
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSE SPECTRAL TRAINING AND INFERENCE ON EU-
CLIDEAN AND HYPERBOLIC NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The growing demands on GPU memory posed by the increasing number of neural
network parameters call for training approaches that are more memory-efficient.
Previous memory reduction training techniques, such as Low-Rank Adaptation
(LoRA) and ReLoRA, face challenges, with LoRA being constrained by its low-
rank structure, particularly during intensive tasks like pre-training, and ReLoRA
suffering from saddle point issues. In this paper, we propose Sparse Spectral
Training (SST) to optimize memory usage for pre-training. SST updates all
singular values and selectively updates singular vectors through a multinomial sam-
pling method weighted by the magnitude of the singular values. Furthermore, SST
employs singular value decomposition to initialize and periodically reinitialize low-
rank parameters, reducing distortion relative to full-rank training compared to other
low-rank methods. Through comprehensive testing on both Euclidean and hyper-
bolic neural networks across various tasks, including natural language generation,
machine translation, node classification, link prediction, and image classification,
SST demonstrates its ability to outperform existing memory reduction training
methods and is comparable to full-rank training in various cases. On LLaMA-1.3B,
with only 18.7% of the parameters trainable compared to full-rank training (using a
rank equivalent to 6% of the embedding dimension), SST reduces the perplexity gap
between other low-rank methods and full-rank training by 97.4%. This result high-
lights SST as an effective parameter-efficient technique for model pre-training, of-
fering a promising new paradigm for achieving scalable and memory-efficient neu-
ral network training. Our code is available at https://anonymous.4open.
science/r/sparse_spectral_training-6A2C/.

1 INTRODUCTION

The development and scaling up of large language models (Kaplan et al., 2020; Brown et al., 2020;
Touvron et al., 2023b) pose great challenges to the feasibility of training large language models from
scratch. Normal training methods that update all parameters of models become extremely expensive
due to their extensive GPU memory requirements.

Recent developments in parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adap-
tation (LoRA) (Hu et al., 2022), have sought to mitigate the challenge of fine-tuning memory
requirements by introducing trainable low-rank matrices that efficiently reduced the memory foot-
print. However, limiting the model’s parameter updates to a low-rank subspace can severely restrict
the ability of a model to capture and represent complex data patterns, leading to suboptimal perfor-
mance, especially in the pre-training stages. Recent advancements such as ReLoRA (Lialin et al.,
2024), COLA (Xia et al., 2024), and PLoRA (Meng et al., 2024b) have addressed the limitation of
low-rank constraint, by iteratively merging low-rank parameters with frozen parameters. However,
they still encounter saddle point issues due to zero gradient of low-rank parameters that occurs after
each merging step. This challenge results in slower and less effective convergence compared to
full-rank models during pre-training.

In response to these challenges, we introduce Sparse Spectral Training (SST), a new training
framework designed to optimize memory consumption while closely approximating the overall
learning dynamics and performance of full-rank training. Unlike previous methods (Hu et al., 2022;
Lialin et al., 2024; Zhang et al., 2023; Ding et al., 2023) that primarily focus on updating within
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a low-rank subspace at each step, SST adopts a more effective approach by updating all singular
values at each step. SST also leverages the intrinsic spectral properties of the weight matrices,
focusing selective updates of singular vectors sampled from a multinomial distribution weighted
by the magnitude of the singular values. Additionally, SST uses singular value decomposition
to initialize and reinitialize low-rank parameters during training, reducing distortion relative to
full-rank training compared to other low-rank methods.

Our comprehensive evaluations cover different tasks, including pre-training large language models
on OPT model family, ranging from 125m to 1.3b (Zhang et al., 2022), using Transformer (Vaswani
et al., 2017) for machine translation tasks and hyperbolic graph neural networks (Chen et al., 2022)
on node classification and link prediction tasks. For the OPT and LLaMA model family, SST
reduces the perplexity gap between other low-rank methods and full-rank training by 50%-97.4%.
In machine translation with Transformers, SST reduces the BLEU gap by an average of 66.7%.
Furthermore, we are the first to incorporate parameter-efficient pre-training process in hyperbolic
space, demonstrating that SST is a general technique applicable across various data structures and
models. On the hyperbolic Transformer, SST even outperforms full-rank training in most scenarios.
For hyperbolic graph neural networks, SST reduces the performance gap by an average of 73.7% in
node classification and 82.5% in link prediction.

2 RELATED WORK

Low-Rank Adaptation. Low-rank adaptation has become a key strategy for reducing the computa-
tional and memory requirements of training large-scale neural networks. Hu et al. (2022) introduced
Low-Rank Adaptation (LoRA), a technique that fine-tunes pre-trained models by integrating low-rank
matrices to significantly reduce the number of parameters updated during training. Various enhance-
ments to LoRA have since been developed to improve its efficiency and broaden its application
(Zhang et al., 2023; Dettmers et al., 2024; Zi et al., 2023; Valipour et al., 2023). Lialin et al. (2024)
introduced ReLoRA specifically for the pre-training phase, which requires a full-rank warm-up to
achieve performance comparable to full-rank training. A similar approach is also found in COLA
(Xia et al., 2024) and PeriodicLoRA (Meng et al., 2024b). Additionally, Zhao et al. (2024) intro-
duced GaLore, which projects gradients into a low-rank subspace. Meng et al. (2024a) introduced
PiSSA, which applies SVD-based low-rank updates for fine-tuning pre-trained weights by focusing
on dominant singular vectors. These advancements highlight the versatility and ongoing evolution
of low-rank adaptation techniques in response to the growing complexity of neural network models.
Other parameter-efficient training methods are included in Appendix C.

Hyperbolic Neural Networks. Hyperbolic neural networks are an emerging area in deep learning,
exploiting the unique properties of hyperbolic space that make it ideal for processing hierarchical and
graph-structured data (Muscoloni et al., 2017; Cannistraci & Muscoloni, 2022). Innovations in this
area have adapted fundamental neural network mechanisms to function within hyperbolic geometries,
as demonstrated by Muscoloni et al. (2017) and Ganea et al. (2018). Further developments by
Chen et al. (2022) explore manifold-specific properties to enrich both theoretical understanding and
practical deployment. The use of hyperbolic spaces has been shown to significantly improve data
representation and generalization across various tasks, marking a notable advancement in managing
complex, non-Euclidean data structures (Gulcehre et al., 2019; Liu et al., 2019; Tifrea et al., 2019).

3 LOW RANK ADAPTATION

This section introduces the fundamentals and limitations of Low-Rank Adaptation (LoRA) (Hu et al.,
2022), ReLoRA (Lialin et al., 2024), and GaLore (Zhao et al., 2024). These limitations are addressed
by Sparse Spectral Training (SST) in Section 4.

3.1 LORA

LoRA (Hu et al., 2022) fine-tunes a pre-trained model by learning an incremental update ∆W to the
pre-trained and frozen pre-trained weight matrix W0. Here, W0,∆W ∈ Rm×n with m ≤ n. LoRA
decomposes ∆W into the product of two low-rank matrices, B ∈ Rm×r and A ∈ Rr×n, such that
∆W = BA. This decomposition is applied to a linear layer with input x and output h as follows:
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h = (W0 +∆W)x = (W0 +BA)x (1)

Given r ≪ min(m,n), LoRA significantly reduces GPU memory usage compared to full-rank
fine-tuning.

Limitation of LoRA. Consider W∗ as the optimal weight matrix which minimizes loss. The
deviation from the current weights is ∆W∗ = W∗−W0. Performing a singular value decomposition
on ∆W∗ yields ∆W∗ = UΣVT, where U ∈ Rm×m, Σ ∈ Rm×m, VT ∈ Rm×n.

U and VT are orthonormal bases, U = [u1,u2, ...,um], V = [v1,v2, ...,vm]. Σ is a diagonal
matrix with entries {σ1, σ2, ..., σm}. Then the Eckart–Young–Mirsky theorem (Eckart & Young,
1936) states:

∥∆W∗ −∆W∥F ≥
√

σ2
r+1 + · · ·+ σ2

m (2)

where ∥W∥F =
√∑m

i=1

∑n
j=1 w

2
ij is the Frobenius norm, with wij being the element at row

i and column j of W. Equality holds when B = [
√
σ1u1,

√
σ2u2, ...,

√
σrur] and AT =

[
√
σ1v1,

√
σ2v2, ...,

√
σrvr]. This suggests that LoRA can only closely approximate the performance

of full-rank training in simple tasks like fine-tuning, where σi ≈ 0, i ∈ {r + 1, ...,m}. However, in
more complex scenarios like pre-training, where σi, i ∈ {r + 1, ...,m} are non-negligible, LoRA
may struggle to achieve the same level of performance as full-rank training.

