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Abstract001

In-context learning (ICL) greatly improves the002
performance of large language models (LLMs)003
on various down-stream tasks, where the im-004
provement highly depends on the quality of005
demonstrations. In this work, we introduce syn-006
tactic knowledge to select better in-context ex-007
amples for machine translation (MT). We pro-008
pose a new strategy, namely Syntax-augmented009
COverage-based In-context example selection010
(SCOI), leveraging the deep syntactic structure011
beyond conventional word matching. Specifi-012
cally, we measure the set-level syntactic cov-013
erage by computing the coverage of polyno-014
mial terms with the help of a simplified tree-015
to-polynomial algorithm, and lexical coverage016
using word overlap. Furthermore, we devise an017
alternate selection approach to combine both018
coverage measures, taking advantage of syn-019
tactic and lexical information. We conduct ex-020
periments with two multi-lingual LLMs on six021
translation directions. Empirical results show022
that our proposed SCOI obtains the highest av-023
erage COMET score among all learning-free024
methods, indicating that combining syntactic025
and lexical coverage successfully helps to se-026
lect better in-context examples for MT.027

1 Introduction028

In-context learning (ICL) has become a popular029

prompting strategy to elicit the power of large lan-030

guage models (LLMs) across a wide range of natu-031

ral language processing (NLP) tasks (Brown et al.,032

2020; Min et al., 2022; Dong et al., 2023). In ICL,033

several demonstrations including both task input034

and ground truth output are presented in the in-035

put context, to make LLMs understand the specific036

down-stream task and produce better results.037

The performance of ICL highly depends on the038

quality of in-context examples, and it is thus of039

great significance to explore selecting better ex-040

amples for ICL (Rubin et al., 2022). There have041

been numerous works on in-context example se-042

lection for monolingual tasks like natural language 043

inference, commonsense reasoning and semantic 044

parsing (Li et al., 2023; Ye et al., 2023; Gupta 045

et al., 2023; Liu et al., 2024). Unlike these tasks 046

above, machine translation (MT) involves multi- 047

ple languages and requires a more sophisticated 048

design of in-context example selection. Recently, 049

there have some attempts on in-context example 050

selection specially for MT, which leverage word- 051

level matching (Agrawal et al., 2023), embedding- 052

based scoring (Moslem et al., 2023; Ji et al., 2024; 053

Zhu et al., 2024) or combination of superficial fea- 054

tures (Kumar et al., 2023). 055

In previous studies, for both statistical MT and 056

neural MT, syntax plays a crucial role in improving 057

model performance (Williams and Koehn, 2014; 058

Wu et al., 2017). However, in case of ICL, most ex- 059

isting works focus on superficial features but pay lit- 060

tle attention to the syntactic structure of sentences. 061

To achieve a high translation quality, it requires not 062

only an accurate word translation but also a proper 063

syntactic structure of the generated target sentence. 064

Hence, syntactic information should also play a big 065

part in MT even in the era of LLMs. 066

Compared with independent selection, it has 067

been proved that selecting in-context examples as 068

an entire set based on the set-level coverage leads 069

to a better diversity while reducing redundancy and 070

avoiding sub-optimal results (Gupta et al., 2023). 071

As a typical NLP task, MT would also benefit from 072

in-context examples with a high set-level coverage. 073

Therefore, beyond the conventional lexical cover- 074

age, high syntactic coverage is also necessary to 075

select informative in-context examples for MT. 076

In this work, we propose Syntax-augmented 077

COverage-based In-context example selection, 078

SCOI 1, to boost LLMs’ performance on MT. 079

Specifically, to measure syntactic coverage, we 080

first simplify a tree-to-polynomial algorithm (Liu 081

1/’skoUI/.
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et al., 2022), which is originally costly but has been082

