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Abstract

Experience replay-based sampling techniques are essential to several reinforce-
ment learning (RL) algorithms since they aid in convergence by breaking spurious
correlations. The most popular techniques, such as uniform experience replay
(UER) and prioritized experience replay (PER), seem to suffer from sub-optimal
convergence and significant bias error, respectively. To alleviate this, we introduce
a new experience replay method for reinforcement learning, called Introspective
Experience Replay (IER). IER picks batches corresponding to data points con-
secutively before the ‘surprising’ points. Our proposed approach is based on the
theoretically rigorous reverse experience replay (RER), which can be shown to
remove bias in the linear approximation setting but can be sub-optimal with neu-
ral approximation. We show empirically that IER is stable with neural function
approximation and has a superior performance compared to the state-of-the-art
techniques like uniform experience replay (UER), prioritized experience replay
(PER), and hindsight experience replay (HER) on the majority of tasks.

1 Introduction

Reinforcement learning (RL) involves learning with dependent data, and algorithms designed for
independent data might behave poorly coupled with the Markovian trajectories encountered in
this setting. Experience replay (Lin, 1992) involves storing the received data points in a large
buffer and producing a random sample from this buffer whenever the learning algorithm requires
it. Therefore experience replay is usually deployed with popular algorithms like DQN, DDPG and
TD3 to achieve state-of-the-art performance (Mnih et al., 2015; Lillicrap et al., 2015). It has been
shown experimentally (Mnih et al., 2015) and theoretically (Nagaraj et al., 2020) that these learning
algorithms for Markovian data behave sub-optimally without experience replay. Note that we use the
term “sub-optimal” when consistently observing a sub-par performance compared to the oracle. In
contrast, the term “instability” refers to the setting where there is a high variance in our experiments,
where only a few seeds work well. We maintain this distinction throughout our paper.

The simplest and most widely used experience replay method is the uniform experience replay (UER),
where the data points stored in the buffer are sampled uniformly at random every time a data point
is queried (Mnih et al., 2015). However, UER might pick uninformative data points most of the
time, which may slow down the convergence. For this reason, optimistic experience replay (OER)
and prioritized experience replay (PER) (Schaul et al., 2015) were introduced, where samples with
higher TD error (i.e., ‘surprise’) are sampled more often from the buffer. Optimistic experience replay
(originally called “greedy TD-error prioritisation”) was shown to have a high bias, and Prioritized
experience replay was proposed to solve this issue (Schaul et al., 2015). However, as shown in our
experiments outside of the Atari environments, PER still suffers from the problem of high bias.
Although this speeds up the learning process in many cases, there can be significant biases due to
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picking and choosing only specific data points, which can make this method sub-optimal. The design
of experience replay continues to be an active field of research. Several other experience replay
techniques like Hindsight experience replay (HER) (Andrychowicz et al., 2017), Reverse Experience
Replay (RER) (Rotinov, 2019), and Topological Experience Replay (TER) (Hong et al., 2022) have
been proposed. An overview of these methods in discussed in Section 2.

Even though these methods are widely deployed in practice, theoretical analyses have been very
limited. Recent results on learning dynamical systems (Kowshik et al., 2021b,a) showed rigorously in
a theoretical setting that RER is the conceptually-grounded algorithm when learning from Markovian
data. Furthermore, this work was extended to the RL setting in Agarwal et al. (2021) to achieve
efficient Q learning with linear function approximation. The RER technique achieves good perfor-
mance since reverse order sampling of the data points prevents the build-up of spurious correlations
in the learning algorithm. In this paper, we build on this line of work and introduce Introspective
Experience Replay (IER). Roughly speaking, IER first picks top k ‘pivot’ points from a large buffer
according to their TD error. It then returns batches of data formed by selecting the consecutive points
temporally before these pivot points. In essence, the algorithm looks back when surprised. The
intuition behind our approach is linked to the fact that the agent should always associate outcomes to
its past actions, just like in RER. The summary of our approach is shown in Figure 1. This technique
is an amalgamation of Reverse Experience Replay (RER), and Optimistic Experience Replay (OER),
which only picks the points with the highest TD error.

Batch 1

Pivot 1

Batch 3

Pivot 3

Batch 2

Pivot 2

Pivot k

Batch k

Figure 1: An illustration of our proposed methodology when selecting k batches in the CartPole
environment. The red color is used to indicate the batches being sampled from the replay buffer. The
green samples are the un-sampled states from the buffer. The pivots are explicitly pointed by the
arrow and the snapshot of the surprising state encountered.

Our main findings are summarized below:

Better Performance Against SOTA: Our proposed methodology (IER) outperforms previous state-
of-the-art baselines such as PER, UER and HER on most environments (see Table 1, Section 5).

Conceptual Understanding: We consider a simple toy example where we understand the differences
between UER, RER, OER and IER (Section 3.2). This study illustrates the better performance of
our proposed method by showing a) why naive importance sampling, like in OER incurs a significant
bias and b) why techniques like UER and RER are slow to learn.

Forward vs. Reverse: We show that the temporal direction (forward/reverse) to consider after
picking the pivot is non-trivial. We show empirically that IER performs much better than its forward
counterpart, IER (F) (see Table 3). This gives evidence towards causality playing a role in the success
of IER.

Whole vs. Component Parts: Our method (IER) is obtained by combining two methods
RER (which picks the samples in the reverse order as received) and OER (which greedily picks
the samples with the largest TD error). We show that neither of these components performs well
compared to their amalgamation, IER (Table 4).

Minimal hyperparameter tuning: Our proposed methodology uses minimal hyperparameter tuning.
We use the same policy network architecture, learning rate, batch size, and all other parameters
across all our runs for a given environment. These hyperparameters are selected based on the setting
required to achieve SOTA performance on UER. However, we have few options available, a Hindsight
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flag, leading to the H-IER sampler, and the Uniform Mixing fraction leading to the U-IER sampler.
Furthermore, for most of our experiments, we use a mixing fraction of 0.
Table 1: IER outperforms previous state-of-the-art baselines. These baselines include samplers
such as UER (Mnih et al., 2013), PER (Schaul et al., 2015), and HER (Andrychowicz et al., 2017)
across many environments. Results are from 13 different environments that cover a broad category of
MDPs. These include a few Atari environments (previously used to support the efficacy of UER,
PER), some Robotics environments (previously used to support the efficacy of HER), and many
other classes of environments, including Classic Control, Box 2D, and Mujoco. More details about
these experiments and their setup have been discussed in Section 5.

