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Abstract

Changepoint localization is the problem of estimating the index at which a change occurred
in the data generating distribution of an ordered list of data, or declaring that no change oc-
curred. We present the broadly applicable MCP algorithm, which uses a matrix of conformal
p-values to produce a confidence interval for a (single) changepoint under the mild assump-
tion that the pre-change and post-change distributions are each exchangeable. We prove
a novel conformal Neyman-Pearson lemma, motivating practical classifier-based choices for
our conformal score function. Finally, we exemplify the MCP algorithm on a variety of
synthetic and real-world datasets, including using black-box pre-trained classifiers to detect
changes in sequences of images, text, and accelerometer data.

1 Introduction

In offline changepoint localization, we are (informally) given some ordered list of data and are told that there
may have been a change in the data generating distribution at some unknown index, called the changepoint.
Suppose, for example, that the data is drawn independently from a density f0 before the changepoint and is
drawn independently from another density f1 ̸= f0 post-change. Then, the goal of changepoint localization
is to estimate the index at which the change occurred, or to declare that no change occurred. In fact, using
the tools of conformal prediction, we are able to non-trivially localize the changepoint without any further
assumptions about f0 and f1.

The problem of changepoint localization arises frequently in statistical practice. For example, consider a
firm monitoring the quality of an airplane part (via some metric X) after each flight. Suppose that at some
point the part breaks, leading to lower performance in some downstream metric. The company may analyze
this data weekly, and they may ask “after which flight did the part break?”. In this scenario, it may neither
make sense for the company to make parametric assumptions about the distribution of X, nor about the
nature of the change (in the mean, variance, modality, etc.). Our algorithm solves this problem by producing
a confidence set for the changepoint under far fewer assumptions than prior work.

Now, we are ready to formally describe the offline changepoint localization problem in a more general setting.
In all of the following, we will let [K] = {1, . . . , K} for K ∈ N and useM(S) to denote the set of probability
measures over S. Furthermore, we use d= to denote equality in distribution. We are given a list of X -valued
random variables (Xt)n

t=1 for some n ∈ N. Furthermore, there exists an unknown changepoint ξ ∈ [n]
such that (Xt)ξ

t=1 ∼ P0 and (Xt)n
t=ξ+1 ∼ P1 are respectively sampled from the pre-change distribution

P0 ∈ M(X ξ) and the post-change distribution P1 ∈ M(Xn−ξ). We use ξ = n to denote the case where no
change occurs. Let P = P0×P1; we assume that the pre-change data is independent of the post-change data.

We make the very general assumption that P0 is exchangeable. This means that P0 is invariant to permuta-
tions in the following sense: for any permutation π : [ξ]→ [ξ], we have:

(X1, . . . , Xξ) d= (Xπ(1), . . . , Xπ(ξ)).

For instance, it could be the case that P0 corresponds to i.i.d. observations according to some cumulative
distribution function F0. Similarly, we assume that the post-change distribution P1 is exchangeable as well
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(which occurs if P1 corresponds to i.i.d. observations according to some cumulative distribution function
F1). We summarize our main contributions below.

• We present the MCP algorithm, a novel and widely applicable method which uses a matrix of
conformal p-values to produce a confidence interval for a changepoint under the mild assumption
that the pre-change and post-change distributions are each exchangeable.

• We show that the MCP algorithm is able to produce (finite-sample) valid confidence sets for the
changepoint under (only) the assumption that the pre-change and post-change distributions are
exchangeable.

• We describe methods for learning the conformal score function used in the MCP algorithm from
the data, thereby increasing the power of our method. These are based on a novel “conformal
Neyman-Pearson” type result.

• We demonstrate the MCP algorithm on a variety of synthetic and real-world datasets, including
using black-box classifiers to localize changes in sequences of images or text. We show that the MCP
algorithm is able to produce narrow confidence sets for the changepoint, even when the change is
difficult to detect.

This work focuses on localizing a single changepoint; one possible extension (which we do not explore here)
is to use a variant of our algorithm to localize multiple changepoints. We begin by reviewing prior work on
changepoint localization and conformal approaches to change detection in Section 2. We introduce the MCP
algorithm in Section 3. We then show how to construct confidence sets for the changepoint in Section 4
and prove the validity of the resulting confidence sets. Next, we discuss how the score function should be
chosen in Section 5. Finally, we apply the MCP algorithm on a variety of synthetic and real-world datasets
in Section 7 to demonstrate its effectiveness and flexibility.

2 Related work

Changepoint analysis. Here, we give a review of several classical methods from changepoint analysis;
some further details can be found in Truong et al. (2020). Traditional changepoint analysis has largely been
dominated by parametric approaches based on the generalized likelihood ratio; however, these parametric
methods often require knowing the pre-change and post-change distributions to achieve optimality, and often
only give point estimators without associated confidence sets.

Methods such as CUSUM (Page, 1955) and conformal martingales (Vovk et al., 2003) are used for quickest
(sequential) changepoint detection. One cannot use them to get confidence sets for the location of the
changepoint (sometimes called changepoint localization). In fact, there is only one very recent work of
Saha & Ramdas (2025) that attempts to provide confidence sets for changepoints after stopping a sequential
detection procedure, but they make parametric assumptions, as well as assume that the pre- and post-change
distributions are in known non-overlapping classes. We do not need such assumptions, and methods in their
preprint are not applicable to our assumption-lean setup.

Nonparametric changepoint localization There is previous work in nonparametric changepoint lo-
calization specifically for a change in the mean, but they rely on unspecified hyperparameters or are only
asymptotically valid. Furthermore, many interesting changepoints do not involve a mean change (e.g., they
may involve a change in the variance, modality, etc.). In Verzelen et al. (2023), the authors provide a CI
for the changepoint, but the confidence interval in their Proposition 4 has several unknown constants (only
their existence is ensured), and they do not provide a method to explicitly compute them (which is perhaps
why the paper has no experiments). As a result, we could not implement their CI in practice, even in their
special case of mean change. The confidence set in Cho & Kirch (2022) works only for mean changes in
univariate data, is only asymptotically valid, and relies on a computationally expensive bootstrap procedure.
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The SMUCE estimator introduced in Frick et al. (2014) provides an asymptotically valid confidence set
in exponential family regression models. The paper Xu et al. (2024) produces a confidence set for high-
dimensional regression problems under many technical assumptions, and the result in Fotopoulos et al.
(2010) can be used to construct asymptotic CIs for a Gaussian mean change. However, note that all of
these methods lack finite-sample validity and operate under far more stringent assumptions than our MCP
algorithm.

Nonparametric changepoint testing Rank-based nonparametric tests, such as those developed by Pet-
titt (1979) and Ross & Adams (2012), offer distribution-free tests about whether there was a changepoint in a
given dataset, but these methods do not produce a confidence set for the changepoint on rejection and suffer
from lack of statistical power without additional assumptions. In contrast, MCP addresses these limitations
by allowing the score function to be learned in a way that achieves nontrivial power, while also providing
finite-sample valid confidence sets for changepoint location under minimal distributional assumptions.

Multiple changepoint analysis Existing methods for multiple changepoint analysis (which typically
only yield point estimators) often rely on the so-called "Isolate-Detect" paradigm, using a sliding window
or segmentation to reduce to the single changepoint case (for instance, see Section 5.2 of Truong et al.
(2020) or Anastasiou & Fryzlewicz (2022)). In this sense, our algorithm is an important contribution to the
changepoint analysis literature, since (after isolation of the changepoint) it provides a method for producing
a confidence set.

Conformal prediction for change detection. The application of conformal prediction to changepoint
problems is relatively recent compared to traditional approaches. Conformal prediction, as surveyed in
Shafer & Vovk (2008), provides a framework for constructing valid prediction regions with distribution-free
guarantees under minimal statistical assumptions. While originally developed for supervised learning tasks,
conformal methods have been extended to changepoint detection.

Early work on connecting conformal prediction to changepoint detection focused primarily on testing for
exchangeability violations rather than precise localization. Vovk et al. (2003) proposed a general approach
for testing the exchangeability assumption in an online setting using conformal martingales, laying important
groundwork for changepoint detection. The conformal martingale approach is a special case of the e-detector
framework laid out in Shin et al. (2023), which provides an extremely general and powerful method for
sequential change detection. While most prior work using conformal prediction for change detection is in
the sequential (online) setting, here we study the localization problem in the offline setting; we would like a
confidence interval for the changepoint.