reduced to no more than quadratic time complex-083

ity after simplification. Using this new algorithm,084

we convert syntax trees into polynomials and then085

compute the set-level syntactic coverage based on086

vector representations of polynomial terms. Mean-087

while, we compute the proportion of word overlap088

to measure set-level lexical coverage. After that,089

we design an alternate approach to combine both090

coverage measures, so that word-level and syntax-091

level features would complement each other.092

We evaluate SCOI on 6 translation directions093

(German, French, Russian into and out of English)094

based on two open-source multi-lingual LLMs,095

XGLM7.5B (Lin et al., 2022) and Alpaca (Taori096

et al., 2023). Among all learning-free methods,097

SCOI obtains the highest COMET scores on 4 out098

of 6 translation directions and the highest average099

COMET score. Especially, on Russian-to-English100

and English-to-Russian translations, SCOI even101

outperforms the learning-based CTQ Scorer (Ku-102

mar et al., 2023) when using Alpaca.103

Our contributions can be summarized as follows:104

• Going beyond superficial word matching, we105

introduce the knowledge of syntactic structure106

to in-context example selection for MT.107

• To take advantage of both word overlap and108

syntactic resemblance, we propose a novel109

framework to ensure a high set coverage at110

both word and syntax level for in-context ex-111

ample selection, and empirical experiments112

validate the effectiveness of our method.113

• We design a simplified tree-to-polynomial al-114

gorithm owning a complexity upper bound of115

no more than quadratic time. In contrast, that116

of the original version could be polynomial117

time with an arbitrarily large degree.118

Our code will be publicly available after the pub-119

lication of this paper.120

2 Related Work121

Prompting LLMs for better performance has been122

one of the mainstream trends of NLP research.123

There have been a large number of studies on124

prompting strategies for MT in recent years (Vi-125

lar et al., 2023; Zhang et al., 2023). Puduppully126

et al. (2023) decompose the translation process into127

a sequence of word chunk translations to improve128

LLMs’ performance on translation between lin- 129

guistically related languages. Ghazvininejad et al. 130

(2023) propose to present LLMs with a set of pos- 131

sible translations for a subset of the input words 132

from bilingual dictionaries to improve LLMs’ per- 133

formance on low-resource and out-of-domain MT. 134

He et al. (2024) prompt LLMs with selected knowl- 135

edge including keyword pairs, topics and sentence 136

pairs to emulate human-like translation. Zhang 137

et al. (2024) manage to teach LLMs an unseen lan- 138

guage on the fly with the help of a small parallel cor- 139

pus and a dictionary. Guo et al. (2024) first create a 140

textbook including vocabulary list, language exam- 141

ples with syntax patterns and translate instructions 142

using LLMs and then prompt LLMs with the text- 143

book just created to better translate low-resource 144

languages. Zhu et al. (2024) prompt LLMs with 145

both sentence-level and word-level demonstrations, 146

the former selected with a margin-based score and 147

the latter being word pairs most related to the test 148

input appeared in the former. 149

Among various prompting strategies, ICL plays 150

a key role. Rubin et al. (2022) suggest that the per- 151

formance of ICL strongly depends on the selected 152

in-context examples. Thus it is of great significance 153

to select better examples using various strategies. 154

Li et al. (2023) propose to train a unified demon- 155

stration retriever for ICL across a wide range of 156

tasks. Ye et al. (2023) make use of determinantal 157

point processes (DPPs) to ensure both relevance 158

and diversity of examples. Liu et al. (2024) se- 159

lect examples in a sequential rather than "select 160

then organize" way that leverages the LLM’s feed- 161

back on varying context, aiding in capturing inter- 162

relationships and sequential information among 163

examples. Gupta et al. (2023) define measure of 164

set-level information coverage and select examples 165

based on it, which inspires our work. 166

There are some example selection strategies cus- 167

tomized for MT. Agrawal et al. (2023) select ex- 168

amples based on n-gram overlap. Moslem et al. 169

(2023) select examples based on sentence embed- 170

ding similarity. Kumar et al. (2023) train language- 171

specific regression models to combine various fea- 172

tures for example selection. Ji et al. (2024) select 173

examples based on submodular functions combin- 174

ing surface/semantic similarity and diversity within 175

examples. To the best of our knowledge, no previ- 176

ous work has made use of syntactic information in 177

in-context example selection for MT. 178
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Figure 1: Overview of SCOI. Each example is selected based on how well the test input is covered by the current
candidate plus the existing examples selected in previous steps at syntax level and word level alternately. In each
step, T , ei, ⊕, ci, Si denote the test input, the i-th selected example, concatenation of selected examples and one
candidate, the i-th candidate from the example database, the to-be-scored set including the selected examples plus
the i-th candidate, respectively.

3 Method179

We propose to select in-context examples based180

on both syntactic and lexical coverage to better181

apply LLMs for MT. Specifically, to measure the182

set-level syntactic coverage, we first simplify a183

tree-to-polynomial algorithm, making it practical184

to run on large MT datasets, and then compute the185

coverage of vector representations of polynomial186

terms. To measure the set-level lexical coverage,187

we simply consider the proportion of word overlap.188

After that, we design an alternate strategy to take189

advatage of both lexical and syntactic knowledge.190

An overview of our proposed method, SCOI, is191

presented in Figure 1.192

3.1 Polynomial Representation of Syntactic193

Structure194

Liu et al. (2022) convert dependency trees into195

polynomials recursively and compute the distance196

between polynomials to measure the syntactic sim-197

ilarity between sentences from different languages.198

Specifically, given the number of dependency la-199

bels d, dependency trees will be transformed into200

polynomials based on two variable sets: X =201

{x1, x2...xd} and Y = {y1, y2, ...yd}. Consider-202

ing a leaf node with label l as nl, its corresponding203

polynomial is P (nl, X, Y ) = xl. For a non-leaf204

node ml with label l, its polynomial is:205

P (ml, X, Y ) = yl +
k∏

i=1

P (ni, X, Y ), (1)206

where n1, ..., nk are all child nodes of ml.207

However, the algorithm can be of very high com- 208

plexity when the dependency tree is large. In MT, 209

there are often millions of data to be processed and 210

it is thus impractical to make use of the original 211

algorithm from Liu et al. (2022). Therefore, we pro- 212

pose a simplified polynomial algorithm, reducing 213

the complexity of tree-to-polynomial conversion to 214

no more than quadratic time. 215

Concretely, our newly defined polynomial is 216

based on only one variable set X = {x1, x2...xd}. 217

For a leaf node nl, its polynomial remains 218

P (nl, X) = xl. For a non-leaf node ml with child 219

nodes n1, ..., nk, its polynomial is: 220

P (ml, X) = xl · (1 +
k∑

i=1

P (ni, X)). (2) 221

where each term x
ex1
1 x

ex2
2 ...x

exd
d in the polynomial 222

corresponds to a path from the root node to one 223

certain node in the tree, and exi indicates the num- 224

ber of nodes with the i-th dependency label on that 225

path. Given a sentence with a dependency tree 226

rooted in Node r, the polynomial representing the 227

syntactic structure of that sentence is P (r,X). 228

We analyze the complexity of the original and 229

our simplified tree-to-polynomial algorithms in Ap- 230

pendix A. 231

3.2 Measure of Set-level Syntactic Coverage 232

Given a test input x and a set of in-context ex- 233

amples Z, the set of salient aspects (e.g., entities, 234

keywords, etc.) of x being Sx, the set-level infor- 235

mation coverage of in-context examples is defined 236
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as (Gupta et al., 2023):237

SetCov(x, Z) =
∑
s∈Sx

max
z∈Z

c(s, z), (3)238

where c(s, z) measures the coverage or recall of a239

single salient aspect s by example z.240

For better parallelization and to better fit the241

salient aspects denoting syntax in this work, which242

are vector representations of polynomial terms243

from the tree-to-polynomial algorithm, we reformu-244

late Equation 3 to the set-level syntactic coverage:245

SynSetCov(x, Z) =
1

|Tx|
∑
s∈Tx

max
t∈TZ

c(s, t), (4)246

where Tx is the multiset 2 of terms in the poly-247

nomial representation of the dependency tree of248

x, TZ =
⋃

z∈Z Tz is the multiset of all the terms249

in polynomials of dependency trees of all the in-250

context examples in Z, s and t denote terms in251

Tx and TZ respectively, and c(s, t) computes the252

similarity of term s and term t.253

To compute c(s, t), we first compute the distance254

between the two polynomial terms. Note that a255

term t = x
ex1
1 x

ex2
2 ...x

exd
d can be written as a term256

vector with d entries:257

vt = [ex1 , ex2 , ..., exd
], (5)258

where each entry represents the exponent of the cor-259

responding variable. The distance between terms260

s and t can thus be calculated by the Manhattan261

distance (Craw, 2017) between vectors vs and vt:262

d(s, t) = ∥ vs − vt ∥1. (6)263

As distance is negatively correlated with sim-264

ilarity, we compute c(s, t) using the normalized265

distance:266

c(s, t) =
1

1 + d(s, t)
. (7)267

In this way, c(s, t) is a normalized value between268

0 and 1. Note that each term in the polynomial269

represents a root-to-node path in the tree. So270

SynSetCov(x, Z) indicates the average coverage271

of each path in the dependency tree of x by all the272

dependency trees in Z.273

2Since we take repeated elements into account, we use
multiset (Hickman, 1980) that allows repetition of elements
instead of set in this work.

