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Abstract

Generative models trained on antibody sequences and structures have shown great
potential in advancing machine learning-assisted antibody engineering and drug dis-
covery. Current state-of-the-art models are primarily evaluated using two categories
of in silico metrics: sequence-based metrics, such as amino acid recovery (AAR),
and structure-based metrics, including root-mean-square deviation (RMSD), pre-
dicted alignment error (pAE), and interface predicted template modeling (ipTM).
While metrics such as pAE and ipTM have been shown to be useful filters for exper-
imental success, there is no evidence that they are suitable for ranking, particularly
for antibody sequence designs. Furthermore, no reliable sequence-based metric
for ranking has been established. In this work, using real-world experimental
data from seven diverse datasets, we extensively benchmark a range of generative
models, including LLM-style, diffusion-based, and graph-based models. We show
that log-likelihood scores from these generative models correlate well with experi-
mentally measured binding affinities, suggesting that log-likelihood can serve as a
reliable metric for ranking antibody sequence designs. Additionally, we scale up
one of the diffusion-based models by training it on a large and diverse synthetic
dataset, significantly enhancing its ability to predict and score binding affinities.
Our implementation is available at: https://github.com/AstraZeneca/DiffAbXL

1 Introduction

Antibodies are crucial components of the immune system and have become indispensable tools in
therapeutics and diagnostics due to their ability to specifically recognize and bind to a wide range
of antigens. Engineering antibodies to improve their affinity, specificity, and stability is a rapidly
advancing field, increasingly driven by machine learning and computational approaches. Generative
models trained on antibody sequences and structures hold great promise in accelerating antibody
design and drug discovery. However, current state-of-the-art models typically rely on in silico
evaluation metrics, divided into two primary categories: sequence-based metrics, such as amino acid
recovery (AAR), and structure-based metrics, such as root-mean-square deviation (RMSD) between
predicted and actual structures. Recent advances in structural prediction, notably AlphaFold, have
significantly improved our ability to predict protein structures. These tools provide structure-based
confidence metrics, such as predicted Local Distance Difference Test (pLDDT), predicted alignment
error (pAE), predicted template modeling (pTM), interface predicted template modeling (ipTM),
and DockQ scores. Some of these metrics, such as pAE and ipTM, have been demonstrated to be
effective filters for distinguishing between high-quality and low-quality structural models, thereby
enhancing the chances of experimental success [Abramson et al., 2024, Watson et al., 2023]. While
these structure-based metrics are valuable for filtering and assessing model performance, they are
not suitable for ranking antibody sequence designs, particularly when it comes to predicting binding
affinity and functional efficacy. Moreover, existing sequence-based metrics, such as AAR, provide
limited insights into functional performance, as there is no established proxy derived from sequence
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information alone that accurately predicts binding affinity. This poses a substantial challenge in
prioritizing antibody candidates for experimental validation.

Physics-based approaches provide energy-based metrics by modeling biological systems and ac-
counting for factors such as protein flexibility, explicit solvents, co-factors, and entropic effects.
However, the correlation between these metrics and experimentally measured binding affinities is
often low [Bennett et al., 2023], and there is no strong evidence that they are effective for ranking
antibody designs based on affinity. These methods also face significant challenges, including high
computational costs and difficulties in automation [Alford et al., 2017], which limits their utility for
large-scale affinity predictions.

In this work, we address these limitations by conducting a rigorous evaluation of state-of-the-art
generative models for antibody design, using seven diverse real-world datasets and a range of
generative models, including Large Language Model (LLM)-style, diffusion-based, and graph-based
models. We demonstrate that log-likelihood scores from these models correlate strongly with
experimentally measured binding affinities, positioning log-likelihood as a reliable metric for ranking
antibody sequence designs. Furthermore, we scale up one of the existing diffusion-based generative
models by training it on a large and diverse synthetic dataset, significantly enhancing its ability
to predict and score binding affinities. Our scaled model outperforms existing models in terms
of its correlation with experimentally measured affinities. By leveraging experimental validation
and addressing the shortcomings of current in silico metrics, our work introduces log-likelihood as
a reliable and practical metric for ranking antibody sequence designs. This approach provides a
direct link between computational model outputs and experimentally measured binding affinities,
offering a clear path for prioritizing high-affinity antibody candidates. Our findings suggest that log-
likelihood-based ranking can streamline experimental efforts, ultimately accelerating the discovery
and development of next-generation therapeutic antibodies.

Background on Antibodies Human antibodies are classified into five isotypes: IgA, IgD, IgE, IgG,
and IgM. This work focuses on IgG antibodies—Y-shaped glycoproteins produced by B-cells and
nanobodies, which are single-domain antibody fragments (see Figure 1a for reference). Hereafter,
"antibody" refers specifically to IgG antibodies. Antibodies have regions with distinct immune
functions. The Fab (fragment antigen-binding) region, comprising variable (V) and constant (C)
domains from both heavy and light chains, binds antigens. Within this region, the variable domains
(VH and VL) form the antigen-binding site and determine specificity. The Fv (fragment variable)
region is the smallest unit capable of antigen binding, consisting only of VH and VL without constant
domains. Within variable domains are framework regions and complementarity-determining regions
(CDRs). Framework regions maintain structural integrity, while CDRs—three loops on both VH
and VL—directly bind antigens and are crucial for specific recognition. The Fv region, essential for
antigen recognition, lacks the effector functions of the full antibody. The Fab region, including both
variable and constant domains, is more stable and has higher antigen affinity. The Fv region is simpler
and easier to engineer for applications such as single-chain variable fragment (scFv) antibodies. The
Fc (fragment crystallizable) region at the antibody’s base regulates immune responses by interacting
with proteins and cell receptors. Nanobodies are compact, single-domain antibodies derived from
heavy-chain-only antibodies found in animals such as camels and llamas. Smaller than traditional Fv
regions, they retain full antigen-binding capacity and offer increased stability and easier production,
making them valuable in therapeutic and diagnostic applications.

