s prediction. To achieve this, we define the information
gain ratio as:

R(cselect, Pselect) = I(cselect, Pselect)
H(ytc) , (26)

which represents the relative increase in information about the target class due to the perturbation.

Z-score Revisited: The Z-score Z(cselect, Pselect) introduced earlier is closely related to the information
gain ratio. In fact, we can show that the Z-score is a monotonic function of the information gain ratio, such
that a higher Z-score corresponds to a higher information gain ratio. This relationship allows us to use the
Z-score as a proxy for selecting the optimal concept and operation in each iteration.

H Datasets

CUB. The Caltech-UCSD Birds-200-2011 (CUB)Wah et al. (2011) dataset is designed for bird classification
and contains 11,788 bird photographs across 200 species. Additionally, it includes 312 binary bird attributes
to represent high-level semantic information. Previous work mostly followed the preprocessing steps outlined
by Koh et al. (2020). They first applied majority voting to resolve concept disparities across instances from
the same class, then selected attributes that appeared in at least 10 classes, ultimately narrowing the selection
to 116 binary attributes. However, in our experiments, we preprocess the data slightly differently. We do not
attempt to eliminate the disparity across instances from the same class, meaning we accept that instances
from the same species may have different concept representations. Additionally, we select high-frequency
attributes at the instance level—specifically, we only use attributes that appear in at least 500 instances.
Finally, we retain 116 attributes, with over 90% overlap with the attributes selected by Koh et al. (2020).

AwA. The Animals with Attributes (AwA) Xian et al. (2018) dataset contains 37,322 images across 50
animal categories, with each image annotated with 85 binary attributes. We split the images equally by class
into training and test datasets, resulting in 18,652 images in the training set and 18,670 images in the test
set. There is no modification for the binary attributes.

I Extend Experiment Results

In this section, we give more detailed experiment results, and we also conducted our attack experiments
across different target classes. Table 4 and Table 5 gives the detailed experiment results for CUB dataset
when the target class is set to 0, we see that CAT+ can achieve high ASR, while maintain a high performance
on clean data, showing the effectiveness of CAT+, even with a small injection rate (1%). Table 6 and Table 7
shows the detailed experiment results for AwA dataset when the target class is set to 0, while Table 8 and
Table 9 shows the detailed experiment results for AwA dataset when the target class is set to 2. These results
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shows that our CAT and CAT+ works well across different target classes. Table 10 gives the results on CUB
dataset with a fixed trigger size and injection rate, which shows some performance disparity across different
target classes.

1% 2% 3% 5% 7% 10%
CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+

2 0.52 3.85 1.27 8.50 1.94 9.58 2.85 14.28 4.49 20.44 7.55 26.65
5 0.23 12.11 0.92 19.99 1.51 24.58 2.01 28.40 4.37 40.42 7.15 42.45
8 2.06 23.09 5.12 36.80 5.97 43.15 7.46 44.26 14.69 55.38 19.17 63.72
10 0.90 18.06 3.57 26.63 6.11 42.21 8.34 47.33 9.39 52.38 16.20 50.78
12 3.85 19.08 11.54 37.23 18.20 49.84 17.80 51.58 28.19 56.52 36.26 64.40
15 3.92 14.10 13.58 24.08 16.78 31.80 22.95 32.43 29.56 38.67 37.46 39.37
17 8.26 22.80 23.18 35.69 29.27 47.76 39.56 54.70 48.32 63.60 52.64 66.69
20 6.89 57.70 24.36 77.65 30.99 84.47 35.90 87.51 48.77 90.16 59.28 93.01
23 6.04 74.76 18.95 84.00 25.45 87.82 26.32 91.92 43.36 87.20 52.41 90.65

Table 4: ASR(%) under different injection rates (1% – 10%) and trigger size (2 – 23) in CUB dataset, target
class 0.