Algorithm 1 Greedy Optimization of Set Coverage
Require: Example database T ; test input x; desired number of demonstrations

k; coverage scoring function SynSetCov and WordSetCov.
1: Z ← ∅ ▷ Selected in-context examples.
2: Zcurr ← ∅ ▷ Current set cover.
3: curr_syn_cov← − inf
4: curr_word_cov← − inf
5: while |Z| < k do
6: if |Z| ≡ 0 (mod 2) then ▷ Odd-numbered to-be-selected example.
7: z∗, next_syn_cov = argmax

z∈T −Z
SynSetCov (x, Zcurr ∪ z)

8: if next_syn_cov > curr_syn_cov then ▷ Pick z∗.
9: curr_syn_cov← next_syn_cov
10: Z ← Z ∪ z∗

11: Zcurr ← Zcurr ∪ z∗

12: else ▷ Start a new one if no increase.
13: Zcurr ← ∅, curr_syn_cov← − inf
14: end if
15: else ▷ Even-numbered to-be-selected example.
16: z∗, next_word_cov = argmax

z∈T −Z
WordSetCov (x, Zcurr ∪ z)

17: if next_word_cov > curr_word_cov then ▷ Pick z∗.
18: curr_word_cov← next_word_cov
19: Z ← Z ∪ z∗

20: Zcurr ← Zcurr ∪ z∗

21: else ▷ Start a new one if no increase.
22: Zcurr ← ∅, curr_word_cov← − inf
23: end if
24: end if
25: end while
26: return Z

3.3 Measure of Set-level Lexical Coverage 274

In this work, we simply measure the set-level lexi- 275

cal coverage by computing the proportion of word 276

overlap: 277

WordSetCov(x, Z) =
|Wx ∩WZ |

|Wx|
, (8) 278

where Wx is the multiset of the words in x and 279

WZ =
⋃

z∈Z Wz is the multiset of all the words in 280

all the examples in Z. 281

3.4 Combined Syntactic and Lexical Coverage 282

Combining syntax-level and word-level coverage 283

could make them complement each other and thus 284

help select better in-context examples for MT. In 285

this work, we propose an alternate way to combine 286

both. 287

For convenience, we number ICL examples start- 288

ing from 1. Specifically, for each odd-numbered 289

example, we select it based on how well the cur- 290

rent candidate, along with the existing examples 291

selected in previous steps, covers the test input in 292

syntax, while for each even-numbered example, we 293

select it based on set-level lexical coverage. To put 294

it more concretely, we select the first example with 295

the highest set-level (only the first example at this 296

time) syntactic coverage and the second example 297

with the highest set-level (including the first and 298

the second example) lexical coverage. 299

Following Gupta et al. (2023), we use a greedy 300

algorithm to select the optimal set as shown in Al- 301
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gorithm 1. It alternately selects examples that lead302

to the maximum syntactic coverage (lines 7-11)303

and lexical coverage (lines 16-20). If no example304

brings further increase in coverage, the algorithm305

reserves the selected examples and starts another306

round (lines 12-13 and 21-22).307

4 Experimental Setup308

We follow Kumar et al. (2023) to set up our experi-309

ments.310

4.1 Datasets and Evaluation Metrics311

Language ISO Code Dataset #Pairs (M)

German DE Europarl 1.83
French FR Europarl 1.92
Russian RU ParaCrawl 5.38

Table 1: Data statistics.

Test Set We perform our evaluation on the devtest312

set of FLORES-101 (Goyal et al., 2022), which has313

1012 sentences with translations in 101 languages.314

We experiment between English and 3 common315

languages including German, French and Russian.316

Example Database We use Europarl (Koehn,317

2005) for German and French and318

ParaCrawl (Bañón et al., 2020) for Russian319

as example database. Detailed statistics are shown320

in Table 1.321

Evaluation Metrics We report COMET (Rei322

et al., 2020) scores from wmt20-comet-da, which323

is considered a superior metric for MT nowa-324

days (Kocmi et al., 2021). We report BLEU scores325

from sacreBLEU (Post, 2018) in Appendix B.326

4.2 Pre-processing327

We parse all the datasets with spaCy (Honnibal328

et al., 2020) to get dependency trees for our syntax-329

based approaches. The spaCy models we use for330

different languages are listed in Appendix C.331

We use Sacremoses 3 to tokenize all the lan-332

guages for the lexical coverage computation.333

4.3 Large Language Models334

XGLM7.5B (Lin et al., 2022) and Alpaca (Taori335

et al., 2023) are used in our experiments. XGLM336

is a multilingual generative language model sup-337

porting 30 languages and has 7.5B parameters338

3https://github.com/hplt-project/sacremoses

in total. Alpaca is a 7B model fine-tuned from 339

LLaMA (Touvron et al., 2023) on 52K instruction- 340

following data. 341

4.4 Prompt Template 342

The number of in-context examples is set to 4 in 343

our experiments. We use the same prompt template 344

used in Kumar et al. (2023) for XGLM and that 345

in He et al. (2024) for Alpaca. Please refer to 346

Appendix D for details. 347

Other details of our implementation can be found 348

in Appendix E. 349

4.5 Baselines 350

Random: Examples are selected randomly for 351

each test input from the example database. We re- 352

port the average result of 3 different random seeds. 353

BM25: We use the BM25 algorithm imple- 354

mented by Bassani (2023) to retrieve the top-k 355

matching examples in the example database for 356

each test input. 357

Following Agrawal et al. (2023) and Kumar et al. 358

(2023), all the compared methods below re-rank 359

examples based on top-100 examples retrieved by 360

BM25 for each test input. 361

R-BM25: We evaluate R-BM25 (Agrawal et al., 362

2023) for comparison, which ensures n-gram cov- 363

erage and diversity. 364

Fuzzy: We evaluate Fuzzy (Moslem et al., 2023), 365

where examples that are most similar in sentence- 366

level embedding are selected. We use sentence 367

transformers (Reimers and Gurevych, 2019) with 368

paraphrase-multilingual-MiniLM-L12-v2 369

(Reimers and Gurevych, 2020) to reimplement it. 370

CTQ Scorer: We evaluate CTQ Scorer (Kumar 371

et al., 2023) for comparison, which is a learning- 372

based method combining multiple features includ- 373

ing number of tokens, similarity in LaBSE embed- 374

dings (Feng et al., 2022), perplexity, etc. It trains a 375

specific regression model for each language pair. 376

SCOI: Our proposed method described in Sec- 377

tion 3. 378

5 Results and Analysis 379

5.1 Main Results 380

Main results are shown in Table 2. SCOI obtains 381

the highest COMET scores of 4 out of 6 transla- 382

tion directions and the highest average COMET 383

score among all learning-free methods using both 384
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System
Into EN Out of EN