3.2 RELORA*

ReLoRA (Lialin et al., 2024), COLA (Xia et al., 2024), and PLoRA (Meng et al., 2024b) address
the limitation of fixed low ranks by iteratively merging the low-rank matrices B and A back into
the base weight matrix W0. Although ReLoRA is designed for pre-training, it includes an initial
period of full-rank training (referred to as a “warm start”), which prevents it from being fully end-to-
end parameter-efficient. Meanwhile, COLA and PLoRA are primarily intended for fine-tuning. In
this paper, we unify these methods into a generalized, end-to-end parameter-efficient pre-training
paradigm, which we refer to as ReLoRA* and formalize in Algorithm 1.

Algorithm 1 ReLoRA*

input Initial weight W of each layer; total iteration T1; iteration interval T2

for t1 = 0, . . . , T1 − 1 do
Initializing: Initialize B and A for each layer.
Subtracting: Subtract B and A from W to maintain the original model output, W = W−BA
Updating: Update B and A for T2 steps while keeping W frozen.
Merging: Merge B and A back to W, updating W = W +BA.

end for

For our experimental setup, ReLoRA* follows ReLoRA’s initialization—B initialized to zero and A
with a Kaiming initialization (He et al., 2015). The initial zero setting for B allows the subtraction
step to be skipped. Notably, the optimizer states for B and A are reset after each merging step (99%
optimizer state is pruned in ReLoRA).

Limitation of ReLoRA*. Each iteration of ReLoRA* learns only a small subset of singular values.
Additionally, its reliance on zero initialization can result in zero gradients of low-rank matrices at
each reinitialization, as discussed in Section 4.3. These issues hinder ReLoRA* from achieving the
convergence speed and training quality of full-rank training.

3.3 GALORE

Gradient Low-rank Projection (GaLore) (Zhao et al., 2024) introduces a different approach by
projecting the gradient using a low-rank projection matrix, rather than the weight matrix, as done by

3
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LoRA and ReLoRA*. The projection matrix Pt is obtained by computing the top-r singular vectors
of the gradient of the weight matrix W, and it is recalculated every T steps. This matrix Pt is then
used to project the gradient of the weight matrix into the low-rank space, allowing the low-rank
gradient to update the first and second-order low-rank momentum in Adam. Finally, the low-rank
updates calculated by Adam are re-projected back to the original weight shape and used to update the
weights.

Limitations of GaLore. Although GaLore presents a valuable contribution by exploring low-rank
gradient projection, it has some limitations. Firstly, Pt is calculated based solely on the SVD of
the gradient from a single batch, which can be affected by data sampling noise. Secondly, GaLore
always selects the top-r singular vectors, which, combined with the previous limitation, restricts its
effectiveness during pre-training with a small r. In our experiments, we observed that with a small r
(less than 1/12 of the dimension, different from the 1/2 to 1/4 used in the GaLore article), GaLore
showed instability, leading to a sudden increase in loss on OPT-350M. Consequently, we chose to
include the detailed explanation and comparison with GaLore in Appendix G rather than in the main
text.

4 SPARSE SPECTRAL TRAINING

To address the limitations discussed previously, this section introduces Sparse Spectral Training (SST)
and detailed its implementation.

4.1 SPARSE SPECTRAL LAYER

Sparse Spectral Training (SST) leverages sparse updates within the spectral domain of neural network
weights. SST transforms each linear layer as follows:

h = Wx = UΣVTx, [U,Σ,VT] = SVD(W) (3)

Input

・

U Σ V

⨀[ ]・

X

Forward

Backward

Sample singular 
vector to update

Parameters updated in this iteration

Σ

Index

Sample

Figure 1: Illustration of the Sparse Spectral Training
(SST). At each iteration, all singular values and selected
singular vectors are updated based on their significance, de-
termined by a multinomial sampling using singular values as
probabilities.

where U ∈ Rm×m, Σ ∈ Rm×m,
and VT ∈ Rm×n represent the full-
rank matrices derived from the sin-
gular value decomposition (SVD) of
W ∈ Rm×n, assuming m ≤ n. It
is important to note that unlike other
LoRA-based methods, U,Σ,VT in
this context are utilized at full rank,
and the original weight matrix W is
removed from networks. For sim-
plicity, in the following discussion,
we continue to use W to represent
UΣVT.

The singular value decomposition is
performed only during initialization
and periodically reinitialized at each
round (see Eq. 10), ensuring that the
training process remains efficient (see
Table 22 for the actual proportion of training time). However, as training progresses, U, Σ, and VT

may gradually deviate from the true singular vectors and singular values of W. In the subsequent
section, we introduce improvements designed to mitigate this deviation.

4.2 GRADIENT UPDATE OF U, VT WITH Σ

Update all Σ. The diagonal matrix Σ, simplified as a vector of dimension m, is updated at every
step due to its low memory overhead. This ensures that all singular values are consistently adjusted
to refine the model’s performance. The update rule is as follows:

4
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Σt+1 = max(Σt − η∇LΣ, 0) (4)

where η represents the learning rate, and ∇LΣ is the gradient backpropagated to Σ. The max
function ensures that Σ values remain non-negative.

Selectively update U and VT. To update U and VT, a selective updating strategy is employed,
where specific parameters are chosen for each iteration based on a multinomial sampling method, as
depicted in Figure 1. Consider I = {1, 2, ...,m} as the set of all indices of singular vectors in U and
VT, with the sampling process defined by:

S ⊆ I, S ∼ Multinomial(r,Σ) (5)

Here, S represents the selected indices for update, with |S| = r, where r is the predetermined number
of vectors to be updated in each iteration. The update formulas for U and VT are:

Ut+1
·i = Ut

·i − η∇LU·i , Vt+1
·i = Vt

·i − η∇LV·i , if i ∈ S (6)

where U·i means the i-th column vector of U. To maintain the unit norm of each vector during
training, and to ensure that magnitude information is encapsulated solely by Σ, the vectors are
normalized post-update as follows:

Ut+1
·i =

Ut
·i − η∇LU·i

|Ut
·i − η∇LU·i |

, Vt+1
·i =

Vt
·i − η∇LV·i

|Vt
·i − η∇LV·i |

, if i ∈ S (7)

Enhance gradient of U and VT. Within a sparse spectral layer where h = UΣVTx (using W
to denote UΣVT), the gradients for U and VT are detailed below (derivation included in Appendix
D):

∇LU·i =
∂L
∂U·i

=
∂L
∂W

V·iΣi, ∇LV·i =
∂L
∂V·i

= Σi
∂L

∂WT
U·i (8)

where U·i and V·i are column vectors of U and VT, respectively, and Σi represents the diagonal
elements of Σ. This represents the default gradient calculation for these matrices. We propose an
enhanced gradient calculation for U·i and V·i as follows:

∇̃LU·i =
∂L
∂W

V·i, ∇̃LV·i =
∂L

∂WT
U·i (9)

In the enhanced gradient, the learning of direction (U·i and V·i) is decoupled from the magnitude
(Σi), allowing singular vectors with lower singular values to retain substantial gradients.

Periodic re-SVD. During training, the orthogonality among the vectors of U and VT tends to
diminish. Preserving the orthogonality of these singular vectors is crucial, as it prevents the learning
process from degenerating into a low-rank subspace, thus preserving the model’s full expressive
capabilities. To maintain this orthogonality, it is essential to periodically perform singular value
decomposition:

[Ut+1,Σt+1,Vt+1T] = SVD(UtΣtVtT) (10)

Each time we perform this re-SVD, we consider it a new round. Each time we select vectors for
updating, as described in Eq. 5, we call it a new iteration. The full method is detailed in Algorithm 2.

4.3 WHY SVD DECOMPOSITION IS IMPORTANT

This section discusses the advantages of using SVD initialization and periodic re-SVD over zero
initialization as employed in ReLoRA* methods.

5
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(b) SST

0 250 500 750 1000 1250 1500 1750 2000
Step

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Gr
ad

ie
nt

 Fr
ob

en
iu

s N
or

m
 M

ea
n SST_active_U_grad

(c) ReLoRA*
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Figure 2: ReLoRA* suffers saddle point issue at each restart. This plot depicts the average
Frobenius Norm of gradients of: (a) all weight matrices in full-rank training; (b) all sampled U
in SST; (c) all A in ReLoRA*, in first 2000 steps. All methods are trained on Transformer with
dimension = 64, r = 8 on IWSLT’14. Both SST and ReLoRA* set iteration interval to 200. When
the average Frobenius Norm of gradients approaches zero, it indicates that a saddle point issue
happens. Figure (c) shows that ReLoRA* suffers saddle point issue periodically at the beginning
of each iteration. The correlation between SST and full-rank gradient norm along the steps is 0.85,
whereas the correlation between ReLoRA* and full-rank is 0.58. This demonstrates that the gradient
curve of SST more closely approximate the gradient curve of full-rank training, compared with
ReLoRA*.