Building on this foundation, Vovk (2021) and Vovk et al. (2021) introduced conformal test martingales
specifically designed for changepoint detection; for them, the motivation was to determine when the data
generating distribution changes and a predictive algorithm needs to be retrained. They introduced conformal
versions of the CUSUM and Shiryaev-Roberts procedures, which control false alarm rates through martingale
properties. However, the primary emphasis remained on detection rather than localization of the changepoint.

Volkhonskiy et al. (2017) developed a more computationally efficient conformal test martingale, called the
inductive conformal martingale, for change detection. Furthermore, they provided conformity measures
and betting functions tailored specifically for change detection. However, their method does not provide
formal guarantees for the localization task. More recently, Nouretdinov et al. (2021) investigated conformal
changepoint detection under the assumption that the data generating distribution is continuous, showing
that the conformal martingale is statistically efficient but without addressing the question of confidence
interval construction for the changepoint location.

Despite these recent advances, existing conformal changepoint methods focus on detection (whether a change
occurred) rather than localization (precise estimation of where it occurred). The primary novelty of our ap-
proach lies in leveraging conformal prediction techniques to construct valid confidence sets for the changepoint
location, as well as allowing for the score function to be learned from the data. By bridging the gap between
conformal prediction and classical changepoint localization using two-sample testing, our approach opens
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new possibilities for reliable changepoint analysis in complex, high-dimensional data settings where classical
methods fail.

3 The matrix of conformal p-values (MCP) algorithm

In this section, we discuss our MCP algorithm for conformal changepoint localization in technical detail.
We begin by defining score functions; for more details on conformal prediction, see Shafer & Vovk (2008).
In the following definition, we use JXmK to denote the set of unordered bags of m data points (which may
contain repetitions); such an unordered bag is often called a multiset. We will denote an element of JXmK
by JY1, . . . , YmK, where the Yi are X -valued random variables.

Definition 3.1 (Score functions). A family of score functions is a list ((srt)n−1
r=1 )n

t=1 of functions srt :
X × JX rK×Xn−t → R. Each element in a family of score functions is called a score function.

Note that a score function is intuitively intended to be a pre-processing transformation intended to separate
the pre-change and post-change data points by projecting them into one dimension. In particular, the score
function can be learned in any way that uses its second argument exchangeably, while its third argument
can be used non-exchangeably. The goal of our algorithms is to simultaneously test the null hypotheses that
a change occurs at time t ∈ [n− 1]:

1 t n

Pre-change Post-change

Figure 1: H0t : ξ = t states that (Xk)t
k=1 ∼ P0 and (Xk)n

k=t+1 ∼ P1.

Then, the associated alternative hypotheses are of the form H1t : ξ ̸= t. Fix α ∈ (0, 1). Ultimately, our
algorithms will use p-values pt for H0t to construct a 1− α confidence set for the changepoint:

C1−α = {t ∈ [n− 1] : pt > α} ,

Since H0t is only a test of exchangeability on either side of the changepoint, the above confidence interval
is not valid if there is no changepoint in the data. However, we describe a method to pre-test the data
for exchangeability in Appendix D, which we empirically observe does not hurt the performance of our
algorithms. On the other hand, if a point estimator for the changepoint is desired, we can output the
estimate ξ̂ = arg maxt∈[n−1] pt.

As described in Section 1, we assume that P0 and P1 are exchangeable. Then, we have the following
algorithm for changepoint localization, which we call the MCP (matrix of conformal p-values) algorithm. In
the following algorithm, let u denote the cumulative distribution of a Unif(0, 1) distribution. Furthermore,
recall that the Kolmogorov-Smirnov (KS) distance between two cumulative distributions F and G is given
by KS(F, G) = supz∈R |F (z)−G(z)|. Our algorithm is motivated by the classical Kolmogorov-Smirnov test
for goodness of fit. Note that our algorithm does not specially depend on the choice of the KS distance;
variants are in Appendix C.
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Algorithm 1: MCP: matrix of conformal p-values
Input: (Xt)n

t=1 (dataset), ((s(0)
rt )n−1

r=1 )n
t=1 and ((s(1)

rt )n−1
r=1 )n

t=1 (left and right score function families)
Output: C1−α (a level 1− α confidence set for ξ)

1 for t ∈ [n− 1] do
2 for r in (1, . . . , t) do
3 for j in (1, . . . , r) do
4 κ

(t)
rj ← s

(0)
rt (Xj ; JX1, . . . , XrK, (Xt+1, . . . , Xn))

5 end
6 p

(t)
r ← 1

r

∑r
j=1

(
1

κ
(t)
rj

>κ
(t)
rr

+ θ
(t)
r 1

κ
(t)
rj

=κ
(t)
rr

)
, where θ

(t)
r ∼ Unif(0, 1)

7 end
8 for r in (n, . . . , t + 1) do
9 for j in (r + 1, . . . , n) do

10 κ
(t)
rj ← s

(1)
n−r, n−t(Xj ; JXr+1, . . . , XnK, (X1, . . . , Xt))

11 end
12 p

(t)
r ← 1

n−r+1
∑n

j=r

(
1

κ
(t)
rj

>κ
(t)
rr

+ θ
(t)
r 1

κ
(t)
rj

=κ
(t)
rr

)
, where θ

(t)
r ∼ Unif(0, 1)

13 end
14 F̂0(z) := 1

t

∑t
r=1 1

p
(t)
r ≤z

, F̂1(z) := 1
n−t

∑n
r=t+1 1

p
(t)
r ≤z

15 W
(0)
t ←

√
t KS(F̂0, u), W

(1)
t ←

√
n− t KS(F̂1, u)

16 Use Algorithm 2 to map (W (0)
t , W

(1)
t ) to left and right p-values (pleft

t , pright
t )

17 Combine pleft
t and pright

t into a single p-value pt (Section 4.2)
18 end
19 C1−α ← {t ∈ [n− 1] : pt > α}
20 return C1−α

Here is some intuition for the MCP algorithm (Algorithm 1). First, the algorithm splits the data into left
and right halves at t ∈ [n − 1]; we focus on the left half, since the right half is analogous. The goal of
MCP is first to create p-values (p(t)

r )t
r=1 which are independent. For each r ∈ [t], we map the data points

(Xj)r
j=1 through a score function into exchangeable one-dimensional statistics (κ(t)

rj )r
j=1 (line 4). Then, the

(normalized) rank statistics of the scores are sequentially computed on the left and right halves (line 6). If
there was no change in the left segment, the ranks for that segment would each be distributed like Unif(0, 1).
In particular, as t→∞, we know by the Glivenko-Cantelli theorem that supz∈R |F̂0(z)− u(z)| → 0.

Note that because W
(0)
t only depends on the normalized ranks p

(t)
r for r ∈ [t], it is a distribution-free statistic

under H0t and we can use it for hypothesis testing. Essentially, W
(0)
t measures how far the normalized ranks

in the left and right halves of the ordered list are from being uniform. We can convert this statistic to a
p-value by a hypothesis test (line 16) which can be combined with the p-value obtained from the right half
for each t (line 18). Finally, the test can be inverted to form a confidence set by the Neyman construction
(line 19).

To motivate the normalization by
√

t in the definition of W
(0)
t , recall that we have samples p

(t)
r ∼ Unif(0, 1)

for r ∈ [t] and let (φz)z≥0 denote the Brownian bridge (φz = Bz−zB1, where (Bz)z≥0 is a standard Brownian
motion on R). Then, a central limit theorem by Donsker (1951) implies that

√
t
(

supz∈R |F̂0(z)− u(z)|
)

=
√

t KS(F̂0, u) d−→ supz∈[0,1] |φz|. Notice that normalizing by
√

t stabilizes the KS distance, and we have an
explicit form for the asymptotic distribution.
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Algorithm 1 effectively computes the p-values p
(t)
r , which can be written as an n × (n − 1) matrix; we call

this the matrix of conformal p-values (MCP):

MCP :=


p

(1)
1 p

(2)
1 · · · p

(n−1)
1

p
(1)
2 p

(2)
2 · · · p

(n−1)
2

...
...

...
...

p
(1)
n p

(2)
n · · · p

(n−1)
n

 .

For each candidate changepoint t ∈ [n − 1] we construct n p-values for H0t (corresponding to a column in
the MCP), where each p-value corresponds to one of the data points. Recall from Algorithm 1 that these
p-values are constructed by considering the randomized rank of that point’s score, relative to the other points
on the same side. Focusing on the tth row of the MCP, we then refine these p-values as in Figure 2.