2 Related Work

The application of deep learning to antibody and protein design has garnered significant attention
in recent years, driven by advancements in natural language processing (NLP) and geometric deep
learning. These generative models can be categorized into three broad approaches: LLMs, graph-
based methods, and diffusion-based methods. Additionally, they can be distinguished by their
input-output modalities: sequence-to-sequence, structure-to-sequence (inverse folding), sequence-
structure co-design, and sequence-structure-to-sequence frameworks. Below, we review related work
across these categories, focusing on both protein and antibody design.

LLM-based approaches LLMs, drawing from advancements in natural language processing (NLP),
have been applied extensively to both protein and antibody design. These models can be categorized
based on their input-output modalities. In the broader domain of protein design, sequence-to-sequence
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models such as ESM [Rives et al., 2021] have demonstrated success in tasks such as sequence recovery
and mutation effect prediction. These models focus on identifying patterns within protein sequences
and have improved our ability to generate functional proteins from sequence data. In many cases, these
models are benchmarked using experimental data from Deep Mutational Scans (DMS), predicting the
likelihood of amino acid substitutions and their correlation with measured protein fitness. However,
comprehensive benchmarks that assess model predictions of antibody affinity beyond single-amino
acid mutations or indels, particularly those incorporating antigen information, are still lacking [Notin
et al., 2024]. On the other hand, structure-to-sequence models such as ESM-IF [Hsu et al., 2022]
predict amino acid sequences that fold into the same fixed backbone structure, providing a solution to
the inverse folding problem. Recent work in protein design has also introduced sequence-structure
co-design models, which use both sequence and structural information as input and output. One such
model is ESM-3 [Hayes et al., 2024], which incorporates not only sequence and structure but also
functional information to improve the design of proteins. This co-design approach allows for the
generation of sequences that not only match a desired structure but also fulfill specific functional
requirements. Such advancements represent a key shift towards integrating multiple modalities in a
single framework for more accurate protein design. In the context of antibodies, several LLM-based
models have been developed for specific immunoglobulin-related tasks. The sequence-to-sequence
models such as AbLang [Olsen et al., 2022b], AbLang-2 [Olsen et al., 2024], AntiBERTy [Ruffolo
et al., 2021], and Sapiens [Prihoda et al., 2022] leverage architectures such as BERT [Devlin et al.,
2018] to model antibody sequences and are particularly effective in tasks such as residue restoration
and paratope identification. However, these models focus mainly on sequence information and do
not incorporate structural data, limiting their ability to design sequences with associated structural
properties. Similarly, structure-to-sequence models such as AntiFold [Høie et al., 2023] focus on
the inverse folding problem for antibodies, generating sequences that fit a given structural backbone.
While these approaches offer valuable insights, they still treat sequence and structure separately. To
bridge this gap, recent efforts have introduced models that incorporate both sequence and structure.
For example, LM-Design [Zheng et al., 2023] and IgBlend [Anonymous, 2025] represent a new class
of sequence-structure-to-sequence models that leverage both modalities at the input to design proteins
and antibodies respectively. By learning joint representations of sequence and structure, these models
provide a more holistic approach to protein and antibody design, improving the design of sequences
that are structurally and functionally coherent.

Graph-based approaches Graph-based methods have become prominent in antibody design due to
their ability to represent the geometric structure of antibody regions. These models treat antibody
structures as graphs, where nodes correspond to residues or atoms, and edges capture the spatial
relationships between them. This allows for the co-design of sequences and structures in a way
that respects the underlying geometry of antibodies. For instance, Jin et al. [2021] proposed an
iterative method to simultaneously design sequences and structures of CDRs in an autoregressive
manner, continuously refining the designed structures. Building on this, Jin et al. [2022] introduced
a hierarchical message-passing network that focuses specifically on HCDR3 design, leveraging
epitope information to guide the design process. Another approach by Kong et al. [2022] uses
SE(3)-equivariant graph networks to incorporate antibody and antigen information, enabling a more
comprehensive design of CDRs. These models emphasize sequence-structure co-design, ensuring
that generated sequences conform to structural constraints while also optimizing for antigen binding.

Diffusion-based approaches Diffusion-based models have recently emerged as a powerful approach
for antibody design. These models generate new sequences and/or structures by simulating a
process that progressively refines noisy input into coherent output, holding promise for capturing
intricate dependencies in complex biological systems, such as protein folding dynamics and molecular
interactions, over multiple iterations [Abramson et al., 2024, Jing et al., 2024]. Moreover, they have
proven effective in antibody design due to their ability to handle geometric and structural constraints.
Luo et al. [2022] introduced a diffusion model, DiffAb, that integrates residue types, atom coordinates
and orientations to generate antigen-specific CDRs, incorporating both sequence and structural
information. More recently, Martinkus et al. [2024] proposed AbDiffuser, a diffusion-based model
that incorporates domain-specific knowledge and physics-based constraints to generate full-atom
antibody structures, including side chains. Another recent approach, AbX [Zhu et al.], is a score-based
diffusion model with continuous timesteps, which jointly models the discrete sequence space and the
SE(3) structure space for antibody design.
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Figure 1: a) Regions of IgG antibody (PDB ID: 1igt) shown as surface (left and bottom) and cartoon
(right). b) Iterative reverse diffusion process for DiffAbXL shown only for the position—Gaussian
distribution N (·) ∈ R3.