Experience Replay Method UER PER HER IER

Best Performance Frequency 1 0 1 11

2 Related Works and Comparison

2.1 Experience Replay Techniques

Experience replay involves storing consecutive temporally dependent data in a (large) buffer in a
FIFO order. Whenever a learning algorithm queries for batched data, the experience replay algorithm
returns a sub-sample from this buffer such that this data does not hinder the learning algorithms
due to spurious correlations. The most basic form of experience replay is UER (Lin, 1992) which
samples the data in the replay buffer uniformly at random. This approach has significantly improved
the performance of off-policy RL algorithms like DQN (Mnih et al., 2015). Several other methods of
sampling from the buffer have been proposed since; PER (Schaul et al., 2015) samples experiences
from a probability distribution which assigns higher probability to experiences with significant TD
error and is shown to boost the convergence speed of the algorithm. This out-performs UER in most
Atari environments. HER (Andrychowicz et al., 2017) works in the "what if" scenario, where even a
sub-optimal policy can lead the agent to learn what not to do and nudge the agent towards the correct
action. There have also been other approaches such as Liu et al. (2019); Fang et al. (2018, 2019) have
adapted HER in order to improve the overall performance with varying intuition. RER processes the
data obtained in a buffer in the reverse temporal order. We refer to the following sub-section for a
detailed review of this and related techniques. We will also consider ‘optimistic experience replay’
(OER), the naive version of PER, where at each step, only top B elements in the buffer are returned
when batched data is queried. This approach is known to suffer from high bias error mitigated by
a sophisticated sampling procedure employed in PER. Other works such as Fujimoto et al. (2020);
Pan et al. (2022) attempt to study PER and address some of its shortcomings and Lahire et al. (2021)
introduces ’large batch experience replay’ (LaBER) which reduces the stochastic noise in gradients,
while keeping them unbiased.

2.2 Reverse Sweep Techniques

Reverse sweep or backward value iteration refers to methods that process the data as received in
reverse order. This has been studied in the context of planning tabular MDPs (Dai & Hansen, 2007;
Grześ & Hoey, 2013). We refer to Section 4 for a brief overview of why these methods are considered.
However, this line of work assumes that the MDP and the transition functions are known. Inspired by
the behavior of biological networks, Rotinov (2019) proposed reverse experience replay where the
experience replay buffer is replayed in a LIFO order. Since RER forms mini-batches with consecutive
data points, it is unstable with Neural approximation (i.e, it does not learn consistently across different
environments). Therefore, the iterations are stabilized by ‘mixing’ RER with UER. However, the
experiments are limited and do not demonstrate that this method outperforms even UER. A similar
procedure called Episodic Backward Update (EBU) is introduced in Lee et al. (2019). However,
to stabilize the pure RER , the EBU method seeks to also change the target for Q learning instead
of just changing the sampling scheme in the replay buffer. The reverse sweep was independently
rediscovered as RER in the context of streaming linear system identification in Kowshik et al. (2021b),
where SGD with reverse experience replay was shown to achieve near-optimal performance. In
contrast, naive SGD was significantly sub-optimal due to bias caused by Markovian data. The follow-
up work Agarwal et al. (2021) analyzed off-policy Q learning with linear function approximation and
reverse experience replay to provide near-optimal convergence guarantees using the unique super
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martingale structure endowed by reverse experience replay. Hong et al. (2022) considers topological
experience replay, which executes reverse replay over a directed graph of observed transitions. Mixed
with PER enables non-trivial learning in some challenging environments. Another line of work
(Florensa et al., 2017; Moore & Atkeson, 1993; Goyal et al., 2018; Schroecker et al., 2019) considers
reverse sweep with access to a simulator or using a fitted generative model. Our work on the other
hand, only seeks on-policy access to the MDP.

3 Background and Proposed Methodology

We consider episodic reinforcement learning (Sutton & Barto, 2018), where at each time step an agent
takes actions at in an uncertain environment with state st, and receives a reward rt. The environment
then evolves into a new state st+1 whose law depends only on st, at. Our goal is to (approximately)
find the policy π∗ which maps the environmental state s to an action a such that when the agent
takes the action at = π∗(st), the discounted reward E [

∑∞
t=0 γ

trt] is maximized. To achieve this,
we consider algorithms like DQN (Mnih et al. (2015)), DDPG (Lillicrap et al. (2015)) and TD3
(Fujimoto et al. (2018)), which routinely use experience replay buffers. In this paper, we introduce
a new experience replay method, IER, and investigate the performance of the aforementioned RL
algorithms with this modification. In this work, when we say “return”, we mean discounted episodic
reward.

3.1 Methodology

We now describe our main method in a general way where we assume that we have access to a data
collection mechanism T which samples new data points. This then appends the sampled data points
to a bufferH and discards some older data points. The goal is to run an iterative learning algorithm
A, which learns from batched data of batch size B in every iteration. We also consider an important
metric I associated with the problem. At each step, the data collection mechanism T collects a new
episode and appends it to the bufferH and discards some old data points, giving us the new buffer as
H ← T(H). We then sort the entries of H based on the importance metric I and store the indices
of the top G data points in an array P = [P [0], . . . , P [G− 1]]. Then for every index in P , we run
the learning algorithm A with the batch D = (H(P [i]), . . . ,H(P [i]−B + 1)). In some cases, we
can ‘mix’1 this with the standard UER sampling mechanism to reduce bias, as shown below. This
amalgamation help mitigate bias that could arise from our important metric sampling curriculum. We
describe this procedure in Algorithm 1.

In the reinforcement learning setting, T runs an environment episode with the current policy and
appends the transitions and corresponding rewards to the bufferH in the FIFO order, maintaining a
total of 1E6 data points, usually. We choose A to be an RL algorithm like TD3 or DQN or DDPG.
The importance function I is the magnitude of the TD error with respect to the current Q-value
estimate provided by the algorithm A. When the data collection mechanism (T) is the same as in
UER, we will call this method IER. In optimistic experience replay (OER), we take T to be the same
as in UER. However, we query top BG data points from the bufferH and return G disjoint batches
each of size B from these ‘important’ points. It is clear that IER is a combination of OER and RER.
Notice that we can also consider the data collection mechanism like that of HER, where examples
are labeled with different goals, i.e. T has now been made different, keeping the sampling process
exactly same as before. In this case, we will call our algorithm H-IER. Our experiment in Enduro
and Acrobat depicts an example of this successful coalition. We also consider the RER method,
which served as a motivation for our proposed approach. Under this sampling methodology, the
batches are drawn fromH in the temporally reverse direction. This approach is explored in the works
mentioned in Section 2.2. We discuss this methodology in more detail in Appendix F.

