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Abstract

How do we predict others from patterns in their behavior
and what are the computational constraints that limit this
ability? We investigate these questions by modeling hu-
man behavior over repeated games of rock, paper, scis-
sors from Brockbank & Vul (2024). Against algorithmic
opponents that varied in strategic sophistication, peo-
ple readily exploit simple transition patterns (e.g., con-
sistently playing rock after paper) but struggle to detect
more complex sequential dependencies. To understand
the cognitive mechanisms underlying these abilities and
their limitations, we deploy Hypothetical Minds (HM), a
large language model-based agent that generates and
tests hypotheses about opponent strategies, as a cog-
nitive model of this behavior (Cross et al., 2024). We
show that when applied to the same experimental condi-
tions, HM closely mirrors human performance patterns,
succeeding and failing in similar ways. To better un-
derstand the source of HWI’s failures and whether peo-
ple might face similar cognitive bottlenecks in this con-
text, we performed a series of ablations and augmenta-
tions targeting different components of the system. When
provided with natural language descriptions of the oppo-
nents’ strategies, HM successfully exploited 6/7 bot op-
ponents with win rates >80% suggesting that accurate
hypothesis generation is the primary cognitive bottleneck
in this task. Further, by systematically manipulating the
model’s hypotheses through pedagogically-inspired in-
terventions, we find that the model substantially updates
its causal understanding of opponent behavior, reveal-
ing how model-based analyses can produce testable hy-
potheses about human cognition.

Keywords: theory of mind; pattern learning; social reasoning;
large language models; rock, paper, scissors

Introduction

The ability to predict others’ behavior is central to social inter-
action (FeldmanHall & Shenhav, 2019; FeldmanHall & Nas-
sar, 2021; Tamir & Thornton, 2018). To make these pre-
dictions, humans deploy sophisticated cognitive processes,
called Theory of Mind (ToM), that infer the hidden causes
underlying observed actions (Ho et al., 2022; Baker et al.,
2017). In both collaborative and competitive interactions, hu-
mans make a broad suite of predictive inferences about the
hidden mental states of other intentional agents, such as their
motives (van Baar et al., 2022; Ullman et al., 2009; Wu et

al., 2023), strategies (Kleiman-Weiner et al., 2016), compe-
tence (Y. Xiang et al., 2023), and emotions (Ong et al., 2019).
This socially predictive machinery also learns the statistical
regularities of other people’s behavior, such as the transition
probabilities between common activities or emotional states
(Thornton & Tamir, 2017, 2021).

How do we learn a predictive model of others from struc-
tured patterns in their past behavior? In controlled settings,
researchers have investigated this question with iterated eco-
nomic games (Allen et al., 2024; Camerer, 2011). In partic-
ular, rock, paper, scissors (RPS) has emerged as a “model
system” for studying how people detect sequential patterns
in others’ behavior (Guennouni & Speekenbrink, 2022; Brock-
bank & Vul, 2021, 2024; Zhang et al., 2021). First, the game
requires minimal expertise—instead, a player’s success is a
function of their ability to identify exploitable patterns in an op-
ponent’s play while avoiding such patterns in their own moves.
Since the Nash Equilibrium is random behavior (Morgenstern
& Neumann, 1953; Nash, 1950), the only way to perform
better than chance is to exploit non-random dependencies
in opponent’s moves. Thus, a player's outcomes directly re-
flect their ability to acquire a strong predictive model of their
opponent. Also, the sequential dependencies that a player
might exploit in their opponent—can be precisely character-
ized (Dyson, 2019; Brockbank & Vul, 2021), allowing for fine-
grained description of the strategic inferences a player makes
about their opponent.

Research exploring the ability to predict and adapt to an op-
ponent in the RPS game often pits human participants against
algorithmic opponents that systematically vary in sequential
dependencies dictating their actions (Dyson, 2019; Brockbank
& Vul, 2021). This work shows that people exploit simple se-
quential patterns but exhibit limitations in adapting to more
complex dependencies (Brockbank & Vul, 2024; Guennouni
& Speekenbrink, 2022; Zhang et al., 2021; Forder & Dyson,
2016), consistent with domain-general challenges of adap-
tive adversarial reasoning (Guennouni & Speekenbrink, 2022;
Batzilis et al., 2019; Stéttinger et al., 2014). Several mech-
anisms could explain these limitations. For instance, people
may fail to consider unintuitive patterns (“hypothesis genera-
tion”). Alternatively, people may be unable to accurately con-
firm patterns in their opponent’s moves due to the difficulty of
reasoning in this context (“hypothesis evaluation”). Or, it may
be that people struggle to plan the right move given knowl-
edge of their opponent’s strategy.

To better disentangle the role that these distinct processes
play in identifying and exploiting structured opponent behav-



ior, we deploy the large language model (LLM) agent Hypo-
thetical Minds (HM) as a cognitive model of strategic decision
making in this task (Cross et al., 2024). We model human
RPS data from Brockbank & Vul (2024), in which people failed
to adapt to complex sequential patterns in opponent behavior.
This approach allows us to test a broad range of hypotheses
about the bottlenecks that impact opponent prediction in this
setting. HM addresses the challenge of inferring other agents
intentions’ and adapting to them, and the components it re-
lies on to do this are domain-general and do not require a
pre-specified encoding of the problem space (other than the
natural language explanation of the task), allowing it to be ap-
plied to a diverse set of collaborative, adversarial, and mixed-
motive domains (Cross et al., 2024). In the RPS setting, HM
generates and evaluates different hypotheses about the op-
ponent’s strategy in natural language, allowing the agent to
act adaptively given the best explanation of the opponent’s
moves. Given that the space of possible opponent strategies
is vast and unbounded, natural language provides a useful,
domain-general parameterization for modeling human reason-
ing in this extensive hypothesis space.