Avg.DE FR RU DE FR RU

XGLM

Learning-free
Random 63.53 70.80 53.41 43.03 53.23 42.70 54.45
BM25 63.21 71.36 52.48 44.13 55.54 44.58 55.22

R-BM25 64.13 71.18 54.06 44.83 55.21 45.92 55.89
Fuzzy 64.40 71.92 53.37 44.45 55.23 44.69 55.68

SCOI (ours) 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Learning-based
CTQ Scorer 65.38 70.65 53.48 45.52 56.00 48.59 56.60

Alpaca

Learning-free
Random 69.71 76.64 57.47 42.60 56.58 28.61 55.27
BM25 69.08 76.41 58.52 43.65 57.34 32.63 56.27

R-BM25 69.71 76.70 57.69 43.87 59.17 34.78 56.99
Fuzzy 69.72 76.36 58.12 44.10 57.25 30.57 56.02

SCOI (ours) 69.79 76.08 58.66 44.10 57.97 36.26 57.14

Learning-based
CTQ Scorer 70.39 76.57 58.63 45.55 58.71 35.68 57.59

Table 2: COMET scores of 4-shot ICL performance of SCOI and other methods for translation on all 6 directions
of 2 language models. All the methods except CTQ Scorer are learning-free, which do not require task, language
or LLM-specific training. "Avg." refers to the average score across all 6 directions. The highest scores among
learning-free methods are in bold text.

XGLM and Alpaca, showing competitive perfor-385

mance across language models. Using XGLM,386

SCOI outperforms the learning-based CTQ Scorer387

on "RU-EN", while using Alpaca, SCOI even out-388

performs CTQ Scorer on both "RU-EN" and "EN-389

RU". Note that Alpaca seems not good at generat-390

ing Russian, which can be inferred from its poor391

random and BM25 baselines. But SCOI greatly392

improves its performance on "EN-RU" and shows393

amazing ability in teaching an LLM to better trans-394

late into a language that appeared less during train-395

ing.396

We observe that SCOI shows obvious preference397

across different languages. For example, it fails398

to benefit "FR-EN" but improves performance on399

"RU-EN". Besides different natures of different400

languages, this might be also due to different ca-401

pabilities of syntax parsers for different languages.402

We find that when the parser performs poorly (e.g.,403

the French parser), SCOI also performs less com-404

petitively, while a more powerful parser (e.g., the405

Russian one) leads to better performance of SCOI.406

Details of the relation between parser and SCOI’s407

performance can be found in Appendix F.408

We also experiment on GPT-3.5 (Ouyang et al.,409

2022), which is an API-based LLM. Results are410

presented in Appendix G.411

5.2 Ablation Study 412

Method
Into EN Out of EN

Avg.DE FR RU DE FR RU

SCOI 64.67 71.26 54.08 44.87 55.31 46.47 56.11

w/o syntax 64.44 71.52 53.33 43.99 55.52 46.22 55.84
w/o word 63.84 70.95 53.30 42.55 56.25 46.82 55.62

Table 3: Ablation results of SCOI on XGLM. "w/o syn-
tax" refers to select using word-level coverage only and
"w/o word" refers to select using syntax-level coverage
only.

To explore the effect of syntactic and lexical in- 413

formation, we perform ablation experiments using 414

XGLM. Since SCOI uses both syntactic and lexical 415

coverage, we evaluate the syntactic coverage-only 416

and lexical coverage-only selection methods. 417

As shown in Table 3, either word-only or syntax- 418

only coverage has limitations on some transla- 419

tion directions. For instance, the syntax-coverage 420

method performs poorly on "FR-EN" and "EN-DE" 421

while the word-coverage one performs less compet- 422

itively on "RU-EN" and "EN-DE". With the help 423

of alternate word-coverage and syntax-coverage, 424

our proposed method of combined coverage makes 425

the best of both worlds by and large, performing 426

satisfactorily on all directions except "EN-FR" and 427

achieves the highest average score. 428
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5.3 Experiments with Different Selection429

Modes430

Mode
Into EN Out of EN

Avg.DE FR RU DE FR RU

BM25 63.21 71.36 52.48 44.13 55.54 44.58 55.22

Top-k 64.15 70.79 53.71 43.22 54.75 46.49 55.52
DPP 63.64 70.71 53.65 43.61 55.55 45.48 55.44
SCOI 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Table 4: COMET scores of 4-shot ICL performance on
XGLM of different selection modes, all trying to make
use of syntactic information.

We explore different modes of in-context exam-431

ple selection including top-k, DPP and our pro-432

posed coverage-based SCOI using XGLM to see433

how to make the most of syntactic information in434

in-context example selection.435

Top-k We select the top-k examples with the436

highest syntactic similarity based on the polyno-437

mial distance used in Liu et al. (2022) for each438

test input from the example database. Details of439

polynomial distance can be found in Appendix H.440

DPP Inspired by Ye et al. (2023) and Yang441

et al. (2023), we explore selecting in-context exam-442

ples for MT using Determinantal Point Processes443

(DPPs). DPPs are elegant probabilistic models ca-444

pable of selecting a representative subset from a445

larger, potentially redundant set.446

To incorporate both lexical diversity (differences447

in vocabulary coverage between different exam-448

ples) and syntactic relevance (similarity between449

the candidate example and the test input) in the450

in-context example selection process, we utilize451

the same equation that combines diversity and rele-452

vance as used in Ye et al. (2023):453

log det(L′
S) =

1

λ

∑
i∈S

ri + log det(LS), (9)454

where ri represents syntactic relevance, measured455

by the normalized polynomial distance between456

each candidate example and the test input, and457

LS denotes lexical diversity, constructed through458

the dot product of word vectors of all candidate459

examples.460

Given the log det(L′
S), we can select the repre-461

sentative subset Sbest of size k as follows:462

Sbest = argmax
S⊆Z,|S|=k

det(L′
S). (10)463

For the actual selection of Sbest, we utilize the 464

exact implementation of the greedy algorithm from 465

Ye et al. (2023), originally proposed in Chen et al. 466

(2018). Other details of DPP are presented in Ap- 467

pendix I. 468

Results Results are shown in Table 4. Note that 469

all the methods re-rank on the basis of top-100 470

examples of each test input retrieved by BM25. 471

Thus BM25 is a comparable baseline. 472

The top-k mode does achieve a slightly higher 473

average score compared with BM25 but in fact 474

shows some performance drop on "FR-EN", "EN- 475

DE" and "EN-FR" directions. This indicates simply 476

re-ranking based on only syntactic closeness cannot 477

necessarily secure improvement. 478

The DPP mode shows a slight improvement on 479

average, but its performance fluctuates across trans- 480

lation directions. This indicates that simply incor- 481

porating syntax similarity into the relevance term 482

in DPP does not necessarily yield desired improve- 483

ment and how to effectively combine lexical and 484

syntactic information using DPPs still requires ex- 485

ploration, which we leave for future work. 486

SCOI, however, performs better compared with 487

the baselines above, obtaining highest or compet- 488

itive scores across all 6 translation directions and 489

getting the highest average score. This proves that 490

selecting examples based on syntactic and lexical 491

coverage alternately effectively leverages syntactic 492

information and leads to better ICL performance. 493

Order
Into EN Out of EN

Avg.DE FR RU DE FR RU

Word First 64.45 70.64 53.76 45.39 55.91 45.63 55.96
Syntax First 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Table 5: COMET scores of 4-shot ICL performance on
XGLM of different orders of alternating.