3.2 Didactic Toy Example

In this section, we discuss the working of IER on a simple environment such as GridWorld-1D, and
compare this with some of our baselines such as UER, OER, RER, and IER (F). In this environment,
the agent lives on a discrete 1-dimensional grid of size 40 with a max-timestep of 1000 steps, and at

1Mixing here denotes sampling with a given probability from one sampler A, and filling the remaining
samples of a batch with sampler B.
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Algorithm 1: Our proposed Introspective Experience Replay (IER) for Reinforcement Learning
Input: Data collection mechanism T, Data bufferH, Batch size B, grad steps per Epoch G,

number of episodes N , Importance function I , learning procedure A, Uniform Mixing
fraction p

n← 0;
while n < N do

n← n+ 1;
H ← T(H) . Add a new episode to the buffer
I ← I(H) . Compute importance of each data point in the buffer
P ← Top(I;G) . Obtain index of top G elements of I
g ← 0;
while g < G do

if g < (1− p)G then
D ← H[P [g]−B,P [g]] . Load batch of previous B examples from pivot P [g]

else
D ← H[Uniform(H, B)] . Randomly chose B indices from buffer

end
g ← g + 1;
A(D) . Run the learning algorithm with batch data D

end
end

each time step, the agent can either move left or right by one step. The agent starts from the starting
state (S; [6]), the goal of the agent is to reach goal state (G; [40]) getting a reward of +1, and there
is also a trap state (T; [3]), where the agents gets a reward of −2. The reward in every other state
is 0. For simplicity, we execute an offline exploratory policy where the agent moves left or right
with a probability of half and obtain a buffer of size 30000. The rewarding states occur very rarely
in the buffer since it is hard to reach for this exploration policy. The episode ends upon meeting
either of two conditions: (i) the agent reaches the terminal state, which is the goal state, or (ii) the
agent has exhausted the max-timestep condition and has not succeeded in reaching any terminal state.
An overview of our toy environment is depicted in Figure 2(a). Other hyperparameters crucial to
replicating this experiment are described in Appendix B.

In this example, reaching the goal state as quickly as possible is vital to receive a positive reward
and avoid the fail state. Therefore, it is essential to understand the paths which reach the goal
state. Figure 2(b) depicts the number of times each state occurs in the buffer. Furthermore, the
remaining subplots of Figure 2 depict the Absolute Frequency of our off-policy algorithm trained in
this environment. A state’s “absolute frequency” is the number of times the replay technique samples
a given state during the algorithm’s run. The experiments on this simple didactic toy environment do
highlight a few interesting properties:
Comparison of UER and IER: Since the goal state appears very rarely in buffer, UER and
RER rarely sample the goal state and hence do not manage to learn effectively. While RER naturally
propagates the information about the reward back in time to the states that led to the reward, it does
not often sample the rewarding state.
Limitation of OER: While OER samples a lot from the states close to the goal state, the information
about the reward does not propagate to the start state. We refer to the bottleneck in Figure 2(e) where
some intermediate states are not sampled.
Advantage of IER: IER prioritizes sampling from the goal state and propagates the reward backward
so that the entire path leading to the reward is now aware of how to reach the reward. Therefore, a
combination of RER and OER reduces the sampling bias in OER by preventing the bottlenecks seen
in Figure 2(e).
Bottleneck of IER (F): IER (F) has a more significant bottleneck when compared to RER and
chooses to sample the non-rewarding middle states most often. Also, note that whenever IER (F)
chooses the goal state as the pivot, it selects the rest of the batch to overflow into the next episode,
which begins at the starting state. This does not allow the algorithm to effectively learn the path
which led to the goal state.

The toy example above models several salient features in more complicated RL environments.
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Figure 2: Gridworld-1D environment is depicted in Figure 2(a). Distribution of states in the buffer
(Figure 2(b)) and relative frequency of different experience replay samplers on the didactic example
of GridWorld-1D environment (Figure 2(c);2(d);2(e);2(f);2(g)).

(i) In the initial stages of learning, the exploratory policy is essentially random, and such a naive
exploratory policy does not often lead to non-trivial rewards.

(ii) Large positive and negative reward states (the goal and trap states), and their neighbors provide
the pivot state for IER and OER.

We show empirically that this holds in more complicated environments as well. Figure 3 depicts
the surprise vs. reward for the Ant environment. Here we see a strong correlation between absolute
reward and TD error (“Surprise factor”).
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Figure 3: Relationship between absolute values of TD Error (Surprise factor) and Reward for the Ant
environment.

4 Understanding Reverse Replay

There are various conceptual ways we can look at RER and IER. This section outlines some of the
motivations behind using this technique. Theoretical works such as Agarwal et al. (2021); Kowshik
et al. (2021b) have established rigorous theoretical guarantees for RER by utilizing super martingale
structures. This structure is not present in forward replay techniques (i.e., the opposite of reverse
replay) as shown in Kowshik et al. (2021a). We refer to Appendix D where we show via an ablation
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study that going forward in time instead of reverse does not work very well. We give the following
explanations for the success of IER.
Propogation of Sparse Rewards: In many RL problems, non-trivial rewards are sparse and only
received at the goal states. Therefore, processing the data backward in time from such goal states
helps the algorithm learn about the states that led to this non-trivial reward. Our study (see Figure 3
and Appendix E for further details) shows that in many environments IER picks pivots which are the
states with large (positive or negative) rewards, enabling effective learning.
Bias Reduction in OER: OER, which greedily chooses the examples with the largest TD error to
learn from, performs very poorly due to bias. To illustrate this phenomenon, we refer to the didactic
example in Section 3.2. One possible way of viewing IER is that RER is used to reduce the bias
in OER. Indeed, the theoretical analysis in Agarwal et al. (2021) shows that RER removes bias in
Q-learning type algorithms, albeit in a different sense. PER achieves a similar bias reduction for
OER with a sophisticated and expensive sampling scheme over the buffer.
Causality: MDPs have a natural causal structure: actions and events in the past influence the events
in the future. Therefore, whenever we see a surprising or an unexpected event, we can understand why
or how it happened by looking into the past. Further theoretical work is needed to realize IER better.

We further illustrate the same by referring to the straightforward didactic example (Section 3.2)
where we can see the effects of each of the experience replay methods. We also demonstrate
superior performance on more complicated environments (Section 5) showcasing the robustness of
our approach with minimal hyperparameter tuning.

5 Experimental Results

In this section, we briefly discuss our experimental setup as well as the results from our experiments.