In the first part of the paper, we show that the HM model is
able to capture the pattern of selective adaption to simple but
not complex RPS opponents exhibited by humans in Brock-
bank & Vul (2024). Critically, we show that this correspon-
dence relies on the model’s Theory of Mind component (i.e.,
it does not emerge from LLMs alone), suggesting that ToM in-
ference about an opponent is key to capturing patterns of hu-
man behavior and that the model’s approach to doing so offers
a reasonable approximation of similar processes in humans.
Next, we use the correspondence between model and human
behavior to test a number of different manipulations that might
impact performance in the current task. We show that the
model’s success in the task is fundamentally constrained by
the hypothesis generation processes; given an accurate de-
scription of the opponent’s strategy or the opportunity to iden-
tify the true strategy from a larger set, it performs close to
ceiling against all but the most complex opponent that is dif-
ficult to predict from language based reasoning alone. Next,
we demonstrate that the hypothesis generation bottleneck is
not resolved by merely taking more samples or sampling more
widely from the existing distribution; rather, enabling the model
to succeed requires altering the model’s distribution over pos-
sible opponent strategies to consider entirely new hypotheses.
In this way, “teaching” the model to think about the problem in
different ways enables it to learn patterns in opponent behav-
ior that it previously failed to recognize.

Methods
Experimental Data

We analyzed data from Brockbank & Vul (2024), in which
participants played rock, paper, scissors against algorithmic
opponents exhibiting different sequential patterns. In each
round, participants selected one of three moves (rock, paper,
or scissors) and received points based on the game’s stan-

dard payoff structure: winning yielded 3 points, ties yielded
0 points, and losses yielded —1 points. Each participant
(N=218) played 300 rounds against one of seven bot oppo-
nents. After 300 rounds, participants were asked to describe
their opponent’s strategy.

The bot opponents chose moves according to different se-
quential dependencies with 90% probability. These sequential
dependencies increased in complexity based on the number
of previous events required to predict the bot’s move.

Previous move dependencies: Four bots based their
moves on either their own or their opponent’s previous move.
We define three types of transitions between consecutive RPS
moves A and B as illustrated in Figure 1: (1) a positive tran-
sition (+) occurs when move B beats move A (rock—paper,
paper—scissors, scissors—rock), (2) a negative transition
(-) occurs when move B loses to move A (rock—rscissors,
paper—rock, scissors—paper), and (3) a stay transition (0)
occurs when move B is identical to move A. These tran-
sition types can be applied to both an agent’'s own moves
(self-transitions) or in relation to an opponent’s previous move
(opponent-transitions), forming the basis for the sequential de-
pendencies in our algorithmic opponents:

* Self-transition(+): Moves that would beat their previous
move

* Self-transition(—): Moves that would lose to their previous
move

* Opponent-transition(+): Moves that would beat the oppo-
nent’s previous move

* Opponent-transition(0): Repeating the opponent’s previous
move

Previous outcome dependencies: Two bots favored dif-
ferent transitions after a win, loss, or tie:

* Previous outcome(WOL+ T —): Stay transitions after wins,
positive transitions after losses, negative after ties

* Previous outcome(W + L — T0): Positive transitions after
wins, negative after losses, stay after ties

Previous outcome & transition dependencies: One bot
(Previous outcome, previous transition) chose moves based
on both the previous outcome and its previous transition.

Hypothetical Minds Architecture

We adapted the Hypothetical Minds architecture from Cross
et al. (2024). The model consists of three primary compo-
nents: Memory, Theory of Mind Module, and Decision Reflec-
tion (Figure 1). The Memory component maintains a log of
agent plays, opponent plays, and rewards in each previous
round. This information serves as input to both the Theory of
Mind module and the Decision Reflection component.

The Theory of Mind (ToM) module implements a natural lan-
guage approximation of Bayesian inference over latent vari-
ables to model other agents’ behavior in a conceptually analo-
gous way as Bayesian inverse planning (Baker et al., 2009). In
multi-agent environments such as RPS, other agents’ actions
are influenced by latent variables ® = 0y,...,0,, (strategies,
competence levels, etc.) that must be inferred from partial ob-
servations. The ToM module performs this inference through
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Figure 1: Architecture of Hypothetical Minds and Sequential algorithmic opponents.

two components: Hypothesis Generation where we prompt
the LLM to generate natural language hypotheses represent-
ing beliefs about the latent variables #; = p(®), and Hypoth-
esis Evaluation that scores each hypothesis based on how
accurately the hypothesis predicts future behavior. The model
selects the best hypothesis 4* by approximating the Maximum
a Posteriori (MAP) estimation:

hi)p(h;
* = arg max p(hi|a) = arg max 2)PU)
hie s mes  p(a)

where p(a|h;) is the likelihood of observing action sequence
a=[aj,ay,...,a] given hypothesis h;, p(h;) is the prior prob-
ability of hypothesis %;, and p(a) is the marginal probability of
the observed actions (constant across hypotheses).
Hypothesis Generation uses an LLM to produce hypothe-
ses about opponents’ strategies (e.g., “opponent counters
my previous move”) based on memory of past interactions.
This process implicitly incorporates prior knowledge p(h;)
through both the background knowledge in the LLM’s pre-
trained weights, and a refinement mechanism that presents
top-valued hypotheses to the LLM when generating new ones.
Hypothesis Evaluation approximates the likelihood func-
tion p(a|h;) by scoring hypotheses based on prediction accu-
racy. For each round, the model: 1. Selects the top 5 hy-
potheses with highest current values (where top_h is a con-
figurable hyperparameter), 2. queries the LLM to predict the
opponent’s next move given each hypothesis and 3. updates
hypothesis values after observing the opponent’s actual move.
Hypotheses are valued by calculating recency-weighted pre-
diction accuracy using a reinforcement learning update rule
since agents can change their strategies in dynamic settings
(Rescorla, 1972; Daw & Tobler, 2014). Let hypothesis &; gen-
erate a prediction a; for the opponent’s next move. After ob-
serving the actual move a, we calculate an intrinsic reward:

