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Abstract9

Sequential Prediction in presence of missing data is an old research problem. Classically,10

researchers have tackled this by imputing data first and then building predictive models.11

This 2-stage process is typically prone to errors and to circumvent this, researchers have12

provided a variety of techniques which employ a joint impute and learn approach before13

prediction. Among these, Recurrent Neural Networks (RNNs) have been very popular given14

their natural ability to tackle sequential data efficiently. Existing state-of-art approaches15

either (i)do not impute (ii) do not completely factor the available information around a gap,16

(iii)ignore position information within a gap and so on. Our approach intelligently addresses17

these gaps by proposing a novel architecture which jointly imputes and learns by taking18

into account (i)information from either end of the gap (ii)proximity to the left/right-end of19

a gap (iii)the length of the gap. In context of this work, prediction means either sequence20

classification or forecasting. In this paper, we demonstrate the utility of the proposed21

architecture on forecasting tasks. We benchmark against a range of state-of-art baselines22

and in scenarios where data is either (a)naturally missing or (b)synthetically masked.23

Keywords: Sequential Prediction; Missing Data; RNN; GRU; Time-series;24

1. Introduction25

Sequence based prediction (classification Xing et al. (2010) and forecasting Lim and Zohren26

(2021)), is a classic research problem with numerous applications. Given constant method-27

ological enhancements and newer emerging applications, it continues to be very relevant.28

Recurrent Neural Networks (RNNs) have been a popular state-of-the-art approach for the29

same. Deep RNNs have been highly successful in diverse domains like computer vision,30

NLP, time series classification/forecasting, speech and audio processing and so on. RNNs31

have exhibited state-of-the-art performance (and much more) in tasks like machine transla-32

tion Sutskever et al. (2014), handwriting recognition Graves et al. (2009) etc.33

When data is partly missing, predictive modelling becomes further challenging. This is34

the problem tackled in this paper. Data could be missing due to many factors like sensor35

failure, noise (under high noise levels, its better to ignore the data), cost of sensing, mainte-36

nance and so on. Sequence prediction under missing data also has a vast literature. RNNs37

in particular have also been explored for this. This paper addresses sequence prediction38
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under missing data using RNNs in a novel way. Our proposed ideas can be employed for39

both classification and forecasting. In the classification context, data can appear as variable40

length sequences, where each sequence is mapped to a class. In forecasting, data is typically41

in the form of one long sequence. We consider a general multi-step forecasting scenario with42

possibly additional exogenous variables to be handled.43

1.1. Problem & Motivation44

We consider real-valued time series with missing values. For sequence classification appli-45

cations, time-stamps can be either discrete or continuous (real-valued). Here data comes46

as multiple sequences, where each sequence is real-valued (possibly vector valued). Further,47

each of these sequences can have different lengths. The classification task is to categorize48

each sequence into one of many predefined classes. For example, each vector sequence could49

indicate essential parameter measurements like blood pressure, heart rate, sugar level etc.50

from a patient, while the classification task may mean detecting a certain disease.51

If the task is forecasting, then the time-stamps are assumed discrete (integers or natural52

numbers). The forecasting task considered here involves, predicting one or more endoge-53

nous variables over a multi-step forecast horizon, in the presence of possible exogenous54

inputs, which influence the evolution of the endogenous variables. Such forecasting tasks55

arise in diverse applications. A retailer may be interested in forecasting one or more prod-56

ucts sales (modelled as endogenous variables) in the presence of exogenous price variation.57

In electricity markets, forecasting power demand (endogenous) by factoring temperature58

influences/fluctuations (exogenous) is another example.59

1.2. Contributions60

Early approaches for prediction under missing data have restricted themselves to a 2-step61

approach where data is first imputed and subsequently a predictive model is built. However62

this 2-step approach is very sensitive to the imputation quality and can suffer from excess63

errors due to poor imputation. To address this, diverse approaches which avoid an explicit64

imputation step have been proposed.65

RNN approaches form a dominant class of techniques for sequential prediction under66

missing data. A small subclass of these techniques build a predictive model by avoiding any67

form of imputation during learning by capturing the pattern of missingness directly Lipton68

et al. (2016); Pachal and Achar (2022), where the missingness pattern to be captured could69

be very complex. On the other hand, most other techniques employ a joint impute and70

train strategy. Here, missing gaps in data are imputed during predictive model building, by71

utilizing the neighboring data that is available. Our proposed approach falls under this class72

of approaches. Some of these approaches ignore information from the right-end of a data gap73

Che et al. (2016), while others which consider information from either end, do not explicitly74

consider time distances from either side of the data gap Cao et al. (2018). Our approach75

proposes a novel joint and learn strategy while addressing the above issues. Specifically,76