Refinement of p-values in row t of the MCP matrix
Left half (pre-change) Right half (post-change)

p
(t)
1 p

(t)
2 · · · p

(t)
t−1 p

(t)
t

p
(t)
t+1 · · · p

(t)
n

Discrepancy: W
(0)
t =

√
t KS(F̂0, u) W

(1)
t =

√
n − t KS(F̂1, u)

Figure 2: Refinement of the p-values in the tth row of the matrix of conformal p-values (MCP) into the
discrepancy statistics W

(0)
t and W

(1)
t .

Under H0t, the scores (κ(t)
rj )r

j=1 are exchangeable for r ≤ t, meaning that the p-values (p(t)
r )t

r=1 are indepen-
dent and uniform. In Section 4, we discuss the subroutines of the MCP algorithm in greater depth. Algo-
rithm 1 is also symmetric under reflections of the data; if we reversed the input data as X̃ := (Xn, . . . , X1),
the MCP algorithm would output C̃1−α := n−C1−α, where C1−α is the output of Algorithm 1 on (X1, . . . , Xn).
We have the following finite-sample coverage guarantee.
Theorem 3.1 (Coverage guarantee (empirical test)). Suppose that (Xt)n

t=1 is an exchangeable sequence of
random variables with a changepoint ξ ∈ [n]. Let C1−α be the level 1 − α confidence set constructed with
Algorithm 1, using the empirical test described in Section 4.1 to construct left and right p-values and using
any algorithm in Section 4.2 to combine these p-values. Then, the coverage of C1−α is at least 1− α:

P (ξ ∈ C1−α) ≥ 1− α.

Recently, Bhattacharya & Ramdas (2025) showed that in the parametric setting and under relatively general
triangular array assumptions, the relative length of the confidence set produced by the MCP algorithm
converges to zero as n→∞. Under the same assumptions, that paper also showed consistency of the point
estimator ξ̂ := arg maxt∈[n] pt to the true changepoint ξ at the rate op(n1/4).

4 Constructing confidence sets for the changepoint

In this section, we describe several methods for constructing confidence sets for the changepoint based on
the Neyman construction, which inverts the hypothesis test of H0t : ξ = t against H1t : ξ ̸= t. Next, we will
produce two p-values for this test, and then combine them into one.

4.1 Hypothesis testing: generating left and right p-values

We now discuss how we can consolidate the matrix of p-values from the MCP algorithm into two p-values
for each H0t, which we call the left and right p-values. This consolidation can be done using an empirical
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test. We can use simulations to construct confidence sets for the changepoint by estimating the level 1− α

quantile of W
(0)
t and W

(1)
t under the null hypothesis that there is no changepoint. We use Algorithm 2 to

construct left and right p-values. We also detail an alternative method based on an asymptotic KS test or
permutation test in Appendix C, which can be used to speed up our algorithm when t and n− t are large.

Algorithm 2: Empirical test
Input: (W (0)

t , W
(1)
t ) (discrepancy scores), B ∈ N (sample size)

Output: (pleft
t , pright

t ) (a pair of p-values for the left and right data)
1 for b ∈ [B] do
2 (X(b)

t )n
t=1 ∼ Unif([0, 1]n)

3 Compute (W (0,b)
t )n−1

t=1 and (W (1,b)
t )n−1

t=1 using line 1 to line 15 of Algorithm 1 on simulated data
(X(b)

t )n
t=1

4 end
5 Draw θ0, θ1 ∼ Unif(0, 1)
6 pleft

t ← 1
B+1

(
θ0 +

∑B
b=1(1

W
(0,b)
t >W

(0)
t

+ θ0 1
W

(0,b)
t =W

(0)
t

)
)

7 pright
t ← 1

B+1

(
θ1 +

∑B
b=1(1

W
(1,b)
t >W

(1)
t

+ θ1 1
W

(1,b)
t =W

(1)
t

)
)

8 return (pleft
t , pright

t )

4.2 Combining p-values and constructing confidence sets

We now discuss how we can combine the left and right p-values into a single p-value pt for H0t. At the
changepoint, we expect pξ to be exactly uniformly distributed. Away from the changepoint, we would expect
either the left or right p-value to be small.

Notice that the left and right p-values are independent if the score functions s
(0)
rt and s

(1)
rt have no dependence

on its last argument; we call such score functions non-adaptive. Intuitively, a non-adaptive left score function
s

(0)
t is one which does not use data to the right of t. On the other hand, it’s clear that the left and right

p-values won’t necessarily be independent if the score functions are adaptive (s(0)
t or s

(1)
t depend nontrivially

on their last argument).

• Minimum (requires independence): The choice pt = 1 − (1−min{pleft
t , pright

t })2 is a powerful
combining method for change detection, since away from the changepoint, we would expect either the
left or right p-value to be small. Under the null hypothesis H0t, we would expect pleft

t and pright
t to

be independent uniform random variables, so that pt is distribution-free and uniformly distributed.
Note that one can use Fisher’s method (Fisher (1928)) given by pt = Fχ2

4
(−2 log(pleft

t )−2 log(pright
t ));

however, we have observed the minimum method to work better in practice.

• Bonferroni correction (arbitrary dependence): If the left and right p-values are depen-
dent, then we can use the Bonferroni correction to combine the p-values, given by pt =
min{2pleft

t , 2pright
t , 1}. This p-value is not distribution-free, but it is stochastically larger than uni-

form under the null hypothesis so we can use it for testing.

In practice, we have found the minimum and Bonferroni correction to be a good choice for combining
function, under independence and dependence respectively.

5 How should the score function be chosen?

The score function in the MCP algorithm should be chosen to maximize the power of the test. In this section,
we will discuss how the score function should be chosen in practice.

We begin by proving a Neyman-Pearson type lemma for conformal prediction. Suppose we observe inde-
pendent X -valued data X1, . . . , Xn+1 and we wish to test the null H0 : X1, . . . , Xn+1 are i.i.d. against the
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alternative H1 : X1, . . . , Xk are i.i.d. but Xk+1, . . . , Xn+1 are i.i.d. from a different distribution, for some
k ∈ [n]. Suppose further that we are forced to use a conformal p-value to perform this test. To elaborate,
we must choose a non-conformity score function s : X → R, draw θ1, . . . , θn+1 ∼ Unif(0, 1) i.i.d., calculate
the p-value

pn[s] = 1
n + 1

n+1∑
i=1

(1s(Xi)>s(Xn+1) + θi 1s(Xi)=s(Xn+1)),

and reject the null at level α when pn[s] ≤ α.

The natural question then is: what is the optimal (oracle) score function for this task? Let Q denote the
distribution of Xi for i ∈ {k + 1, . . . , n + 1} and let R denote the distribution of Xi for i ∈ [k]. Defining the
densities q = dQ/d(Q + R) and r = dR/d(Q + R), the answer to the above question is the likelihood ratio
q(x)/r(x), as we will formalize below.

It will be easier to state the result in terms of the normalized rank functional

Tn[s] = 1
n

n∑
i=1

(1s(Xi)<s(Xn+1) + θi 1s(Xi)=s(Xn+1)),

where θ1, . . . , θn+1 ∼ Unif(0, 1) are i.i.d. and independent of everything else. Then, we reject H0 if Tn[s] ≥
tn, 1−α for some threshold tn, 1−α.
Theorem 5.1 (Conformal Neyman-Pearson lemma). Let s∗(x) = q(x)/r(x) denote the likelihood ratio non-
conformity score. Then, for any other s, we have the optimality result

E[Tn[s∗]] ≥ E[Tn[s]].

Define the test ϕα[s] := 1Tn[s]≥tn, 1−α
for some fixed threshold tn, 1−α ≥ 0 and let α denote the level of ϕα[s∗]

(α = E[ϕα[s∗]] when Q = R). Then for any level α test of H0 against H1, it holds that

E[ϕα[s∗]] ≥ E[ϕ].

In particular, it follows that

E[ϕα[s∗]] ≥ E[ϕα[s]]

for any choice of s.

Note that the proof of Theorem 5.1 (given in Appendix E) also shows a stronger result; define the conditional
power

βs(u) = E
[
Tn[s]

∣∣∣ s(Xn+1) = F −1
s(Xn+1)(u)

]
,

which exists and is unique for Lebesgue-almost every u ∈ (0, 1) by the disintegration of measure. Then, we
have that (for Lebesgue-almost every u ∈ (0, 1))

βs(u) ≤ βs∗(u).