5.4 Analysis on the Selection Order 494

In this section, we analyze the effect of the order 495

of alternating during the selection of SCOI. 496

By default, the order of alternating is syntax- 497

first, i.e., selecting odd-numbered examples using 498

syntactic coverage and even-numbered ones using 499

lexical coverage. We experiment on a reversed 500

order (i.e., word-first) for comparison. 501

Experimental results on XGLM are shown in Ta- 502

ble 5. On average, the syntax-first order is slightly 503

better than the word-first one. This indicates that 504

focusing on syntax first can organize a better set of 505

in-context examples. 506
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DE EN

Input & Gold Nach einer Woche voller Verluste in der Zwischenwahl erzählte
Bush dem Publikum von der Ausweitung des Handels in Asien.

After a week of losses in the midterm election, Bush told an audi-
ence about the expansion of trade in Asia.

BM25 Prediction - After a week of losses in the mid-election campaign, President
Bush told his audience that trade in Asia had been expanded.

Example-1 Deshalb geht meiner Ansicht nach der Verlust von Sprachen mit
dem Verlust von Lebensweisen einher. I think, therefore, that if we lose languages we lose forms of life.

Example-2

Ich stimme mit dem Standpunkt der Berichterstatterin überein und
bin mit den eingeführten Veränderungen, wie der Ausweitung der
Mindestdauer des Mutterschaftsurlaubs von 14 auf 20 Wochen, dem
Grundsatz einer Bezahlung in voller Höhe des bisherigen Einkom-
mens, der Einführung von Gesundheitsschutzbestimmungen am
Arbeitsplatz und dem Verbot der Kündigung, einverstanden.

I agree with the position of the rapporteur and with the changes
introduced, such as the extension of the minimum period for mater-
nity leave from 14 to 20 weeks, the principle of pay equivalent to
complete earnings, the establishment of health and safety require-
ments in the workplace, and the prohibition of dismissal.

Example-3
Es muss eine grundlegende Strategie sein, die alle Ursachen der
Krise einbezieht: die Veränderung der Ernährungsgewohnheiten in
Asien, die rasche Ausweitung des Anbaus von Biokraftstoffen usw.

It must be a basic strategy that tackles all the causes of the crisis:
changing food habits in Asia, the rapid rise in the cultivation of
biofuels, etc.

Example-4
Das hat seinen Widerhall bei seinem Publikum gefunden, von dem
in dieser Woche 50.000 die Online-Petition für seine Freilassung
unterzeichnet haben.

This has resonated among his audience, 50 000 of whom have this
week signed the online petition asking for his release.

SCOI Prediction - After a week of losses in the mid-term election, Bush told the
audience about the expansion of trade in Asia.

Table 6: An end-to-end German-to-English translation example. "Input & Gold" refers to the test input and the gold
reference. "BM25 Prediction" refers to XGLM’s prediction given the test input and examples selected by BM25,
which are shown in Appendix K. "Example-i" refers to the i-th example selected by SCOI. "SCOI Prediction"
shows the predict of XGLM given the test input and the 4 in-context examples selected by SCOI.

5.5 Case Analysis507

An end-to-end German-to-English case is pre-508

sented in Table 6, showing the test input, ground509

truth, selected examples of SCOI and model predic-510

tion of XGLM with in-context examples selected511

by BM25 and SCOI separately. The set of in-512

context examples selected by SCOI brings a good513

demonstration at both syntax level and word level.514

For instance, the first example, which is selected515

based on syntactic coverage, shows very close516

syntactic structure to the test input, with multiple517

prepositional phrases ("meiner Ansicht nach", "von518

Sprachen", "mit dem Verlust von Lebensweisen"),519

a very alike structure of main clause (a verb and a520

noun phrase) and similarly complex noun phrases521

("der Verlust von Sprachen mit dem Verlust von522

Lebensweisen"). The second example, which is523

selected based on lexical coverage, covers many524

words as expected ("einer", "voller", "Ausweitung",525

etc.). The third example, again selected based on526

syntactic coverage, again shows very homologous527

syntactic structure including use of multiple prepo-528

sitional phrases, complex noun phrases and similar529

main clause. The fourth example, based on lexi-530

cal coverage, covers some other important words531

("Publikum", "Woche", etc).532

Table 6 also compares SCOI’s system output533

with that of BM25. BM25 fails to construct the534

proper syntactic structure when translating the Ger-535

man phrase "der Ausweitung des Handels in Asien"536

and turns it into a reported clause "that trade in Asia537

had been expanded", thus losing accuracy. Note538

that "der Ausweitung des Handels in Asien" (the 539

expansion of trade in Asia) does not include tempo- 540

ral information and it could be a bygone, a current 541

state or a future trend, while the result of BM25 as- 542

sumes that it is something that happened in the past, 543

which is inconsistent with the original meaning of 544

the input sentence. However, SCOI, combining 545

syntactic and lexical coverage, is able to output the 546

exact noun phrase "the expansion of trade in Asia", 547

which is consistent with the syntactic structure in 548

the source German sentence and much more ac- 549

curate in translation. For the complete end-to-end 550

case of BM25, please refer to Appendix K. 551

6 Conclusion 552

In this work, we introduce syntactic information to 553

in-context example selection for MT. We propose 554

to measure set-level syntactic coverage with the 555

set-level coverage of polynomial terms represent- 556

ing root-to-node paths in syntax trees based on a 557

simplified tree-to-polynomial algorithm and select 558

in-context example selection for MT using an al- 559

ternate mode where syntactic and lexical coverage 560

are considered alternately to combine information 561

of syntax and word. Our proposed method ob- 562

tains the highest average COMET score among all 563

learning-free methods, indicating that combining 564

syntactic and lexical coverage during in-context 565

example selection is helpful for MT. We call on the 566

NLP community to pay more attention to syntactic 567

knowledge for syntax-rich tasks like MT. 568
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Limitations569