• We propose a novel RNN based joint impute and learn strategy which factors both77

the (closest) left-end and right-end values of a gap, for imputation.78
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• Our novel strategy takes into account the position of the missing point and its distance79

from both the left and right end of a gap. In the regions closer to the data gap end, it80

can impute by maximally factoring the influence from the respective end values. For81

large gaps, it can ignore the right and left end values while imputing in the mid-region.82

• We demonstrate effectiveness of the proposed architecture on real time-series where83

data is either (i)naturally missing or (ii)artificially masked.84

2. Related Work85

Prediction under missing data has a long literature. A natural approach to tackle this is86

to impute first before doing predictive modeling. Data imputation itself has an extensive87

literature. The early and simpler methods for data imputation include smoothing, inter-88

polation, splines Johnson (2013) etc. which capture straightforward patterns in the data.89

The advanced imputation approaches include spectral analysis Mondal and Percival (2010),90

matrix factorization Koren et al. (2009), kernel methods Rehfeld et al. (2011), EM algo-91

rithm García-Laencina et al. (2010), GANs (Generative Adversarial Networks) Luo et al.92

(2018), Tranformers Nie et al. (2024) etc. Hence, the imputation step can be computation-93

ally expensive. Further, imputation methods typically make strong, restrictive assumptions94

like missing at random, low missing rates and so on which may not hold in practice. The95

two step sequential process of imputation followed by prediction can suffer from imputation96

errors which can in-turn render poor predictive models.97

To circumvent this, literature has seen techniques where data imputation is not sep-98

arately carried out. When performed, it is coupled with the predictive model building99

process. There have been a wide range of techniques proposed along these lines. These100

include RNNs, GANs, Gaussian processes (GP) etc. Gaussian processes essentially do a101

Bayesian estimation where the predictive distribution given the observed values is inferred.102

They are a natural data-driven model to consider when data is irregularly sampled with103

many missing values. There has been some recent work along this direction Futoma (2018);104

Li (2020) mostly applied in the health care domain (clinical time series). In the rest of the105

section, we elaborate on RNN techniques only, as our work is RNN based.106

RNNs have been explored to tackle missing data scenarios even before the deep learning107

surge Bengio and Gingras (1995); Tresp and Briegel (1997); Parveen and D. Green (2001).108

Bengio and Gingras (1995) is perhaps the earliest approach which unfolds the RNN to allow109

the missing values to settle down (converge) while the other inputs are fixed at the observed110

values. Parveen and D. Green (2001) employs a slightly modified architecture of Bengio111

and Gingras (1995). While both use non-gated RNNs, Bengio and Gingras (1995) uses a112

feedback structure based on a Jordan network while Parveen and D. Green (2001) uses an113

Elmann network.114

Among the RNN approaches, a couple of them impute neither before nor during model115

building. Lipton et al. (2016) encodes the missingness pattern as a simple binary vector116

indicating the presence or absence of a data point and then trains. A more involved ap-117

proach of encoding the missingness pattern using two RNN layers in a lossless fashion was118

proposed in Pachal and Achar (2022). Both these approaches do not bother to impute even119

during model building. To capture all the complex dependencies based on the patterns of120

missingness can be hard on these RNN models.121
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There is a recent attention-based RNN approach which first imputes using some padding122

(from left) OR some form of interpolation Cinar et al. (2018). During subsequent model123

building it doesn’t use the imputed values as they are, but assumes some form of weighted124

influence from these imputed valued on the prediction. These weights are suitably parame-125

terized and the associated parameters are learnt parallely with the predictive model.126

Among the recent joint impute and learn strategies, GRU-D Che et al. (2016) imputes127

a missing point as weighted combination of the overall (time-series) mean and the closest128

available point at the left end of a data gap. The weight that controls the influence from129

the left end is assumed to decay exponentially with the time distance from the left end. The130

decay/weight factor is learnt in conjunction with the predictive model.131

While GRU-D totally ignores the right-end of a data gap, BRITS is a more recent132

approach incorporating influence of both right and left end of a gap towards imputation,133

using a bidirectional layer. In the state evolution from left, there is a state decay (inspired134

from GRU-D) incorporated which is a function of how far the current event is to the closest135

available point to its left. The state at each time-step is non-linearly transformed via a136

feed-forward network to capture the input at the next time-step (to the right). Further,137

the state of the backward layer is transformed to capture the input at the next step to the138

left. If the input at the current time-step is missing, then its predicted to be the average of139

the output of the previous step of both the forward and backward layer. In BRITS, equal140

importance is given to both forward and backward imputed values (computed by passing the141

available information from either end of the gap through bidirectional layer) irrespective of142