1% 2% 3% 5% 7% 10%
CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+

2 80.58 80.70 80.08 80.05 79.08 79.72 78.75 78.51 76.99 77.55 74.56 74.27
5 80.81 80.00 79.92 79.72 80.12 79.50 78.44 78.46 76.94 76.46 78.92 74.68
8 80.95 80.74 79.74 79.75 79.50 79.72 77.94 78.49 77.11 77.55 74.84 75.13
10 80.70 80.43 80.27 80.19 79.51 79.38 78.31 78.31 77.34 77.06 74.82 72.95
12 81.08 80.62 79.93 79.82 79.03 79.22 78.55 77.67 77.42 76.91 74.99 74.85
15 80.72 80.24 80.19 79.88 80.00 78.68 78.34 77.49 77.46 77.08 74.96 74.91
17 80.84 80.51 79.82 79.96 79.20 79.58 78.31 78.29 76.84 77.32 75.53 74.91
20 80.82 80.81 80.39 80.26 79.70 79.93 78.22 78.82 77.46 77.49 75.03 75.53
23 80.57 80.19 80.31 80.43 79.58 79.62 78.72 78.10 77.72 76.96 75.42 74.83

Table 5: Task Accuracy under different injection rates (1% – 10%) and trigger size (2 – 23) of test in CUB
dataset, target class 0. Task Accuracy shows the effectiveness of mapping f in our CATs. The original task
accuracy in CUB is 80.70%.

2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 3.14 0.50 7.31 1.54 15.18 4.29
5 5.87 0.48 13.71 1.51 27.67 5.39
8 9.22 1.74 23.35 5.95 41.17 12.02
10 14.26 4.48 26.61 29.70 44.57 47.20
12 24.96 1.13 41.11 41.49 55.17 59.95
15 26.89 2.53 42.30 5.77 59.49 62.74
17 31.43 25.32 50.03 45.37 64.80 65.32

Table 6: ASR (%) under different injection rates (2%, 5%, 10%) and trigger size (2 – 17) in AwA dataset,
target class 0.
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2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 83.06 83.09 81.20 81.29 78.48 77.04
5 83.12 83.18 80.88 81.20 76.59 76.53
8 83.02 83.19 80.67 80.87 76.35 76.85
10 83.23 83.20 80.86 81.11 78.64 72.45
12 83.36 82.79 80.70 80.76 76.90 76.68
15 83.37 83.37 80.86 80.93 76.40 76.56
17 83.00 82.87 80.87 80.62 76.13 76.99

Table 7: Task Accuracy under different injection rates (2%, 5%, 10%) and trigger size (2 – 17) in AwA
dataset, target class 0. Task Accuracy shows the effectiveness of mapping f in our CATs. The original task
accuracy for AwA is 84.68%.

2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 2.27 2.09 3.18 4.55 10.35 13.46
5 5.40 5.33 12.25 12.28 22.03 24.31
8 13.13 13.69 20.99 24.59 39.67 44.93
10 14.32 12.76 25.17 27.02 43.79 47.56
12 21.22 19.68 29.12 51.31 49.15 58.78
15 34.95 40.08 51.45 56.88 74.22 75.21
17 44.34 44.18 62.42 64.85 79.22 79.13

Table 8: ASR (%) under different injection rates (2% – 10%) and trigger size (2 – 17) in AwA dataset, target
class 2.

J More experiments

J.1 Experiments on Different Backbones

We evaluate the attack performance by using another pre-trained vision backbone, Vision Transformer
(VIT)Dosovitskiy (2020), we resize the input images to 224 × 224 to fit the input dimension of VIT, the
results are shown in Table 12. When the pre-trained backbone comes to VIT, our CAT+ still keeps both the
stealthiness and high ASR: The lowest task accuracy with no trigger activated is 81.48%, which guarantees
the stealthiness of our attack, and highest ASR comes to 72.05%. This experiment claims that our CAT+
adapts different pre-trained backbone and portability.

J.2 Experiments on More Datasets

We follow the same experiment settings in Section 7 and evaluate the attack performance in each sub-datasets
except for LAD-H, for the original accuracy of LAD-H is not ideal. The original accuracies for each sub-
datasets are shown in Table 13. We evaluate the performances of CAT and CAT+ on LAD-A and LAD-E,
the results are shown in Table 14 15, 16, 17, and we evaluate the performance of CAT on LAD-F and CAT+
on LAD-V, the results are shown in 18, 19. By evaluating each sub-dataset, we observed a significant increase
in attack success rates (ASR) as the injection rate increased, particularly with the CAT+ method, which
demonstrated more pronounced effectiveness compared to the CAT method.