Saddle point issues after each merging in ReLoRA*. The gradient of A and B in ReLoRA* is:

∂L
∂B

=
∂L
∂W

AT and
∂L
∂A

= BT ∂L
∂W

(11)

After each merging, B is reinitialized to zero, and the gradient of A is calculated as ∂L
∂A = 0T ∂L

∂W =
0, which causes a slow learning progress at the beginning of each iteration. Additionally, in ReLoRA*,
resetting the momentum of B and A after each merging aggravates this issue, particularly when the
merging interval T2 is short.

Compared with ReLoRA*, SST more closely approximates full-rank training. In Figure 2, we
compare the average Frobenius Norm of gradients of weight matrices in full-rank training, low rank
matrices in SST and ReLoRA*. This plot shows that ReLoRA* suffers saddle point issue periodically
at the beginning of each iteration. We also calculate the correlation between SST and full-rank
gradient norm along the steps is 0.85, whereas the correlation between ReLoRA* and full-rank is
0.58. The fact that SST’s gradient norm is more closely correlated with the full-rank gradient norm
than ReLoRA* suggests that SST more closely approximates the gradient of full-rank training.

SST initializes and reinitializes its low-rank matrices U and V using the singular vectors of W.
In contrast to ReLoRA*, which relies on random or zero initialization for its low-rank matrices,
SST better captures the direction of W’s updates, allowing it to more closely approximate full-rank
training. As demonstrated in the ablation study (Appendix H), replacing SVD-based initialization
with random initialization leads to a significant drop in performance, highlighting the critical role of
SVD in SST’s effectiveness.

4.4 SST BALANCES EXPLOITATION AND EXPLORATION

From another perspective, SST combines the strategies of exploitation and exploration in spectral
domain. LoRA primarily focuses on exploitation by repeatedly adjusting the top-r singular values,
as detailed in Section 3.1, while neglecting the remaining spectral vectors. ReLoRA*, on the other
hand, emphasizes exploration by periodically reinitializing the matrices B and A after each merging,
thereby constantly seeking new directions for learning but ignoring previously established dominant
directions.

SST boosts learning efficiency by updating all magnitudes (Σ) at each step and cyclically revisiting
previously established dominant directions. By continuously updating all singular values, SST
ensures unbiased sampling of U and VT, enabling a thorough exploration of the parameter space. As

6
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a result, SST balances the exploitation of known critical directions with the exploration of emerging
opportunities within the spectrum of matrix decomposition.

4.5 SPARSITY OF SST

We analyze the efficiency of parameter usage.. Specifically, the ratio of trainable parameters in SST at
a given rank r, denoted as ΓSST,r, is calculated as r(m+n)+m

mn . This parameter ratio is slightly higher
than that of LoRA at the same rank, ΓLoRA,r = r(m+n)

mn , yet remains lower than LoRA at rank r + 1,
ΓLoRA,r+1 = (r+1)(m+n)

mn , indicating a slightly increase in trainable parameters.

4.6 MEMORY-EFFICIENT IMPLEMENTATION FOR SST

Newly Sampled

Swap to active
Swap to freeze

𝑉𝑎𝑐𝑡𝑖𝑣𝑒

𝑉𝑓𝑟𝑒𝑒𝑧𝑒

Figure 3: Illustration of the memory-efficient
implementation for SST. After each sampling
step, the sampled vectors are swapped with the
active vectors from the previous iteration.

To achieve similar memory reduction as LoRA,
SST stores optimizer states for all Σ and only
for the vectors sampled in each iteration from
U and VT. However, standard implementations
of Adam optimizer (Kingma & Ba, 2014) in
PyTorch (Paszke et al., 2019) do not support
sparse optimizer states. To address this, we par-
tition U and VT into active and frozen segments.
Only active segments store the optimizer states,
where Uactive ∈ Rm×r and VT

active ∈ Rr×n. The
frozen segments, Ufreeze and VT

freeze, do not store
optimizer states. Vectors newly sampled from
the frozen segments are swapped with unsam-
pled vectors in the active segments (illustrated
in Figure 3). This approach enables SST to func-
tion as a time-sharing operating system, effectively balancing resource allocation among the vectors
in U and VT.

5 EXPERIMENTS

To validate our Sparse Spectral Training (SST) approach, we conducted experiments on both Eu-
clidean and hyperbolic neural networks, demonstrating the generalization of SST across various
neural network architectures and embedding geometries.

We compared SST with full-rank training, LoRA, and ReLoRA*. The key distinctions between
ReLoRA* and ReLoRA (Lialin et al., 2024) is that ReLoRA includes a full-rank training as “warm
start”, which prevents it from being an end-to-end memory-efficient pre-training method.

For all low-rank methods, all linear layers in the baseline models were replaced by low-rank layers.
Hyperparameters and implementation details are provided in Appendix E.

As discussed in Section 3.3, the comparison between SST and the contemporaneous work GaLore
(Zhao et al., 2024) is provided in Appendix G, as GaLore is unstable during OPT pre-training with
r = 64. We highlight SST’s superior performance across all of our experiment settings. Ablation
studies are documented in Appendix H, and a detailed analysis of memory consumption and training
time can be found in Appendix I. Additionally, an experiment on image classification tasks is included
in Appendix J.

5.1 MACHINE TRANSLATION

We employ the vanilla transformer (Vaswani et al., 2017) as the Euclidean transformer and HyboNet
(Chen et al., 2022) as the hyperbolic transformer. Our experiments include three widely-used machine
translation datasets: IWSLT’14 English-to-German (Cettolo et al., 2014), IWSLT’17 German-to-
English (Cettolo et al., 2017), and Multi30K German-to-English (Elliott et al., 2016). For IWSLT’14,
the hyperparameters are aligned with those from HyboNet.

7
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Table 1: BLEU scores on IWSLT’14 for Euclidean and hyperbolic Transformers. Values in bold
indicate the highest performance among low-rank methods. Values marked with an “*” exceed the
performance of their full-rank counterparts. Some BLEU scores are zero because that training resulted
in NaN losses. Notably, SST consistently outperforms other low-rank methods. Furthermore, the
hyperbolic Transformer trained by SST shows improved performance over the full-rank hyperbolic
Transformer, particularly as the dimension size increases.

Euclidean Hyperbolic
Dimension r Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST

64 8 24.27 18.08 18.12 22.28 25.69 17.50 0.0 23.40
4 14.05 15.49 20.27 0.0 0.0 23.03

128
16

25.79
23.30 22.92 25.12

24.70
23.70 0.0 25.22*

8 20.56 20.61 24.19 20.81 0.0 25.12*
4 16.37 18.00 22.80 17.58 24.42 24.60

256

32

23.92

23.76 23.02 23.97*

19.94

24.16* 0.0 25.04*
16 22.88 22.01 23.42 23.93* 0.0 25.52*
8 20.32 20.36 22.65 21.58* 24.02* 24.67*
4 16.72 17.85 21.39 18.72 24.08* 24.51*

Table 2: Comparison of BLEU scores on
Multi30k and IWSLT’17 datasets using Eu-
clidean Transformer (dimension = 512), r = 32.
Scores highlighted in bold represent the highest
performance achieved by low-rank methods.

Full LoRA ReLoRA* SST

Multi30K 40.7 40.1 41.6 43.4
IWSLT’17 31.7 31.9 32.0 32.3

Euclidean Transformer Table 1 presents
BLEU scores for IWSLT’14 across various di-
mensions and ranks (r). The results confirm
that SST consistently outperforms other low-
rank methods. On average, SST reduces the
BLEU gap (defined as the BLEU score differ-
ence from full-rank training) by 66.7% for Eu-
clidean Transformers on IWSLT’14.

Further comparative results on the Multi30K
and IWSLT’17 datasets using the standard di-
mensions for vanilla Euclidean transformers are documented in Table 2. Here, SST not only surpasses
other low-rank methods but also demonstrates superior performance compared to full-rank training.

Hyperbolic Transformer In Table 1, some BLEU scores for the hyperbolic transformer are zero,
due to the training process encountering NaN losses, whereas SST maintains stability throughout.
SST consistently outperforms other low-rank methods across all settings and even exceeds the
performance of full-rank training in various configurations.

Previous hyperbolic neural network articles have predominantly focused on low-dimensional config-
urations (Ganea et al., 2018; Shimizu et al., 2021; Nickel & Kiela, 2017). A key characteristic of
hyperbolic space is its exponential growth in volume with distance from a reference point, which
is significantly more rapid than the polynomial growth seen in Euclidean space (Cho et al., 2019).
This expansive nature makes hyperbolic spaces particularly prone to overfitting as dimensionality
increases. By imposing constraints on the parameter search space of hyperbolic neural networks, SST
prevents the overfitting typically associated with such high-dimensional settings.