its position in the gap. In our GRU-M model, we consider the left-end and right-end available143

values directly. Further, we have considered a convex combination of left-end, right-end and144

mean values where the coefficients are learned along with the other model parameters during145

training. BRITS has been recently extended to tackle multivariate time-series with selective146

dependencies, using graph neural networks in GRIN Cini et al. (2021).147

Recently, Bi-GAN, a GAN approach Gupta et al. (2021) was considered using a joint148

impute and learn strategy. It also factors both the left and right end of a gap for imputation149

similar to BRITS. But unlike BRITS, it adopts a generator-discriminator framework where150

the generator is a bidirectional RNN as in BRITS, while training is done in an adversarial151

setting jointly with a discriminator which predicts the presence or absence of data. In152

addition, Bi-GAN differs from BRITS in the last step where a missing input is modelled as153

a weighted average (instead of standard average) of the outputs of the previous step from154

the forward and backward layers. These weights are assumed to be a function of the distance155

from the left-end/right-end gap.156

2.1. In Perspective of Other RNN Approaches157

Unlike GRU-D, our approach (denoted as GRU-M) factors information from both the left158

and right end of a data gap in a novel and intelligent fashion. As explained in detail in the159

next section, our approach can be viewed as a non-trivial extension of GRU-D. The attention-160

based approach of Cinar et al. (2018) while intelligent in learning a weighted influence of161

the imputed values during model building, can still be prone to imputation errors due to its162

separate imputation step.163
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Our approach uses the closest left and right available inputs directly to impute. BRITS164

and Bi-GAN use the closest left and right values in an indirect fashion by (a)passing the165

closest left available input through the forward layer (b)passing the closest right available166

input through the backward layer and (c) by taking an average of these two arrived values167

from either direction. Unlike our method, both are prone to error accumulation as imputa-168

tion is carried out sequentially from either direction. Further, unlike BRITS or Bi-GAN, our169

approach additionally allows for using the mean as a possible impute option, which makes170

sense when imputing in the middle region of large data gaps.171

3. Proposed Methodology172

3.1. GRU173

We start by describing the GRU unit gating equations in detail as our proposed approach174

builds on it. Also, GRU unit as the building block for RNNs is currently very popular175

across sequence prediction applications Ravanelli et al. (2018); Che et al. (2016); Gruber176

and Jockisch (2020). GRU based cell computes its hidden state (for one layer) at the ith177

time-step as follows.178

zi = σ(W zui + U zhi−1 + bz) (1)
ri = σ(W rui + U rhi−1 + br) (2)
h̃i = tanh(U(ri ⊙ hi−1) +Wui + b) (3)
hi = (1− zi)⊙ hi−1 + zi ⊙ h̃i (4)

where hi−1 is state at the previous time-instant, (ui) is current input, σ(.) denotes179

sigmoid function, zi is update gate vector and ri is the reset gate vector. h̃i is the additional180

memory (summary of all inputs so far) which is a function of ui and hi−1, the previous hidden181

state. The reset signal controls the influence of the previous state on the new memory. The182

final current hidden state is a convex combination (controlled by zi) of the new memory and183

the memory at the previous step, hi−1. All associated weight matrices W z, W r, W , U z, U r,184

U and vectors bz, br and b are trained using back-propagation through time.185

3.2. Proposed GRU-M Unit186

As explained earlier in related work, GRU-D in addition to using the masking binary vector187

also adopts a novel joint impute-learn strategy. We first describe the essentials of GRU-D,188

then point out its drawbacks and finally describe our method, GRU-M which can be viewed189

as a non-trivial extension of GRU-D.190

A multivariate time-series X with D variables of length N is denoted as191

⟨(x1, t1) , (x2, t2), . . . (xi, ti) . . . (xN , tN )⟩ ∈ RD×T (5)

Each xi ∈ RD represents the ith observation, while xdi represents its dth component. As192

evident, ti ∈ R denote the time-stamp of xi, the time instant at which the measurement193

happens.194
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To capture which variables are missing at which time-instant, we define formally the195

binary masking variable, md
i , as196

md
i =

{
1, if xdi is observed
0, otherwise

(6)

GRU-D also maintains a time-interval δdLi , denoting the distance from the closest avail-197

able data-point on the left for the dth variable. More formally,198

δdLi =





ti − ti−1 + δdLi−1, if i > 1,mi−1 = 0

ti − ti−1, i > 1,mi−1 = 1

0, i = 1.