In this sense, the likelihood ratio score yields the uniformly most powerful conformal test. A similar result can
be shown without randomizing using the θi, assuming that the scores are almost surely distinct. Appendix F
presents an analogous result for e-values.

These results motivate the use of likelihood ratio type score functions in our experiments. Indeed, even
when the likelihood ratio is not known exactly, one can hope to learn it and approximate the optimal tests.
In particular, we can use a pre-trained multi-class classifier to create a score function, which allows our
algorithm to form narrow confidence sets in extremely general settings. Suppose we have a pre-trained
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multi-class classifier ĝ : X → ∆S , where S is a discrete set of labels and ∆S represents the probability
simplex over S:

∆S =
{

p ∈ [0, 1]|S| :
∑
s∈S

ps = 1
}

.

Furthermore, assume that f0 is a density over g−1(s0) for some s0 ∈ S, where g is the ground truth classifier.
Similarly, assume that f1 is a density over g−1(s1) for some s1 ∈ S. We can use the most popular class index

ŝ(z1, . . . , zk) = arg max
s∈S
|{1 ≤ i ≤ k : ĝ(zi)s ≥ ĝ(zi)s′ for all s′ ∈ S}|.

to estimate the likelihood ratio score function:

srt(xr; Jx1, . . . , xrK, (xt+1, . . . , xn)) =
ĝ(xr)ŝ(x1,...,xr)

ĝ(xr)ŝ(xt+1,...,xn)
.

We give several additional methods for choosing the score function in Appendix H. Finally, we demonstrate
the performance of our algorithms through simulations.

6 Extension to multiple changepoints

In this section, we describe how the MCP algorithm (Algorithm 1) can be used to localize multiple change-
points. Suppose we are interested in a model where (Xξk

, . . . , Xξk+1) ∼ Pk for 0 ≤ k ≤ K, where
0 = ξ0 < ξ1 < · · · < ξK+1 = n. Since we would like to apply the MCP algorithm, we assume that Pk

is exchangeable for all 0 ≤ k ≤ K (the data distribution between changepoints is exchangeable). Now, we
would like to recover a confidence set which covers all of the changepoints {ξk}K

k=1 with high probability.

To achieve this goal, we consider the popular kernel changepoint detection (KCPD) framework for finding
point estimators of multiple changepoints (Harchaoui & Cappé, 2007; Arlot et al., 2019). Under mild
detectability and minimum separation assumptions, denoting the minimum separation between by ℓ and
fixing any ϵ > 0, Diaz-Rodriguez & Jia (2025) recently showed that the KCPD estimator is consistent in the
sense that the number of estimated changepoints is K and the estimated changepoints are all (ϵℓ)-close to
the true changepoints, with probability tending to one.

Now, suppose we are on the high-probability event where the estimated number of changepoints is K and
the estimated changepoints are all (ℓ/2)-close to the true changepoints; denote the estimated changepoints
by (ξ̂k)K

k=1. Let tk := (ξ̂k + ξ̂k−1)/2 for k ∈ [K + 1], defining ξ̂0 := 0 and ξ̂K+1 := n. Then, the segments of
data (Xtk

, Xtk+1) have exactly one changepoint contained within them for k ∈ [K], such that the data to
the left and right of the true changepoint is exchangeable. Thus, the MCP algorithm applied separately to
each of the intervals (Xtk

, Xtk+1) produces a 1− α confidence set C(k)
1−α for ξk.

Putting the above considerations together, we can produce a heuristic asymptotic 1 − α confidence set for
ξk using the MCP algorithm as a wrapper over the KCPD algorithm. We exemplify this method to localize
multiple Gaussian mean changes. In this simulation, we choose n = 1500 with K = 4 and (ξ1, ξ2, ξ3, ξ4) =
(150, 500, 820, 1100). Here, we choose Pk = N (µk, 1) with (µ0, µ1, µ2, µ3, µ4) = (−1, 1/2, 3/2, −2, −1).
We depict the input data in Figure 3.

We apply the KCPD algorithm as described in Diaz-Rodriguez & Jia (2025) using the squared exponential
kernel

k(z, z′) = exp
(

(z − z′)2

2σ2

)
,

where σ > 0 is chosen to be the median of (|Xi −Xj |)1≤i<j≤n. Then, we apply the MCP algorithm on the
intervals (Xtk

, Xtk+1) for k ∈ [K] using the oracle likelihood ratio score function as described in Section 5;
we depict the results in Figure 4.
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Figure 3: Sample of multiple Gaussian mean change data.

The estimated changepoints from KCPD are (150, 497, 820, 1091). Now the MCP confidence set for ξ1 is
[111, 163], the confidence set for ξ2 is [444, 541], the confidence set for ξ3 is [807, 846], and the confidence set
for ξ4 is [1072, 1163]. In particular, once the KCPD algorithm isolates each changepoint, the MCP algorithm
is able to produce confidence sets for each changepoint separately. This is an instance of the popular “Isolate-
Detect” paradigm in changepoint localization (Truong et al., 2020, Section 5.2), which consists of isolating
each changepoint to lie in an interval and then applying a single-changepoint algorithm.
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Figure 4: p-values for multiple Gaussian mean changes using MCP as a wrapper on KCPD. The dashed red
lines indicate the true changepoints and the dashed yellow lines indicate the point estimators from KCPD.
The regions on the horizontal axis where the p-values lie above the dotted green line (α = 0.05) correspond
to our heuristic 95% confidence sets for each changepoint.

7 Experiments

We now demonstrate that the MCP algorithm can be used to construct narrow confidence sets for the
changepoint in a variety of settings, and that our confidence sets have good empirical coverage and width.

All experiments are run using the CPU on our personal MacBook Pro with an M1 Pro processor; our
algorithm takes under 10 seconds to run in each experiment. For further experiments demonstrating the
performance of the MCP algorithm in localizing a Gaussian mean change and visualizing the matrix of
conformal p-values, see Appendix A.

7.1 MNIST digit change

We first consider a simulation of a digit change from the MNIST handwritten digit dataset (Deng, 2012).
Suppose that we observe data of length n = 1000 and the changepoint is ξ = 400; the pre-change class P0
consists of i.i.d. draws from the set of handwritten “3” digits and the post-change class P1 consists of i.i.d.
draws from the set of handwritten “7” digits (Figure 5).
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t= 398 t= 399 t= ξ= 400 t= 401 t= 402

Figure 5: Partial sample of MNIST digit change from “3” to “7” with a changepoint at ξ = 400.

As described in Section 5, we can use a pretrained multi-class classifier to estimate the likelihood ratio using
the data before and after t (for each t ∈ [n− 1]). In this case, we use a simple convolutional neural network;
see Appendix G for details about how the network was trained.

We can then use the MCP algorithm and Algorithm 2 to produce a confidence interval. In this case, the
left and right p-values are independent, since the left score function s

(0)
t only depends on data to the left of

t and the right score function s
(1)
t only depends on data to the right of t. Therefore, we use the minimum

method to combine the p-values, plotting the resulting p-values (pt)n−1
t=1 in Figure 6.
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Figure 6: p-values for MNIST digit change at ξ = 400 using a pre-trained digit classifier. The dashed red
line indicates the true changepoint, and the region on the horizontal axis where the p-values lie above the
dotted green line (α = 0.05) corresponds to our 95% confidence set. The point estimator is ξ̂ = 403, which
is close to the true ξ = 400.
In particular, the resulting confidence set is [374, 423], which is completely nontrivial and obtained only using
a classifier learned on the entire MNIST dataset. Note also that our confidence sets can be significantly
tightened if we are given access to certified pre-change or post-change samples; see Appendix B for related
experiments.

7.2 Sentiment change using large language models (LLMs)

Next, we consider a simulation with a sentiment change in a sequence of text samples, showing that our
algorithm is practical for localizing changepoints in language data. We consider the Stanford Sentiment
Treebank (SST-2) dataset of movie reviews labeled with a binary sentiment, introduced in Socher et al.
(2013). Suppose that we would like to localize a change from a generally positive sentiment in movie reviews
to a negative sentiment. In practice, this method may be applied to localize a change in customer sentiment
toward a product or general approval of a political leader.

Suppose we observe n = 1000 reviews with a changepoint at ξ = 400; the pre-change class P0 consists of
i.i.d. draws of positive reviews and the post-change class P1 consists of i.i.d. draws of negative reviews. For
instance, here is a sample of the data before and after the changepoint:

• t = 399 (positive): “invigorating, surreal, and resonant with a rainbow of emotion.”