Our contribution The correlation between likelihood and binding affinity is previously observed
in works such as [Shanehsazzadeh et al., 2023], where the authors used their inverse folding model
IgMPNN to design antibodies targeting HER2. However, the observation was solely based on
computing the percentage of binders in sampled antibody library, where higher percentage of binders
in a smaller library is used as indication to draw the conclusion. In this work, i) We show the
direct correlation between log-likelihood and binding affinity and we do so by conducting the same
experiment across seven datasets, proving its generaliazibility; ii) We conduct the experiments across
different types of generative models, and show their applicability in ranking antibody sequences.;
iii) Building on these diffusion-based approaches, we extend one of the existing models, DiffAb
[Luo et al., 2022], by training it on a large and diverse synthetic dataset, as well as a small dataset
of experimentally determined antibody structures. This scaling significantly enhances the model’s
ability to predict and rank antibody designs based on binding affinities, addressing one of the key
challenges in antibody design: ranking. By incorporating experimental validation, we demonstrate
that log-likelihood scores from this scaled-up DiffAb model correlate well with experimentally
measured binding affinities, positioning it as a robust tool for antibody sequence design and ranking.
Our work contributes to the growing body of research to move beyond simple filtering and towards
effective ranking of designs based on experimental success.

3 Method

In this work, to include a scaled version of a diffusion-based generative model, we adapted the
diffusion modelling approach, DiffAb, proposed by Luo et al. [2022]. By scaling, we mean increasing
the total input sequence length up to 450 residues, as well as expanding the dataset by orders of
magnitude, while keeping the model architecture parameters mostly unchanged. Similar to other
works in the literature, we trained it on designing CDR3 of the heavy chain (HCDR3) of the antibody
as it contributes the most to the diversity and specificity of antibodies [Jin et al., 2022, Xu and Davis,
2000, Zhou et al., 2024]. We refer to this model as DiffAbXL-H3. We also trained another version
for designing all six CDRs (DiffAbXL-A).

3.1 DiffAbXL

Data representation We represent the ith amino acid in a given input V by its type si ∈
{ACDEFGHIKLMNPQRSTVWY}, Cα coordinate xi ∈ R3, and orientation Oi ∈ SO(3), where
i = 1, 2, ..., N and N is the total number of amino acids in V . An input V consists of one or more
masked regionsM, which undergo a diffusion process, and the remaining unmasked regions U , which
serve as context. Here, U is the union of the context regions of the antibody and the antigen, where
the antigen is optional, such that V =M∪U . If multiple regions are masked,M refers to the set of
masked regions (e.g., all six CDR regions on the heavy and light chains), and U refers to the remaining
unmasked regions. Each masked regionMk has mk amino acids at indexes jk = lk +1, ..., lk +mk,
where k indexes the masked regions. The generation task is defined as modeling the conditional distri-
bution P (M|U), whereM =

⋃
k{(sjk ,xjk ,Ojk)|jk = lk+1, ..., lk+mk} is the set of regions to be

generated, conditioned on the context U = {(si,xi,Oi)|i ∈ {1, ..., N}\
⋃

k{lk + 1, ..., lk +mk}}.
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Diffusion Process Training a diffusion probabilistic model consists of two interconnected Markov
chains, referred as forward and reversed diffusion, each governing a distinct diffusion process. The
forward diffusion process incrementally introduces noise into the data, ultimately approximating the
prior distribution. Conversely, the generative diffusion process initiates from the prior distribution
and iteratively refines it to produce the desired data distribution.

Forward diffusion Starting from time τ = 0, noise is incrementally introduced into the data,
ultimately approximating the prior distribution at time step τ = T . We use the multinomial C(·),
Gaussian N (·) ∈ R3, and isotropic Gaussian distribution IG ∈ SO(3) to add noise to the type,
position, and orientation of amino acids, respectively:

q(stj |s0j ) = C(1(stj)|ᾱt
a · 1(s0j ) + (1− ᾱt

a) · 1/K) (1)

q(xt
j |x0

j ) = N (xt
j |
√
ᾱt
p · x0

j , (1− ᾱt
p) · I) (2)

q(Ot
j |O0

j ) = IGSO(3)
(Ot

j |ScaleRot(
√
ᾱt
o ·O0

j ), (1− ᾱt
o)) (3)

where (s0j ,x
0
j ,O

0
j ) denotes the type, initial position, and orientation of the jth amino acid in one of

the masked regionsM, while (stj ,x
t
j ,O

t
j) refers to their values with added noise at time step τ = t.

Moreover, 1 refers to one-hot encoding of amino acids, 1 is a twenty-dimensional vector filled with
ones, I is the identity matrix and K is the total number of amino acid types (i.e., 20 in our case). In
{ᾱt

a, ᾱ
t
p, ᾱ

t
o}, ᾱt is defined as ᾱt =

∏t
τ=1(1 − β̄τ ), where β̄τ is the noise schedule for type (β̄τ

a ),
position (β̄τ

p ), and orientation (β̄τ
o ) of amino acids in each masked region ofM at a given time τ .

Reverse diffusion For the forward diffusion processes above, we define the corresponding reverse
diffusion process as follows:

p(st−1
j |Mt,U) = C(F(Mt,U)[j]) (4)

p(xt−1
j |Mt,U) = N (xt−1

j |µp(Mt,U), βt
p · I) (5)

p(Ot−1
j |Mt,U) = IGSO(3)

(Ot−1
j |H(Mt,U)[j], βt

o) (6)

where µp(Mt,U) = 1√
αt

p

(xt
j −

βt
p√

1−ᾱt
p

ϵp(Mt,U)[j]), and we use F(·)[j], ϵp(·)[j], and H(·)[j] to

predict the type, the standard Gaussian noise ϵj for the position, and the denoised orientation matrix
of amino acid j in each masked regionM.