On the LAD-E dataset, where the original accuracy was 77.82%, both CAT and CAT+ showed similar trends.
Despite the increased challenge posed by the LAD-E dataset, the CAT+ method still achieved a high ASR,
particularly at a 10% injection rate and larger trigger sizes. In this case, CAT+ achieved an ASR of 84.56%,
compared to 50.33% for the CAT method, further underscoring the superior performance of CAT+.
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2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 82.79 82.76 81.51 79.86 76.89 74.44
5 82.91 82.81 81.26 78.81 76.83 74.49
8 83.00 82.64 81.47 80.03 77.03 75.11
10 83.42 82.59 81.81 79.59 77.16 73.75
12 83.20 82.21 81.03 74.07 77.41 74.32
15 83.15 82.28 81.42 79.35 76.61 74.86
17 83.26 82.51 81.01 78.65 76.61 74.32

Table 9: Task Accuracy (%) under different injection rates (2% – 10%) and trigger size (2 – 17) in AwA
dataset, target class 2. The original task accuracy for AwA is 84.68%.

Task
Accuracy(%) ASR(%)

Target Class CAT CAT+ CAT CAT+
0 75.03 75.53 59.28 93.01
4 74.54 74.73 1.85 0.10
8 75.06 75.56 74.24 52.63
12 74.94 75.72 53.38 1.08
16 75.16 75.72 40.91 68.81
20 75.34 75.58 1.28 12.02
24 74.37 74.91 0.52 54.48
28 74.27 74.65 35.48 17.87
32 74.70 75.58 37.68 2.32
36 74.96 75.27 37.99 6.50
40 74.46 74.96 42.35 10.40
44 74.89 75.22 17.10 23.77
48 75.09 75.73 49.77 4.51
52 74.68 74.97 82.15 95.11
56 75.22 75.23 70.99 57.36
60 74.97 75.37 2.60 24.01
64 74.85 74.58 43.63 84.27
68 75.09 75.58 39.30 9.63
72 74.99 75.34 47.99 59.06
76 74.53 74.06 46.16 30.55
80 75.03 75.61 62.51 3.71
84 74.49 74.87 9.82 75.83
88 74.75 74.66 51.13 32.44
92 75.34 75.60 39.68 72.71
96 74.82 75.20 17.73 11.64

Table 10: Task Accuracy and ASR for different
Target Classes from 0 to 196. The test dataset is
CUB, trigger size is 20 and the injection rate is
10% (1 of 2).

Task
Accuracy(%) ASR(%)

Target Class CAT CAT+ CAT CAT+
100 74.94 75.42 48.96 62.16
104 74.84 74.92 1.07 0.07
108 74.49 74.63 53.02 11.00
112 73.92 74.46 10.76 40.42
116 75.35 75.51 11.50 18.83
120 74.58 74.59 11.49 12.58
124 74.97 75.70 0.24 61.04
128 74.66 75.15 10.15 54.34
132 74.99 75.66 9.54 14.23
136 74.73 74.99 2.95 0.83
140 74.58 74.97 7.86 64.01
144 75.28 75.35 90.61 9.94
148 74.78 75.42 0.36 76.79
152 75.09 75.22 80.46 17.19
156 74.54 75.94 1.37 35.98
160 74.99 75.16 1.80 20.07
164 74.85 75.56 13.78 6.61
168 75.11 75.83 50.44 50.70
172 74.70 74.73 29.96 66.69
176 74.77 74.92 2.29 0.03
180 74.91 74.58 4.35 76.96
184 75.16 75.66 27.93 5.95
188 74.44 75.73 57.41 21.74
192 74.25 75.75 41.39 46.30
196 74.73 75.80 23.72 20.96

Table 11: Task Accuracy and ASR for different
Target Classes from 0 to 196. The test dataset is
CUB, trigger size is 20 and the injection rate is
10% (2 of 2).

For the LAD-F dataset, with an original accuracy of 89.59%, we found that even at low injection rates (such
as 2%), the CAT+ method exhibited a high ASR, reaching as high as 96.69%. This result further validates
the broad applicability and strong effectiveness of the CAT+ method across various tasks and datasets.
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2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

8 86.54 9.89 85.42 16.12 83.02 20.23
10 86.24 7.41 85.23 13.60 82.79 22.28
12 86.57 11.31 85.52 21.56 83.03 31.75
15 86.76 20.96 85.26 30.76 82.62 42.30
17 86.66 43.86 85.31 58.48 82.10 70.85
20 86.40 48.47 84.62 60.27 81.48 72.05

Table 12: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size in CUB
dataset, target class 0, vision backbone is a pretrained VIT, the attack mode is fixed to CAT+, the Original
Accuracy is 87.30%.