5.2 NATURAL LANGUAGE GENERATION

Language modeling. We utilize the OPT (Zhang et al., 2022) and LLaMA (Touvron et al., 2023a)
architecture as the baseline for our language generation experiments. For LLaMA, we follow the
experiment setup from (Zhao et al., 2024). All models are pre-trained on OpenWebText (Gokaslan &
Cohen, 2019), an open-source reproduction of OpenAI’s WebText. We applied a rank of r = 64 for
all OPT models and LLaMA-130M, and r = 128 for LLaMA-1.3B.

Table 3 displays the validation perplexity results on the OpenWebText dataset across different sizes
of all LLMs. The results indicate that SST achieves lower perplexity scores compared to LoRA
and ReLoRA*, significantly reducing the perplexity gap—defined as the difference between the
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Table 3: Validation perplexity on OpenWebText across various model sizes of OPT and LLaMA
along with the number of trainable parameters of each method. Values in bold highlight the highest
performance among the low-rank methods.

Model r/dmodel Training Tokens Full LoRA ReLoRA* SST

OPT-125M 64/768 19.7B 23.50 (125.2M) 34.23 (50.9M) 35.80 (50.9M) 26.98 (51.0M)
OPT-350M 64/1024 19.7B 21.78 (331.2M) 34.26 (57.5M) 39.21 (57.5M) 27.72 (57.7M)
OPT-1.3B 64/2048 19.7B 15.10 (1.316B) 1716 (164.4M) 29.52 (164.4M) 22.31 (164.7M)

LLaMA-130M 64/768 2.6B 20.04 (134.11M) 29.71 (60.38M) 31.33 (60.38M) 23.35 (60.44M)
LLaMA-1.3B 128/2048 13.1B 14.54 (1.339B) 16.50 (250.71M) 17.32 (250.71M) 14.59 (251.05M)

perplexity of the low-rank method and the full-rank training. Specifically, SST reduces this gap by
67.6% (OPT-125M), 52.4% (OPT-350M), 50.0% (OPT-1.3B), 65.8% (LLaMA-130M), and 97.4%
(LLaMA-1.3B).

0 0.2 × 1013 0.4 × 1013 0.6 × 1013 0.8 × 1013 1.0 × 1013

Effective Step (Step × # Trainable Parameters)

3

4
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Full (OPT-125M)
LoRA (OPT-125M)
ReLoRA* (OPT-125M)
SST (OPT-125M)

Full (OPT-350M)
LoRA (OPT-350M)
ReLoRA* (OPT-350M)
SST (OPT-350M)

Full (OPT-1.3B)
LoRA (OPT-1.3B)
ReLoRA* (OPT-1.3B)
SST (OPT-1.3B)

Figure 4: Comparison of performance on effec-
tive steps between SST and full-Rank training.
Effective steps are calculated as the product of the
number of trainable parameters and the number of
steps taken. All methods and model sizes utilize
the same number of tokens in each step.

Figure 4 presents a plot of validation loss against
effective steps for various training methods. The
effective step metric, defined as the product of
the number of training steps and the number
of trainable parameters, provides insight into
the efficiency of parameter updates. Although
parameter-efficient training methods typically
exhibit slower convergence compared to full-
rank training, the effective step metric illustrates
that SST updates parameters more effectively.
At the final effective step for SST on OPT-1.3B,
SST achieves a validation perplexity of 22.31,
whereas full-rank training at the same effec-
tive step only reaches a validation perplexity of
34.05, demonstrating that SST is more efficient
in updating parameters compared to full-rank
training.

Zero-shot evaluations. Each pretrained
model performs zero-shot evaluations on all 16
NLP tasks used in the OPT article (Zhang et al., 2022), including ARC Easy and Challenge (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), StoryCloze (Mostafazadeh et al., 2016), SuperGLUE (Wang et al., 2019), WinoGrad
(Levesque et al., 2012), and WinoGrande (Sakaguchi et al., 2019). Evaluations are conducted using
the LM Evaluation Harness framework (Gao et al., 2023). Except for the ReCoRD task, which uses
F1 score, all other tasks are evaluated using accuracy.

Table 4 presents the zero-shot evaluation results across the 16 NLP tasks. SST achieves a higher
average score than other low-rank methods across all sizes of the OPT models. On the OPT-125M,
the average score for zero-shot evaluations of SST is 44.6, slightly exceeding the average score of
full-rank training, which is 44.5. Additionally, we calculated the win percentage (including ties) for
each low-rank method compared to full-rank training. On the OPT-125M, the win percentage of SST
is 56.3%, indicating that SST performed as well as or better than full-rank training on more than half
of the zero-shot evaluation tasks.

5.3 HYPERBOLIC GRAPH NEURAL NETWORKS

Hyperbolic Graph Neural Networks (HGNNs) (Chami et al., 2019; Chen et al., 2022) capitalize on
the expansive and hierarchical nature of hyperbolic space to efficiently manage and analyze graph-
structured data. This geometric space is particularly suitable for graphs due to its ability to closely
mimic the underlying data structures with minimal distortion, offering a substantial improvement
over traditional Euclidean methods.

We evaluated the effectiveness of SST on HyboNet (Chen et al., 2022) version of HGNN in node
classification and link prediction across four distinct datasets: Airport (Chami et al., 2019), Cora (Sen

9
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Table 4: Zero-shot evaluations on the same 16 NLP tasks featured in the OPT article (Zhang et al.,
2022). Except for the ReCoRD task, which uses F1 score, all other tasks are evaluated using accuracy,
with values presented as percentages. Mean scores in bold represent superior performance among the
low-rank methods. Additionally, we include the win percentage (including ties) for each low-rank
method compared to the full-rank training.

OPT-125M OPT-350M OPT-1.3B

Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST

ARC (Challenge) 21.2 22.9 21.1 21.3 22.0 22.3 21.3 21.1 24.6 24.2 22.9 21.5
ARC (Easy) 35.8 34.2 33.9 34.3 35.9 32.3 33.0 35.7 43.2 26.1 35.9 37.8
BoolQ 59.5 54.2 60.8 62.0 53.6 56.2 62.2 57.7 57.7 37.8 61.4 59.5
CB 51.8 48.2 28.6 48.2 44.6 44.6 33.9 41.1 59.0 41.1 37.5 42.9
COPA 67.0 61.0 57.0 66.0 69.0 61.0 59.0 60.0 70.0 51.0 68.0 65.0
HellaSwag 27.7 26.5 27.1 26.9 28.4 26.6 26.9 27.5 35.0 26.1 27.2 28.1
MultiRC 55.4 57.2 55.9 57.2 52.0 52.6 56.4 57.0 56.8 42.8 57.7 56.9
OpenBookQA 24.6 24.6 23.6 26.2 26.4 24.2 23.0 25.2 29.0 27.0 24.8 25.0
PIQA 58.7 57.2 56.3 58.3 59.2 56.9 56.9 59.0 64.0 50.3 57.1 59.1
ReCoRD 16.7 17.5 22.6 18.5 19.4 17.6 19.0 23.2 13.7 17.6 23.0 18.1
RTE 50.5 56.7 53.1 53.4 52.0 49.1 54.9 50.2 51.6 52.7 52.0 53.8
StoryCloze 55.8 53.8 53.6 54.5 57.2 53.7 53.0 54.6 61.1 49.7 54.0 56.1
WIC 49.8 51.4 50.0 50.0 50.5 50.0 50.0 50.2 50.3 50.0 50.0 50.0
Winograd 52.0 48.7 50.6 50.6 55.0 51.7 50.2 51.3 55.7 50.9 52.4 55.3
Winogrande 49.1 49.2 50.7 50.1 50.7 50.3 50.8 52.0 51.1 47.9 50.0 49.1
WSC 36.5 38.5 36.5 36.5 36.5 37.5 36.5 36.5 39.4 63.5 36.5 36.5

Mean 44.5 43.8 42.6 44.6 44.5 42.9 42.9 43.9 47.6 41.2 44.4 44.7
Win Percentage - 50.0 43.8 56.3 - 31.3 31.3 31.3 - 18.8 25.0 25.0

Table 5: Node Classification and Link Prediction Results. Model’s dimension d = 16. Results
are reported as test F1 scores for node classification and test precision for link prediction, expressed
in percentages. Values highlighted in bold represent the highest performance among the low-rank
methods, while those marked with an “*” denote performance that exceeds that of the full-rank
variants.