{+1
Iy =
1

The value of hypothesis 4; is then updated via reward pre-

ifdi =a
if&,-;éa

diction errors:
Vhi — Vh,- +o- (I’,’ _Vhi)

where a0 = 0.3 is the learning rate that determines how much
recent predictions influence the hypothesis value. This up-
date rule ensures that values remain bounded in [-1, 1], with
repeated successful predictions pushing values toward 1.

A hypothesis becomes “validated” when its score exceeds
threshold V;;,, = 0.7, a value typically obtained after three
consecutive correct predictions or 85% prediction accuracy.
This ensures that the model only considers reasonably accu-
rate hypotheses; however, performance is not sensitive to this
value (Cross et al., 2024). Once validated, the hypothesis is
used for decision-making without generating new hypotheses
until its score falls below threshold. If no hypothesis meets the
threshold, the last generated hypothesis is used by default.

This approach allows the ToM module to maintain and
evaluate multiple competing hypotheses about other agents’
strategies, select the most probable explanation for observed
behavior, and adapt as agents’ strategies change over time.

The Decision Reflection component takes the best hy-
pothesis (either the validated hypothesis or the most recently
generated one) and uses chain-of-thought reasoning (Wei et
al., 2022) to determine what it thinks its opponent will play
and determines what the optimal response should be (see
prompts in Supplementary Material). This component con-
ditions its reasoning on both the memory of past interactions
and the selected hypothesis about the opponent’s strategy. Fi-
nally, this component prompts the LLM to generate its next
move (rock, paper, or scissors) based on its chain-of-thought
reflection (Yao et al., 2022). This prompt is also used in hy-
pothesis validation to elicit predictions of the opponent’s next
move for counterfactual hypotheses not used in that trial.

Results

Experiment 1: Hypothetical Minds Reproduces
Human Performance Patterns

First, we characterize human performance patterns in this
RPS task, which will serve as the empirical foundation for
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Figure 2: Human performance against sequential opponents.
Error bars represent bootstrapped 95% confidence intervals.

our cognitive modeling. Humans demonstrated a clear pat-
tern of success in detecting and exploiting sequential pat-
terns, with performance varying systematically with pattern
complexity. Against bots using simple transition rules, par-
ticipants achieved strong performance, with win rates ranging
from 57.9-66.5%. These rates significantly exceeded chance

levels (33%) across all four transition-based strategies (all p

< .001). Learning trajectories reinforced this pattern. With

transition-based bots, participants quickly discovered and ex-
ploited the underlying patterns, maintaining high performance
throughout most trials.

Meanwhile, performance was dramatically worse against
more complex opponents. Against bots that conditioned their
transitions on previous game outcomes, participants showed
only modest success, with win rates of 41.3% and 39.7%
for the two outcome-dependent strategies. While still statisti-
cally above chance (p < .005), these win rates were substan-
tially lower than those achieved against the simpler transition-
based opponents. Finally, participants failed to perform above
chance against the most complex bot, which combined out-
come and previous transition dependencies (34.1%, p = .30).

Having characterized human performance patterns, we
next examine whether Hypothetical Minds can capture these
patterns through comparison with baseline LLM architec-
tures and a GPT-40 backbone. We include a set of base-
lines/ablations of our model (see Figure 8 in Supplement for
depictions of architectures):

* No Hypothesis Evaluation. We ablate hypothesis evalu-
ation by not computing values for previously generated hy-
potheses; therefore a hypothesis cannot be validated and
subsequently used to accurately anticipate the opponent’s
next move. Also, we do not show high-valued hypotheses
in the prompt such that the LLM can refine good guesses.
Thus, every round the agent generates a new hypothesis
from scratch and uses it for planning its next move.

* ReAct produces chain-of-thought (CoT) reasoning before
asking the LLM to take an action to separate reasoning from
acting (Yao et al., 2022). In this context, this corresponds to
an ablation of the ToM module (no hypothesis generation or
evaluation). With solely the decision reflection, the agent is

prompted to use chain-of-thought reasoning to think about

its next move given the history of past rounds.

* Base LLM. Prompts the LLM to play without any CoT, ab-
lating the decision reflection.

The Hypothetical Minds model corresponds closely with
human performance across 6/7 opponent types (Figure 3),
achieving the closest set of win rates to human participants
in L? distance (0.527) compared to baselines (Table 2; No
Hypothesis Evaluation: 0.736, ReAct: 0.936, and Base LLM:
0.911). Like humans, it achieves high win rates (74-77%)
against simple transition-dependent strategies while showing
similar limitations with the more complex patterns. Both hu-
mans and our model achieved only modest success above
chance against bots using outcome-dependent strategies,
while performance dropped to chance levels against the most
complex bot combining outcome and transition dependencies.