(7)

GRU-D essentially models a decay mechanism from the left end of a gap and works with199

δLi (D×1 vector of δdLi s) only. When data is missing at time-step i at the dth input variable,200

the input is hypothesized to be a weighted combination of the closest available input to the201

left and the time average of the dth component (across the sequence). The decay/weight202

factor is modelled using a monotonically decreasing function of δLi and ranges between 0203

and 1. The vector of decay/weight factors (D × 1 vector) at the ith time-step would be204

γLi = exp{−max(0,Wγδ
L
i + bγ} (8)

where bγ is D × 1 vector and Wγ is a D ×D matrix assumed to be diagonal. This assumes205

a component-wise independence of decay rates which is pretty realistic. The modified input206

that is input to the GRU unit is now207

x̂di = mix
d
i + (1−mi)(γ

dL
i xdLi + (1− γdLi )x̃d) (9)

where xdLi is the last available data point to the left of the dth component of ith observation,208

x̃d is the empirical mean across all available data points among the N observations of the209

dth variable. Replacing ui by x̂di in eqns.(1)-(4) is essentially the GRU-D architecture by210

incorporating input decay.211

Drawback of GRU-D: GRU-D’s hypothesis is that closer a missing observation is212

to the left end of the gap (δdLi → 0), closer will x̂di be to xdLi . The farther away the213

missing observation is from gap’s left end, closer will x̂di be to x̃d. In this process, GRU-D214

totally ignores information from right end of the gap. This means even though the missing215

observation is far away from the left end, it may actually be very close to the right end. In216

which case, x̂di must be close to xdRi , (the closest available observation to the right of ith217

observation at dth component) instead of x̃d, especially when the gap length is large. In a218

bid to address this lacunae in GRU-D and beyond, we propose our novel approach termed219

GRU-M.220

GRU-M unlike GRU-D takes into account the right-end of a gap as well while computing221

x̂di , the modified input at each time-step. Towards this, we additionally maintain another222

time-interval vector δRi denoting the distance from the closest available data-point on the223

right of any observation. This can be efficiently computed recursively as follows.224

δdRi =





ti+1 − ti + δdRi+1, if i < N,mi+1 = 0

ti+1 − ti, i < N,mi+1 = 1

0, i = N.

(10)
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Figure 1: Illustration of various variables (δdLi , δdRi , xdL
i , xdR

i ) that determine the modified input into
GRU-unit (in GRU-M) at each time-step. Green - missing, Red - available.

At the right end of the time-series, the closest available data point must be at zero distance,225

hence δdRN = 0. For any other observation i, if the right immediate observation is available226

(mi+1 = 0), then the time distance δdRi = ti+1 − ti. If the right immediate observation227

is not available (mi+1 = 0), then one can recursively compute this as the sum of (i)time228

distance to the immediate right observation (ti+1 − ti), (ii) distance from the immediate229

right observation to its immediately available data point to the right, δdRi+1.230

Please refer to Fig. 1 for a detailed illustration of δdRi and δdLi on an example data231

sequence. For instance, consider the first component (d = 1) of the input at time-step 4232

(x14), in Fig. 1. The associated entry is marked in green indicating a missing entry. The233

closest available data point to the left in the first component is at time-step 2. Note that234

available data points are marked in red. Hence δdLi , the time distance to the closest available235

data point to the left is (t4 − t2). The closest available data point to the right in the first236

component is at time-step 9. Hence δdRi , the time distance to the closest available data point237

to the right is (t9 − t4).238

Instead of learning one decay or weight factor between 0 and 1, we learn three factors239

as follows. Let δdi = [δdLi , δdRi ].240

Γd
i = F (δdi ),where F (.) denotes a feed-forward map,Γd

i is (3× 1) vector. (11)
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241

γdLi =
exp(Γd

i (1))∑3
j=1 exp(Γ

d
i (j))

, γdRi =
exp(Γd

i (2))∑3
j=1 exp(Γ

d
i (j))

, γdmi =
exp(Γd

i (3))∑3
j=1 exp(Γ

d
i (j))

(12)

where242

γdLi + γdRi + γdmi = 1 (13)

F (.) denotes a general feed-forward map with a linear activation at the output layer. Hence,243

F (.) in its simplest form with no hidden nodes would be a linear transformation, namely244

F (δdi ) = W d
Mδdi + bdM . (where W d

M is (3× 2), bdM is (3× 1)) (14)

Essentially, the above equations model a (potentially) general feed-forward structure (FFN245

blocks in Fig. 2) with two inputs [δLi , δ
R
i ], and three outputs [Γd

i (1),Γ
d
i (2),Γ

d
i (3)] followed by246

a softmax transformation. The modified input at time i to the GRU unit is now a convex247

combination of three quantities, xdLi , xdRi (the closest observation to the right of i) and x̃d,248

where the co-efficients come from the above described 3-output softmax layer.249

x̂di = md
i x

d
i + (1−md

i )(γ
dL
i xdLi + γdRi xdRi + γdmi x̃d) (15)