11
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• t = 400 (positive): “a fascinating, bombshell documentary”

• t = 401 (negative): “a fragment of an underdone potato”

• t = 402 (negative): “is a disaster, with cloying messages and irksome characters”

As described in Section 5, we can use a pretrained multi-class classifier to estimate the likelihood ratio using
the data before and after t (for each t ∈ [n − 1]). For this simulation, we use the DistilBERT base model,
fine-tuned for sentiment analysis on the uncased SST-2 dataset (Sanh et al. (2019)).

The resulting confidence set is [368, 420] and is shown in Figure 7a; note that we were able to obtain such a
tight confidence interval without even knowing the nature of the change that would happen. In fact, consider
the more realistic (but much more difficult to localize) scenario where general sentiment changes from being
60% positive pre-change to 40% positive post-change. In this case, we are still able to form a nontrivial
confidence set, shown in Figure 7b. Even though the change is extremely subtle and we impose very general
modeling assumptions, we are able to obtain the 95% confidence set [200, 475] ∪ {478, 487, 489, 493} for the
changepoint.
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(a) full sentiment change
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p-values for SST-2 mixed sentiment change

Changepoint (ξ= 400)
Threshold (α= 0.05)

(b) mixed sentiment change

Figure 7: p-values for SST-2 sentiment change at ξ = 400 using DistilBERT trained for sentiment analysis.
The dashed red line indicates the true changepoint, and the region on the horizontal axis where the p-values
lie above the dotted green line (α = 0.05) corresponds to our 95% confidence set. The point estimators are
a) ξ̂ = 388 and b) ξ̂ = 373, both of which are close to the true ξ = 400.

7.3 Human activity change: accelerometer data

Here, we include a simulation using data from the Human Activity Recognition (HAR) dataset, introduced
in Anguita et al. (2013). This dataset contains tri-axial accelerometer data collected from a smartphone
accelerometer mounted at the waist of 30 human subjects during various activities. Suppose we observe n =
1000 samples accelerometer with a changepoint at ξ = 400; the pre-change class P0 consists of accelerometer
samples from the “walking upstairs” activity and the post-change class P1 consists of samples from the
“standing” activity. For simplicity, we only use accelerometer data from the first axial direction, so the data
we work with is real-valued. We show the dataset in Figure 8.

Then, as described in Section 5, we can use a kernel density estimator (KDE) to estimate the likelihood
ratio using the data before and after t (for each t ∈ [n− 1]), using a Gaussian kernel. We choose bandwidth
10−1 when t ∈ {1, n − 1} and bandwidth r−1/5 otherwise, where r is the number of samples used to learn
each KDE; this is known as Scott’s rule (due to Scott (1979)). However, due to dependence of the left and
right p-values, we use the Bonferroni combining rule, plotting the resulting p-values (pt)n−1

t=1 in Figure 9.

The resulting confidence set is [376, 444] and contains the changepoint, as shown in Figure 9. Note that we
were able to obtain such a tight confidence interval without any assumptions about the nature of the change.
As discussed in Section 2, most prior nonparametric changepoint localization focus on localizing a change
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Figure 8: Human Activity Recognition (HAR) accelerometer data containing an activity change from “walk-
ing upstairs” to “standing” with a changepoint at ξ = 400.

in mean. However, for our dataset, the change in mean between the left and right halves is only −0.003,
making it difficult to localize using standard methods.
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Figure 9: p-values for HAR sentiment change at ξ = 400 using kernel density estimators. The dashed red
line indicates the true changepoint, and the region on the horizontal axis where the p-values lie above the
dotted green line (α = 0.05) corresponds to our 95% confidence set. The point estimator is ξ̂ = 418, which
is close to the true changepoint at ξ = 400.

7.4 CIFAR-100 image change: bears vs. beavers

Finally, consider a simulation of a digit change from the CIFAR-100 image dataset (Krizhevsky et al., 2009);
even when the data is high-dimensional with complex structure, our algorithm can be used to localize the
changepoint. This dataset contains 32×32×3 RGB images from 100 classes, making the localization problem
challenging. Suppose that we observe data of length n = 800 and the changepoint is ξ = 300; the pre-change
class P0 consists of i.i.d. draws from the set of bear images and the post-change class P1 consists of i.i.d.
draws from the set of beaver images (Figure 10). Note that bears and beavers are visually difficult to tell
apart, so localization of the changepoint is a difficult task.

As described in Section 5, we can use a pretrained multi-class classifier to estimate the likelihood ratio using
the data before and after t (for each t ∈ [n − 1]). We use the resnet18_cifar100 model from Hugging Face,
trained by Eduardo Dadalto, which achieves 79.26% accuracy on the test dataset.

We can then use the MCP algorithm and Algorithm 2 to produce a confidence interval. In this case, the left
and right p-values are independent, since the left score function s

(0)
t only depends on data to the left of t and
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t= 398 t= 399 t= ξ= 400 t= 401 t= 402

Figure 10: Partial sample of CIFAR-100 change from bear to beaver images with a changepoint at ξ = 300.

the right score function s
(1)
t only depends on data to the right of t. Therefore, we use the minimum method

to combine the p-values, plotting the resulting p-values (pt)n−1
t=1 in Figure 11; the resulting confidence set is

[263, 316].

0 200 400 600 800
t

0.0

0.2

0.4

0.6

0.8

p-values for CIFAR-100 class change (pretrained model)
Changepoint (ξ= 400)
Threshold (α= 0.05)

Figure 11: p-values for CIFAR-100 change from bears to beavers at ξ = 300 using a pre-trained digit classifier.
The dashed red line indicates the true changepoint, and the region on the horizontal axis where the p-values
lie above the dotted green line (α = 0.05) corresponds to our 95% confidence set. The point estimator is
ξ̂ = 301, which is close to the true ξ = 300.

8 Conclusion

We introduced the MCP algorithm, a novel method for constructing confidence sets for the changepoint,
assuming that the pre-change and post-change distributions are each exchangeable. We demonstrated that
the MCP algorithm can be used to construct nontrivial confidence sets for the changepoint in a variety of
settings and enjoys a finite-sample coverage guarantee. Furthermore, we demonstrated through simulation
and experiments that the algorithm has good empirical coverage and width. We also discussed how the
parameters of the MCP algorithm, including the score function, should be chosen in practice to produce
tight confidence intervals.
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A Gaussian mean change

We begin with a Gaussian mean change simulation. Suppose that we observe data of length n = 1000 and
the changepoint is ξ = 400. Furthermore, suppose that P0 = ⊗ξ

t=1 N (−1, 1) and P1 = ⊗n
t=ξ+1 N (1, 1).

First, as a baseline, suppose that we have the oracle likelihood ratio score function, as described in Section 5.
We can then use the MCP algorithm to find discrepancy scores ((W (i)

t )1
i=0)n−1

t=1 and transform them into left
and right p-values using Algorithm 2. Finally, we use the methods described in Section 4.2 to combine the
left and right p-values into a single p-value for H0t using the minimum combining function and construct a
1− α confidence set for the changepoint by inverting the test. We plot the resulting p-values in Figure 12a.

Even if we didn’t know that the data contained a changepoint, we can pre-test the whole data for ex-
changeability, as discussed in Appendix D. When we pre-test the data for exchangeability at level α0 = 0.01
using the identity score function and only the forward p-values, we estimate over 1000 simulations (with no
changepoint) that the Type I error rate of our pre-testing algorithm is 0.009, which aligns closely with the
theoretical Type I error of α0 = 0.01. Over 1000 simulations (with a changepoint), the pre-test was always
able to detect a deviation from exchangeability, and had an empirical power of 1.000.

For all future simulations, assume that we do not use a pre-test for exchangeability. Suppose that we do
not have access to the oracle score function. Then, as described in Section 5, we can use a kernel density
estimator to estimate the likelihood ratio using the data before and after t (for each t ∈ [n − 1]), using a
Gaussian kernel. We choose bandwidth 10−1 when t ∈ {1, n− 1} and bandwidth r−1/5 otherwise, where r is
the number of samples used to learn each KDE; this is known as Scott’s rule (due to Scott (1979)). Then,
we repeat the process described above to compute the left and right p-values. However, due to dependence
of the left and right p-values, we use the Bonferroni combining rule, plotting the resulting p-values (pt)n−1

t=1
in Figure 12b.
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(a) oracle score function family
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Figure 12: p-values for a Gaussian mean change at ξ = 400. The dashed red line indicates the true
changepoint, and the region on the horizontal axis where the p-values lie above the dotted green line (α =
0.05) corresponds to our 95% confidence set. The point estimators are a) ξ̂ = 409 and b) any ξ̂ = 380, both
of which are close to the true ξ = 400.