Objective function The training objective is defined as the sum of three losses:

Ltotal = Et∼Uniform(1...T )[L
t
a + Lt

p + Lt
o], (7)

Lt
a = EMt∼p

 1

|M|
∑
k

lk+mk∑
j=lk+1

DKL(q(s
t−1
j |stj , s0j )||p(st−1

j |Mt,U))

 , (8)

Lt
p = EMt∼p

 1

|M|
∑
k

lk+mk∑
j=lk+1

∥ϵj − ϵp(Mt,U)[j]∥2
 , (9)

Lt
o = EMt∼p

 1

|M|
∑
k

lk+mk∑
j=lk+1

∥(O0
j )

T
Õt−1

j − I∥2
 and Õt−1

j = H(Mt,U)[j], (10)

where ϵj is a standard Gaussian noise applied to the position xj of the jth amino acid, and the
summations over k account for each masked regionMk that contains mk amino acids indexed by
j = lk + 1, ..., lk +mk. The objective functions help the model accurately reconstruct amino acid
types, positions, and orientations from noisy data. Lt

a ensures correct amino acid type predictions
by comparing true and predicted distributions using KL divergence. Lt

p minimizes the difference
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between predicted and actual noise in positions, restoring spatial coordinates. Lt
o aligns the predicted

and actual orientation matrices by comparing their product with the identity matrix. Together, these
losses train the model to recover the masked regions consistently and accurately. Finally, for an
exhaustive explanation of diffusion processes, we refer the reader to the seminal works of [Sohl-
Dickstein et al., 2015, Ho et al., 2020], where the main aspects of diffusion models, including their
theoretical foundations and practical applications, are covered.

3.2 Training

DiffAbXLs are trained on a combined dataset sourced from SAbDab [Dunbar et al., 2014] and
approximately 1.5 million structures generated using ImmuneBuilder2 [Abanades et al., 2023]
with paired sequences from the Observed Antibody Space (OAS) [Olsen et al., 2022a]. To ensure
high-quality training data, we filtered the structures from the SAbDab dataset following the same
procedure as [Luo et al., 2022], removing structures with a resolution worse than 4Å and discarding
antibodies that target non-protein antigens. Next, we clustered antibodies from the combined dataset
of OAS-paired sequences and SAbDab structures based on their HCDR3 sequences (or LCDR3 if
HCDR3 does not exist in the sample), using a 50% sequence identity threshold for clustering. The
training and test splits were determined based on cluster-based splitting. The test set included clusters
containing the 19 antibody-antigen complexes from the test set used in [Luo et al., 2022] as well as
60 complexes from the RAbD dataset introduced in [Adolf-Bryfogle et al., 2018]. For validation,
20 additional clusters were selected, with the remainder used for training to maximize the training
data. Both DiffAbXL-H3 and DiffAbXL-A share the same architecture and hyper-parameters, and
are trained for 10 epochs using the AdamW optimizer with an initial learning rate of 1e-4, and a
ReduceLROnPlateau scheduler (details provided in Section A.2 of the Appendix). For further details
on the model architecture and parameters, please refer to Section A.1 of the Appendix.

3.3 Evaluation

For each sequence in a batch, we compute the log-likelihood of the masked region given the context.
In this work, we mask out either all CDRs in antibodies and nanobodies, or only the CDRs where
the mutations are applied. When determining the CDR region, we either use the union of several
numbering schemes (AHo, IMGT, Chothia, Kabat) to account for variations in CDR definitions,
or, if the designed CDRs extend beyond these regions, graft the designed CDRs into the parental
sequence and use the grafted region for masking. Let Pj(sj | U) denote the posterior probability
of amino acid sj at position j conditioned on U . To ensure numerical stability, we compute the log
probabilities as logP ′

j(sj | U) = log (Pj(sj | U) + ε), where ε is a small constant (e.g., 1× 10−9).
The log-likelihood for the sequence is then calculated by summing over the masked positions:

LL =

l+m∑
j=l+1

logP ′
j (sj | U) . (11)

For consistency, we apply the same log-likelihood computation to BERT-style LLMs. This approach
has been previously used to evaluate sequence recovery rates in works such as AntiBERTy [Ruffolo
et al., 2021], AbLang [Olsen et al., 2022b], AbLang2 [Olsen et al., 2024], and IgBlend. Specifically,
in this case, P ′

j(sj | U) corresponds to the output of the final softmax layer at position j, where the
prediction is conditioned on the rest of the context U , which is provided as input to the model.

Optionally, if a parent sequence is provided, with amino acids sparent
j , we can adjust the log-likelihood

score by subtracting the parent’s log-likelihood:

LLadjusted =

l+m∑
j=l+1

[
logP ′

j (sj | U)− logP ′
j

(
sparent
j | U

)]
. (12)

Unless otherwise specified, we use Equation 11 in our results (see Table 1). After computing the
log-likelihoods for all sequences, we assess their relationship with experimental labels yi (e.g.,
binding affinities measured in the form of either −log(KD), −log(IC50), or −log(qAC50)) by
computing Spearman’s rank correlation coefficient ρ and Kendall’s tau τ . The pseudocode used for
computing correlations and their variance for diffusion models can be found in Section A.3 of the
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Figure 2: Results for DiffAbXL: a) DiffAbXL-H3-DN for Absci zero-shot HER2 data b) DiffAbXL-
A-SG for AZ Target-2, c) DiffAbXL-A-SG for Nature HEL, d) DiffAbXL-A-DN for Nature HER2.

Appendix. Finally, for models such as DiffAbXL that use both sequence and structure at their input,
we compute their scores in two modes: i) De Novo (DN)1: We mask both sequence and structure
of the region and compute the log-likelihood of the sequence in the masked region at the output; ii)
Structure Guidance (SG): We mask only the sequence, and use the structure to guide the sampling.

4 Experiments

4.1 Datasets

In this study, we employ seven datasets from three sources—Absci HER2 [Shanehsazzadeh et al.,
2023], Nature [Porebski et al., 2024], and AstraZeneca (AZ)—each providing diverse experimental
antibody and nanobody data for evaluating the performance of our models.