Environments: We evaluate our approach on a diverse class of environments, such as (i) Envi-
ronments with low-dimensional state space (including classic control and Box-2D environments),
(ii) Multiple joint dynamic simulation and robotics environments (including Mujoco and Robotics
environments), and (iii) Human-challenging environments (such as Atari environments). Note that
previous seminal papers in the field of experience replay such as Mnih et al. (2013), Schaul et al.
(2015), and Andrychowicz et al. (2017) showed the efficacy of their approach on a subset of these
classes. For instance, UERand PER was shown to work well on Atari games. Furthermore, HER was
effective in the Robotics environments such as FetchReach. In this work, we perform a more ex-
tensive study to show the robustness and effectiveness of our model not just in Atari and Robotics
environments but also in Mujoco, Box2D, and Classic Control environments. Due to computational
limitations and the non-reproducibility of some baselines, we could not extend our experiments to
some Atari environments. We refer to Appendix A for a brief description of the environments used.

Hyperparameters: Refer to Appendix B for the exact hyperparameters used. Across all our
experiments on various environments, we use a standard setting for all the different experience replay
buffers. This classic setting is set so we can reproduce state-of-the-art performance using UER on the
respective environment. For most of our experiments, we set the uniform mixing fraction (p) from
Algorithm 1 to be 0. We use a non-zero p value only for a few environments to overcome the bias
while training, as described in Appendix B. For PER, we use the same hyperparameters used in the
Schaul et al. (2015) paper which had been proven robust across 50 different environments of Atari.

Metric: To compare the different models, we use the top-k seeds moving average return as the
evaluation metric across all our runs. Top-k seeds here mean we take the average of k = 3 seeds that
gave the best performance. It is common to use top-k trials to be selected from among many trials
in the reinforcement learning literature (see Schaul et al. (2015);Schaff et al. (2019);Sarmad et al.
(2019);Wu et al. (2017);Mnih et al. (2016)). This factors in the seed sensitivity. Moving average with
a given window size is taken for learning curves (with a window size of 20 for FetchReach and 50 for
all others) to reduce the variation in return which is inherently present in each epoch. We argue that
taking a moving average is essential since, usually, pure noise can be leveraged to pick a time instant
where a given method performs best (Henderson et al., 2018). Considering the top-k seed averaging
of the last step performance of the moving average of the learning curves gives our metric - the top-k
seeds moving average return.

7



Comparison with SOTA: Table 2 depicts our results in various environments upon using different
SOTA replay sampler mechanisms (UER, PER and HER). Our proposed sampler outperforms
all other baselines in most tasks and compares favorably in others. Our experiments on various
environments across various classes, such as classic control, Atari, etc., show that our proposed
methodology consistently outperforms all other baselines in most environments, as summarized
in Table 1. Furthermore, our proposed methodology is robust across various environments, as
highlighted in Table 2. The learning curves for our experiments have been depicted in the Appendix.
(see Appendix C)

Table 2: Top-k seeds Moving Average Return results across various environments. From our experi-
ments, we note that IER outperforms previous SOTA baselines in most environments. Appendix B
depicts the hyperparameters used for the experiment.

Dataset UER PER HER IER
CartPole 153.14 ± 32.82 198.06 ± 3.68 173.84 ± 26.11 199.83 ± 0.31

Acrobot -257.93 ± 184.28 -291.56 ± 148.84 -389.42 ± 113.22 -193.90 ± 57.56

Inverted Pendulum -161.93 ± 10.55 -171.73 ± 10.55 -629.42 ± 815.24 -150.27 ± 9.63

LunarLander -4.42 ± 20.06 5.33 ± 16.10 6.00 ± 10.02 12.32 ± 27.55

HalfCheetah 10808.93 ± 1094.32 99.75 ± 1124.46 11072.54 ± 297.12 10544.88 ± 342.01

Ant 3932.85 ± 1024.86 -2699.84 ± 1.34 3803.17 ± 996.81 4203.21 ± 345.22

Reacher -4.97 ± 0.31 -5.42 ± 0.61 -5.30 ± 0.50 -4.92 ± 0.27

Walker 3597.03 ± 1203.79 1709.48 ± 1635.90 889.82 ± 1427.92 4349.29 ± 680.35

Hopper 3072.65 ± 621.40 0.49 ± 2.83 2685.72 ± 1221.81 3205.05 ± 406.35

Inverted Double Pendulum 8489.54 ± 927.69 7163.77 ± 3404.14 9002.05 ± 464.20 9067.69 ± 402.39

Fetch-Reach -1.84 ± 0.57 -49.90 ± 0.10 -2.92 ± 1.79 -1.74 ± 0.24

Pong 19.15 ± 1.32 17.02 ± 3.27 18.70 ± 1.02 19.10 ± 1.20

Enduro 227.01 ± 319.15 565.23 ± 116.36 514.32 ± 132.39 586.32 ± 111.44

Forward vs. Reverse: The intuitive limitation to the "looking forward" approach is that in many
RL problems, the objective for the agent is to reach a final goal state, where the non-trivial reward
is obtained. Since non-trivial rewards are only offered in this goal state, it is informative to look
back from here to learn about the states that lead to this. When the goals are sparse, the TD error is
more likely to be large upon reaching the goal state. Our algorithm selects these as pivots, and IER
(F) might select batches overflowing into the next episode. Our studies on many environments (see
Figure 3 and Appendix E) show that the pivot points selected based on importance indeed have large
(positive or negative) rewards. Our experiments depicted in Table 3 show that IER outperforms IER
(F) in most environments.

Table 3: Top-k seeds Moving Average Return results across various environments for Temporal
Ablation study between IER (F) and IER (R; default). Note that we use the base setting of IER in
this section to avoid spurious comparisons (i.e, with p = 0 and no hindsight).

Dataset Forward Reverse
CartPole 196.51 ± 6.26 199.83 ± 0.31

Acrobot -423.15 ± 108.08 -313.03 ± 190.27

Inverted Pendulum -882.13 ± 521.77 -1111.51 ± 559.83

LunarLander -22.75 ± 30.19 12.32 ± 27.55

HalfCheetah 9369.30 ± 454.40 10108.15 ± 919.27

Ant 2963.71 ± 828.50 4203.21 ± 345.22

Reacher -5.25 ± 0.33 -4.92 ± 0.27

Walker 2213.89 ± 1684.03 2830.03 ± 881.51

Hopper 393.64 ± 181.89 505.58 ± 266.52

Inverted Double Pendulum 9260.27 ± 95.59 9067.69 ± 402.39

FetchReach -17.73 ± 27.91 -2.28 ± 1.11

Pong 17.92 ± 2.60 19.10 ± 1.20

Enduro 600.87 ± 149.99 525.84 ± 146.39

Whole vs. Component Parts: Our approach is an amalgamation of OER and RER. Here we
compare these individual parts with IER. Table 4 describes the Top-k seeds Moving Average Return
across various environments in this domain. As demonstrated, IER outperforms its component parts
OER nor RER .
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Table 4: Top-k seeds Moving Average Return results across various environments for ablation study
between RER, OER, and IER.