Node Classification Link Prediction

Method Airport Cora Disease PubMed Airport Cora Disease PubMed

Full d = 16 92.88 ± 0.5 81.13 ± 0.2 91.83 ± 0.4 78.1 ± 0.4 95.77 ± 0.08 94.62 ± 0.2 91.49 ± 1.5 96.55 ± 0.03

LoRA r = 1 85.75 ± 1.0 45.5 ± 0.3 79.66 ± 1.9 69.17 ± 2.1 94.01 ± 0.2 84.22 ± 0.1 84.29 ± 1.5 89.34 ± 0.4
SST r = 1 88.61 ± 0.5 75.07 ± 0.5 89.22 ± 1.7 77.47 ± 0.3 95.37 ± 0.4 91.11 ± 0.6 93.63 ± 0.7* 95.57 ± 0.1

LoRA r = 2 89.06 ± 1.0 64.73 ± 0.8 83.84 ± 4.3 76.27 ± 0.8 94.75 ± 0.15 88.8 ± 0.5 91.38 ± 0.7 92.14 ± 0.3
SST r = 2 87.92 ± 0.09 77.5 ± 0.7 90.64 ± 1.7 77.93 ± 0.1 95.59 ± 0.2 91.89 ± 0.3 94.83 ± 0.6* 95.71 ± 0.1

et al., 2008), Disease (Anderson & May, 1991), and PubMed (Namata et al., 2012). Each experiment
was conducted with three random seeds.

The results, detailed in Table 5, demonstrate SST has strong performance in both node classification
and link prediction tasks. With r = 1, SST reduces the performance gap, by an average of 73.7% in
node classification and 82.5% in link prediction. In the Disease link prediction task, SST outperforms
full-rank training at both r = 1 and r = 2. Notably, SST’s advantage over LoRA is greater at r = 1
than at r = 2, likely due to SST’s sampling strategy being particularly effective in sparser scenarios.

6 CONCLUSION AND DISCUSSION

In this work, Sparse Spectral Training (SST) has demonstrated its efficacy as a parameter-efficient
pre-training methodology that surpasses other parameter-efficient methods, and better approximates
the learning dynamics and performance of full-rank training across diverse architectures, tasks,
and embedding geometries. SST introduces a novel approach by updating all singular values and
selectively adjusting the singular vectors of network weights. Moreover, SST incorporates SVD
both for the initialization and periodic reinitialization of low-rank parameters. Future directions for
SST include: (1) Investigating faster convergence approaches that avoid optimizer state reset. (2)
Extending the application of SST to the embeddings of large language models (LLMs).
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Reproducibility Statement. To facilitate reproducibility, we provide the source code for Sparse
Spectral Training (SST), along with detailed instructions for running experiments, at https:
//anonymous.4open.science/r/sparse_spectral_training-6A2C/. All hyper-
parameters, model architectures, and training settings for all methods are documented in Appendix E.
These resources are intended to provide all the necessary information for reproducing our results.
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Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report
on the 11th IWSLT evaluation campaign. In Marcello Federico, Sebastian Stüker, and François
Yvon (eds.), Proceedings of the 11th International Workshop on Spoken Language Translation:
Evaluation Campaign, pp. 2–17, Lake Tahoe, California, December 4-5 2014. URL https:
//aclanthology.org/2014.iwslt-evaluation.1.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Jan Niehues, Sebastian Stüker, Katsuhito Sudoh,
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A ALGORITHM OF SPARSE SPECTRAL TRAINING

Algorithm 2 Sparse Spectral Training (SST)

input Dataset D; total round T1; number of iterations T2; iteration interval T3

Use Kaiming initialization to initialize origin model’s weight W(0)
k , k = 1, ..., n, where n is the

number of linear layers.
Replace origin model’s weight with SVD decomposition

[U
(t1,0)
k ,Σ

(t1,0)
k ,V

(t1,0)
k

T
] = SVD(W

(t1)
k )

for t1 = 0, . . . , T1 − 1 do
for t2 = 0, . . . , T2 − 1 do

Ik = {1, 2, . . . ,m} be the set of all possible indices of singular vectors

S
(t1,t2)
k ⊆ Ik, S

(t1,t2)
k ∼ Multinomial(r,Σ(t1,t2×T3)

k )

for t3 = 0, . . . , T3 − 1 do
Represent t = t2 × T3 + t3;
Sample a mini-batch from D and compute the forward pass by Eq.3 and compute the
gradient ∇L;
Update Σ

(t1,t+1)
k = max(Σ

(t1,t)
k − η∇LΣk

, 0)
Update

U
(t1,t+1)
k,·i =

U
(t1,t)
k,·i − η∇̃LUk,·i

|U(t1,t)
k,·i − η∇̃LUk,·i |

, V
(t1,t+1)
k,·i =

V
(t1,t)
k,·i − η∇̃LVk,·i

|V(t1,t)
k,·i − η∇̃LVk,·i |

, if i ∈ S
(t1,t2)
k

where Uk,·i means column vector i of Uk

end for
end for
Reinitialize with new SVD decomposition

[U
(t1+1,0)
k ,Σ

(t1+1,0)
k ,V

(t1+1,0)
k

T
] = SVD(U

(t1,T2×T3−1)
k Σ

(t1,T2×T3−1)
k V

(t1,T2×T3−1)
k

T
)

end for

B EXPERIMENTS ON LARGER DATASETS AND HYPERPARAMETER TUNING

To further evaluate the performance of SST, we conducted additional experiments using larger datasets
and varied hyperparameter settings. Specifically, we pre-trained LLaMA-130M on the C4 dataset
(Raffel et al., 2020), which is about 25 times larger than OpenWebText. We also compared the
performance of SST, LoRA, and ReLoRA* under two different learning rates.

Table 6 presents the validation perplexity (PPL) results for LLaMA-130M on both C4 and OpenWeb-
Text. The results show that SST consistently outperforms other low-rank methods, achieving lower
perplexity across all configurations.

Table 6: Validation perplexity on C4 and OpenWebText for LLaMA-130M with different learning
rates. Bold values indicate the lowest PPL among all low-rank methods.

Dataset Model r/d Full (lr=1e-3) lr=1e-3 lr=3e-3
LoRA ReLoRA* SST LoRA ReLoRA* SST

C4 LLaMA-130M 64/768 24.91 35.91 37.34 32.13 30.75 133.06 29.79
OpenWebText LLaMA-130M 64/768 20.04 29.71 31.33 25.89 795.24 230.43 23.35

Each method was trained with 2.6 billion tokens. The learning rate of 1e−3 for full-rank training
aligns with the configuration used in the ReLoRA article. For consistency, we applied the same
learning rates (lr = 1e−3 and lr = 3e−3) across LoRA, ReLoRA*, and SST.
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SST consistently achieves lower perplexity than LoRA and ReLoRA* at the same learning rate.
Notably, with lr = 3e−3, SST surpasses all other low-rank methods, reducing the perplexity gap
by 16.4% on C4 and 65.8% on OpenWebText. These findings highlight SST’s effectiveness and
robustness on larger datasets and varied learning rate configurations.

C RELATED WORK OF OTHER PARAMETER-EFFICIENT TRAINING METHODS

Apart from low-rank adaptations, researchers have developed a variety of parameter-efficient training
techniques to optimize resource consumption while preserving learning effectiveness. Prompt tuning
is an effective method that integrates tunable prefixes or soft prompts into the input embeddings of
models. It enables lightweight task-specific adaptations with minimal impact on the model’s overall
architecture (Lester et al., 2021; Liu et al., 2021). Dynamic sparse training (DST), through methods
like SET (Mocanu et al., 2018), RIGL (Evci et al., 2020), MEST (Yuan et al., 2021), and CHT (Zhang
et al., 2024), employs a dynamic prune-and-grow strategy that adjusts network topology during
training. This approach optimizes training efficiency and can improve generalization by continuously
adapting the network’s sparse structure. This presents a significant shift from static training methods.

D PROOF OF GRADIENT OF SPARSE SPECTRAL LAYER

We can express the differential of W as the sum of differentials:

dW = dUΣVT +UdΣVT +UΣdVT (12)

We have chain rule for the gradient of W:

∂L
∂W

=
∂L
∂h

∂h

∂W
=

∂L
∂h

xT (13)

dL =
∂L
∂W

: dW

=
∂L
∂W

: dUΣVT +
∂L
∂W

: U dΣVT +
∂L
∂W

: UΣdVT

=
∂L
∂W

VΣ : dU+UT ∂L
∂W

V : dΣ+ΣUT ∂L
∂W

: dVT

where : is the Frobenius inner product. So we have the gradient of U, Σ and VT:

∂L
∂U

=
∂L
∂W

VΣ,
∂L
∂VT

= ΣUT ∂L
∂W

,
∂L
∂Σ

= UT ∂L
∂W

V (14)

In vector perspective, for the ith vector, it is:

∂L
∂U·i

=
∂L
∂W

V·iΣi,
∂L
∂V·i

= Σi
∂L

∂WT
U·i,

∂L
∂Σi

= U·i
T ∂L
∂W

V·i (15)

where U·i means the ith column vector of U, and Σi is the ith value of the diagonal matrix Σ.