The Absci HER2 datasets [Shanehsazzadeh et al., 2023] focus on re-designed heavy chain
complementarity-determining regions (HCDRs) of the therapeutic antibody Trastuzumab, targeting
HER2. The HCDRs were generated using a two-step procedure: i) CDR loop prediction using a
machine learning model conditioned on the HER2 antigen backbone structure from PDB:1N8Z
(Chain C), Trastuzumab’s framework sequences, and the Trastuzumab-HER2 epitope. Then, antibody
sequences are sampled using an inverse folding model on predicted structures. HCDR3 lengths
ranging from 9 to 17 residues were sampled based on their distribution in the OAS database, while
HCDR1 and HCDR2 sequences were fixed at 8 residues—common lengths for these regions. The
affinity (KD) values of these generated sequences were measured using a Fluorescence-activated Cell
Sorting (FACS)-based ACE assay. Two datasets are published: (1) the "zero-shot binders" dataset,
comprising 422 HCDR3 sequences, from which we utilize those with a HCDR3 length of 13 residues
(matching Trastuzumab), and (2) the SPR control dataset, which contains binders and non-binders
with varying HCDR regions, where we use only the binders.

The Nature datasets, published by Porebski et al. [2024], provide experimental results for three
targets: HER2, HEL, and IL7. For HER2, mutations are present solely in the HCDR3 region,
while for IL7, mutations occur in both LCDR1 and LCDR3 regions. In contrast, the HEL dataset
consists of nanobodies with mutations across all three CDR regions. These datasets contain 25, 19,
and 38 data points for HER2, IL7, and HEL respectively. We use IC50 measurement for IL7 and
KD for HER2 and HEL. Additionally, for models that require structural inputs, we predicted the
structures using the parental sequences for HER2, IL7 and HEL by using ImmuneBuilder2, IgFold,
and NanoBodyBuilder2 respectively [Abanades et al., 2023, Ruffolo et al., 2023] — estimated errors
are shown in Table 4 of the Appendix.

The AZ datasets2 include two distinct antibody libraries designed for two targets. The Target-1
dataset, which is based on rational design, features mutations across four regions (HCDR1-3, LCDR3),
and comprises 24 data points. The Target-2 dataset consists of 85 data points and is a combination of
three libraries: two rationally designed libraries (one with mutations in three heavy chain CDRs and
the other with mutations in three light chain CDRs), and a third library designed using a machine

1We define the true "De Novo" design as the process of designing an entire antibody from scratch for a specific
target sequence. In this work, we use the term mainly to clarify the distinction from the structure-guidance mode.

2The AZ datasets and the parental sequence of Nature IL7 are proprietary and will not be disclosed.
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Table 1: Summary of the results for Spearman correlation. Abbreviations: DN: De Novo mode, SG:
Structure Guidance mode, NA: Epitope or complex structure required, but not available. *, **, ***
indicate p-values under 0.05, 0.01 and 1e-4 respectively.

Approach Model
Dataset

Absci HER2 Nature AZ
Zero Shot (KD) Control (KD) HEL (KD) IL7 (IC50) HER2 (KD) Target-1 (qAC50) Target-2 (KD)

Graph MEAN 0.36± 0.00∗∗∗ −0.04± 0.00 0.25± 0.00 −0.46± 0.00∗ 0.02± 0.00 −0.37± 0.00 0.03± 0.00
dyMEAN 0.37± 0.00∗∗∗ 0.15± 0.00∗∗ NA NA NA −0.15± 0.00 0.03± 0.01

LLM

IgBlend (seq. only) 0.27± 0.04∗∗∗ 0.04± 0.02 −0.09± 0.08 −0.84± 0.04∗∗∗ −0.10± 0.11 0.07± 0.09 0.36± 0.05∗∗∗

AbLang 0.30± 0.03∗∗∗ 0.03± 0.02 0.17± 0.11 −0.84± 0.04∗∗∗ −0.13± 0.08 0.09± 0.12 0.35± 0.04∗∗∗

AbLang2 0.30± 0.02∗∗∗ 0.02± 0.02 0.29± 0.04 −0.83± 0.04∗∗∗ −0.07± 0.08 0.09± 0.09 0.36± 0.06∗∗∗

AntiBERTy 0.26± 0.03∗∗∗ 0.00± 0.02 0.07± 0.07 −0.84± 0.03∗∗∗ −0.17± 0.09 0.09± 0.08 0.35± 0.05∗∗∗

ESM 0.29± 0.03∗∗∗ 0.01± 0.02 0.25± 0.08 −0.18± 0.12 0.18± 0.12 0.03± 0.12 0.27± 0.06∗∗

Inverse Folding
Antifold 0.43± 0.03∗∗∗ 0.22± 0.01∗∗∗ 0.40± 0.07∗∗ −0.55± 0.11∗∗ −0.47± 0.08∗∗ −0.27± 0.09 0.38± 0.04∗∗∗

ESM-IF 0.06± 0.04 −0.27± 0.02∗∗∗ 0.09± 0.10 −0.28± 0.10 −0.53± 0.09∗∗ −0.31± 0.12 0.42± 0.06∗∗∗

IgBlend 0.40± 0.02∗∗∗ 0.21± 0.02∗∗∗ 0.54± 0.06∗∗∗ −0.39± 0.09 −0.35± 0.08 −0.01± 0.09 0.31± 0.05∗∗∗

Diffusion

AbX 0.28± 0.04∗∗∗ 0.19± 0.09∗∗∗ NA NA NA 0.03± 0.00 0.08± 0.02
DiffAb 0.34± 0.01∗∗∗ 0.21± 0.01∗∗∗ 0.21± 0.04 −0.24± 0.04 −0.14± 0.10 −0.07± 0.07 0.22± 0.02∗

DiffAbXL-H3-DN 0.49± 0.00∗∗∗ 0.05± 0.01 0.52± 0.01∗∗ 0.23± 0.05 −0.08± 0.06 −0.22± 0.02 0.37± 0.02∗∗

DiffAbXL-H3-SG 0.48± 0.00∗∗∗ 0.02± 0.00 0.40± 0.01∗ 0.06± 0.08 −0.41± 0.01∗ −0.30± 0.04 0.29± 0.00∗∗

DiffAbXL-A-DN 0.43± 0.00∗∗∗ 0.22± 0.00∗∗∗ 0.62± 0.01∗∗ −0.79± 0.01∗∗∗ 0.37± 0.07∗ −0.11± 0.01 0.41± 0.00∗∗

DiffAbXL-A-SG 0.46± 0.00∗∗∗ 0.22± 0.00∗∗∗ 0.64± 0.01∗∗∗ −0.80± 0.01∗∗∗ −0.38± 0.01 −0.02± 0.00 0.43± 0.00∗∗∗

learning model with mutations across all six CDRs. Finally, we use qAC50 measurements for
Target-1 and KD for Target-2. For both targets, we used their crystal structures for models that
require structure.