We also conducted a comparison of learning trajectories.
In addition to similarity of episode-level win-rates, Table 2
presents two learning metrics: trajectory [? distance (captur-
ing the similarity of win rates across time in bins of 10 rounds),
and trajectory correlation (measuring the directional alignment
of learning trends). HM maintained significantly better align-
ment with human learning patterns (trajectory 2= 2.95) than
alternatives. HM also showed positive trajectory correlation
with human data (r = 0.38) whereas baselines without proper
hypothesis evaluation or theory of mind components showed
negative or near-zero correlations. This correspondence be-
tween human and model performance—spanning both suc-
cesses, failures, and learning curves—suggests Hypothetical
Minds may capture key aspects of the cognitive processes and
limitations underlying human pattern recognition in this task.

The model comparison reveals what is necessary for
human-like sequential pattern recognition. The full Hypotheti-
cal Minds architecture integrates four key components: mem-
ory of past rounds, a Theory of Mind module (with hypothesis
generation and evaluation subcomponents), decision reflec-
tion, and action selection. Our analyses demonstrate that
the Theory of Mind module is particularly crucial—the Re-
Act baseline, which removes this module while maintaining
memory and decision reflection, has win rates of only 14-50%
against simple transition-based opponents. An even simpler
baseline that directly generates moves without CoT (GPT-40
Base LLM) performs at or below chance levels for all but one
of the bots. With hypothesis evaluation ablated, the agent no
longer has memory of past guesses and how predictive those
guesses are about the opponent’s behavior; it must generate
the correct hypothesis anew on every round. This significantly
reduces performance when the correct hypothesis could be
discovered through hypothesis evaluation.

An intriguing anomaly emerges with the
Opponent-transition(0) bot, which simply copies the
player’s previous move. While humans readily detect and
exploit this pattern, the Hypothetical Minds model with a
GPT-40 base LLM struggles. The model frequently gen-
erates incorrect hypotheses that lead to below-chance
performance, often misinterpreting the copying behavior as
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Figure 3: HM baseline model performance. Error bars reflect SEM over 3 seeds.

a strategy like “playing the move that beats my previous
play” (Opponent-transition(+)). Surprisingly, the base LLM
without chain-of-thought is the only variant that performs
above chance against this opponent. This suggests that
the structured reasoning processes we've implemented—
particularly the chain-of-thought prompting—actually impairs
performance on this specific pattern with GPT-40. However,
when using Llama 3 as the base model, Hypothetical Minds
performs well above chance on this opponent (Figure 4). This
indicates that our architecture can potentially achieve strong
performance on all opponents that humans readily exploit,
though this capability depends on the underlying LLM.

Figure 4 depicts how the choice of base language model
affects performance by comparing GPT-40, Llama 3, and
GPT-3.5 as backbones to our cognitive architecture. GPT-40
demonstrated the strongest overall performance and closest
alignment with human behavior patterns, achieving similar win
rates to humans across most opponents. However, the per-
formance patterns of different language models exhibited in-
teresting variation. Llama 3 showed surprisingly strong per-
formance against certain opponents, particularly excelling at
exploiting the Opponent-transition(0) strategy and achieving
above-chance performance against Previous outcome(W +
L—TO0). Yet it struggled with self-transition patterns and more
complex strategies, performing at chance levels like humans.
GPT-3.5 showed the most limited capabilities, only achieving
notable success against the Opponent-transition(+) strategy.
This model also frequently responded with formatting errors.
Thus, the reasoning capabilities of the base model matter;
more powerful LLMs demonstrate better pattern recognition.
We use GPT-40 for the remaining experiments.

For the human data, each participant was asked to describe
their opponent’s strategy after completing all 300 rounds of
play. We conducted a qualitative analysis of these responses
along with HM’s hypotheses, categorizing them according to
whether they correctly identified the underlying sequential de-
pendency type (Self-transition, Opponent-transition) or pro-
posed an alternative out-of-distribution explanation. Table 3
demonstrates some similarities between human and HM hy-

potheses, with both identifying similar pattern types for simple
bots and making comparable misattributions by sometimes in-
ferring random or static strategies when unable to detect the
true underlying pattern. Both humans and HM also produce
out-of-distribution hypotheses that are not easily categorizable
or compressible due to the expressivity of language.

Experiment 2: Is hypothesis search the bottleneck?

Having established that both humans and HM struggle with
complex sequential patterns, we next conducted an experi-
ment to isolate whether the limitation lies in hypothesis gener-
ation, hypothesis evaluation, or move selection. It is possible
that the poor performance stems from difficulty in producing
hypotheses, which requires intuitions aligned to the task. On
the other hand, it may stem from the cognitive demands re-
quired to evaluate hypotheses in light of evidence from the
opponent’s moves. Or, humans and the model may just strug-
gle to exploit the strategies even when they are known. To
dissociate these possibilities, we augment the model with per-
fect knowledge: instead of having to generate and evaluate
hypotheses about opponent behavior, the model receives an
explicit description of the true strategy it faces.

This Give Hypothesis augmentation represents the oppo-
site of an ablation—rather than removing model components
to test their necessity, we replace the Theory of Mind module
with oracle knowledge (see Figure 9 in Supplement for de-
pictions of architecture). If the model can successfully exploit
opponent patterns when given their true description in natu-
ral language, this would suggest that hypothesis search, not
strategy implementation, is the key cognitive bottleneck. Con-
versely, if the model continues to struggle even with perfect
knowledge, this would indicate fundamental limitations in the
ability to exploit complex sequential strategies, regardless of
how they are discovered.