E EXPERIMENT DETAILS

E.1 IMPLEMENTATION DETAILS FOR SST

Sampling of U and VT. In our experiments, we employ a more exploratory approach when
sampling U and VT:
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p(i) =
1

2
(
1

m
+

Σi∑
j Σj

) (16)

where p(i) is the possibility to sample index i vector of U and VT. This method modifies the
earlier Eq. 5 by combining the multinomial distribution with a uniform distribution. This adjustment
ensures that vectors associated with lower singular values still have a substantial likelihood of
being sampled, preventing their probabilities from becoming excessively low and promoting a more
balanced exploration across the spectral components.

Optimizer state reset and warmup. Before each iteration, Sparse Spectral Training (SST) resets
all optimizer states for U, VT and Σ. For example, for optimizers like Adam, this involves clearing
the first and second moments as well as the timestep. Consequently, a brief warmup period is essential
at the beginning of each iteration to accommodate the reset states. This warmup period is typically
20 steps, guided by the exponential decay rate β used in the Adam optimizer.

Hyperbolic SST. The formula of hyperbolic linear layer in (Chen et al., 2022) is:

h = fx(M)x =

[√
∥Wx∥2− 1

K

v⊤x
v⊤

W

]
x =

[√
∥Wx∥2 − 1

Kv⊤

Wx

]
(17)

where v ∈ Rn+1, W ∈ Rm×(n+1) and K is the curvature. The formula of Hyperbolic SST is:

h =

[√
∥UΣVTx∥2 − 1

Kv⊤

UΣVTx

]
(18)

E.2 HYPERPARAMETERS OF MACHINE TRANSLATION

IWSLT’14. The hyperparameters can be found in Table 7. We employ the same codebase and
hyperparameters as those used in HyboNet (Chen et al., 2022), which is derived from OpenNMT-py
(Klein et al., 2017). For all methods, last checkpoint is utilized for evaluation. Beam search, with a
beam size of 2, is employed to optimize the evaluation process. Experiments were conducted on one
A100 GPU.

For SST, iteration interval (T3) is set to 200. Each iteration begins with a warmup phase lasting 20
steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

Multi30K and IWSLT’17. The hyperparameters can be found in Table 8. Because of overfitting,
model checkpoint with lowest validation loss is utilized for evaluation. A larger learning rate
(0.0003) is used for low rank parameters (U, VT and Σ for SST, B and A for LoRA and ReLoRA*.
Experiments were conducted on one A100 GPU.

For SST, interation interval (T3) is set to 200 for Multi30K and 400 for IWSLT’17. Each iteration
begins with a warmup phase lasting 20 steps. The number of iterations per round (T2) is determined
by the formula T2 = d/r, where d represents the embedding dimension and r denotes the rank used
in SST.

E.3 HYPERPARAMETERS OF NATURAL LANGUAGE GENERATION

Hyperparameters for OPT. The hyperparameters for OPT are detailed in Table 9. We employ
a linear warmup of 2000 steps followed by a stable learning rate, without decay. A larger learning
rate (0.001) is used for only low rank parameters (U, VT and Σ for SST, B and A for LoRA and
ReLoRA*. The total training tokens for each experiment is 19.7B, roughly 2 epochs of OpenWebText.
Distributed training is facilitated using the Accelerate (Gugger et al., 2022) library across four A100
GPUs on a Linux server.
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Table 7: Hyperparameters on IWSLT’14 for Euclidean and hyperbolic Transformer.

Hyper-parameter Euclidean Hyperbolic
Embedding Dimension 64, 128, 256 64, 128, 256
Feed-forward Dimension 256, 512, 1024 256, 512, 1024
Batch Size 10240 tokens 10240 tokens
Gradient Accumulation Steps 4 4
Training Steps 40000 40000
Dropout 0.0 0.1
Attention Dropout 0.1 0.1
Max Gradient Norm - 0.5
Warmup Steps 6000 6000
Decay Method noam noam
Label Smoothing 0.1 0.1
Layer Number 6 6
Head Number 4 4
Learning Rate 5 2
Optimizer Adam rAdam

Table 8: Hyperparameters on Multi30K and IWSLT’17 for vanilla Transformer.

Hyper-parameter Multi30K IWSLT’17
Embedding Dimension 512 512
Feed-forward Dimension 2048 2048
Batch Size 128 sentences 128 sentences
Gradient Accumulation Steps 1 1
Training Steps 100000 150000
Dropout 0.1 0.1
Decay Method constant constant
Layer Number 6 6
Head Number 8 8
Learning Rate 0.0001 0.0001
Weight Decay 1 0.1
Optimizer AdamW AdamW

For SST, interation interval (T3) is set to 200. Each iteration begins with a warmup phase lasting
20 steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

Table 9: Hyperparameters for OPT Models

Hyper-parameter OPT-125M OPT-350M OPT-1.3B
Embedding Dimension 768 512 (project to 1024) 2048
Feed-forward Dimension 3072 4096 8192
Global Batch Size 240 240 240
Sequence Length 2048 2048 2048
Training Steps 40000 40000 40000
Learning Rate 0.0001 0.0001 0.0001
Warmup Steps 2000 2000 2000
Optimizer AdamW AdamW AdamW
Layer Number 12 24 24
Head Number 12 16 32

Hyperparameters for LLaMA. The hyperparameters for LLaMA are detailed in Table 10. We
follow the same experiment setup from (Zhao et al., 2024). We employ a linear warmup of 2000/10000
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Figure 5: Singular Value Pruning. We conduct singular value pruning on full-rank and SST
pretrained OPT-125M model. After performing singular value decomposition on weight matrices, we
preserve the top k singular values so that the cumulative sum of preserved singular values ranges
from [100%, 99%, 98%, ..., 93%, 90%] of the original cumulative sum. The pruned ratio of singular
values is plotted along the x-axis.

steps followed by a cosine decay. For LLaMA-130M, the learning rates for LoRA, ReLoRA*, and
SST are selected from {1e-3, 3e-3} based on the lowest PPL observed in Table 6. For LLaMA-
1.3B, the learning rates for LoRA, ReLoRA*, and SST are fixed at 1e-3. The learning rates for
full-rank training are set to 1e-3 for LLaMA-130M and 4e-4 for LLaMA-1.3B, consistent with the
configuration in the ReLoRA article.

For SST, interation interval (T3) is set to 200. Each iteration begins with a warmup phase lasting
20 steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

Table 10: Hyperparameters for LLaMA Models

Hyper-parameter LLaMA-130M LLaMA-1.3B
Embedding Dimension 768 2048
Feed-forward Dimension 2048 5461
Global Batch Size 512 512
Sequence Length 256 256
Training Steps 20000 100000
Learning Rate 0.001 0.0004
Warmup Steps 2000 10000
Optimizer Adam Adam
Layer Number 12 24
Head Number 12 32

E.4 HYPERPARAMETERS OF HYPERBOLIC GRAPH NEURAL NETWORKS

We use HyboNet (Chen et al., 2022) as full-rank model, with same hyperparameters as those used in
HyboNet. Experiments were conducted on one A100 GPU.

For SST, interation interval (T3) is set to 100. Each iteration begins with a warmup phase lasting
100 steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

We set dropout rate to 0.5 for the LoRA and SST methods during the node classification task on the
Cora dataset. This is the only one deviation from the HyboNet configuration.
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F SINGULAR VALUE PRUNING

We further conduct an analysis study of the potential for using SST model for further compression.
The results, as shown in Figure 5, indicate that the SST model retains lower perplexity across a
wider range of pruning ratios compared to the full-rank model. This suggests that the SST method
effectively concentrates the informational content of the weights into fewer singular values, making it
more suitable for further compression.

This enhanced performance underscores the potential of SST in maintaining essential model character-
istics even under significant compression, making it a promising approach for developing lightweight
yet powerful language models for inference.

G EVALUATING SST AND GALORE: COMPLEMENTARY APPROACHES TO
MEMORY EFFICIENCY

Table 11: The BLEU score on IWSLT’14 for Euclidean Transformer, compared with GaLore.
Values highlighted in bold represent the highest performance among the low rank methods, while
those marked with an “*” denote performance that exceeds that of the full-rank variants.

Dimension r Full GaLore SST

64 8 24.27 18.08 22.28
4 14.07 20.27

128
16

25.79
23.43 25.12

8 19.71 24.19
4 16.01 22.80

256

32

23.92

24.01* 23.97*
16 22.82 23.42
8 20.12 22.65
4 15.94 21.39

Recently, a new approach named Gradient Low-Rank Projection (GaLore) (Zhao et al., 2024) has
been proposed to address the memory challenges associated with pre-training large language models.
GaLore, by implementing a memory-efficient gradient projection method.