4.2 Models

We utilized a variety of baseline models from the literature, categorized by protein vs. antibody design,
modeling approach, and input modality. For protein-based models, we included ESM [Rives et al.,
2021], a sequence-only LLM model, and ESM-IF [Hsu et al., 2022], an inverse folding model. For
antibody-specific models, we employed several sequence-only LLM models, including Ablang [Olsen
et al., 2022b], Ablang2 [Olsen et al., 2024], and AntiBERTy [Ruffolo et al., 2021]. We also included
IgBlend, an LLM that integrates both sequence and structural information for antibody and nanobody
design. In the graph-based category, we evaluated MEAN [Kong et al., 2022], and dyMEAN [Kong
et al., 2023], which use sequence-structure co-design for antibodies. Among diffusion-based models,
we included AbX [Zhu et al.], DiffAb [Luo et al., 2022] and our scaled version, DiffAbXL, all of
which utilize sequence-structure co-design. Lastly, we assessed Antifold [Høie et al., 2023], an
inverse folding model for antibodies.

4.3 Results

We evaluated a broad range of generative models, including LLM-based, diffusion-based, and graph-
based models, on seven real-world datasets. The datasets measured binding affinity in terms of
KD, qAC50, or IC50. Our primary goal was to assess the correlation between the models’ log-
likelihoods and the experimentally measured binding affinities. The results are summarized in Table 1
for Spearman and Table 3 of the Appendix for Kendall correlations respectively. Across our extensive
experiments, several key observations emerged.

First, all generative models trained on antibody and/or protein data exhibited a degree of correlation
between their log-likelihoods and binding affinity, although the strength of this correlation varied
among models (see Table 1 in the main paper and Table 3 in Appendix). This consistent relationship
between likelihood and affinity suggests that these models are capturing relevant aspects of antibody
design, even when they were not specifically trained to design the libraries evaluated in this study.
This is a crucial finding, as it demonstrates that the models generalize to unseen targets with varying
success rates. However, we note that in cases where the target is entirely out of the model’s training
distribution, the correlation may diminish or disappear.

Second, the models’ log-likelihood scores retain predictive power even when synthetic structures are
used as input, as demonstrated with the Nature HEL, HER2, and IL7 datasets in Table 1.

Third, for models capable of leveraging epitope information, such as DiffAbXL, we observed only
slight variations in correlation when experiments were repeated with and without the antigen as input
(see Table 5 in the Appendix). This suggests that including antigen information may not substantially
enhance the predictive performance of these models in certain cases. Moreover, structure-based
models seem to perform better at ranking than sequence-based models, highlighting the importance
of modeling structural information in antibody design.
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Fourth, we observed that a model trained specifically to redesign the HCDR3 region of the antibody
(i.e., DiffAbXL-H3) is capable of evaluating sequences with mutations outside the HCDR3 region
and demonstrates a strong correlation with measured binding affinity.

Fifth, models primarily trained on one type of data (e.g., proteins or antibodies) can effectively
evaluate sequences from a different data type (e.g., nanobodies in Nature HEL), showing a strong
correlation with experimentally measured binding affinity.

Sixth, we observed strong negative correlations in some experiments involving few targets, particularly
when the binding affinity is measured in terms of IC50 and qAC50 (see Nature HER2 and AZ
Target-1 results in Table 1). The reasons for these negative correlations are not fully understood,
indicating that the relationship between log-likelihood scores and binding affinity may be more
complex in these scenarios and warrants further investigation.

Seventh, it is important to note that success in established in silico metrics does not necessarily
translate to better correlation with experimentally measured binding affinities. A notable example is
the comparison between AbX and DiffAb, where AbX demonstrates stronger performance across
several in silico metrics (see Table-1 in [Zhu et al.]). However, DiffAb exhibits a better correlation
with the actual binding affinity measurements in our analysis (see Table-1). This discrepancy suggests
that while in silico metrics may capture certain aspects of antibody properties, they do not always
align with the true binding affinity, which highlights the challenges in fully replicating biological
complexity through computational metrics alone.

Finally, among the evaluated models, the scaled diffusion model, DiffAbXL, consistently outper-
formed others across most datasets, demonstrating the highest correlation between log-likelihood and
binding affinity (see Figure 2 and Table 1). Notably, when comparing the original DiffAb model to its
scaled counterpart DiffAbXL, we observed a significant improvement in performance, highlighting
the impact of training the diffusion model on a much larger synthetic dataset. This scaling effect
underscores the importance of data diversity and volume in enhancing model generalization and
accuracy in predicting binding affinity. As models are trained on larger and more diverse datasets, the
correlation between log-likelihood scores and experimental affinity measurements becomes more
pronounced, suggesting that scaling is a key factor in improving predictive power for antibody design.