We obtain the confidence set [359, 435] using the oracle score function and the confidence set [324, 424] using
the learned score function. In particular, the width of our confidence interval does not suffer much (compared
to the oracle likelihood ratio score function) even if our score is learned using a kernel density estimator.

To give more intuition for the MCP algorithm, we can also visualize the matrix of conformal p-values (MCP)
as described in Section 3, in Figure 13. Observe that only when t = ξ = 400 are the p-values in row t truly
uniformly distributed and independent in the left and right halves respectively, as they should be under H0t.
For instance, if t < ξ, then the right p-values will be invalid and the Kolmogorov-Smirnov statistic W

(1)
t

used in the MCP algorithm (Algorithm 1) will detect their deviation from uniformity.
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Figure 13: (a) Matrix of conformal p-values (MCP) for a Gaussian mean change using the oracle score
function. The true changepoint occurs at ξ = 400. (b) Validity of p-values in the matrix of conformal
p-values (green p-values are valid, red p-values are invalid). Note that all of the p-values are only valid when
t = ξ = 400, shown as the yellow row.
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Running the same simulations for 1000 trials, we report the empirical average width and coverage of our
confidence sets at various levels, as well as the bias and mean absolute deviation of our point estimator
ξ̂ = arg maxt∈[n−1] pt, in Table 1. In Table 1, we also compare the performance of the oracle and (KDE)
learned scores against a parametric learned score. The parametric learned score is similar to the KDE learned
score, except that we only learn the mean and assume that our data is Gaussian with unit variance when
computing the likelihood ratio.

Method Avg. width Coverage Bias Mean absolute deviation
Oracle score (50%) 22.56 0.50±0.03 -1.01 13.13

Parametric learned score (50%) 23.74 0.51±0.03 0.20 13.10
KDE learned score (50%) 24.08 0.52±0.03 12.13 35.09

Oracle score (95%) 74.33 0.94±0.02 -1.01 13.13
Parametric learned score (95%) 75.34 0.95±0.02 0.19 13.04

KDE learned score (95%) 75.82 0.97±0.02 3.46 15.29

Table 1: Average width and coverage of confidence sets for Gaussian mean change, as well as the bias and
mean absolute deviation of the point estimator.

We know from Theorem 3.1 that the true coverage probability is exactly 50% and 95% respectively for a
50% or 95% confidence interval constructed using our method; this is what we observe empirically as well.
Importantly, the average width of the confidence sets using the learned score function is very comparable
to the average width of the confidence sets from using the oracle score function, showing that our method
performs well even when the likelihood of the data is not available. Furthermore, though we do not give
theoretical guarantees for our point estimator, we observe that the point estimator is empirically close to
the true changepoint.

B Using certified data to tighten confidence sets

Consider the MNIST digit change experiment of Section 7 but suppose we had additional certified pre-change
and post-change samples, which we add to the left and right samples respectively. In this case, we are able
to obtain better results.
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Figure 14: p-values for an MNIST digit change at ξ = 400 using 100 certified calibration samples (a) on the
left side only and (b) on each side. The dashed red line indicates the true changepoint, and the region on
the horizontal axis where the p-values lie above the dotted green line (α = 0.05) corresponds to our 95%
confidence set. The point estimators are a) ξ̂ = 393 and b) ξ̂ = 405, both of which are close to the true
ξ = 400.

When we only have additional pre-change samples, we get the confidence interval [384, 407], so the additional
pre-change samples allow us to tighten our confidence interval. We show this confidence set in Figure 14a.
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If we assume we have access to 100 pre-change and post-change samples (i.e., we can learn the nature of the
change that will happen), we similarly obtain the tighter confidence interval [390, 412], shown in Figure 14b.

C Extensions of the MCP algorithm

Here, we describe several alternatives to the MCP algorithm described in Section 3 and Section 4.

C.1 Alternative tests

First, we detail several alternatives to the empirical test detailed in Section 4.1 for constructing the left and
right p-values.

Asymptotic KS test We can use the asymptotic distribution of Wt to construct confidence sets for the
changepoint. This method is valid when t and n− t are both large. Recall that φt = Bt− tB1 (where (Bt)t≥0

is a standard Brownian motion on R) is the Brownian bridge on R. Define Fφ(z) := P
(

supt∈[0,1] |φt| ≤ z
)

,
where (φt)t≥0 is the Brownian bridge. Then, by a central limit theorem due to Donsker (1951), we can
compute the asymptotically valid p-values

pleft
t = 1− Fφ(W (0)

t ), pright
t = 1− Fφ(W (1)

t ).

Note that in general, one can use the approximation pleft
t ≈ 2 exp(−2 (W (0)

t )2), which is obtained by trun-
cating the series expansion of the limiting distribution (Kolmogorov (1933)). In practice, we can use the
empirical test to test H0t when t and n− t are small, and use the asymptotic test when t and n− t are large.
Next, we will discuss how to combine the left and right p-values from Section 4.1 into a single p-value for
H0t.

If the asymptotic test is used, we have the following asymptotic coverage guarantee for the MCP algorithm,
analogous to the one given in Section 4.1.

Theorem C.1 (Asymptotic coverage guarantee (asymptotic KS test)). Consider the setting of Theorem 3.1
with a changepoint ξ = ⌊γn⌋ for some γ ∈ (0, 1), but where C1−α is instead constructed using the asymptotic
test described in Section 4.1. Then, the coverage of C1−α is asymptotically at least 1− α:

lim inf
n→∞

P (ξ ∈ C1−α) ≥ 1− α.

Permutation test Instead of using the empirical test or asymptotic KS test, we can use permutation
tests to construct confidence sets for the changepoint by using the distribution of W

(0)
t and W

(1)
t under

permutations of the data before and after t respectively. Under the null hypothesis H0t, the data before and
after t is exchangeable, so the distribution of (W (0)

t , W
(1)
t ) under permutations of the data before and after

t should remain the same. This method is valid for all values of t, and we can use the following algorithm
to construct confidence sets for the changepoint using permutation tests.
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Algorithm 3: Permutation test
Input: (W (0)

t , W
(1)
t ) (discrepancy scores), B ∈ N (sample size)

Output: (pleft
t , pright

t ) (a pair of p-values for the left and right data)
1 for b ∈ [B] do
2 (X(b)

t )n
t=1 ∼ Unif([0, 1]n)

3 Compute (W (0,b)
t )n−1

t=1 and (W (1,b)
t )n−1

t=1 using Line 1 to Line 15 of Algorithm 1 on permuted data
(X(b)

t )n
t=1

4 end
5 Draw θ0, θ1 ∼ Unif(0, 1)
6 pleft

t ← 1
B+1

(
θ0 +

∑B
b=1(1

W
(0,b)
t >W

(0)
t

+ θ0 1
W

(0,b)
t =W

(0)
t

)
)

7 pright
t ← 1

B+1

(
θ1 +

∑B
b=1(1

W
(1,b)
t >W

(1)
t

+ θ1 1
W

(1,b)
t =W

(1)
t

)
)

8 return (pleft
t , pright

t )

In practice, we have observed that permutation testing performs very similarly to the empirical test, but
it is much slower to run. Therefore, we recommend using the empirical test and asymptotic test over the
permutation test. In addition, the empirical test can be run once to obtain empirical distributions for
the discrepancy scores, and those distributions can be reused across datasets; this is not possible with the
permutation test, which must be run on each dataset.

C.2 Alternatives to the Kolmogorov-Smirnov statistic

Instead of using the Kolmogorov-Smirnov statistic to measure the discrepancy between the normalized ranks
and the uniform distribution, we can use other discrepancy measures such as the Cramér-von Mises statistic,
the Anderson-Darling statistic, the Kuiper statistic, or the Wasserstein p-distance. These statistics all give
rise to valid hypothesis tests of H0t, and we can use them to construct confidence sets for the changepoint
using the same methods described in Section 4 using the MCP algorithm. However, in our experiments,
we have not observed a significant difference in performance between the Kolmogorov-Smirnov statistic and
these other statistics.