Using the released code of GaLore1, we conducted comparative experiments on the IWSLT’14 dataset
with Transformer models, employing the same configurations as other low-rank methods. We set
the scale factor α = 1 in these experiments because α = 0.25, which is used in the article, performs
much worse than α = 1. As illustrated in Table 11, SST method consistently outperformed GaLore
across various model dimensions and ranks, except for d = 256, r = 32.

In addition, we evaluated validation perplexity on the OpenWebText dataset with OPT-125M and
OPT-350M models. We tested GaLore with scale factor α = 0.25 (used in GaLore article) and α = 1.
As shown in Table 12, SST outperformed GaLore at both settings of α on OPT-125M. Since α = 1
had better results than α = 0.25 on OPT-125M, we used α = 1 for training GaLore on OPT-350M.
Initially, GaLore trained normally on OPT-350M, but around step 6127, the training loss suddenly
increased from approximately 4 to 7 within a few steps, resulting in a very high final perplexity for
the GaLore OPT-350M, as shown in Table 12. Training of GaLore on OPT-1.3B is still ongoing, and
we will update the results as soon as they are available. Zero-shot evaluations comparing SST with
GaLore are presented in Table 13, which also demonstrate SST’s superior performance.

Here, we discuss our guess on why SST may have an advantage over GaLore on low-rank settings.
GaLore utilizes a projection matrix Pt ∈ Rm×r derived from the singular value decomposition
(SVD) of a single step’s gradient. Only one step’s gradient may introduce noise due to data sampling
variability. Conversely, SST employs U and VT as projection matrices, which are initialized and
reinitialized with the SVD of W. W could be seemed as the momentum of gradient of W, less noisy

1https://github.com/jiaweizzhao/GaLore
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than one step’s gradient. Furthermore, SST updates all Σ values, regardless of r, making it more
robust as r decreases.

Table 12: Validation perplexity, compared with GaLore on OpenWebText dataset with OPT-125M
and OPT-350M, along with the number of trainable parameters of each method. r = 64. Values
highlighted in bold represent the highest performance among the low rank methods.

Full GaLore α = 1 GaLore α = 0.25 SST
OPT-125M 23.50 (125.2M) 32.17 (45.6M) 37.08 (45.6M) 26.98 (51.0M)

OPT-350M 21.78 (331.2M) 1994 (43.4M) - 27.72 (57.7M)

Table 13: Zero-shot evaluations, compared with GaLore with same tasks as Table 4. Mean scores
in bold represent superior performance among the low-rank methods. Win percentage (including ties)
for each low-rank method is compared to the full-rank training.

OPT-125M OPT-350M

Full GaLore α = 1 GaLore α = 0.25 SST Full GaLore α = 1 SST

ARC (Challenge) 21.2 21.2 20.4 21.3 22.0 25.7 21.1
ARC (Easy) 35.8 33.7 32.8 34.3 35.9 25.7 35.7
BoolQ 59.5 61.8 62.2 62.0 53.6 37.8 57.7
CB 51.8 37.5 35.7 48.2 44.6 41.1 41.1
COPA 67.0 64.0 58.0 66.0 69.0 52.0 60.0
HellaSwag 27.7 27.0 26.6 26.9 28.4 26.2 27.5
MultiRC 55.4 57.2 54.8 57.2 52.0 42.8 57.0
OpenBookQA 24.6 23.6 24.6 26.2 26.4 27.8 25.2
PIQA 58.7 57.1 56.4 58.3 59.2 50.5 59.0
ReCoRD 16.7 15.0 16.4 18.5 19.4 17.5 23.2
RTE 50.5 51.6 56.0 53.4 52.0 52.7 50.2
StoryCloze 55.8 53.5 52.8 54.5 57.2 49.7 54.6
WIC 49.8 50.0 50.0 50.0 50.5 50.0 50.2
Winograd 52.0 50.9 52.4 50.6 55.0 50.2 51.3
Winogrande 49.1 51.7 48.4 50.1 50.7 49.4 52.0
WSC 36.5 36.5 36.5 36.5 36.5 63.5 36.5

Mean 44.5 43.3 42.8 44.6 44.5 41.4 43.9
Win Percentage - 43.8 37.5 56.3 - 25.0 31.3

H ABLATION STUDY

Impact of Σ updates. We conduct an ablation study to evaluate the impact of various components
and configurations within SST on the IWSLT’14 using a Euclidean Transformer with a dimension
of 128 and rank r of 4. The results of this study are summarized in Table 14, which highlights the
contributions of specific elements to the overall performance measured in BLEU score.

One variation tested involves changing the update mechanism for Σ. Instead of updating all Σ, only
sampled Σ are updated, same as update for U and VT. This modification results in a lower BLEU
score of 22.40, indicating that full updates of Σ contribute positively to the model’s performance.

Initialization method. We experiment with a configuration similar to the ReLoRA*, where h =
(W +UΣVT)x, with U and VT randomly initialized and Σ initialized to zero. After each round,
U, VT and Σ are reinitialized. This setup significantly reduces the BLEU score to 16.03, which
is similar to the performance of LoRA (16.37) and ReLoRA* (18.00). This demonstrates that the
most important feature of SST is that instead of randomly initialized, SST uses SVD of W as the
initialization of U and VT, which is aligned with our analysis in section 4.3.

Impact of iteration interval (T3). We also conducted additional experiments to study the impact
of varying iteration interval T3 (sampling period). All methods were trained on a vanilla Transformer
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Table 14: Ablation Study on IWSLT’14 dataset with Euclidean Transformer. Dimension is 128 and
r is 4.

BLEU
LoRA 16.37

ReLoRA* 18.00

SST - Instead of update all Σ, only update sampled Σ 22.40

SST - Use formula similar as ReLoRA*: h = (W +UΣVT)x. (U
and VT random initialized, and Σ zero initialized)

16.03

SST 22.80

model with a hidden dimension of 64 and r = 8 on the IWSLT’14 dataset. In the original setup
(Table 1), T3 was set to 200 steps per iteration.

Table 15: Impact of iteration interval (T3) on BLEU scores for IWSLT’14.

Steps per Iteration T3 800 400 200 100 50 25 10

BLEU Score 21.85 23.64 22.47 22.49 22.60 22.46 22.25

As shown in Table 15, both excessively large and small values of T3 result in decreased performance.
A large T3 may cause SST degrade to LoRA, while a small T3 leads to frequent resets of the
optimizer’s momentum, thereby affecting convergence.

Impact of Number of Iterations. We conducted an additional experiment on the IWSLT’14 dataset
using a vanilla Transformer to evaluate the impact of the number of iterations per round, with a model
dimension of 64 and r = 8. The results are summarized in Table 16:

Table 16: Impact of number of iterations per round on BLEU scores for IWSLT’14.

Number of Iterations per Round 1 2 4 8 16 32

BLEU Score 22.28 22.21 22.24 22.28 22.30 22.37

The results indicate that different numbers of iterations yield comparable performance. In our
experiments, this hyperparameter was not tuned; instead, we fixed it to d/r.

Sampling Mechanisms. To evaluate the impact of different sampling mechanisms on the per-
formance of SST, we conducted additional experiments using a vanilla Transformer with a model
dimension of 64 and r = 8 on the IWSLT’14 dataset. The evaluation metric is BLEU, where higher
scores indicate better performance. Table 17 summarizes the results:

Descriptions of Sampling Mechanisms:

• MULTINOMIAL: The multinomial random sampling method used in SST.
• UNIFORM: Uniform random sampling.
• SEQUENTIAL: Iterating through all singular vectors without repetition.
• TOP R: Selecting the top-r singular vectors with the largest singular values.

We also considered a Binomial sampling mechanism; however, it could not guarantee that the number
of selected singular vectors would remain consistent with the specified rank, making it unsuitable for
direct comparison.

The results indicate that TOP R performs the worst, as its search space collapses into a restricted
low-rank subspace. In contrast, as long as all singular vectors are visited, the other methods deliver
comparable performance. Among these, MULTINOMIAL demonstrates a slight advantage.
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Table 17: BLEU scores for different sampling mechanisms on IWSLT’14. Bold indicates the highest
performance.

Sampling Mechanism MULTINOMIAL UNIFORM SEQUENTIAL TOP R
BLEU 22.28 22.01 22.13 18.28

Impact of Rank. For all low-rank methods, including LoRA, ReLoRA*, and SST, rank is more of
a constraint determined by available resources rather than a hyperparameter to be extensively tuned.
Higher ranks generally lead to better performance but at the cost of increased memory consumption.
To ensure fairness, the same rank values were used for LoRA, ReLoRA*, and SST in all experiments,
as these methods have a similar number of trainable parameters under the same rank.