Syntax Parser Our syntax-based method is570

based on reliable parsers and might not work well571

for low-resource languages. Meanwhile, depen-572

dency parsing could be costly when dealing with573

large datasets, which makes SCOI more time-574

consuming in such situations.575

Semantics We have not tried semantic informa-576

tion (e.g., sentence embeddings) in our method.577

Word-level Coverage We have not tried other578

advanced word-level coverage methods (e.g.,579

weighted words based on their frequencies or n-580

gram features).581

The Original Tree-to-Polynomial Algorithm582

Due to limited time, we have not completed the583

evaluation of the original tree-to-polynomial algo-584

rithm on our method to compare with our simplified585

version. In fact, the algorithm got stuck at a long586

sentence with a large dependency tree and failed587

to finish that instance before we killed the process588

due to overlong running time.589

The Simplified Tree-to-Polynomial Algorithm590

There might be some information loss in the sim-591

plified tree-to-polynomial algorithm. For example,592

each term in the polynomial only presents the num-593

ber of each dependency label on its corresponding594

root-to-node path but cannot show the exact order595

of these labels. In other words, our simplified tree-596

to-polynomial algorithm is a many-to-one mapping597

and is thus irreversible.598

Ethics Statement599

Task Time (min)

BM25 Pre-selection 12
Dependency Parsing 60

Tokenization 4
Combined Coverage 9

LLM Inference 90

Table 7: Average computation time on German into/out
of English using XGLM.

Computational Budget We run pre-processing600

and in-context example selection on Intel® Xeon®601

Gold 6348 CPU and the LLM’s inference on602

NVIDIA A40 (we set batch size to 2). Table603

7 presents the average computation time, with604

XGLM as the LLM. The major bottleneck of com-605

putation time lies in syntax parsing, which is due606

to the large size of the example database.607

Reproducibility All the experiments are repro- 608

ducible since all the methods are deterministic and 609

sampling is disabled during LLM generation. 610

Artifact License

spaCy MIT
Sacremoses MIT
retriv MIT
XGLM MIT
Alpaca Apache-2.0
COMET Apache-2.0
sacreBLEU Apache-2.0
FLORES-101 CC-BY-SA-4.0
Europarl Unknown
ParaCrawl CC0
CTQ Scorer MIT

Table 8: Licenses of scientific artifacts we use.

Scientific Artifacts We cite all the creators of 611

scientific artifacts we use in this paper. Licenses 612

of these scientific artifacts are shown in Table 8. 613

Our use of these artifacts is consistent with their 614

intended use. 615
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A Analysis of Tree-to-Polynomial892

Algorithms893

A.1 Original Algorithm from Liu et al. (2022)894

We denote the cost of the algorithm if the tree has895

n nodes by T (n) (then T (1) = O(1)), the number896

of nodes in the tree rooted in node m by | m |, the897

number of terms in the polynomial of node m by898

∥ m ∥. Note that if | m |= n, then899

k∑
i=1

| ni | = n− 1. (11)900

For simplicity, we assume that the cost of ad-901

dition of polynomial terms is the same as that of902

multiplication.903

To get the polynomial of ml in Equation 1, we904

need to compute the polynomial of each ni (each is905

T (| ni |) and the sum is T1(n) =
∑k

i=1 T (| ni |))906

and the multiplication of the former polynomials907

(which is the sum of the multiplication of all possi-908

ble combinations of terms from the child nodes and909

each combination requires multiplying k terms to-910

gether plus an addition thus the overall cost should911

be T2(n) = O((1+(k−1))·
∏k

i=1 ∥ ni ∥)) 4. Then912

the overall cost of computing Equation 1 is913

T (n) = T1(n) + T2(n)914

=
k∑

i=1

T (| ni |) +O(k ·
k∏

i=1

∥ ni ∥). (12)915

4Here the additions include the addition of the whole prod-
uct of former polynomials and yl.
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Figure 2: An example tree with t+ 2 layers and 4t+ 3
nodes. mj

i denotes the j-th node on the i-th layer.

Consider a tree as shown in Figure 2 with t+ 2 916

layers and 4t+3 nodes, where mj
i denotes the j-th 917

node on the i-th layer. The cost of computing the 918

polynomial of mj
t should be O(t) since it is just to 919

add t single-variable terms together according to 920

Equation 1. Then, the cost of computing the poly- 921

nomial of mi
t+1 should be O(2t+ 2t2) according 922

to Equation 12, which can be further simplified to 923

O(t2). Finally, the cost of computing the polyno- 924

mial of m1
t+2, which is also the polynomial repre- 925

senting the whole tree, should be O(2t2 + 2(t2)2) 926

according to Equation 12, which can be further 927

simplified to O(t4). Thus in this tree, the cost is: 928

T̂ (4t+ 3) = O(t4). (13) 929

Let s = 4t+ 3, we simplify Equation 13 and have: 930

T̂ (s) = O(s4). (14) 931

Therefore, we prove that the original tree-to- 932

polynomial algorithm can be of quartic time com- 933

plexity in some cases. 934

In fact, given any constant p = 2q where q is a 935

positive integer, we can construct a tree in the way 936

as shown in Figure 2 with t+q layers and pt+p−1 937

nodes. Let m1
t+q denote the root node. For each 938

i between 1 and q and each j between 1 and 2q−i, 939

mj
t+i has two child nodes m2j−1

t+i−1 and m2j
t+i−1. For 940

each i between 2 and t and each j between 1 and 941

2q, mj
i has only one child node mj

i−1. Finally, for 942

each j between 1 and 2q, mj
1 is the leaf node. In 943

this way, the cost of computing the polynomial 944

of mj
t is O(t) as discussed above. That of mj

t+1, 945

mj
t+2, ..., mj

t+q should be O(t2), O(t4), ..., O(t2
q
) 946

recursively, the last one with q times of recursion 947
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being T̂ (pt+p−1) indeed. Let s = pt+p−1, we948