Entities xdRi , xdLi can be efficiently computed recursively as follows.250

xdLi =





xdi−1 if i > 1,mi−1 = 1

xdLi−1 i > 1,mi−1 = 0

x̃d, i = 1

(16)

251

xdRi =





xdi+1 if i < N,mi+1 = 1

xdRi+1 i < N,mi+1 = 0

x̃d, i = N

(17)

At the right end, xdRi has strictly no closed observation to the right. It would not be252

unreasonable to assume xdRN to be x̃d, mean of the dth variable and we adopt this convention253

even on the left (in particular on xdL1 ). This can be verified in Fig. 1 where xdL1 and xdR10254

(N = 10 here) are chosen to be x̃d. If the immediate observation to the right is available,255

then xdRi = xdi+1. If not, then xdRi must be same as the immediate observation to the right256

of the (i+1)th observation, and hence is updated recursively to xdRi+1. An analogous update257

is performed from the left for xdLi .258

As an illustration look at time-step 4 in the first component (d = 1) of the input in259

Fig. 1. x1L4 = x12 as the closest available point to the left is at t2. Similarly x1R4 = x19 as260

the closest available point to the right is at t9. Fig. 1 illustrates the various variables on an261

example time-series with 10 observations. The input dimension, D is chosen to be 3. The262

red circles represent available observations while the green ones indicated missing values.263

The various variables δjLi , δjRi (eqn. (7) & eqn. (10)) and xdLi , xdRi (eqn. (16) & eqn. (17))264

are clearly explained in this figure via the explicit values it takes on in all 3 components.265

Fig. 2 explains the overall scheme of the modified input at the ith step of GRU-M. It266

considers a 2-dimensional (D = 2) input. If md
i = 1, i.e. data is available, then x̂di is just267

xdi . If md
i = 0, i.e. data is missing, then the entire architecture comes into play. Lets stick268
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Figure 2: Illustration of computation of the modified input (x̂d
i ) which is fed at the input (ud

i ) position of
the GRU unit at ith time-step of unfolded RNN, Input Dimension, D = 2 here, hi−1 comes from
previous ((i− 1)th) time-step of unfolded RNN.

to d = 1 for illustration. Both δ1Li and δ1Ri are processed by a feed forward network (FFN1)269

which implements eqn. (11) with a linear activation at the output. The 3 outputs of the270

FFN1 are passed through a softmax layer to obtain the 3 factors γdLi γdRi and γdmi . These271

3 factors in conjunction with x1Li (closest available value to the left), x1Ri (closest available272

value to the right), x̃1i (mean of the 1st component) and m1
i (masking variable) are fed to273

the next block which implements eqn. (15). The output of this block is x̃1i which is fed at274

u1i , the 1st input position of the GRU block. A similar story holds for the 2nd input position275

of the GRU-block at the ith time-step.276

Advantages of GRU-M: The idea of the above parametrization is as follows. For large277

gaps, when the missing observation (where mi = 0) is closer to the left end of the gap, x̂di278

must be close to xdLi . Similarly when missing observation closer to the right end, x̂di should279

be close to xdRi . When missing observation is around the center of the gap, the true value280

may have no bearing with the left-end or right-end value. Hence in the mid-gap region, it281

may be best to impute with x̃d, which our GRU-M scheme can capture. On the other hand,282

when the gap length (δLi +δRi ) is small or medium, the above parametrization should ideally283

ignore x̃d completely, as the time-series true value may actually not come anywhere close to284

the mean x̃d. For instance, when both xdLi and xdRi are close in value, while x̃d is relatively285

much farther from either of them, x̃d must be ignored while evaluating x̂di . Our proposed286

parametrization can capture all such important features.287

Model Parameters: Compared to GRU-D, while GRU-M captures many more in-288

fluences during imputation as explained above, this comes at a cost of some additional289

parameters. While the standard GRU unit parameters are same in both GRU-D and GRU-290

M, the difference lies in how x̂i is evaluated. GRU-D, uses two 2D extra parameters for291

this, where D parameters come from the bias vector bγ and remaining D parameters from292
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the diagonal of Wγ matrix (refer eqn. (8)). In contrast, in GRU-M, for each component293

(or the dth component), we need to additionally store at least a matrix W d
M and a vector294

bdM . Recall from eqn. (14), that W d
M is (3 × 2) while bMd is (3 × 1), hence contributing to295

9 parameters. Hence in total GRU-M uses 9D extra parameters at least. In comparison296

to GRU-D, GRU-M needs 7D extra parameters to capture the additional influences that297