On the LAD-V dataset, the performance of both the CAT and CAT+ methods followed a similar pattern,
but the CAT+ method consistently achieved higher ASR, particularly at higher injection rates, where the
ASR reached over 80%. This indicates that CAT+ performs especially well on this dataset.

Overall, the CAT+ method consistently demonstrated a significant advantage in attack success rate across
most sub-datasets. These results confirm the superior effectiveness of the CAT+ method, especially in
multi-task learning scenarios with high injection rates and larger trigger sizes. In comparison, although the
CAT method also achieved relatively high attack success rates in some cases, the CAT+ method’s overall
superiority across multiple datasets was more pronounced.

Training Size Test Size # of Concept # of Class Original ACC(%)
LAD-A 9280 3960 123 50 88.54
LAD-E 12916 5555 75 50 77.82
LAD-F 13606 5850 58 50 89.59
LAD-V 11979 5101 81 50 84.30
LAD-H 6829 2941 22 30 58.25

Table 13: Statistics and Original Task Accuracy(%)of each LAD sub-datasets

2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 87.95 8.13 85.68 10.35 81.94 21.30
5 87.65 33.04 85.81 30.14 81.67 33.40
8 87.80 55.51 85.93 57.29 81.84 63.09
10 87.78 61.42 85.96 60.51 82.42 65.87
12 87.58 50.91 85.76 54.47 81.84 62.26
15 87.47 55.54 85.76 60.12 82.40 61.58
17 88.16 60.25 86.09 61.32 82.42 65.21
20 87.95 68.66 85.73 74.33 81.92 14.45

Table 14: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size (2-20) in
LAD-A dataset, target class 0, the attack mode is CAT, the Original Accuracy is 88.54%.

K Human Evaluation Details

K.1 Human Evaluation Protocol

The human evaluators were provided with the following instructions:
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2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 87.22 14.53 85.45 19.76 83.41 32.54
5 88.16 12.86 86.46 31.23 83.16 37.69
8 88.38 37.45 85.66 43.26 83.06 52.48
10 87.47 35.26 86.16 48.38 82.78 64.72
12 87.65 53.92 85.48 69.29 81.92 69.24
15 87.90 64.56 86.16 67.69 82.42 79.67
17 87.73 45.19 85.58 63.07 83.08 74.93
20 87.20 53.48 86.36 77.26 82.85 77.03

Table 15: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size (2 - 20)
in LAD-A dataset, target class 0, the attack mode is CAT+, the Original Accuracy is 88.54%.

2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 76.24 7.70 74.62 16.59 71.05 35.22
5 76.33 16.52 74.60 30.39 70.62 50.33
8 76.62 36.96 75.03 59.33 74.23 73.00
10 76.42 55.54 74.60 71.26 71.07 78.63
12 76.47 42.56 74.51 70.96 71.11 81.76
15 76.74 51.69 74.58 69.57 70.98 75.19

Table 16: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size (2 - 15)
in LAD-E dataset, target class 0, the attack mode is CAT, the Original Accuracy is 77.82%.

1. Dataset Description: You will be presented with a dataset consisting of 60 concept representations,
each associated with an input sample (x) and its corresponding class labels (c, y). Among these, 30
concept representations have been backdoored using a concept-based trigger, while the remaining 30
are clean.

2. Task: Your task is to identify which data has been backdoored.

3. Evaluation Criteria: Analyze the concept space for any subtle modifications that might indicate
the presence of a backdoor trigger. Avoid relying on the input samples or class labels.

K.2 Post-Evaluation Interviews and Insights

After completing the evaluation, the evaluators were interviewed to gather their thoughts and insights on the
task. The interview questions included:

1. Q1: Describe your approach to distinguishing between backdoored and clean concept representations.

2. Q2: Did you notice any specific patterns or changes in the concept space that helped you identify
the backdoor samples?