again ignore the constant factors and insignificant949

terms and then have:950

T̂ (s) = O(s2
q
) = O(sp). (15)951

Thus we prove that the complexity of the original952

tree-to-polynomial algorithm can be polynomial of953

arbitrarily large degree p = 2q in some cases. So954

when dealing with very large dependency trees of955

long sentences, the original algorithm can be quite956

time-consuming and thus impractical for applica-957

tion in MT where there can be millions of data to958

be processed.959

However, we have not proven the exact lower960

bound of the cost or the average cost according to961

Equation 12, which we leave for future work.962

A.2 Our Simplified Algorithm963

We use the same symbols as in Section A.1. Given964

| m |= n, Equation 11 still holds in this section.965

Moreover, in our simplified algorithm, the number966

of terms in a polynomial equals to the number of967

nodes in the tree rooted in the corresponding node:968

∥ m ∥=| m |, (16)969

and970

∥ ni ∥=| ni | . (17)971

To get the polynomial of ml in Equation 2, we972

need to compute the polynomial of each ni (each is973

T (| ni |)), the sum of 1 and all the former polyno-974

mials (which is O(
∑k

i=1 ∥ ni ∥)), the multiplica-975

tion of xl (which can be seen as multiply xl with all976

the terms in the former polynomials plus 1 and thus977

should be O(1 +
∑k

i=1 ∥ ni ∥) and can be further978

simplified to O(
∑k

i=1 ∥ ni ∥)). Then the overall979

cost of computing Equation 2 is980

T (n) =
k∑

i=1

T (| ni |) + 2 ·O(
k∑

i=1

∥ ni ∥). (18)981

We then apply Equation 11 and 17 and ignore the982

constant factors to get983

T (n) =

k∑
i=1

T (| ni |) +O(n). (19)984

Then985

T (n)−
k∑

i=1

T (| ni |) = O(n). (20)986

Analogously, 987

∀1 ≤ i ≤ k, T (| ni |)−
ki∑
j=1

T (| nij |) = O(| ni |),

(21) 988

where ni has ki child nodes denoted by nij . Thus 989

k∑
i=1

T (| ni |)−
k∑

i=1

kj∑
j=1

T (| nij |) =
k∑

i=1

O(| ni |)

= O(n− 1).

(22)

990

With the recursive boundary 991

T (1)− 0 = O(1), (23) 992

we can continue the process recursively (in fact, 993

each level of recursion corresponds to a layer in 994

the tree) until each node has appeared on left-hand 995

side and add together Equation 20, 22 and so on to 996

get 997

T (n) = O(n) +O(n− 1) +O(n− 1− k) + ...

≤ O(n2).

(24)
998

Thus we prove that the complexity of our simpli- 999

fied tree-to-polynomial algorithm is no more than 1000

quadratic time. 1001

B BLEU Results 1002

The BLEU scores of our main results are shown in 1003

Table 9. 1004

C The spaCy Models Used for Parsing 1005

The spaCy models and their corresponding ver- 1006

sions we use for dependency parsing are listed in 1007

Table 10. 1008

D Prompt Template 1009

For XGLM, we use the same prompt template as 1010

used in Kumar et al. (2023): 1011

[source] sentence: [X_1] 1012

[target] sentence: [Y_1] 1013

### 1014

... 1015

[source] sentence: [X_k] 1016

[target] sentence: [Y_k] 1017

### 1018

[source] sentence: [X] 1019

[target] sentence: 1020

13



System
Into EN Out of EN

Avg.DE FR RU DE FR RU

XGLM

Learning-free
Random 31.31 32.68 24.85 19.63 28.79 17.57 25.81
BM25 31.06 33.34 24.47 20.16 29.79 18.18 26.17

R-BM25 31.16 32.99 24.71 20.00 29.17 17.93 25.99
Fuzzy 31.95 33.08 24.42 20.29 29.77 18.01 26.25

SCOI (ours) 31.51 32.88 24.85 20.45 29.39 18.25 26.22

Learning-based
CTQ Scorer 32.02 32.35 25.29 20.94 30.59 18.53 26.62

Alpaca

Learning-free
Random 33.50 36.24 26.48 20.08 29.05 15.82 26.86
BM25 33.16 35.11 26.58 20.23 29.76 15.99 26.81

R-BM25 33.47 35.42 26.23 20.46 29.64 16.27 26.92
Fuzzy 33.51 35.51 26.02 20.26 29.58 15.87 26.79

SCOI (ours) 33.93 35.44 26.69 20.70 29.61 16.53 27.15

Learning-based
CTQ Scorer 33.75 35.83 26.56 20.99 30.23 16.26 27.27

Table 9: BLEU scores of 4-shot ICL performance of SCOI and other methods for translation on all 6 directions
of 2 language models. All the methods except CTQ Scorer are learning-free, which do not require task, language
or LLM-specific training. "Avg." refers to the average score across all 6 directions. The highest scores among
learning-free methods are in bold text.

Language spaCy Model Version

DE de_core_news_sm 3.7.0
EN en_core_web_sm 3.7.1
FR fr_core_news_sm 3.7.0
RU ru_core_news_sm 3.7.0

Table 10: The spaCy models and their versions of dif-
ferent languages used for dependency parsing.

In the template, [source] and [target] refer1021

to the names of the source and target languages in1022

English (e.g., German, French, etc.). The ### sym-1023

bol is used as an example delimiter and a marker1024

for answer extraction in post-processing.1025

With the same symbols above, for Alpaca, we1026

use the same prompt template as used in He et al.1027

(2024):1028

Instruction: Translate the following1029

[source] text into [source].1030

1031

[source]: [X_1]1032

[target]: [Y_1]1033

...1034

[source]: [X_k]1035

[target]: [Y_k]1036

[source]: [X]1037

[target]: 1038

E Implementation Details 1039

Noting that our test data and example databases 1040

are the same as those used in Kumar et al. (2023), 1041

we directly use the examples selected by BM25, R- 1042

BM25 and CTQ Scorer from Kumar et al. (2023) 5. 1043

Following Kumar et al. (2023), we remove in- 1044

stances in the example database with more than 1045

120 tokens in order to avoid overlong context. 1046

F Effect of Parser 1047

Direction ∆ Parser LAS

DE-EN +1.46 de_core_news_sm 0.90
FR-EN -0.10 fr_core_news_sm 0.83
RU-EN +1.60 ru_core_news_sm 0.95

Out of EN (Avg.) +0.80 en_core_web_sm 0.90

Table 11: Performance gains ("∆") of SCOI over BM25
using XGLM and capabilities of corresponding parsers
on different translation directions. "LAS" refers to the
labeled attachment score of a parser.

In order to better understand the relation between 1048

the performance of SCOI and the capability of the 1049

parser, we compare the labeled attachment scores 1050

5https://github.com/AI4Bharat/CTQScorer
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System
Into EN Out of EN

Avg.DE FR RU DE FR RU

Learning-free
Random 77.52 81.78 67.02 69.04 84.12 71.26 75.12
BM25 77.54 81.60 66.17 68.93 84.06 71.73 75.01

R-BM25 77.24 81.54 66.45 69.25 84.08 71.46 75.00
Fuzzy 77.36 81.89 66.52 68.83 84.33 72.49 75.24

SCOI (ours) 77.17 81.89 66.38 69.07 84.31 72.13 75.16

Learning-based
CTQScorer 77.40 81.99 66.77 69.33 83.78 73.06 75.39

Table 12: Results on GPT-3.5.