GRU-D completely misses. This is not much, while training with these extra parameters298

gives us superior predictions as demonstrated in our experiments.299

GRU-D in addition to input decay captures missingness patterns by incorporating a300

hidden state decay from the left. This aspect of GRU-D can also be extended. However in301

this paper, for purposes of testing GRU-M and GRU-D, we stick to input-decay only.302

3.3. GRU-M unit for sequence prediction (classification/forecasting)303

We have till now discussed how sequential inputs with missing entries from a (vector) time-304

series are processed by an RNN layer with the proposed GRU-M unit. Suppose one wants305

to perform classification of a sequence (with missing entries). This sequence needs to be306

processed by an RNN layer with GRU-M unit. One needs to feed the state output from the307

last time-step to a soft-max layer and train using a standard cross-entropy loss, for instance.308

Forecasting: As mentioned earlier we use a multi-step forecasting setting. For accurate309

multi-step forecasting, we use an encoder-decoder Sutskever et al. (2014) model which consists310

of two RNN layers of the proposed GRU-M units. For forecasting Wen et al. (2017), a311

historical window (of some fixed size) into the past starting from the forecast horizon is used312

as input for forecasting. This window also referred to as input window is fed sequentially313

into the encoder or the first RNN layer. The last state of the encoder RNN layer is typically314

fed as the initial state into the second RNN layer, which is the decoder. The decoder is315

unfolded into as many steps as the width of the forecast horizon. Exogenous inputs (if316

any) of the input window are placed at the encoder inputs, while the exogenous inputs in the317

forecast horizon are placed as decoder inputs in a sequential fashion.318

4. Results319

In this paper, we restrict our experimental validation of the GRU-M unit to multi-step320

forecasting task using an ED architecture as described above. The data sets we use are321

all publicly available. We are unfortunately not in a position to share our codes due to322

proprietary reasons, but we believe we have shared full details of our proposed architecture323

using which any reader can implement the same.324

4.1. Data Sets, Error Metrics and Hyper-parameters325

D1: Air Quality1 data-set was recorded for a period of 1 year (Mar 2004 to Feb 2005) on an326

hourly basis. The data is naturally missing here. It contains 9358 points of average response327

from 5 metal oxide sensors. We use CO(GT) data, from one of these sensors (denoted as328

D1 from now on) to measure the performance of our model.329

1. github.com/mehak25/BiGAN/tree/master/data/air/initial
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D2: Electricity data-set2 is a publicly available data-set which measured electricity con-330

sumption in kWH of 321 clients for every hour. We divided the whole data-set into 3 groups331

namely low, medium and high based on average consumption. From each group, we choose332

one sequence randomly and denote this collection of 3 sequences as D2.333

D3: M53 is a publicly available data-set distributed across 12 aggregation levels which con-334

tains daily sales of different products for 5.4 years. We pick sequences from level 10 which335

is the aggregated sales for each product across all stores and states. While this level of336

data contains 3049 sequences, we pick 4 sequences (referred to as D3 from now on) based337

on sufficient total variation. The idea is higher the total variation of the sequence, more338

challenging would be the forecasting. We employ synthetic masking on these 4 sequences.339

The total variation we employ is defined below:340

TV (f) =
1

L− h+ 1

L−h+1∑

i=1

1

h

i+h−1∑

j=i

|f(j + 1)− f(j)|,

where L is the total length of the sequence and h is the size of the moving window (h ≪ L).341

TV can be defined without a moving window with just the inner summation, but a high TV342

based on this definition will not necessarily capture sufficient variation across the sequence.343

We use a small/local moving window to check for sufficient variation across the length of344

the sequence.345

We consider following well-known error metrics to measure performance: (1)MSE (Mean346

Square Error) (2)MAPE (Mean Absolute Percentage Error) (3)MASE (Mean Absolute347

Scale Error Hyndman and Koehler (2006)). While MSE is a scale dependent metric, the348

other two are scale independent, while being complementary to each other.349

The APE is relative error (RE) expressed in percentage. If X̂ is predicted value, while350

X is the true value, RE = (X̂−X)/X. In the multi-step setting, APE is computed for each351

step and is averaged over all steps to obtain the MAPE for one window of the prediction352

horizon. APE while has the advantage of being a scale independent metric, can assume353

abnormally high values and can be misleading when the true value is very low. An alternative354

complementary error metric which is scale-free could be MASE.355

The MASE is computed with reference to a baseline metric. The choice of baseline is356

typically the copy previous predictor, which just replicates the previous observed value as357

the prediction for the next step. For a given window of one prediction horizon of K steps358

ahead, let us denote the ith step error by |X̂i −Xi|. The ith scaled error is defined as359

eis =
|X̂i −Xi|

1
n−K

∑n
j=K+1 |Xj −Xj−K | (18)

where n is no. of data points in the training set. The normalizing factor is the average ith360

step-ahead error of the copy-previous baseline on the training set. Hence the MASE on a361

multi-step prediction window w of size K will be362

MASE(w,K) =
1

K

K∑

j=1

ejs (19)

2. https://github.com/laiguokun/multivariate-time-series-data
3. https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
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Table 1 represents the broad choice of hyper-parameters used for training.