Dataset RER OER IER
CartPole 163.93 ± 40.03 162.36 ± 34.89 199.83 ± 0.31

Acrobot -320.70 ± 144.05 -472.63 ± 31.21 -193.90 ± 57.56

Inverted Pendulum -735.38 ± 613.5 -166.57 ± 17.23 -150.27 ± 9.63

LunarLander 9.84 ± 13.23 -16.08 ± 15.38 12.32 ± 27.55

HalfCheetah 9449.39 ± 648.60 2237.91 ± 2824.72 10544.88 ± 342.01

Ant 2168.47 ± 415.53 -47.93 ± 20.47 4203.21 ± 345.22

Reacher -5.91 ± 0.37 -5.28 ± 0.58 -4.92 ± 0.27

Walker 1578.33 ± 1313.11 207.51 ± 193.06 4349.29 ± 680.35

Hopper 206.23 ± 318.49 660.24 ± 580.77 3205.05 ± 406.35

Inverted Double Pendulum 8953.44 ± 456.95 7724.99 ± 1726.58 9067.69 ± 402.39

Fetch-Reach -49.94 ± 0.07 -47.72 ± 3.33 -1.74 ± 0.24

Pong 18.58 ± 1.75 3.52 ± 21.33 19.10 ± 1.20

Enduro 483.98 ± 75.45 361.21 ± 86.30 586.32 ± 111.44

6 Discussion and Conclusions

We summarize our results and discuss possible future steps.

Speedup: IER shows a significant speedup in terms of time complexity over PER as depicted
in Table 5. On average IER achieves a speedup improvement of 26.20% over PER across a large
umbrella of environment classes.As the network becomes more extensive, our approach does have a
higher overhead (especially computing TD error). Future work can investigate how to further reduce
the computational complexity of our method by computing the TD error fewer times at the cost of
operating with an older TD error. We also notice a speedup of convergence towards an optimal policy
of our proposed approach, as shown on few environments. Furthermore, the lack of speedup in some
of the other experiments (even if they offer an overall performance improvement) could be due to the
fact that the "surprised" pivot cannot be successfully utilized to teach the agent rapidly in the initial
stages. We refer to Appendix C for the learning curves.

Table 5: Average Speedup in
terms of time complexity over
PER across various environment
classes.

Environment Average Speedup

Classic Control 32.66% ↑
Box-2D 54.32% ↑
Mujoco 18.09% ↓
Robotics 55.56% ↑
Atari 6.53% ↑

Issues with stability and consistency Picking pivot points
by looking at the TD error might cause more biases and in-
stability compared to UER as seen in some environments like
HalfCheetah, LunarLander, and Ant, where there is a sudden
drop in performance for some episodes (see Appendix C). We
observe that our strategy IER corrects itself quickly, unlike
RER, which cannot do this (see Figure 5(e)). Increasing the
number of pivot points per episode (the parameter G) and the
uniform mixing probability p usually mitigates this. However,
these steps might slow the initial convergence to a locally op-
timal policy. In this work, we do not focus on tuning these
hyper-parameters since our objective was to obtain methods
that require minimal hyper-parameter tuning. However, future
work can systematically investigate the significance of these
parameters in various environments.

Why does IER outperform the traditional RER? The instability of pure RER with neural
approximation has been noted in various works (Rotinov, 2019; Lee et al., 2019), where RER is
stabilized by mixing it with UER . Hong et al. (2022) stabilizes reverse sweep by mixing it with PER.
This is an interesting phenomenon since RER is near-optimal in the tabular and linear approximation
settings (Agarwal et al., 2021). Two explanations of this are i) The loss function used to train the
neural network is highly non-convex, which hinders the working of RER and ii) The proof given in
Agarwal et al. (2021) relies extensively on ‘coverage’ of the entire state-action space - that is, the
entire state-action space is visited enough number of times - which might not hold, as shown in the
toy example in Section 3.2.
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Reproducibility Statement

In this paper, we work with thirteen datasets, all of which are open-sourced in gym (https://
github.com/openai/gym). More information about the environments is available in Appendix A.
We predominantly use DQN, DDPG and TD3 algorithms in our research, both of which have been
adapted from their open-source code. We also experimented with seven different replay buffer
methodologies, all of which have been adapted from their source code2. More details about the
models and hyperparameters are described in Appendix B. All runs have been run using the A100-
SXM4-40GB, TITAN RTX, and V100 GPUs. Our source code is made available for additional
reference 3.
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A Environments

For all OpenAI environments, data is summarized from https://github.com/openai/gym, and
more information is provided in the wiki https://github.com/openai/gym/wiki. Below we
briefly describe some of the tasks we experimented on in this paper.

A.1 CartPole-v0

CartPole, as introduced in Barto et al. (1983), is a task of balancing a pole on top of the cart. The cart
has access to position and velocity as its state vector. Furthermore, it can go either left or right for each
action. The task is over when the agent achieves 200 timesteps without a positive reward (balancing
the pole) which is the goal state or has failed, either when (i) the cart goes out of boundaries (± 2.4
units off the center), or (ii) the pole falls over (less than ± 12 deg). The agent is given a continuous
4-dimensional space describing the environment and can respond by returning one of two values,
pushing the cart either right or left.

A.2 Acrobot-v1

Acrobot, as introduced in Sutton (1995), is a task where the agent is given rewards for swinging a
double-jointed pendulum up from a stationary position. The agent can actuate the second joint by one
of three actions: left, right, or no torque. The agent is given a six-dimensional vector comprising the
environment’s angles and velocities. The episode terminates when the end of the second pole is over
the base. Each timestep that the agent does not reach this state gives a -1 reward, and the episode
length is 500 timesteps.

A.3 Pendulum-v0

The inverted pendulum swingup problem, as introduced in Lillicrap et al. (2015) is based on the
classic problem in control theory. The system consists of a pendulum attached fixed at one end, and
free at the other end. The pendulum starts in a random position and the goal is to apply torque on
the free end to swing it into an upright position, with its center of gravity right above the fixed point.
The episode length is 200 timesteps, and the maximum reward possible is 0, when no torque is being
applied, and the object has 0 velocity remaining at an upright configuration.

A.4 LunarLander-v2

The LunarLander environment introduced in Brockman et al. (2016) is a classic rocket trajectory
optimization problem. The environment has four discrete actions - do nothing, fire the left orientation
engine, fire the right orientation engine, and fire the main engine. This scenario is per Pontryagin’s
maximum principle, as it is optimal to fire the engine at full throttle or turn it off. The landing
coordinates (goal) is always at (0, 0). The coordinates are the first two numbers in the state vector.
There are a total of 8 features in the state vector. The episode terminates if (i) the lander crashes, (ii)
the lander gets outside the window, or (iii) the lander does not move nor collide with any other body.