3. Q3: How difficult was it to identify the backdoor attacks compared to your initial expectations?

4. Q4: What factors do you think contributed to the difficulty in detecting the backdoor in the concept
space?

Evaluator 1:

1. A1: I focused on the relationships between concepts and images.
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2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 83.96 3.86 74.42 37.39 71.97 57.91
5 76.18 26.17 74.83 40.31 71.40 56.91
8 76.56 52.43 74.96 65.31 72.06 75.52
10 76.76 29.67 74.91 46.50 71.76 70.85
12 76.67 22.76 74.96 37.33 71.52 45.07
15 77.19 12.67 74.80 28.31 72.33 35.93

Table 17: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size (2 - 15)
in LAD-E dataset, target class 0, the attack mode is CAT+, the Original Accuracy is 77.82%.

2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 87.86 23.95 85.40 33.74 82.72 47.41
5 87.95 75.89 85.42 77.59 82.58 84.56
8 87.40 94.61 85.62 97.22 82.84 96.69
10 87.90 90.04 85.81 93.80 82.60 93.82

Table 18: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size (2 - 10)
in LAD-F dataset, target class 0, the attack mode is CAT, the Original Accuracy is 89.59%.

2. A2: The trigger concepts seemed to have a more pronounced effect, but no consistent pattern was
evident.

3. A3: It was much more challenging than expected due to the subtlety of the changes.

4. A4: There were so many concepts that I got distracted, and a lot of datasets were actually mislabeled.
It felt like looking for a needle in a haystack. It was so painful. It’s like pouring Coca-Cola into
Pepsi.

Evaluator 2:

1. A1: I looked for inconsistencies or anomalies that didn’t align with the expected concept representa-
tion.

2. A2: There were slight shifts in emphasis on certain concepts, but no clear pattern.

3. A3: It was harder than anticipated due to the almost imperceptible changes.

4. A4: The subtlety of the trigger and the high dimensionality of the concept space made it challenging.

Evaluator 3:

1. A1: I searched for deviations from expected concept co-occurrence patterns and structure.

2. A2: Minor disruptions in co-occurrence patterns were observed, but not consistent enough.

3. A3: It was significantly more difficult than expected due to the stealthiness of the changes.

4. A4: The trigger’s stealthiness and the complexity of the concept space made detection difficult.
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2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 83.96 3.86 82.18 7.33 79.59 13.69
5 83.65 11.23 81.45 22.14 78.06 32.13
8 83.30 55.32 81.20 67.65 78.69 81.24
10 83.91 64.13 82.87 79.68 79.40 80.14
12 83.96 75.48 82.42 83.59 78.71 90.57
15 83.98 72.30 81.63 81.59 79.14 85.43

Table 19: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size (2 - 15)
in LAD-V dataset, target class 0, the attack mode is CAT+, the Original Accuracy is 84.30%.

Model Accuracy Precision Recall F1 Score
Human-1 0.517 0.508 1.000 0.674
Human-2 0.483 0.471 0.267 0.340
Human-3 0.483 0.333 0.033 0.061
GPT4v-1 0.433 0.464 0.867 0.605
GPT4v-2 0.467 0.483 0.933 0.636
GPT4v-3 0.483 0.492 0.967 0.652

Table 20: Classification Metrics Comparison

L LLM Evaluation Details

The LLM evaluation protocol involved the following steps:

1. Dataset Preparation: The 60 concept representations (30 backdoor-attacked and 30 clean),
along with their corresponding input samples (x) and class labels (c, y), were provided as input to
GPT4-Vision.

2. Prompt Design: The prompt for GPT4-Vision was, “image This is the concept of this image what
i give: concept: weight, determine if it has been poisioneed. If poisioned, output 1; otherwise, output
0."

M CAT+ Continuously Extension

Following the same notation from CAT+ in previous discussion, and assuming that there are cnum types of
values in the concept, the continuously CAT+ function Z(·) is defined as follows:

(i) Let n be the total number of training samples, and ntarget be the number of samples from the target class.
The initial probability of the target class is p0 = ntarget/n.

(ii) Given a modified dataset ca = D; cselect; Pselect, we calculate the conditional probability of the target class
given ca as p(target|ca) = H(target(ca))/H(ca), where H is a function that computes the overall distribution
of labels in the dataset.