Table 1: Hyper parameters during training.
Parameters Description (D1/D2/D3)
Batch size 256/512/256

Learning rate 0.01/0.05/0.001
Hidden state vector size 16/16/20

Optimizer Adam/RMSProp/Adam
363

4.2. Baselines and Masking364

We consider a wide range of baselines to benchmark our method, GRU-M against: (1)365

EDC - An Encoder-Decoder (Seq2Seq) predictive model which first imputes using cubic366

spline interpolation (using a piece-wise cubic polynomial that is twice differentiable) before367

model building. (2) BRITS Cao et al. (2018) - A bi-directional RNN approach for joint368

imputation and prediction exploiting information from both ends of a data gap. (3) RITS369

Cao et al. (2018) - unidirectional version of BRITS. (4) Bi-GAN Gupta et al. (2021) - A370

GAN based jointly impute and learn technique incorporating information from either ends371

of a gap. (5) GRU-D Che et al. (2016) - An ED model with a GRU-D unit (adopting a joint372

impute and learn strategy) in both encoder and decoder.373

The first approach above is based on imputing first (using a strong technique) followed374

by predictive model building using an ED model on complete imputed data. The rest of375

the baselines adopt a joint impute and learn approach using some distinct form of an RNN376

architecture and training approach. Hence our bench-marking enables a diverse comparison377

with state-of-art baselines.378

4.2.1. Assessing significance of mean error differences statistically379

We have conducted a Welch t-test (unequal variance) based significance assessment (across380

all relevant experiments) under all the mean metrics (MSE,MASE,MAPE) differences (Pro-381

posed vs Baseline) with a significance level of 0.05 for null hypothesis rejection. The best382

performing method’s error is highlighted in bold if its MASE/MAPE improvement over ev-383

ery other method is statistically significant. We allow for highlighting the second/third best384

errors in situations when the mean error differences between the best and second/third best385

errors are statistically insignificant.386

4.2.2. Synthetic Masking387

We traverse the data sequentially and at each step we ask whether to mask at the current388

step or not. To perform this, we toss a coin at every step with an adaptive/varying q389

(probability of head). On seeing a tail, we do nothing and move ahead. If heads, we need390

to mask, in particular decide the number of consecutive steps ahead (τw) that need to be391

masked. For this, we consider a bag of window lengths Tw, from which we uniformly sample392

to obtain τw. Depending on the length τw sampled, the heads probability q is updated as393

q = c
τw

, where c is a control parameter. If c = 1, the strategy masks about 50% of the points,394
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because for every τw points masked, the next τw points (in expectation) are retained. In395

both D2 and D3, we have chosen c = 0.2, which means we mask about 16% of the points.396

Synthetic masking advantage: Since underlying actual data is known, one can test397

the performance of trained models on all points of a separate test set in the forecast horizon.398

4.3. Results on D1 (data naturally missing)399

For D1, input window size was set as 20 while the prediction horizon was varied over 8, 12400

and 16 steps. We separately kept aside 10% data for testing our model. This means we401

measure the performance of our method on 909, 905 and 901 test examples for prediction402

horizon 8, 12 and 16 respectively. Table 2 gives a detailed account of the various errors,403

vindicating GRU-M’s superior performance.404

Specifically, in MASE terms, GRU-M shows a minimum (statistically significant) im-405

provement of 0.15 over all baselines in the best case scenario (Prediction horizon = 12).406

Please note in other two scenarios also, the minimum improvement over all other baselines407

is a very healthy 0.14. In MAPE terms, GRU-M shows a minimum improvement of 8%408

across all baselines in the best case scenario (Prediction horizon = 8). In other two scenar-409

ios too, the minimum improvement over all baselines is a statistically significant 7% and 5%410

respectively. In MSE terms, GRU-M outperforms all baselines across all prediction horizons.411

Table 2: Results on D1 (naturally missing) for different forecast horizons.
Prediction horizon = 8 Prediction horizon = 12 Prediction horizon = 16