A.5 HalfCheetah-v2

HalfCheetah is an environment based on the work by Wawrzyński (2009) adapted by Todorov et al.
(2012). The HalfCheetah is a 2-dimensional robot with nine links and eight joints connecting them
(including two paws). The goal is to apply torque on the joints to make the cheetah run forward
(right) as fast as possible, with a positive reward allocated based on the distance moved forward and a
negative reward is given for moving backward. The torso and head of the cheetah are fixed, and the
torque can only be applied to the other six joints over the front and back thighs (connecting to the
torso), shins (connecting to the thighs), and feet (connecting to the shins). The reward obtained by
the agent is calculated as follows:

rt = ẋt − 0.1 ∗ ‖at‖22
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A.6 Ant-v2

Ant is an environment based on the work by Schulman et al. (2015) and adapted by Todorov et al.
(2012). The ant is a 3D robot with one torso, a free rotational body, and four legs. The task is to
coordinate the four legs to move in the forward direction by applying torques on the eight hinges
connecting the two links of each leg and the torso. Observations consist of positional values of
different body parts of the ant, followed by the velocities of those individual parts (their derivatives),
with all the positions ordered before all the velocities. The reward obtained by the agent is calculated
as follows:

rt = ẋt − 0.5 ∗ ‖at‖22 − 0.0005 ∗
∥∥scontact

t

∥∥2
2
+ 1

A.7 Reacher-v2

The Reacher environment, as introduced in Todorov et al. (2012), is a two-jointed robot arm. The goal
is to move the robot’s end effector (called *fingertip*) close to a target that is spawned at a random
positions. The action space is a two-dimensional vector representing the torque to be applied at the
two joints. The state space consists of angular positions (in terms of cosine and sine of the angle
formed by the two moving arms), coordinates, and velocity states for different body parts followed
by the distance from target for the whole object.

A.8 Hopper-v2

The Hopper environment, as introduced in Todorov et al. (2012), sets out to increase the number of
independent state and control variables compared to classic control environments. The hopper is a
two-dimensional figure with one leg that consists of four main body parts - the torso at the top, the
thigh in the middle, the leg at the bottom, and a single foot on which the entire body rests. The goal
of the environment is to make hops that move in the forward (right) direction by applying torques on
the three hinges connecting the body parts. The action space is a three-dimensional element vector.
The state space consists of positional values for different body parts followed by the velocity states of
individual parts.

A.9 Walker-v2

The Walker environment, as builds on top of the Hopper environment introduced in Todorov et al.
(2012), by adding another set of legs making it possible for the robot to walker forward instead of
hop. The hopper is a two-dimensional figure with two legs that consists of four main body parts - the
torso at the top, two thighs in the middle, two legs at the bottom, and two feet on which the entire
body rests. The goal of the environment is to coordinate both feel and move in the forward (right)
direction by applying torques on the six hinges connecting the body parts. The action space is a
six-dimensional element vector. The state space consists of positional values for different body parts
followed by the velocity states of individual parts.

A.10 Inverted Double-Pendulum-v2

Inverted Double-Pendulum as introduced in Todorov et al. (2012) is built upon the CartPole environ-
ment as introduced in Barto et al. (1983), with the infusion of Mujoco. This environment involves
a cart that can be moved linearly, with a pole fixed and a second pole on the other end of the first
one (leaving the second pole as the only one with one free end). The cart can be pushed either left or
right. The goal is to balance the second pole on top of the first pole, which is on top of the cart, by
applying continuous forces on the cart. The agent takes a one-dimensional continuous action space in
the range [-1,1], denoting the force applied to the cart and the sign depicting the direction of the force.
The state space consists of positional values of different body parts of the pendulum system, followed
by the velocities of those individual parts (their derivatives) with all the positions ordered before all
the velocities. The goal is to balance the double-inverted pendulum on the cart while maximizing its
height off the ground and having minimum disturbance in its velocity.
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A.11 FetchReach-v1

The FetchReach environment introduced in Plappert et al. (2018) was released as part of OpenAI
Gym and used the Mujoco physics engine for fast and accurate simulation. The goal is 3-dimensional
and describes the desired position of the object. Rewards in this environment are sparse and binary.
The agent obtains a reward of 0 if the target location is at the target location (within a tolerance of 5
cm) and −1 otherwise. Actions are four-dimensional, where 3 specifies desired gripper movement,
and the last dimension controls the opening and closing of the gripper. The FetchReach aims to move
the gripper to a target position.

A.12 Pong-v0

Pong, also introduced in Mnih et al. (2013), is comparatively more accessible than other Atari games
such as Enduro. Pong is a two-dimensional sports game that simulates table tennis. The player
controls an in-game paddle by moving vertically across the left and right sides of the screen. Players
use this paddle to hit the ball back and forth. The goal is for each player to reach eleven points before
the opponent, where the point is earned for each time the agent returns the ball and the opponent
misses.

A.13 Enduro-v0

Enduro, introduced in Mnih et al. (2013), is a hard environment involving maneuvering a race car in
the National Enduro, a long-distance endurance race. The goal of the race is to pass a certain number
of cars each day. The agent must pass 200 cars on the first day and 300 cars on all subsequent days.
Furthermore, as time passes, the visibility changes as well. At night in the game, the player can only
see the oncoming cars’ taillights. As the days’ progress, cars will become more challenging to avoid.
Weather and time of day are factors in how to play. During the day, the player may drive through
an icy patch on the road, which would limit control of the vehicle, or a patch of fog may reduce
visibility.

B Model and Hyperparameters

In this paper, we work with two classes of algorithms: DQN, DDPG and TD3. The hyperparameters
used for training our DQN algorithms in various environments are described in Table 6. The
hyperparameters used for training our DDPG algorithms in various environments are described in
Table 7. The hyperparameters used for training DDPG are described in Table 7. Furthermore, the
hyperparameters used for training TD3 are described in Table 8.

Table 6: Hyperparameters used for training DQN on various environments.