We also created an intermediate augmentation model
called Choose Hypothesis, which provides the agent with a
list of all seven possible hypotheses (Figure 9). The model
then runs hypothesis evaluation as usual, querying the LLM
conditioned on each hypothesis to predict the next action and
scoring them accordingly, with the best hypothesis sent to the



Table 1: Model-Human Similarity
Human- Hyp. NoHyp. ReAct Base
Human Minds Eval. LLM
Win Rate L? 0.17 0.53 0.74 0.94  0.91
Trial bins L2 1.40 2.95 4.27 517 4.96
Trial bins r 0.81 0.38 -0.23 -0.27 -0.02

Metric

Table 2: Similarity between win rates and trajectories of win
rates by time (in bins of 10 trials). Human-Human comparison,
the noise ceiling, computed by splitting participants into two
groups and computing similarity between groups.

decision reflection component. This tests whether the bot-
tleneck is in generating plausible hypotheses or in correctly
evaluating them.

When provided with oracle knowledge of opponent strate-
gies, model performance improved dramatically for most
opponents, reaching win rates above 80% against both
transition-based and outcome-dependent bots. This improve-
ment was particularly notable for the outcome-dependent
strategies, where performance jumped from near-chance lev-
els to consistently high win rates. This suggests that for these
moderately complex patterns, the primary bottleneck lies in
hypothesis search rather than strategy implementation—once
the pattern is known, the model can effectively exploit it.

The “Choose Hypothesis” model performed nearly as well
as the “Give Hypothesis” oracle model, though with slightly
lower performance overall (Figure 5). Both showed substan-
tial improvements over the default Hypothetical Minds model
against the Opponent-transition(0) bot and the two previous
outcome bots, while performance was largely similar against
the transition bots (where HM was already successful). This
result suggests that hypothesis generation is the main cogni-
tive bottleneck for the outcome based opponents; the agent is
given knowledge of the possible strategies or the true strategy,
it quickly converges on the correct hypothesis.

However, both augmentation models continued to strug-
gle with the most complex opponent with previous outcome &
transition dependencies, even when given its true strategy de-
scription. This strategy conditions moves on both the previous
outcome and the opponent’s previous transition type, requir-
ing tracking of multiple contingencies across three time steps.
The strategy’s complexity is evident in its natural language de-
scription when given to the LLM agent, which requires nine
distinct condition-action pairs (compared to three pairs for
the outcome-dependent strategies) totaling 352 words (see
prompts in Supplementary Material). The model’s contin-
ued difficulty even with perfect knowledge suggests that for
highly complex sequential patterns, there are additional bot-
tlenecks beyond hypothesis generation, namely, the cognitive
demands of accurately reasoning about and implementing re-
sponses to multiple nested contingencies.

Experiment 3: Improving hypothesis generation

Increasing the number of hypotheses evaluated doesn’t
improve performance Having identified hypothesis gener-
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Figure 4: LLM comparison

ation as the primary cognitive bottleneck, we next investi-
gated potential mechanisms for improving this process. One
straightforward possibility is that considering more candidate
hypotheses increases the likelihood of discovering the true op-
ponent strategy.

To test this, we manipulated the number of hypotheses
maintained and evaluated by the model. While the model gen-
erates a new hypothesis after each round (299 total across
300 rounds), computational constraints require us to limit how
many hypotheses are actively used for prediction and evalua-
tion. By default, only the top 5 highest-valued hypotheses are
maintained. We systematically varied this parameter (top_h)
to examine its effect on performance.

Results revealed that the critical factor was maintaining
any hypotheses at all, rather than the specific number main-
tained (Figure 6 Top). Performance improved dramatically
when moving from top_h=0 (no hypothesis evaluation, equiv-
alent to the baseline above) to top_h=1, but showed mini-
mal gains with further increases. This suggests that the key
benefit comes from having some memory of past hypotheses,
allowing the model to retain and build upon promising expla-
nations while naturally discarding poor ones (Bramley et al.,
2017; Zhao et al., 2024; Franken et al., 2022). Increasing the
hypothesis pool beyond 5 showed no additional benefit, with
performance remaining relatively flat as top_h increased from
1 to 9. This indicates that the challenge in hypothesis genera-
tion lies not in considering more possibilities, but in generating
the right kinds of hypotheses in the first place.

Wider hypothesis search doesn’t help If considering more
hypotheses doesn’t improve performance, there are two pos-
sible explanations: either the model is searching in the wrong
region of hypothesis space, or its search distribution is too nar-
row. To differentiate between these, we tested whether widen-
ing the search distribution would help by increasing the tem-
perature parameter in our LLM from T=0.2 to T=1.0, which
increases the randomness of generated hypotheses.

This manipulation degraded performance against all five
opponents where Hypothetical Minds originally performed
above chance, while showing no improvement against the op-
ponents it struggles with (Figure 6 Bottom). Additionally, with a
higher temperature, the responses are more prone to format-
ting errors and low quality responses. This result suggests
that the challenge isn’t simply one of widening the distribution
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Figure 5: Augmentations for hypothesis generation and hy-
pothesis evaluation

that the model samples hypotheses from. Rather, the model
appears to be searching in fundamentally incorrect regions of
hypothesis space. The prior knowledge encoded in the LLM—
shaped by its training on natural language data—may not in-
clude the kinds of algorithmic strategies employed by our ar-
tificial opponents, particularly for the more complex patterns.
Similarly, human participants may struggle because these pat-
terns fall outside their prior expectations about strategic be-
havior. The failure of this wider search suggests that the fun-
damental bottleneck lies in having appropriate priors about
possible behavioral patterns.

Verbal Scaffolding Aids Hypothesis Generation If the
challenge lies in having appropriate priors about possible be-
havioral patterns, then restructuring how these patterns are
represented might help align the search space with the true
strategies. This intuition aligns with extensive research on
learning and pedagogy showing that humans benefit from
scaffolding—structured guidance that helps direct attention
to relevant features without explicitly providing answers (Vy-
gotsky, 1978; Wood et al., 1976; Belland, 2014). Just as a
teacher might help students notice patterns in math problems
by highlighting key relationships, we investigated whether pro-
viding verbal scaffolding could guide the model’s hypothesis
search toward more relevant regions of strategy space.