Method MASE MAPE MSE MASE MAPE MSE MASE MAPE MSE
EDC 1.07 39 1.78 0.91 35 1.72 0.86 37 1.63

Bi-GAN 1.14 32 2.48 1.22 38 3.33 1.39 48 4.39
RITS 1.05 32 1.97 0.94 32 1.95 0.88 32 1.95

BRITS 1.05 32 1.97 0.94 32 1.97 0.88 32 1.95
GRU-D 0.79 42 1.76 0.78 42 1.76 0.74 42 1.76
GRU-M 0.65 24 0.77 0.63 25 0.87 0.62 27 0.94

412

4.4. Results on D2 (data synthetically masked)413

We perform masking on D2 and D3 to generate missingness as discussed above. For D2,414

we set width of input window as 20 and prediction horizon at 12. This implies we are415

predicting for the next 12 hours ahead. A test size of 10% was separately set aside for416

each of the 3 series to measure performance of our model. Table 3 demonstrates GRU-Ms417

superior performance compared to the baselines. In both the current and next experiment,418

performance of Bi-GAN was very poor (in particular MAPE was > 100%). Hence we have419

not reported Bi-GAN results in Tab. 3 and Tab. 4.420

In particular, in terms of MASE/MAPE, GRU-M shows a minimum improvement of421

0.05 (Medium consumption) and 13% (Medium) respectively over all baselines in the best422

case scenario for the medium category. Even in high category, GRU-M outperforms all423

baselines based on all metrics in a statistically significant fashion. In the low category too,424

except based on MASE metric where the performance is comparable to GRU-D, GRU-M425

outperforms all baselines in a statistically significant fashion.426
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Table 3: Results on D2: Masking Window Lengths Tw = {5, 6, . . . , 12}, Parameter c = 0.2
Low Medium High

Method MASE MAPE MSE MASE MAPE MSE MASE MAPE MSE
EDC 0.55 23 1135 0.68 25 14941 0.37 14 110529
RITS 0.89 31 3222 1.27 39 45221 1.36 45 977696

BRITS 0.88 33 2804 1.03 33 35518 1.04 36 637439
GRU-D 0.43 23 1167 0.36 24 14468 0.32 22 198071
GRU-M 0.51 22 1046 0.31 11 4739 0.28 11 74424

4.5. Results on D3 (data synthetically masked)427

Here, the input window size is set to 20, while forecast horizon was chosen to be 5 days428

ahead. A separate 97 days out of 1941 was kept aside for testing which implies we use 73429

examples to measure the performance of our method. Table 4 represents the errors of all430

relevant methods, which indicates the superior or comparable performance of GRU-M in431

terms of all three error metrics, compared to all baselines.432

In particular, under MSE metric, GRU-M though is one of the best performing methods,433

it has comparable performance with EDC (also indicated in bold) on sequences 1, 2. In terms434

of MASE/MAPE, GRU-M shows a minimum improvement of 0.04 and 7% respectively over435

all baselines, in the best case scenario (Seq 3). Our results based on MASE/MAPE indicate436

that GRU-D and EDC have comparable performance with GRU-M on some sequences.

Table 4: Results on D3: Masking Window Lengths Tw = {5, 6, . . . , 12}, Parameter c = 0.2
Seq 1 Seq 2 Seq 3 Seq 4

Method MASE MAPE MSE MASE MAPE MSE MASE MAPE MSE MASE MAPE MSE
EDC 0.65 19 3293 0.43 14 1732 0.62 22 9366 0.63 41 1759
RITS 0.72 24 3740 1.45 50 13219 1.08 36 33177 0.71 65 2143

BRITS 0.85 30 5325 1.17 40 8750 0.98 31 33945 0.54 49 1273
GRU-D 0.59 23 4098 0.38 16 1874 0.40 19 7198 0.42 39 1106
GRU-M 0.56 17 2589 0.34 10 1706 0.38 12 4647 0.48 39 1064

437

5. Conclusions438

We proposed a novel architecture (GRU-M) for sequential learning under missing data. Its439

a joint impute and learn approach where the parameterized functions which impute and440

perform predictive modelling are simultaneously learnt. It factors in information not only441

from both ends of a data gap, but also the distance from the left and right-end of the gap442

in a novel fashion, distinct from existing approaches. It can also incorporate state-decay443

from the right if necessary whenever there are bidirectional layers, which can arise during444

forecasting. Overall, it can be viewed as a non-trivial generalization of GRU-D Che et al.445

(2016), which is a state-of-art technique for the same problem. Our proposed approach can446

be employed for both sequence classification and sequence forecasting. Based on 3 diverse447

metrics, we bench-marked our approach on data sets where data was either naturally missing448

or synthetically masked. We compared against a range of diverse, but closely related state-449

of-art RNN approaches for sequence forecasting under missing data. Our results clearly450

vindicate the viability of our proposed approach. As future work, we would like to test our451

proposed architecture on sequential classification.452
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