Description CartPole Acrobot LunarLander Pong Enduro argument_name

General Settings

Discount 0.9 0.9 0.9 0.99 0.99 discount
Batch size 512 512 512 32 32 batch_size
Number of epochs 100 100 200 150 800 n_epochs
Steps per epochs 10 10 10 20 20 steps_per_epoch
Number of train steps 500 500 500 125 125 num_train_steps
Target update frequency 30 30 10 2 2 target_update_frequency
Replay Buffer size 1e6 1e6 1e6 1e4 1e4 buffer_size

Algorithm Settings

CNN Policy Channels - - - (32, 64, 64) (32, 64, 64) cnn_channel
CNN Policy Kernels - - - (8, 4, 3) (8, 4, 3) cnn_kernel
CNN Policy Strides - - - (4, 2, 1) (4, 2, 1) cnn_stride
Policy hidden sizes (MLP) (8, 5) (8, 5) (8, 5) (512, ) (512, ) pol_hidden_sizes
Buffer batch size 64 128 128 32 32 batch_size

Exploration Settings

Max epsilon 1.0 1.0 1.0 1.0 1.0 max_epsilon
Min epsilon 0.01 0.1 0.1 0.01 0.01 min_epsilon
Decay ratio 0.4 0.4 0.12 0.1 0.1 decay_ratio

Optimizer Settings

Learning rate 5e−5 5e−5 5e−5 1e−4 1e−4 lr

IER Specific Settings

Use Hindsight for storing states − X − − X use_hindsight
Mixing Factor (p) 0 0 0 0 0 p
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Table 7: Hyperparameters used for training DDPG on Pendulum environment.

Description Pendulum argument_name

General Settings

Discount 0.95 discount
Batch size 256 batch_size
Number of epochs 50 n_epochs
Steps per epochs 50 steps_per_epoch
Number of train steps 40 num_train_steps
Target update Tau 0.01 target_update_frequency
Replay Buffer size 1e6 buffer_size

Algorithm Settings

Policy hidden sizes (MLP) (400, 300) pol_hidden_sizes
QF hidden sizes (MLP) (400, 300) qf_hidden_sizes
Buffer batch size 256 batch_size

Exploration Settings

Exploration Policy Ornstein Uhlenbeck Noise exp_policy
Sigma 0.2 sigma

Optimizer Settings

Policy Learning rate 1e−4 pol_lr
QF Learning rate 1e−3 qf_lr

IER Specific Settings

Use Hindsight for storing states − use_hindsight
Mixing Factor (p) 0 p

Table 8: Hyperparameters used for training TD3 on various environments.

Description Ant Reacher Walker Double-Pendulum HalfCheetah Hopper FetchReach argument_name

General Settings

Discount 0.99 0.99 0.99 0.99 0.99 0.99 0.95 discount
Batch size 250 250 250 100 100 100 256 batch_size
Number of epochs 500 500 500 750 500 500 100 n_epochs
Steps per epochs 40 40 40 40 20 40 50 steps_per_epoch
Number of train steps 50 50 50 1 50 100 100 num_train_steps
Replay Buffer size 1e6 1e6 1e6 1e6 1e6 1e6 1e6 buffer_size

Algorithm Settings

Policy hidden sizes (MLP) (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) pol_hidden_sizes
Policy noise clip 0.5 0.5 0.5 0.5 0.5 0.5 0.5 pol_noise_clip
Policy noise 0.2 0.2 0.2 0.2 0.2 0.2 0.2 pol_noise
Target update tau 0.005 0.005 0.005 0.005 0.005 0.005 0.01 tau
Buffer batch size 100 100 100 100 100 100 256 batch_size

Gaussian noise Exploration Settings

Max sigma 0.1 0.1 0.1 0.1 0.1 0.1 0.1 max_sigma
Min sigma 0.1 0.1 0.1 0.1 0.1 0.1 0.1 min_sigma

Optimizer Settings

Policy Learning rate 1e−3 1e−3 1e−4 3e−4 1e−3 3e−4 1e−3 pol_lr
QF Learning rate 1e−3 1e−3 1e−3 1e−3 1e−3 1e−3 1e−3 qf_lr

IER Specific Settings

Use Hindsight for storing states − − − X − − − use_hindsight
Mixing Factor (p) 0 0 0.4 0 0.3 0.8 0 p

Additionally, we use Tabular MDPs for learning a policy in our toy example. Since the environment
is fairly simpler, and has very few states, function approximation is unnecessary. For all the agents
trained on GridWorld, we use a common setting as described in Table 9.

Table 9: Hyperparameters used for training Tabular MDP on GridWorld-1D environment.

Description GridWorld argument_name

Discount 0.99 discount
Batch size 1 batch_size
Number of epochs 100 n_epochs
Replay Buffer size 3e4 buffer_size
Buffer batch size 64 batch_size
Exploration factor 0.3 max_epsilon
Learning rate 0.1 lr
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C Additional Results

C.1 Performance of IER with Low-Dimensional State Space

This section briefly discusses our results on environments with a low-dimensional state space, such
as classic control environments (CartPole, Acrobot, and Pendulum) and Box-2D environments
(LunarLander). Figure 4 depicts the learning curves of our DQN/DDPG agents in these environments.

(a) CartPole-v0 (b) Acrobot-v1

(c) Pendulum-v0 (d) LunarLander-v2

Figure 4: Learning curves of DQN/DDPG agents on Classic Control and Box-2D environments.

We note that our proposed methodology can significantly outperform other baselines for the classic
control algorithms. Furthermore, Figure 4(a) shows excellent promise as we achieve a near-perfect
score across all seeds in one-tenth of the time it took to train PER.

C.2 Performance in Multiple Joint Dynamics Simulation and Robotics Environments

Multiple joint dynamic simulation environments (mujoco physics environments) and robotics environ-
ments such as HalfCheetah, Ant, Inverted Double-Pendulum, and FetchReach (Todorov et al. (2012);
Plappert et al. (2018)) are more complex and enable us to study whether the agent can understand
the physical phenomenon of real-world environments. Figure 5 depicts the learning curves of our
TD3 agents in these environments. Again, our proposed methodology outperforms all other baselines
significantly in most of the environments studied in this section. Additionally, it is essential to
point out that our proposed method shows an impressive speedup of convergence in Inverted Double
Pendulum and convergence to a much better policy in Ant.

C.3 Performance of IER in Human Challenging Environments

This section briefly discusses our results on human-challenging environments such as Atari envi-
ronments (Pong and Enduro). These environments are highly complex, and our algorithms take
millions of steps to converge to a locally optimal policy. Figure 6 depicts the learning curves of our
DQN agents in these environments. We note that our proposed methodology can perform favorably
when compared to other baselines for the Atari environments and can reach large reward policies
significantly faster than UER.
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(a) HalfCheetah-v2 (b) Ant-v2

(c) Reacher-v2 (d) Walker-v2

(e) Hopper-v2 (f) InvertedDoublePendulum-v2

(g) FetchReach-v1

Figure 5: Learning curves of TD3 agents on Mujoco and Robotics environments.

C.4 Whole vs. Component Parts

This section briefly presents the learning curves of our models on three different sampling schemes:
IER, OER and RER.

C.5 Buffer Batch size sensitivity of IER

This section briefly presents the sensitivity to the buffer batch size hyperparameter for our proposed
approach (IER). To analyze this, we run our experiments on the CartPole environment with varying
batch size of the range 2-256. Table 10 and Figure 8 depict the buffer batch size sensitivity results
from our proposed sampler.
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(a) Pong-v0 (b) Enduro-v0

Figure 6: Learning curves of DQN agents on Atari environments.