Specifically, we implemented two theoretically-grounded
scaffolding approaches based on cognitive theories of guided
learning. First, we developed Attention Scaffold prompts
that highlight relevant contingencies without revealing the spe-
cific pattern. For example: “There are three different kinds of
transitions a player can make from their last round’s move to
their current move: (defines transitions) Pay particular atten-
tion to whether your opponent’s transition type varies depend-
ing on the previous outcome (win/loss/tie).”

Second, we tested Analogical Scaffold prompts that pro-
vide a structurally similar but non-identical example with a
matched level of abstraction, similar to parallel problems
(Gentner & Hoyos, 2017; Lin & Singh, 2011; Singh, 2008).
These one-shot examples used different contingencies from
those tested to avoid answer provision while activating the
relevant schema. For instance, when testing against a
Previous outcome(WOL + T—) bot, we provided this exam-
ple: “After a win the opponent plays the move that would lose
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Figure 6: Varied number of hypotheses and LLM temperature

to their last round’s move. After a loss the opponent plays the
same move as they did in the last round. After a tie the oppo-
nent plays the move that would beat their last round’s move.”

Figure 7 demonstrates that Attention Scaffold hints signif-
icantly improve performance against the outcome-dependent
bots that were previously bottlenecked by hypothesis gener-
ation, with win rates increasing to 67% and 72%. This scaf-
folding also enhanced performance less dramatically against
the Opponent-transition(0) bot to 47%. Performance re-
mained consistently high for the three opponent types that
Hypothetical Minds already exploited effectively. Providing
Analogical Scaffold information also improved performance,
though less dramatically. Win rates against the outcome-
dependent bots increased to 47% and 58%, and to 38% for
Opponent-transition(0). As with attention-directing hints, per-
formance remained robust for the other transition bots. These
results suggest that the hypothesis space is successfully redi-
rected both by attention to relevant contingencies and by the
availability of appropriate abstract schemas for organizing se-
quential information. The differential effectiveness of the two
scaffolding approaches further indicates that making contin-
gencies salient may be more crucial than providing structural
analogies when the challenge involves detecting complex de-
pendencies in sequential decision-making. This result intro-
duces an intriguing hypothesis about cognition and learning
that can then be tested in humans: that verbal scaffolding
which directs attention to relevant contingencies may help hu-
mans overcome the same pattern recognition limitations ob-
served in our cognitive model.

Discussion

Our findings demonstrate that Hypothetical Minds (HM) re-
produces key features of human performance in iterated
games of rock, paper, scissors, succeeding on simple tran-
sition patterns while struggling with more complex dependen-
cies. This correspondence between human and model be-
havior—spanning both successes and failures—suggests that



[ Humans

[ Hyp. Minds

[ Attention Scaffold
[ Analogical Scaffold

Self Saif Opponent Opponent Previous Previous

transition transition transition transition outcome outcome
) ) (+) ©) (WOL+T-) (W+L-TO)

o
N
R

win rate
I I
3
T
(I D o
[ D
3

=)

Figure 7: Result of scaffolding interventions on hypothesis
generation

HM can model the cognitive processes underlying how people
detect and exploit patterns in sequential decision-making.

However, our finding that HM with GPT-40 struggles with
the Opponent-transition(0) bot—which simply copies its op-
ponent’s previous move—highlights an important limitation for
LLMs as cognitive models. While humans readily detect the
Opponent-transition(0) pattern, the model frequently misinter-
prets this copying behavior, leading to below-chance perfor-
mance. This discrepancy may stem from differences in repre-
sentational space between humans and language models. In-
terestingly, Llama 3 performed well on this pattern, suggesting
the limitation relates to properties of the base LLM rather than
our cognitive architecture. The behavioral differences across
LLM base models may arise from a combination of factors
ranging from pretraining data exposure, posttraining recipes,
and architectural differences. Also, LLMs exhibit sensitivity
to prompt structure and information presentation (Webson &
Pavlick, 2021; Loya et al., 2023; Sclar et al., 2023), sometimes
leading to unexpected failures on seemingly simple tasks de-
spite capturing many aspects of human reasoning.

Our quantitative and qualitative analysis of hypotheses
highlight the ways in which prior knowledge and inductive bi-
ases constrain adaptive learning in both artificial and human
cognition (Binz et al., 2024). Humans exhibit strong priors
about sequential patterns and often fail to infer structures that
deviate from familiar cognitive schemas (Kahn et al., 2018;
Acuna & Schrater, 2008). LLMs are also not fully flexible in-
context learners (Si et al., 2023), as we see here with HM’s
failure to exploit complex bots. Our augmentation and scaf-
folding results point to promising pedagogical approaches to
explore with humans to see if giving strategies or hints sim-
ilarly improves performance for moderately complex bots or
even all bots. Our results suggest that under time-constraints
humans may be similarly bottlenecked when faced with the
most complex bot due to its lengthy list of dependencies and
bounded rationality (Simon, 1972; Lieder & Giriffiths, 2020).
However, this needs to be verified and we hypothesize that
many humans would be able to perform well when given the
hypothesis (and maybe without it) with external tools, higher
motivation, and more time.