(LAS) of different parsers used in our experiments1051

reported on the official website of spaCy 6. Ta-1052

ble 11 shows performance gains of SCOI over the1053

BM25 baseline using XGLM and capabilities of1054

corresponding parsers. The results show that a bet-1055

ter parser leads to better performance of SCOI and1056

incidate that SCOI is highly dependent on parsers.1057

G Results on GPT-3.51058

We call OpenAI’s API 7 of gpt-3.5-turbo-01251059

to evaluate different in-context example selection1060

methods on GPT-3.5. Results are presented in Ta-1061

ble 12.1062

It seems the difference between in-context exam-1063

ple selection methods is not so significant as that on1064

smaller LLMs. This might be because that the ca-1065

pability of GPT-3.5 has been strong enough so that1066

in-context examples bring limited help. For such1067

large-scaled models, design and organization of1068

prompt and use of additional information or knowl-1069

edge might be more crucial in improving perfor-1070

mance of ICL.1071

H Polynomial Distance1072

Note that we can write polynomial terms as term1073

vectors as shown in Equation 5. In this way, a1074

polynomial P can be written as a set of term vectors1075

VP . Then, following Liu et al. (2022), we compute1076

the distance between two polynomials (P and Q)1077

as:1078

d(P,Q) =

∑
s∈VP

min
t∈VQ

∥ s− t ∥1 +
∑

t∈VQ

min
s∈VP

∥ s− t ∥1

| VP | + | VQ | ,

(25)1079

where ∥ s− t ∥1 is the Manhattan distance (Craw,1080

2017) between term vector s and t.1081

6https://spacy.io/models/
7https://openai.com/api/

I Details of DPPs 1082

We set the λ in Equation 9 to 0.5 to balance syntac- 1083

tic relevance and lexical diversity. As mentioned 1084

in Section 5.3, the word vectors WN×T , used to 1085

compute lexical diversity, where N is the number 1086

of documents (candidate examples) and T is the 1087

number of terms (words) in each test input, are 1088

constructed as follows: 1089

Wi,j = idfj ×
(

tfi,j × (k1 + 1)

tfi,j + k1 × (1− b+ b× li)

)
,

(26) 1090

where i and j refer to the i-th candidate exam- 1091

ple and the j-th term in a test input, respectively. 1092

Here, idfj is the inverse document frequency of 1093

the j-th term across all candidate examples, tfi,j 1094

is the term frequency of the j-th term in the i-th 1095

candidate example, and li is the length of the i-th 1096

candidate example. The parameters k1 and b are 1097

hyperparameters. 1098

J Effect of Measure of Coverage 1099

Coverage
Into EN Out of EN

Avg.DE FR RU DE FR RU

Cosine Similarity 64.35 71.54 53.89 45.41 55.36 46.06 56.10
Normalized Distance 64.67 71.26 54.08 44.87 55.31 46.47 56.11

Table 13: COMET scores of 4-shot ICL performance
on XGLM of different measures of coverage.

As described in Section 3.2, we compute the cov- 1100

erage of polynomial terms c(s, t) in Equation 4 by 1101

Equation 6 and 7, which is the normalized Manhat- 1102

tan distance between two term vectors. For com- 1103

parison, we also explore cosine similarity as the 1104

measure of coverage: 1105

c(s, t) =
vs · vt

∥ vs ∥∥ vt ∥
, (27) 1106

where vs and vt are the vectors described in Equa- 1107

tion 5 representing terms s and t respectively. Thus, 1108
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DE EN

Input & Gold Nach einer Woche voller Verluste in der Zwischenwahl erzählte
Bush dem Publikum von der Ausweitung des Handels in Asien.

After a week of losses in the midterm election, Bush told an audi-
ence about the expansion of trade in Asia.

Example-1

Ich stimme mit dem Standpunkt der Berichterstatterin überein und
bin mit den eingeführten Veränderungen, wie der Ausweitung der
Mindestdauer des Mutterschaftsurlaubs von 14 auf 20 Wochen, dem
Grundsatz einer Bezahlung in voller Höhe des bisherigen Einkom-
mens, der Einführung von Gesundheitsschutzbestimmungen am
Arbeitsplatz und dem Verbot der Kündigung, einverstanden.

I agree with the position of the rapporteur and with the changes
introduced, such as the extension of the minimum period for mater-
nity leave from 14 to 20 weeks, the principle of pay equivalent to
complete earnings, the establishment of health and safety require-
ments in the workplace, and the prohibition of dismissal.

Example-2 Deshalb geht meiner Ansicht nach der Verlust von Sprachen mit
dem Verlust von Lebensweisen einher. I think, therefore, that if we lose languages we lose forms of life.

Example-3
Herr Minister, diese Woche wird von dem erklärten Willen des
Europäischen Parlaments geprägt sein, gegen den Verlust der biolo-
gischen Vielfalt anzukämpfen.

Minister, this week will have been marked by the desire shown by
the European Parliament to fight against the loss of biodiversity.

Example-4 Nach dem, was mir erzählt wurde, nicht gut. From what I was told I suspect they were not good.

Prediction - After a week of losses in the mid-election campaign, President
Bush told his audience that trade in Asia had been expanded.

Table 14: An end-to-end "DE-EN" translation example of BM25, with the same test input in Table 6.

c(s, t) is measured by the cosine similarity be-1109

tween vs and vt.1110

Experimental results are shown in Table 13. The1111

difference of performance between the two mea-1112

sures is not significant and thus we infer that the1113

measure of coverage has little effect on the perfor-1114

mance of SCOI.1115

K The Example of BM251116

An end-to-end German-to-English translation ex-1117

ample of BM25 is shown in Table 14, the test in-1118

put is the same as that of SCOI discussed in Sec-1119

tion 5.5.1120

BM25 mainly focuses on lexical similarity and1121

does not take coverage into consideration. For1122

example, the word "Publikum" is not covered by1123

BM25 since it is based on the Top-k mode while1124

SCOI does cover it. Moreover, it does not empha-1125

size the similarity in syntax. Even though some1126

examples contain similar syntactic structure (e.g.,1127

the second example is just the first example selected1128

by our method), BM25 fails to put these examples1129

in the front to allow LLMs pay more attention to1130

those more helpful examples.1131
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