5 Conclusion

In this work, we demonstrated that log-likelihood scores from generative models can reliably rank
antibody sequence designs based on binding affinity. By benchmarking a diverse set of mod-
els—including LLM-based, diffusion-based, and graph-based approaches—across seven real-world
datasets, we found consistent correlations between log-likelihood and experimentally measured
affinities. The scaled diffusion model, DiffAbXL, particularly stood out by outperforming other
models, highlighting the benefits of training on large and diverse datasets. Our findings underscore the
potential of generative models not just in designing viable antibody candidates but also in effectively
prioritizing them for experimental validation. The ability of structure-based models to outperform
sequence-based ones emphasizes the importance of incorporating structural information in antibody
design. Areas for further investigation include understanding the negative correlations observed
in certain datasets, especially those involving IC50 and qAC50 measurements. This suggests that
the relationship between log-likelihood scores and binding affinity can be complex and may vary
depending on the target or measurement method. Future work should explore these nuances to refine
predictive models and improve ranking accuracy. Overall, our study provides a practical framework
for leveraging generative models in antibody engineering, potentially accelerating the discovery and
development of next-generation therapeutic antibodies.
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A Appendix

A.1 DiffAbXL Model Parameters

Table 2: Summary of the DiffAbXL
Module Name Description # Layers Activation Functions Embedding Dim. Other Parameters

DiffAbXL

ResidueEmbedding 4 ReLU 128 -
PairEmbedding 3 ReLU 64 -

EpsilonNet
ResidueEncoder 2 ReLU 128 -
ResPairformer 6 ReLU 128 -

Prediction head 3 ReLU
Softmax 128 -

ResPairformer Attention-based encoder 6 ReLU 128 -

ResPairBlock Attention & projection layers - ReLU 128
num_heads=12

q_dim=32
v_dim=32

A.2 Optimisation

The model was trained using the AdamW optimizer with an initial learning rate of 1× 10−4, utilizing
32-bit floating-point precision for numerical computations. A ReduceLROnPlateau learning rate
scheduler was employed, configured with a reduction factor of 0.8, patience of 1 epoch, and a
minimum learning rate of 1× 10−5. Training was conducted over 10 epochs with a batch size of 8,
utilizing 8 NVIDIA A100 GPUs.

A.3 Pseudocode for computing correlations and their variance

Algorithm 1: Compute Correlations and Their Variance
Input: Number of samples N = 10, Evaluation data loader D, Model M
Initialize empty lists for Spearman and Kendall correlations;
for seed from 1 to N do

Set random seed using seed;
// Prepare to collect data for this seed
Initialize empty lists for sequences, log probabilities, and labels;
for each (batch, label) in D do

Initialize empty list for log probabilities;
// Collect log probabilities for 100 samples
for i from 1 to 100 do

// Compute the log probability for the batch
log probabilityi ←M.get_log_probs(batch);
Append log probabilityi to the list of log probabilities;

// Average the log probabilities
Compute average log probability over 100 samples for the batch:;
avg_log_probability← 1

100

∑100
i=1 log probabilityi;

// Get the actual sequences
Extract sequence tokens from batch;
// Store data for later computation
Append sequence tokens, average log probabilities, and labels to their respective lists;

Compute total log-likelihoods using sequences and average log probabilities;
Compute Spearman correlation between total log-likelihoods and labels;
Compute Kendall’s Tau between total log-likelihoods and labels;
Append correlations to their respective lists;

// Aggregate across seeds
Compute mean and standard deviation of Spearman correlations;
Compute mean and standard deviation of Kendall correlations;
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A.4 The results for Kendall correlation

Table 3: Summary of the results for Kendall correlation. Abbreviations: DN: De Novo mode, SG:
Structure Guidance mode, NA: Epitope or complex structure required, but not available. *, **, ***
indicate p-values under 0.05, 0.01 and 1e-4 respectively.

Approach Model
Dataset

Absci HER2 Nature AZ
Zero Shot (KD) Control (KD) HEL (KD) IL7 (IC50) HER2 (KD) Target-1 (qAC50) Target-2 (KD)

Graph MEAN 0.24± 0.00∗∗∗ −0.03± 0.00 0.18± 0.00 −0.38± 0.00∗ 0.01± 0.00 −0.26± 0.00 0.03± 0.00
dyMEAN 0.25± 0.00∗∗∗ 0.10± 0.00∗∗ NA NA NA −0.11± 0.00 0.02± 0.00

LLM

IgBlend (seq. only) 0.18± 0.02∗∗∗ 0.02± 0.01 −0.07± 0.04 −0.63± 0.04∗∗∗ −0.06± 0.07 0.06± 0.07 0.27± 0.04∗∗∗

AbLang 0.20± 0.02∗∗∗ 0.02± 0.01 0.14± 0.05 −0.65± 0.05∗∗∗ −0.09± 0.06 0.06± 0.06 0.26± 0.04∗∗∗

AbLang2 0.19± 0.02∗∗∗ 0.01± 0.01 0.22± 0.05 −0.65± 0.06∗∗∗ −0.06± 0.08 0.06± 0.04 0.26± 0.04∗∗∗

AntiBERTy 0.17± 0.02∗∗∗ −0.00± 0.02 0.04± 0.08 −0.65± 0.04∗∗∗ −0.14± 0.10 0.06± 0.08 0.26± 0.04∗∗∗

ESM 0.19± 0.03∗∗∗ 0.01± 0.01 0.18± 0.05 −0.10± 0.07 0.13± 0.08 0.01± 0.08 0.20± 0.03∗∗

Inverse Folding Antifold 0.29± 0.02∗∗∗ 0.15± 0.01∗∗∗ 0.32± 0.06∗∗ −0.37± 0.08∗∗ −0.32± 0.06∗∗ −0.19± 0.06 0.28± 0.03∗∗∗

ESM-IF 0.04± 0.02 −0.18± 0.01∗∗∗ 0.07± 0.08 −0.18± 0.07∗∗∗ −0.40± 0.07 −0.24± 0.08∗∗∗ 0.30± 0.03∗∗∗

IgBlend 0.27± 0.02∗∗∗ 0.13± 0.01∗∗∗ 0.42± 0.05∗∗∗ −0.23± 0.07 −0.25± 0.06 −0.01± 0.06 0.22± 0.04∗

Diffusion

AbX 0.19± 0.04∗∗∗ 0.12± 0.06∗∗∗ NA NA NA 0.01± 0.00 0.06± 0.01
DiffAb 0.23± 0.01∗∗∗ 0.14± 0.00∗∗∗ 0.16± 0.03 −0.16± 0.03 −0.11± 0.07 −0.07± 0.04 0.16± 0.01∗