D Pre-testing for exchangeability

Suppose we are unsure whether a changepoint exists in the dataset. In this case, it is natural to first test
the entire data for exchangeability and only proceed with the MCP algorithm if we conclude that the data
is not exchangeable. Formally, we are testing

H0 : (X1, . . . , Xn) are exchangeable

against

H1 : (X1, . . . , Xn) are not exchangeable.

Following Vovk (2021), using a score function s, we compute the sequential (randomized) ranks for t ∈ [n]
as

p̃t = 1
t

t∑
j=1

(1s(Xj)>s(Xt) + θt 1s(Xj)=s(Xt)),

where θt ∼ Unif(0, 1) are i.i.d. and independent of the data. Under exchangeability, pt ∼ Unif(0, 1) are
independent, so we can perform a one-sample KS test from uniform using (p̃1, . . . , p̃n). In particular, if F̂
is the empirical cdf of (p̃1, . . . , p̃n) and u is the cdf of Unif(0, 1), we can compute the statistic

√
n KS(F̂ , u)

and reject when this statistic is above a threshold tα0 , which is chosen so that the Type I error of the test
does not exceed α0 ∈ (0, 1). Here, the threshold can be chosen by empirically simulating uniform random
variables, as in Section 4.1. The p-value associated with this test is termed the “forward p-value”.
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We also recommend to compute the sequential ranks in reverse by

pt = 1
t

n∑
j=n−t+1

(1s(Xj)>s(Xt) + θt 1s(Xj)=s(Xt))

and calculate a “backward p-value” use a one-sample KS test from uniform using (p1, . . . , pn). Then, the
forward and backward p-values obtained from the respective KS tests can be combined using the Bonferroni
method (rejecting only when either of the p-values is at least 2α0).

Hence, it suffices to choose a good score function to test exchangeability, for which several methods are
provided in Shafer & Vovk (2008). If we pre-test the data for exchangeability using a test of level α0 ∈ (0, 1),
then our CI algorithm will lose its theoretical guarantees on the set (of probability at most α0) where the
pre-test makes a Type I error, but we show in Appendix A that this does not affect the empirical performance
of the MCP algorithm. Next, we discuss how the score function can be learned from the data to tighten our
confidence sets.

E Proofs of main results

In this section, we present proofs of our main results. For an alternative proof technique, see Vovk et al.
(2003); Angelopoulos et al. (2024). We begin with a useful lemma (for more on this lemma, see Brockwell
(2007)).
Lemma E.1 (Randomized probability integral transform). Suppose X is a real-valued random variable with
cdf FX and let V ∼ Unif(0, 1) be drawn independently of X. If we define

U = lim
y↑X

FX(y) + V

(
FX(X)− lim

y↑X
FX(y)

)
,

then U ∼ Unif(0, 1). Here, U is called the randomized probability integral transform of X.

Proof of Lemma E.1. Let F −1
X (x) = inf{z ∈ R : FX(z) ≥ x} denote the quantile transformation of X. We

then fix u ∈ [0, 1] and decompose

P(U ≤ u) = P(U ≤ u, X < F −1
X (u)) + P(U ≤ u, X = F −1

X (u)) + P(U ≤ u, X > F −1
X (u)). (1)

We proceed by estimating these three quantities. Note that for any x < F −1
X (u), we have

lim
y↑x

FX(y) ≤ FX(x) < u.

This means that if X < F −1(u) we have

U = lim
y↑X

FX(y) + V

(
FX(X)− lim

y↑X
FX(y)

)
< lim

y↑X
FX(y) + V

(
u− lim

y↑X
FX(y)

)
= (1− V ) lim

y↑X
FX(y) + V u

< (1− V )u + V u

= u.

Therefore, the first term in Equation (1) is

P(U ≤ u, X < F −1
X (u)) = P(X < F −1

X (u)) = lim
y↑F −1

X
(u)

FX(y).
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Next, suppose that X = F −1
X (u). If FX is continuous at X, then it is obvious that U = u. If not, then we

have

U = lim
y↑X

FX(y) + V

(
FX(X)− lim

y↑X
FX(y)

)
≤ u ⇐⇒ V ≤ u− limy↑X FX(y)

FX(X)− limy↑X FX(y) .

Hence, we find that

P
(
U ≤ u, X = F −1

X (u)
)

= P(X = F −1
X (u)) P

(
V ≤ u− limy↑X FX(y)

FX(X)− limy↑X FX(y)

∣∣∣∣ X = F −1
X (u)

)
=
(

FX(F −1
X (u))− lim

y↑F −1
X

(u)
FX(y)

)
P

(
V ≤

u− limy↑F −1
X

(u) FX(y)
FX(F −1

X (u))− limy↑F −1
X

(u) FX(y)

)
.

Note that limy↑F −1
X

(u) FX(y) < u ≤ FX(F −1
X (u)) by definition, so since V ∼ Unif(0, 1) we obtain(

FX(F −1
X (u))− lim

y↑F −1
X

(u)
FX(y)

)
P

(
V ≤

u− limy↑F −1
X

(u) FX(y)
FX(F −1

X (u))− limy↑F −1
X

(u) FX(y)

)

=
(

FX(F −1
X (u))− lim

y↑F −1
X

(u)
FX(y)

)(
u− limy↑F −1

X
(u) FX(y)

FX(F −1
X (u))− limy↑F −1

X
(u) FX(y)

)
= u− lim

y↑F −1
X

(u)
FX(y).

Whether FX is continuous at X or not, the second term in Equation (1) is given by

P
(
U ≤ u, X = F −1

X (u)
)

= u− lim
y↑F −1

X
(u)

FX(y).

Finally, for all x > F −1
X (u), we have FX(x) ≥ limy↑F −1

X
(u) FX(y) > u. This means that whenever X >

F −1
X (u), we have

U = lim
y↑X

FX(y) + V

(
FX(X)− lim

y↑X
FX(y)

)
> u.

We have shown P(U ≤ u, X > F −1
X (u)) = 0, leading to the final estimate P(U ≤ u) = u, thereby showing

that U ∼ Unif(0, 1) as desired.

Using Lemma E.1, we can prove coverage guarantees for our confidence sets.

Proof of Theorem 3.1. First, we demonstrate that p
(t)
r is always a true p-value under the nullH0t (conditional

on the bag JX1, . . . , XrK), for all r ∈ [t]. We may assume without loss of generality that r ≤ t, since the
case t < r ≤ n follows by a symmetric argument. Since X1, . . . , Xt are exchangeable under H0t, for any
permutation π : [r]→ [r] we have(

κ
(t)
r, π(1), . . . , κ

(t)
r, π(r)

)
=
(

s
(0)
t (Xπ(1); JX1, . . . , XrK, (Xt+1, . . . , Xn)), . . . , s

(0)
t (Xπ(r); JX1, . . . , XrK, (Xt+1, . . . , Xn))

)
= π(κ(t)

r1 , . . . , κ(t)
rr ).

Hence, the scores κ
(t)
r1 , . . . , κ

(t)
rr are exchangeable under H0t. Now, if Ũ ∼ Unif([r]), then the cdf of XŨ

conditional on the bag of observations JX1, . . . , XrK is

FXŨ
(x) = 1

r

r∑
j=1

1
κ

(t)
rj

≤x
.
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Conditional on the bag of observations, κ
(t)
rr is distributed like XŨ , so by the randomized probability integral

transform and the fact that 1− θ
(t)
r ∼ Unif(0, 1), we find that (conditional on JX1, . . . , XrK)

U = 1
r

r∑
j=1

1
κ

(t)
rj

<κ
(t)
rr

+ 1− θ
(t)
r

r

r∑
j=1

1
κ

(t)
rj

=κ
(t)
rr
∼ Unif(0, 1).

In particular, this means that (conditional on JX1, . . . , XrK)

1− U = 1
r

r∑
j=1

1
κ

(t)
rj

≥κ
(t)
rr
− 1− θ

(t)
r

r

r∑
j=1

1
κ

(t)
rj

=κ
(t)
rr

= 1
r

r∑
j=1

1
κ

(t)
rj

>κ
(t)
rr

+ θ
(t)
r

r

r∑
j=1

1
κ

(t)
rj

=κ
(t)
rr

= p(t)
r ∼ Unif(0, 1).