The emergence of test-time scaling offers novel opportuni-
ties to evaluate scientific hypotheses about resource rational-

ity with meta chain-of-thought (V. Xiang et al., 2025; Guo et al.,
2025; Muennighoff et al., 2025), test-time verification (Wang
et al,, 2023; Yao et al., 2023), and program synthesis/tool use
(Wong et al., 2023; Li et al., 2025; Kang et al., 2025). HM
implements a form of test-time scaling, similar to best-of-N
selection (Nakano et al., 2021) with verification implemented
by the hypothesis evaluation mechanism. However, our re-
sults suggest that this scaling is limited at the order of magni-
tude tested, as the hypotheses are generated from a narrow
distribution. The refinement method could potentially worsen
diversity by concentrating search around already-explored hy-
potheses. Humans similarly tend to update their hypotheses
locally (Bramley et al., 2017; Zhao et al., 2024; Bramley &
Xu, 2023; Franken et al., 2022). Future work should explore
this tradeoff more explicitly and use curiosity approaches to
increase the diversity of LLM responses (Poesia et al., 2024).

The computational approach taken with HM is distinct from
prior modeling work in sequential decision making paradigms
like rock, paper, scissors (Sepahvand et al., 2014; Rapoport
& Budescu, 1997; West & Lebiere, 2001), yet HM’s cognitive
process has analogs in other domains of computational mod-
eling. For instance, in some learning contexts, both animals
and humans may generate an unbounded number of possible
latent causes of observed data until a satisfactory explana-
tion is found, a phenomenon that has been modeled using
the Chinese restaurant process (Gershman et al., 2015). This
approach explains a range of learning behaviors, including
categorization and Pavlovian conditioning (Anderson, 1991;
Sanborn et al., 2010; Gershman & Niv, 2013). HM likewise
generates and refines hypotheses about the opponent’s strat-
egy until one aligns with observed data. Similarly, Bayesian
inverse planning models propose that humans infer others’
beliefs and goals through a structured probabilistic process
that accounts for a broad array of Theory of Mind capabili-
ties (Baker et al., 2009, 2017; Rusch et al., 2020). Inspired
by these approaches, our model also infers the most likely in-
tentions that explain an agent’s actions, while leveraging the
flexibility and domain generality of an LLM’s representational
space to represent a potentially unbounded list of hypotheses.

The results add to emerging evidence that LLMs can op-
erate as cognitive models, producing accurate task repre-
sentations and outperforming traditional task-specific models
(Binz & Schulz, 2023). Similarly, by integrating in-depth inter-
views with human participants, LLM-based models can repli-
cate human responses in surveys and economic games with
striking fidelity (Park et al., 2024). However, validating LLM-
based cognitive models remains a significant challenge. Re-
cent efforts have developed more rigorous validation frame-
works to assess the alignment between model-generated be-
haviors and human cognition (Vezhnevets et al., 2023). Here,
our primary validation approach involved comparing different
LLM agent architectures to identify the components necessary
for producing human-like behavioral patterns.
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Human Hypotheses

Strategy Type

After a while | realized that if | picked rock, paper, scissors in order |
would either win the round or tie.

Self-transition

rotating through rock paper and scissors when i saw a loop

Self-transition

Initially | clicked randomly. Then, it seemed like my opponent was copy-
ing whatever my last move was, so | cycled between all three choices
in the same order. | noticed that this work 100% of the time, occasion-
ally the opponent would pick something else. However, it worked often
enough that it was by far the best strategy. Perhaps there was some
way of predicting when it would change to something besides what | just
played, but | didn’t care enough to find out. | think | had 600+ points, and
the opponent had -110 or less points by the end

Opponent-
transition

By selecting the same option mostly

None (static bot)

| didn’t really have one. It seemed like the computer was randomly
choosing options.

None (random)

| would push on scissors multiple times so that we would match and | None

then push on rock and most of the time, my opponent would still be on

scissors. Other than that, | just tried to stay random.

Hypothetical Minds Hypotheses Strategy Type

| think my opponent is cycling through paper, rock, and scissors, with
occasional deviations towards scissors

Self-transition

The opponent is cycling through scissors, paper, and rock with occa-
sional deviations by repeating the last move

Self-transition

The opponent follows a reactive strategy, countering my last move with
the move that would beat it, with a preference for paper, especially after |
play rock or scissors. They occasionally mirror my move, leading to ties.

Opponent-
transition

Based on the interaction history, | notice that my opponent has played
paper a significant number of times, especially in the recent rounds. In
fact, in the last 10 rounds, they have played paper 7 times. This suggests
that they may be playing a static bias strategy, favoring paper over rock
and scissors.

None (static bot)

| think my opponent is playing randomly with equal probability for rock,
paper, and scissors

None (random)

The opponent favors playing paper more frequently, with occasional
switches to scissors. They might be using a simple alternating strat-
egy between paper and scissors, with a slight bias towards paper

None

Table 3: Comparison of Human and Hypothetical Minds Hypotheses. Bold strategies are in-distribution of the test set of opponent
strategies. Out-of-distribution (OOD) simple strategies with clear labels are labeled with None (), and OOD complex or other
strategies labeled None.



Hypothesis Generation Prompt

An interaction with the other player has occurred at round step, {last_round_info}.

The total interaction history is: {interaction_history}.

Here are your previous hypotheses about the algorithm your opponent is playing:

{top-hypotheses}.

What is your opponent’s likely policy given their plays? Think step by step about this given the interaction history.

If your previous hypotheses are useful, you can iterate and refine them to get a better explanation of the data observed so far.

If a hypothesis already explains the data very well, then repeat the hypothesis in this response.

They may be playing the same static policy every time, a complex strategy to counter you, or anything in between.

They are not necessarily a smart agent that adapts to your strategy; you are just playing an algorithm.

Are you getting positive or negative reward when playing the same choice?