(a) CartPole-v0 (b) Acrobot-v1 (c) Pendulum-v0

(d) LunarLander-v2 (e) HalfCheetah-v2 (f) Ant-v2

(g) Reacher-v2 (h) Walker-v2 (i) Hopper-v2

(j) InvertedDoublePendulum-v2 (k) FetchReach-v1 (l) Pong-v0

(m) Enduro-v0

Figure 7: Ablation study of OER, RER and IER.
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Table 10: Buffer Batch size sensitivity of IER on the CartPole environment.

Buffer Batch Size Average Reward

2 126.69 ± 41.42

4 192.33 ± 13.29

8 181.27 ± 32.13

16 199.24 ± 1.32

32 199.99 ± 0.001

64 199.83 ± 0.31

128 193.23 ± 10.08

256 179.95 ± 18.94

Figure 8: Buffer batch size sensitivity of IER sampler on the CartPole Environment

C.6 How important is sampling pivots?

This section briefly presents the ablation study to analyze the importance of sampling “surprising”
states as pivots. As a baseline, we build a experience replay where these pivots are randomly sampled
from the buffer. The "looking back" approach is used to create batches of data. For nomenclature, we
refer to our proposed approach (IER) to use the “TD Metric” sampling of pivots, and the baseline
that uses “Uniform” sampling of pivots. Table 11 and Figure 9 depict the buffer batch size sensitivity
results from our proposed sampler.

Table 11: Importance of sampling pivots in our proposed approach (IER) on the CartPole environment.

Sampling Scheme Average Reward

TD Metric (IER) 199.83 ± 0.31

Uniform (IER) 136.71 ± 19.59

C.7 How important is “looking back”?

This section briefly presents the ablation study to analyze the importance of “looking back” after
sampling pivots. As a baseline, we build a experience replay where we sample uniformly instead of
looking back. For nomenclature, we refer to our proposed approach (IER) to use the “Looking Back”
approach (similar to IER), and the baseline that uses “Uniform” approach. We refer to these two
approaches as possible filling schemes, i.e. fill the buffer with states once the pivot state is sampled.

Table 12 and Figure 10 depict the buffer batch size sensitivity results from our proposed sampler.
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Figure 9: Ablation study of Importance Sampling of IER sampler on the CartPole Environment. Here
“Uniform Sampling” denotes the unbiased and random sampling of pivots, and “TD Metric Sampling”
denotes our proposed approach (IER).

Table 12: Importance of looking back in our proposed approach (IER) on the CartPole environment.

Filling Scheme Average Reward

Looking Back (IER) 199.83 ± 0.31

Uniform (IER) 182.5 ± 23.49

Figure 10: Ablation study of Filling Scheme of IER sampler on the CartPole Environment. Here
“Uniform Filling” denotes the unbiased and random sampling of states to fill after sampling the pivot
state, and “Looking Back Filling” denotes our proposed approach (IER).

D Ablation study of Temporal effects

This section studies the ablation effects of going temporally forward and backward once we choose
a pivot/surprise point. Furthermore, Figure 11 depicts the learning curves of the two proposed
methodologies. We notice that against theoretical intuition, the unbiased forward sampling scheme is
worse in most environments compared to the reverse sampling scheme.

E Sparsity and Rewards of Surprising States

E.1 Surprising States Have Large Rewards

In this section, we study the “learning from sparse reward” intuition provided in Section 4 – i.e., we
want to check if the states corresponding to large TD error correspond to states with large (positive or
negative) rewards. To test the hypothesis, we consider a sampled buffer and plot the TD error of these
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(a) CartPole-v0 (b) Acrobot-v1 (c) Pendulum-v0

(d) LunarLander-v2 (e) HalfCheetah-v2 (f) Ant-v2

(g) Reacher-v2 (h) Walker-v2 (i) Hopper-v2

(j) InvertedDoublePendulum-v2 (k) FetchReach-v1 (l) Pong-v0

(m) Enduro-v0

Figure 11: Ablation study of the effects of the temporal structure on the performance of the agent.

points in the buffer against the respective reward. Figure 3 shows the distribution of TD error against
reward for the sampled buffers in the Ant environment. We see that high reward states (positive or
negative) also have higher TD errors. Therefore, our algorithm picks large reward states as endpoints
to learn in such environments.

E.2 Surprising States are Sparse and Isolated

Figure 12 and Figure 13 depict the distribution of “surprise”/TD error in a sampled batch for CartPole
and Ant environments respectively. These two figures help show that the states with a large “surprise”
factor are few and that even though the pivot of a buffer has a large TD error, the rest of the buffer
typically does not.

Figure 12(d) and Figure 13(d) show a magnified view of Figure 12(c) and Figure 13(d) where the pivot
point selected is dropped. This helps with a uniform comparison with the remaining timesteps within
the sampled buffer. Again, we notice little correlation between the timesteps within the sampled
buffer.
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(a) UER
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(b) RER
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(c) IER
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Figure 12: Normalized TD Error ("Surprise factor") of each timestep over three different sampled
buffers on the CartPole environment. Best viewed when zoomed.
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(a) UER
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(b) RER
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(c) IER

0 20 40 60 80 100
Normalized TD Error

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
Re

wa
rd

Sparsity Analysis over 3 sampled buffers for IER magnified

(d) IER Magnified

Figure 13: Normalized TD Error ("Surprise factor") of each timestep over three different sampled
buffers on the Ant environment. Best viewed when zoomed.
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F Reverse Experience Replay (RER)

This section discusses our implementation of Reverse Experience Replay (RER), which served as a
motivation for our proposed approach. The summary of the RER approach is shown in Figure 14.
Furthermore, an overview of our implemented approach to RER is described briefly in Algorithm 2.

Batch k

Batch 2

Batch 1

Temporally Reverse Direction

Figure 14: An illustration of Reverse Experience Replay (RER) when selecting k batches from the
Replay Buffer.

Algorithm 2: Reverse Experience Replay
Input: Data collection mechanism T, Data bufferH, Batch size B, grad steps per Epoch G,

number of episodes N , learning procedure A
n← N ;
P ← len(H) ; // Set index to last element of Buffer H
while n < N do

n← n+ 1;
H ← T(H) ; // Add a new episode to the buffer
g ← 0;
while g < G do

if P −B < 0 then
P ← len(H) ; // Set index to last element of Buffer H

else
P ← P −B;

end
D ← H[P −B,P ] ; // Load batch of previous B samples from index P
g ← g + 1;
A(D); // Run the learning algorithm with batch data D

end
end
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