Additionally, we conducted an experiment on the IWSLT’14 dataset using a vanilla Transformer
with a model dimension of 128 to analyze the impact of rank on different methods. The results are
presented in Table 18:

Table 18: Impact of rank on BLEU scores for IWSLT’14. Dimension is 128.

Rank (r) 1 2 4 8 16 32 64

LoRA 12.44 14.16 16.37 20.56 23.30 25.12 26.11
ReLoRA 14.53 15.39 18.00 20.61 22.92 24.15 25.25

SST 17.49 20.69 22.80 24.19 25.12 26.08 26.15

The evaluation metric is BLEU, where higher scores indicate better performance. The BLEU score
for full-rank training is 25.79. The results demonstrate that as the rank increases, the performance of
all methods improves. Notably, SST consistently outperforms other low-rank methods, especially at
smaller ranks, highlighting its robustness under resource-constrained settings.

Impact of Training Steps. To investigate whether additional training steps benefit SST, we con-
ducted an experiment on the IWSLT’14 dataset using a vanilla Transformer with a model dimension
of 64 and r = 4. Table 19 presents the BLEU scores for full-rank training and SST under different
training steps (evaluated on the model at the last step):

Table 19: BLEU scores under different training steps. The default training step in Table 1 is 40,000.

Steps 20,000 40,000 80,000 160,000 320,000 640,000

Full 22.95 24.27 24.85 24.72 24.71 25.05
SST 17.23 20.27 21.91 22.86 23.32 23.92

The results demonstrate that as the number of training steps increases, the gap between full-rank
training and SST narrows. Even with r = 4, SST approaches the performance of full-rank training at
640,000 steps. These findings confirm that while SST may require more steps to converge at lower
ranks, it remains competitive with full-rank training given sufficient steps.

I MEMORY CONSUMPTION AND TRAINING TIME

Memory consumption. As shown in Table 20, the memory consumption of SST is comparable to
LoRA and much smaller than full-rank models. SST has a similar number of trainable parameters
(about 0.2% higher) as LoRA (as stated in Table 3), but more frozen parameters (about 45% higher)
than LoRA. However, this can be mitigated if we use low precision for the frozen parameters, as in
(Dettmers et al., 2024).

Table 21 shows that the memory consumption of SVD decomposition for the largest weight in each
model is about 3%, which is small compared with the whole model.
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Table 20: GPU memory consumption on different sizes of OPT models, including optimizer state
and gradient. Model weight uses float32. AdamW optimizer state uses float32 (same data type as
used in OPT experiments in Table 3).

Full LoRA/ReLoRA* SST
OPT-125M 1956.05 MB 1118.56 MB 1254.41 MB

OPT-350M 5070.41 MB 2046.41 MB 2573.77 MB

OPT-1.3B 20093.22 MB 7133.24 MB 9345.72 MB

Table 21: GPU memory consumption of SVD decomposition in SST.

Model Largest Weight Shape Peak GPU Memory Consumption
OPT-125M 768 × 3072 41.25 MB (3.3%)

OPT-350M 1024 × 4096 72.00 MB (2.8%)

OPT-1.3B 2048 × 8192 288.01 MB (3.1%)

Training time. Table 22 shows that the time spent on SVD in SST is very low, about 0.5%-
0.8% compared with the whole training time. SST has comparable training time as LoRA and
full-rank model. The increasement of training time of SST is mainly due to SST’s linear function,
h = UΣVTx, which is slower than original h = Wx. However, during inference, replacing
UΣVT with a single matrix W could obtain same computation efficiency as full-rank models.
ReLoRA* has comparable computation time as LoRA.

Table 22: Overall training time on different sizes of OPT models with 19.7 billion training tokens,
using 4 A100 GPU. “Time of SVD in SST” is the overall time of singular value decomposition within
SST.

Model Full LoRA SST Time of SVD in SST
OPT-125M 62.5h 64.4h 65.0h 0.3h (0.5%)

OPT-350M 135.8h 153.3h 170.0h 0.8h (0.5%)

OPT-1.3B 303.4h 324.8h 387.2h 3.0h (0.8%)

Performance with Fewer Steps. Despite requiring slightly more time per step, SST achieves
superior performance with fewer training steps compared to other low-rank methods. The choice
of 20% fewer steps for SST corresponds to the maximum additional training time incurred by SST
compared to other low-rank methods, as shown in Table 22. Table 23 compares the perplexity (PPL)
of SST trained with 20% fewer steps to that of other methods trained with full steps.

These results demonstrate that SST maintains significantly lower perplexity even with fewer training
steps, highlighting its efficiency. SST effectively balances its computational overhead while achieving
superior performance compared to other low-rank methods. This makes SST a compelling choice for
high-quality pretraining.

J EXPERIMENT ON IMAGE CLASSIFICATION

We conduct additional experiments on image classification tasks using MLP-based models. In this
section, we provide a comparison of full-rank training, LoRA, ReLoRA*, and SST on three datasets:
MNIST (Lecun et al., 1998), EMNIST (Cohen et al., 2017), and Fashion MNIST (Xiao et al., 2017).

The architecture of the MLP is 784− 512− 512− 512− #class. Each method is trained for a total
of 100 epochs. Learning rate is set to 0.01 for all methods.
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Table 23: Validation perplexity with SST trained 20% fewer steps compared to full steps for other
methods.

Model Full LoRA ReLoRA* SST (20% fewer steps)
OPT-125M 23.50 34.23 35.80 28.03
OPT-350M 21.78 34.26 39.21 29.42
OPT-1.3B 15.10 1716 29.52 22.98
LLaMA-130M 20.04 29.71 31.33 24.74
LLaMA-1.3B 14.54 16.50 17.32 15.65

We use a rank of 16 for all low-rank methods, which corresponds to 1/32 of the full-rank dimension.
For ReLoRA* and SST, one epoch per iteration is used. The results are averaged over three random
seeds, and all datasets were evaluated based on test accuracy.

Table 24: Image classification tasks test accuracy.

Dataset Full LoRA ReLoRA* SST
MNIST 98.63 ± 0.04 97.69 ± 0.10 97.72 ± 0.05 98.33 ± 0.04

EMNIST 85.32 ± 0.24 79.45 ± 0.26 84.12 ± 0.12 84.96 ± 0.11

Fashion MNIST 90.44 ± 0.06 88.30 ± 0.01 89.08 ± 0.16 89.22 ± 0.06

As shown in Table 24, SST outperforms both LoRA and ReLoRA* across all three datasets. SST
reduces performance gap between low-rank method and full-rank training by 49% in average.

K MEMORY EFFICIENCY ANALYSIS

To better understand the memory efficiency of SST compared to baseline methods, we provide a
detailed joint analysis of GPU memory consumption and performance trade-offs.

Memory and Performance Trade-Off. SST’s GPU memory consumption is comparable to
ReLoRA*, while achieving significant improvements in perplexity (PPL). A comparison of memory
reduction and PPL increase is provided in our analysis (Figure 6).

We define the following metrics for clarity:

Memory Reduction (%) =
Full memory − Low rank memory

Full memory
× 100

PPL Increase (%) =
Low rank PPL − Full PPL

Full PPL
× 100

To provide a more intuitive understanding of SST’s memory efficiency, we introduce a new metric
called the efficiency ratio, defined as:

Efficiency Ratio =
Memory Reduction (%)

PPL Increase (%)

This efficiency ratio quantifies how much memory can be reduced at the cost of a 1% increase in PPL.
A higher efficiency ratio indicates a more memory-efficient method.

Results. SST achieves a significantly higher efficiency ratio than ReLoRA* across various pretrain-
ing tasks. Figure 7 shows the efficiency ratio improvements of SST compared to ReLoRA*:

• 167.4% (OpenWebText, LLaMA-130M)

• 99.7% (C4, LLaMA-130M)
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• 196.1% (OpenWebText, OPT-125M)
• 142.3% (OpenWebText, OPT-350M)
• 65.9% (OpenWebText, OPT-1.3B)
• 4434.3% (OpenWebText, LLaMA-1.3B)

Conclusion. These results demonstrate that SST achieves a substantially better trade-off between
memory reduction and PPL increase compared to ReLoRA*. This highlights SST’s effectiveness in
optimizing memory efficiency while maintaining strong model performance, making it a practical
choice for resource-constrained pretraining tasks.
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Figure 6: Memory reduction vs. PPL increase. Comparison of SST and ReLoRA* on multiple
datasets and models.
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Figure 8: Singular Value Distribution. This visualization depicts the distribution of singular values
for the OPT-125M model with full-rank, LoRA, and SST, with r = 64). The x-axis represents the
index of singular values, sorted from largest to smallest, while the y-axis shows the magnitude of
each value. It highlights how LoRA predominantly captures and overestimates the top-r singular
values, in contrast to SST, which shows a much similar distribution as full-rank training.
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