(iii) Calculate each concept distance Zcselect
in selected concept:

Zcselect
= Σi=cnum(ci−cselect)2

i=0 (27)

(iv) The Z-score for ca is defined as:

Z(ca) = Zcselect
Z(cselect, Pselect) = Zcselect

[
p(target|ca) − p0

]
/

[
p0(1− p0)
p(target|ca)

]
(28)
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N Complexity Analysis of CAT and CAT+

We provide a computational complexity analysis for our two trigger selection algorithms, CAT and CAT+.
This analysis quantifies the one-off, offline cost required by an attacker to prepare the concept-based trigger.
All experiments were conducted on the CUB dataset, and the trigger selection process for each setting was
repeated five times to ensure reliable measurements. The results, including the mean, standard deviation,
minimum, and maximum execution time in seconds, are presented in Table 21.

Trigger CAT CAT+
Size Min(s) Max(s) Mean(s) Std(s) Min(s) Max(s) Mean(s) Std(s)

2 0.72 2.65 1.16 0.76 3.36 3.98 3.73 0.25
5 0.62 1.05 0.80 0.15 8.75 9.18 8.96 0.16
10 0.82 1.90 1.11 0.43 15.21 16.38 15.86 0.44
15 0.43 3.88 1.30 1.38 22.69 23.06 22.86 0.14
20 0.67 4.73 1.75 1.68 28.90 29.47 29.29 0.23

Table 21: Time complexity comparison for trigger selection in CAT and CAT+ under different trigger
sizes. All experiments are conducted on the CUB dataset, and each setting is repeated five times to report
the execution time (in seconds). The cost represents a one-off, offline effort for the attacker during the attack
preparation phase.

The results in Table 21 clearly delineate the trade-offs between the two methods and highlight the practical
feasibility of both.

• CAT is extremely efficient. As a one-shot algorithm based on filtering and selecting from a
pre-computed matrix, its execution time is consistently low, averaging around 1-2 seconds regardless
of the trigger size. This makes it a highly practical and low-cost attack strategy.

• CAT+ incurs a higher, yet entirely manageable, computational cost. Its iterative, greedy
search for an optimal concept set results in a runtime that scales approximately linearly with the
desired trigger size. Even for a large trigger of 20 concepts, the selection process takes under 30
seconds on average.

In conclusion, while CAT+ requires more computational effort during the attack’s preparation phase, this cost
is a modest, one-time investment. As demonstrated in our main results (e.g., in Section 7), this additional
cost is overwhelmingly justified by the substantial increase in Attack Success Rate (ASR) it achieves (e.g.,
from 59.28% to 93.01% on CUB at a 10% injection rate). This makes CAT+ a highly potent and cost-effective
strategy for a determined adversary.

Ethics Statement

This work introduces and explores the concept of backdoor attacks in CBMs, a topic that inherently involves
considerations of ethics and security in machine learning systems. The research aims to shed light on potential
vulnerabilities in CBMs, with the intention of prompting further research into defensive strategies to protect
against such attacks.

While our work demonstrates how CBMs can be compromised, we emphasize that the knowledge and
techniques presented should be used responsibly to improve system security and not for malicious purposes.
We acknowledge the potential risks associated with publishing methods for implementing backdoor attacks;
however, we believe that exposing these vulnerabilities is a crucial step toward understanding and mitigating
them.

Researchers and practitioners are encouraged to use the findings of this study to develop more robust and
secure AI systems. It is our hope that by bringing attention to these vulnerabilities, we can collectively
advance the field towards more transparent, interpretable, and secure machine learning models.
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Reproducibility Statement

To ensure the reproducibility of our results, we provide detailed descriptions of the datasets used, preprocessing
steps, model architectures, and experimental settings within the paper and its appendices. Specifically:

- Datasets: We utilize the publicly available CUB and AwA datasets, with specific preprocessing steps
outlined in Appendix H.

- Model Architecture: Details about the Concept Bottleneck Model (CBM) architecture, including the use
of a pretrained ResNet50 and modifications for each dataset, are provided in Section 7.

- Experimental Settings: The experimental setup, including training hyperparameters, batch sizes, learning
rates, and data augmentation techniques, are thoroughly described in Section 7.

- Attack Implementation: The methodology for implementing our proposed CAT and CAT+ attacks,
including concept selection, trigger embedding, and iterative poisoning strategies, is elaborated in Sections 4
and 5, with additional insights provided in the appendices.

Furthermore, to foster transparency and facilitate further research in this area, we commit to making our
code publicly available upon publication of this paper. This includes scripts for preprocessing data, training
models, executing backdoor attacks, and evaluating model performance and attack effectiveness.
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