Integrating over JX1, . . . , XrK shows that p
(t)
r is an unconditional p-value for H0t such that {p(t)

r }t
r=1 are

independent (Vovk et al., 2003, Proposition 3.1). Of course, this means that under the null hypothesis,
the discrepancy scores ((W (i)

t )1
i=0)n−1

t=1 are distributed as if the data was all i.i.d. from Unif(0, 1). Another
application of the randomized probability integral transform (Lemma E.1) gives that pleft

t and pright
t are

exactly uniformly distributed, and any of the methods in Section 4.2 will yield a valid confidence interval by
the Neyman construction.

Proof of Theorem C.1. The proof of this fact is completely analogous to the proof of Theorem 3.1, except
that the test used is only asymptotically valid as t→∞ and n−t→∞ simultaneously. Letting φt = Bt−tB1
(where (Bt)t≥0 denotes a standard Brownian motion on R), the validity of the test follows from the following
theorem of Donsker (1951):

√
t

(
sup
z∈R
|F̂0(z)− u(z)|

)
=
√

t KS(F̂0, u) d−→ sup
t∈[0,1]

|φt|.

Proof of Theorem 5.1. Let FY denote the cdf of the random variable Y and let F −1
Y (y) = inf{z ∈ R :

FY (z) ≥ y} denote the quantile transformation. Now, it’s clear from definitions that

E[Tn[s]] = 1
n

n∑
i=1

(
P(s(Xi) < s(Xn+1)) + 1

2 P(s(Xi) = s(Xn+1))
)

.

The second term does not depend on the choice of s, so it suffices to optimize over the first term. By the
randomized probability integral transform (Lemma E.1), we obtain

P(s(X1) < s(Xn+1)) + 1
2 P(s(X1) = s(Xn+1))

= P
(

lim
y↑s(X1)

Fs(Xn+1)(y) + θ1

(
Fs(Xn+1)(s(X1))− lim

y↑s(X1)
Fs(Xn+1)(y)

)
< U

)
,

for an independent uniform U ∼ Unif(0, 1). Define

F ∗
Y (s(X1)) := lim

y↑s(X1)
FY (y) + θ1

(
FY (s(X1))− lim

y↑s(X1)
FY (y)

)
.

Let P(F ∗
s(Xn+1)(s(X1)) < u |U = u) be a regular conditional probability, which exists and is unique for

Lebesgue-almost every u ∈ (0, 1) by the disintegration of measure. Hence, the above expression equals

EU [P(F ∗
s(Xn+1)(s(X1)) < u |U = u)] =

∫ 1

0
P
(

F ∗
s(Xn+1)(s(X1)) < u

)
du.
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Fix u ∈ (0, 1) and suppose we want to test H̃0 : X1 ∼ Q against H̃1 : X1 ∼ R, rejecting H̃0 whenever
F ∗

s(Xn+1)(s(X1)) ≤ u. Under H̃0, the cdf of s(X1) is exactly Fs(Xn+1), so the randomized probability integral
transform (Lemma E.1) gives that the Type I error of our test is u:

PH̃0

(
F ∗

s(Xn+1)(s(X1)) < u
)

= PH̃0

(
F ∗

s(X1)(s(X1)) < u
)

= u.

The power of our test is PH̃1

(
F ∗

s(Xn+1)(s(X1)) < u
)

. By the generalized Neyman-Pearson lemma (see, for
example, Theorem 3.2.1 and Section 5.9 of Lehmann & Romano (2005)), the power is maximized by the
choice s = s∗. Integrating the bound from 0 to 1 gives the desired result.

The usual Neyman-Pearson lemma (Lehmann & Romano, 2005, Theorem 3.2.1 (ii)) states that any test ϕ
of exact size α of the form ϕ(z) = 1s∗(z)≥tα

is most powerful for testing H0 against H1 at level α. Hence, we
deduce that the choice s∗ maximizes the power of any level α test of H0 against H1. Furthermore, we know
that ϕα[s] is an exact test at size α (E[ϕα[s]] = α when Q = R) which is independent of the choice of score
s (Angelopoulos et al., 2024, Lemma 9.3). Putting the pieces together, the last statement of the theorem
follows.

F The log-optimal e-variable uses the likelihood ratio score

While the reasoning in Theorem 5.1 yields that conformal p-values are optimized by the likelihood ratio
score, it turns out to also be true that conformal e-values are also optimized by the same score. Indeed, in
order to test exchangeability of X1, . . . , Xn+1 against the alternative that their joint distribution is given by
Rn ×Q, one can show (Ramdas & Wang, 2024, Section 6.7.7) that the log-optimal e-variable is given by

q(Xn+1)
∏n

i=1 r(Xi)
1

n+1
∑n+1

i=1 q(Xi)
∏

j ̸=i r(Xj)
.

Dividing throughout by
∏n+1

i=1 r(Xi), the above e-variable becomes

q(Xn+1)/r(Xn+1)
1

n+1
∑n+1

i=1 q(Xi)/r(Xi)
.

In fact, every e-variable for testing exchangeability must be of the form s(X)∑
π

s(Xπ)
, where the sum is taken

over all (n + 1)! permutations π and X = (X1, . . . , Xn) and Xπ = (Xπ(1), . . . , Xπ(n)) for a positive score
function s; thus, we see once again the the log-optimal e-variable is obtained using the likelihood ratio score

s(X) = q(Xn+1)/r(Xn+1).

G Convolutional neural network architecture

We trained a convolutional neural network from scratch on the MNIST handwritten digit dataset, using the
following architecture:

• Convolutional layer (1 input channel, 32 output channels, 3× 3 kernel, stride 1)

• ReLU activation

• Convolutional layer (32 input channels, 64 output channels, 3× 3 kernel, stride 1)

• ReLU activation

• Max pooling layer (2× 2)

• Dropout (p = 0.25)
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• Flattening layer

• Linear layer (output size 128)

• ReLU activation

• Dropout (p = 0.5)

• Linear layer (output size 10)

We train for one epoch using the Adam optimizer and cross-entropy loss, and achieve 98.63% accuracy on
the test dataset. The entire training process takes approximately one minute (using the CPU) on a MacBook
Pro with an M1 Pro processor.

H Additional methods for choosing the score function

In this section, we detail several additional methods by which the score function can be chosen in the MCP
algorithm. Suppose that P0 = ⊗ξ

t=1 P∗
0 and P1 = ⊗n

t=ξ+1 P∗
1, where P∗

0 and P∗
1 have densities f0 and f1

respectively; here are several ways to choose the score function:

• Likelihood ratio: If the pre-change and post-change distributions are known, the likelihood ratio
is a powerful score function (motivated by Theorem 5.1):

s
(0)
rt (xr; Jx1, . . . , xrK, (xt+1, . . . , xn)) = f1(xr)

f0(xr) ,

s
(1)
rt (xr; Jxr+1, . . . , xnK, (x1, . . . , xt)) = f0(xr)

f1(xr) .

• Density estimators: If the pre-change and post-change distributions are unknown, one can esti-
mate the likelihood ratio using density estimators on the left and right-hand sides respectively. For
instance, suppose one has trained a density estimator f̂0 using the data (x1, . . . , xt) and another
density estimator f̂1 using the data (xt+1, . . . , xn). Furthermore, suppose one has trained a den-
sity estimator f̂ exch

0 using the data Jx1, . . . , xrK and another density estimator f̂ exch
1 using the data

Jxr+1, . . . , xnK. For instance, one could use a weighted ERM to learn f̂0 which places more weight
on earlier samples (which are more likely to come from the pre-change distribution P0. Then, we
define the score functions as:

s
(0)
rt (xr; Jx1, . . . , xrK, (xt+1, . . . , xn)) = f̂1(xr)

f̂ exch
0 (xr)

,

s
(1)
rt (xr; Jxr+1, . . . , xnK, (x1, . . . , xt)) = f̂0(xr)

f̂ exch
1 (xr)

.

For example, one could use a kernel density estimator or a neural network to learn these.

• Classifier-based likelihood ratio: One can use a classifier to estimate the likelihood ratio, which
allows us to use our method even when the likelihood is intractable. Suppose we have access to a
pre-trained classifier ĝ1 : X → [0, 1] which outputs an estimated probability that x ∈ X was drawn
from P1 (instead of P0). Then, we can use this classifier to estimate the likelihood ratio:

s
(0)
rt (xr; Jx1, . . . , xrK, (xt+1, . . . , xn)) = ĝ1(xr)

1− ĝ1(xr) ,

s
(1)
rt (xr; Jxr+1, . . . , xnK, (x1, . . . , xt)) = 1− ĝ1(xr)

ĝ1(xr) .
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