DiffAbXL-H3-DN 0.34± 0.00∗∗∗ 0.03± 0.01 0.39± 0.01∗∗ 0.12± 0.03 −0.06± 0.04 −0.15± 0.02 0.25± 0.01∗∗

DiffAbXL-H3-SG 0.34± 0.00∗∗∗ 0.02± 0.00 0.32± 0.01∗ 0.06± 0.03 −0.29± 0.01∗ −0.19± 0.03 0.21± 0.00∗∗

DiffAbXL-A-DN 0.29± 0.00∗∗∗ 0.15± 0.00∗∗∗ 0.47± 0.01∗∗ −0.60± 0.01∗∗∗ 0.28± 0.06∗ −0.09± 0.01 0.30± 0.00∗∗

DiffAbXL-A-SG 0.31± 0.00∗∗∗ 0.15± 0.00∗∗∗ 0.52± 0.01∗∗∗ −0.60± 0.02∗∗∗ −0.27± 0.01 −0.02± 0.01 0.32± 0.00∗∗∗

A.5 Details of Predicted Structures

Table 4: Prediction errors for different regions of the parental nanobody used for Nature HEL and
two parental antibodies used for HER2 and IL7 respectively.

Region Prediction Error
Nature HEL (Nanobody) Nature HER2 (Antibody) Nature IL7 (Antibody)

Framework H-chain 0.87 0.36 0.37
HCDR1 1.61 0.27 0.38
HCDR2 1.57 0.36 0.72
HCDR3 2.82 1.35 2.1
Framework L-chain - 0.38 0.4
LCDR1 - 0.51 0.92
LCDR2 - 0.28 0.55
LCDR3 - 0.30 0.91

A.6 The Effect of Incorporating Antigen Information

Table 5: Comparison of the results with and without the antigen for Spearman correlations. Abbrevia-
tions: DN: De Novo mode, SG: Structure Guidance mode.

Correlation Model Antigen
Dataset

Absci HER2 Nature AZ
Zero Shot (KD) Control (KD) HEL (KD) IL7 (IC50) HER2 (KD) Target-1 (qAC50) Target-2 (KD)

Spearman

DiffAbXL-H3-DN Yes 0.49± 0.00 0.05± 0.01 0.52± 0.01 0.23± 0.05 −0.08± 0.06 −0.22± 0.02 0.37± 0.02
No 0.50± 0.00 −0.07± 0.01 0.52± 0.01 0.23± 0.05 −0.08± 0.06 −0.33± 0.05 0.35± 0.01

DiffAbXL-H3-SG Yes 0.48± 0.00 0.02± 0.00 0.40± 0.01 0.06± 0.08 −0.41± 0.01 −0.30± 0.04 0.29± 0.00
No 0.48± 0.00 −0.02± 0.01 0.40± 0.01 0.06± 0.04 −0.41± 0.01 −0.45± 0.03 0.29± 0.01

DiffAbXL-A-DN Yes 0.43± 0.00 0.22± 0.00 0.62± 0.01 −0.79± 0.01 0.37± 0.07 −0.11± 0.01 0.41± 0.00
No 0.47± 0.00 0.24± 0.00 0.62± 0.01 −0.80± 0.01 0.37± 0.07 −0.09± 0.00 0.31± 0.02

DiffAbXL-A-SG Yes 0.46± 0.00 0.22± 0.00 0.64± 0.01 −0.80± 0.01 −0.38± 0.01 −0.02± 0.00 0.43± 0.00
No 0.45± 0.00 0.25± 0.00 0.64± 0.01 −0.80± 0.01 −0.38± 0.01 −0.09± 0.00 0.41± 0.00

Kendall

DiffAbXL-H3-DN Yes 0.34± 0.00 0.03± 0.01 0.39± 0.01 0.12± 0.03 −0.06± 0.04 −0.15± 0.02 0.25± 0.01
No 0.35± 0.00 −0.04± 0.01 0.39± 0.01 0.12± 0.03 −0.06± 0.04 −0.25± 0.03 0.25± 0.01

DiffAbXL-H3-SG Yes 0.34± 0.00 0.02± 0.00 0.32± 0.01 0.06± 0.03 −0.29± 0.01 −0.19± 0.03 0.21± 0.00
No 0.34± 0.00 −0.01± 0.00 0.32± 0.01 0.06± 0.03 −0.29± 0.01 −0.28± 0.03 0.21± 0.01

DiffAbXL-A-DN Yes 0.29± 0.00 0.15± 0.00 0.47± 0.01 −0.60± 0.01 0.28± 0.06 −0.09± 0.01 0.30± 0.00
No 0.32± 0.00 0.16± 0.00 0.47± 0.01 −0.60± 0.01 0.28± 0.06 −0.11± 0.00 0.22± 0.01

DiffAbXL-A-SG Yes 0.31± 0.00 0.15± 0.00 0.52± 0.01 −0.60± 0.02 −0.27± 0.01 −0.02± 0.01 0.32± 0.00
No 0.30± 0.00 0.17± 0.00 0.52± 0.01 −0.60± 0.02 −0.27± 0.01 −0.10± 0.00 0.30± 0.00

A.7 Model Inference Details

Below are key considerations and limitations encountered when benchmarking certain models on the
binding affinity datasets.

Availability of Antibody-Antigen Complex Information Some models, such as dyMEAN and
AbX, require specific input information—dyMEAN needs the epitope location, while AbX requires
a bound antibody-antigen structure. Since this information was unavailable in the Nature datasets,
these models could not be benchmarked on those datasets.
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Multi-CDR Inference Models such as DiffAb and dyMEAN offer checkpoints that support the
simultaneous generation of multiple CDRs, which were used for datasets involving modifications
to more than one CDR. However, MEAN was trained exclusively on HCDR3 and its inference API
only supports generating one HCDR at a time. To allow for fair comparison with other models, we
modified MEAN’s inference code to enable the simultaneous masking of multiple CDRs during
generation. This modification, however, may have affected the model’s correlation with binding
affinity for datasets involving multiple CDR modifications.
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