For example, getting positive reward every time you play rock.

If so, your opponent may be playing a static strategy, and you can exploit this by playing the counter strategy.

Once you have output a hypothesis about your opponent’s strategy with step-by-step reasoning, you can use the hypothesis to
inform your strategy.

In the second part of your response, summarize your hypothesis in a concise message following Python dictionary format,
parsable by ast.literal_eval (), starting with:

Example summary:

"Opponent_strategy’: '’

This summary will be shown to you in the future to help you select the appropriate counter-strategy.
You will be prompted again shortly to select your next play, so do not include that in your response yet.

Decision Reflection Prompt

An interaction with the other player has occurred at round {step}, {self.interaction_history[-1]}.
The total interaction history is: {self.interaction_history}.
You last played: {self.interaction_history[-1]['my_play’]}
You previously guessed that their policy or strategy is: {possible_opponent_strategy}.
High-level strategy Request:
Provide the next high-level strategy for player {self.agent_id}.
Think step by step in parts 1 and 2 about which strategy to select based on the entire interaction history in the following format:
1. ’predicted_opponent_next_play’: Given the above mentioned guess about the opponent’s policy/strategy, and the last action
you played (if their strategy is adaptive, it may not be), what is their likely play in the next round.
2. ’'my_next_play’: Given the opponent’s likely play in the next round, what should your next play be to counter this?
3. In the 3rd part of your response, output the predicted opponent’s next play and your next play as either 'rock’, ‘paper’, or
'scissors’ (use no other string) in following Python dictionary format, parsable by ast.1literal_eval () starting with:
Example response:
1. 'predicted_opponent_next_play’: Given that my opponent is playing a rock policy, | believe their next play will be a rock.
2. ’'my_next_play’: Given that my opponent is playing a rock policy, | believe my next play should be paper.

"predicted_opponent_next_play’: ’'rock’,
"my_next_play’: 'paper’

Give Hypothesis
Hypothesis Mappings
self_transition_up: The opponent plays the move that would beat their last rounds move

self_transition_down: The opponent plays the move that would lose to their last rounds move

opponent_transition_up: The opponent plays the move that would beat their opponents last rounds move



opponent_transition_stay: The opponent plays the same move as their opponents last rounds move

W_stay_L_up_T_down: After a win the opponent plays the same move as they did in the last round. After a loss the opponent
plays the move that would beat their last rounds move. After a tie the opponent plays the move that would lose to their last
rounds move

W_up_L_down_T_stay: After a win the opponent plays the move that would beat their last rounds move. After a loss the opponent
plays the move that would lose to their last rounds move. After a tie the opponent plays the same move as they did in the last
round

prev_outcome._prev_transition: The opponents transition from one round to the next depends on both the previous outcome
(win, lose, or tie) and the previous transition the opponent made.

After a win in which the opponent played the move in the last round that would beat the opponent’s move two rounds ago,
the opponent plays the move that would beat their last rounds move.

After a win in which the opponent played the move in the last round that would lose to the opponent’'s move two rounds ago,
the opponent plays the move that would lose to their last rounds move.

After a win in which the opponent played the same move in the last round as the opponent played two rounds ago, the
opponent plays the same move as they did in the last round.

After a loss in which the opponent played the move in the last round that would beat the opponent’s move two rounds ago,
the opponent plays the same move as they did in the last round.

After a loss in which the opponent played the move in the last round that would lose to the opponent’s move two rounds
ago, the opponent plays the move that would beat their last rounds move.

After a loss in which the opponent played the same move in the last round as the opponent played two rounds ago, the
opponent plays the move that would lose to their last rounds move.

After a tie in which the opponent played the move in the last round that would beat the opponent’s move two rounds ago,
the opponent plays the move that would lose to their last rounds move.

After a tie in which the opponent played the move in the last round that would lose to the opponent’s move two rounds ago,
the opponent plays the same move as they did in the last round.

After a tie in which the opponent played the same move in the last round as the opponent played two rounds ago, the
opponent plays the move that would beat their last rounds move.

Attention Scaffold

Self-Transition Strategies

self_transition_up and self_transition_down:
There are three different kinds of transitions a player can make from their last round’s move to their current move.

* An up transition occurs when they play the move that would beat their last round’s move.

* A down transition occurs when they play the move that would lose to their last round’s move.

* A stay transition occurs when they play the move that is the same as their last round’s move.

Opponent-Transition Strategies

opponent_transition_up and opponent_transition_stay:
There are three different kinds of transitions a player can make from your last round’s move to their current move.

* An up transition occurs when they play the move that would beat your last round’s move.

* A down transition occurs when they play the move that would lose to your last round’s move.

* A stay transition occurs when they play the move that is the same as your last round’s move.



Outcome-Based Strategies

W_stay_L_up_T_down and W_up_L_down_T_stay:

There are three different kinds of transitions a player can make from their last round’s move to their current move.
* An up transition occurs when they play the move that would beat their last round’s move.

* A down transition occurs when they play the move that would lose to their last round’s move.

A stay transition occurs when they play the move that is the same as their last round’s move.

Pay attention to the type of transitions your opponent makes after a win, a loss, and a tie.

Analogical Scaffold Examples

self_transition_up and self_transition_down: “The opponent plays the move that would tie to their last rounds move.”
opponent_transition_up and opponent_transition_stay: “The opponent plays the move that would lose to your last rounds
move.”
W._stay_L_up_T_down and W_up_L _down_T_stay: “After a win the opponent plays the move that would lose to their last
rounds move. After a loss the opponent plays the same move as they did in the last round. After a tie the opponent plays the
move that would beat their last rounds move.”
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