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Abstract

Recent advances in vision-language learning have achieved notable success on
complete-information question-answering datasets through the integration of exten-
sive world knowledge. Yet, most models operate passively, responding to questions
based on pre-stored knowledge. In stark contrast, humans possess the ability to
actively explore, accumulate, and reason using both newfound and existing in-
formation to tackle incomplete-information questions. In response to this gap,
we introduce & Conan, an interactive open-world environment devised for the
assessment of active reasoning. &, Conan facilitates active exploration and pro-
motes multi-round abductive inference, reminiscent of rich, open-world settings
like Minecraft. Diverging from previous works that lean primarily on single-round
deduction via instruction following, &, Conan compels agents to actively interact
with their surroundings, amalgamating new evidence with prior knowledge to eluci-
date events from incomplete observations. Our analysis on & Conan underscores
the shortcomings of contemporary state-of-the-art models in active exploration and
understanding complex scenarios. Additionally, we explore Abduction from De-
duction, where agents harness Bayesian rules to recast the challenge of abduction
as a deductive process. Through (& Conan, we aim to galvanize advancements
in active reasoning and set the stage for the next generation of Al agents adept at
dynamically engaging in environments.

1 Introduction

Active interaction with the environment is fundamental to human understanding of the world around
us. Both neural and behavioral studies indicate that through active engagement with their surroundings,
humans garner critical insights and foster a profound understanding of complex phenomena (Goodale
and Milner, 1992; Rizzolatti et al., 1997; Rieber, 1996). When confronted with partial or ambiguous
data, our innate response is to seek supplementary evidence, hypothesize, and put forth possible
explanations, sometimes even reevaluating initial assumptions (Yuan et al., 2022). This iterative
process persists until a satisfactory resolution emerges.

The process of formulating theories based on observations and prior knowledge is classically termed
as abductive reasoning or simply, abduction (Peirce, 1965; Douven, 2021). A topic of enduring
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Figure 1: An example of C Conan, an open-world environment for active reasoning. (a) &4 Conan
initialization. A vandal is randomly assigned a task from the task space while keeping alive. A probabilistic
parser, utilizing a knowledge graph, selects a sequence of subgoals to fulfill the main objective. This decision is
then conveyed to a planner which, in turn, invokes heuristic policies to execute atomic actions. Some of these
actions leave discernible traces within the environment. (b) & Conan playground with traces. (c) & Conan
questions. Here, a detective is spawned and is tasked with answering queries. It does so by actively exploring the
environment, connecting keyframes, and reaching conclusions.

interest among psychologists, abduction is perceived as a cornerstone of human cognitive processes.
Historical and contemporary studies have delved into its cognitive mechanisms (Josephson and
Josephson, 1996; Thagard, 1988; Peirce, 1965), practical applications (Hobbs et al., 1993; Shank,
1998), and ties to scientific thinking and decision-making (Hanson, 1965; Gigerenzer and Gaissmaier,
2011; Zhang et al., 2021a). With growing momentum in the machine learning sphere, recent years
have witnessed the advent of dedicated benchmarks and models accentuating abductive reasoning
(Bhagavatula et al., 2019; Kayser et al., 2021; Hessel et al., 2022; Liang et al., 2022).

However, the bulk of prior work in this domain relies heavily on a single-round, passive question-
answering paradigm that offers complete information. This setup often sees an agent simply respond-
ing to queries, leveraging vast pre-trained knowledge, as evidenced by the latest strides in language
and vision-language learning. Recent progress in the field has notably already improved performance
in such complete-information information question-answering. Contrarily, humans demonstrate a far
more nuanced approach when navigating abductive scenarios with incomplete data (Edmonds et al.,
2018). We actively engage, explore, gather, and reason, drawing from both new information and
prior knowledge. Our iterative approach allows for continuous refinement based on newly acquired
evidence (Oaksford and Chater, 1994; Bramley et al., 2017; Edmonds et al., 2019, 2020).

To capture the dynamic and exploratory essence of abductive reasoning—termed herein as active
reasoning—we present & Conan, a new open-world environment tailored for abductive reasoning.
Standing head and shoulders above traditional single-round passive reasoning benchmarks, & Conan
boasts an open-world arena, urging agents to actively probe surroundings and engage in multi-round
abductive inferences, all while leveraging in-situ collected evidence alongside pre-existing knowledge.

At its core, & Conan is conceived as a detective game, transmuted into a question-answering
challenge. Here, the detective is tasked with a query and an “incident scene” riddled with traces left by
a vandal. Given the initial paucity of conclusive information, the detective must embark on an in-depth
exploration of the scene. As the inquiry progresses, the detective has the opportunity to actively scout
its environment, continually reshaping and honing its hypotheses, especially when new revelations
potentially contradict the prior hypothesis. Furthermore, we meticulously craft questions within
C Conan to span various levels of abstraction, from localized intentions (Intent) to overarching
objectives (Goal) and survival states (Survival).

To probe the proficiency of active reasoning, we evaluate state-of-the-art Reinforcement Learning (RL)
and multimodal question-answering models on & Conan. Our observations highlight an intriguing
dichotomy: while these cutting-edge models exhibit prowess in addressing low-level, short-term
tasks, they struggle with multi-round environmental interactions and high-level abductive reasoning.



A plausible root of this challenge could be the absence of structurally represented knowledge.
Predicated predominantly on associative training, these agents are versed in correlating traces with
responses without genuinely internalizing holistic world models. In sharp contrast, humans seamlessly
navigate abductive reasoning by forecasting potential trajectories leading to a perceived outcome. This
intricate dance gradually transmutes from abductive to deductive reasoning, where humans harness
their innate understanding of causality to deduce and mirror observed patterns. In our pursuit to
mirror this quintessential human trait, we integrate Abduction from Deduction (AfD) into & Conan
via a Bayesian approach. Experimental results underscore the efficacy of AfD, indicating a substantial
avenue for bolstering agent adeptness in & Conan.

To sum up, our work makes the following three contributions:

* We usher in the novel domain of active reasoning, underscoring the indispensable roles of active
exploration and iterative inference in abductive reasoning. This paradigm shift transforms traditional
single-round passive question-answering paradigms into a more immersive format, compelling
agents to actively engage with the environment to procure pivotal evidence.

* We introduce & Conan, a new environment tailored to evaluate the abductive reasoning ability of
current machine learning models within dynamic settings. & Conan surpasses its predecessors
that hinge on step-by-step deductive reasoning, revealing the limitations of present-day models.

* We formulate a new learning method for abduction, AfD, grounded in Bayesian principles. This
framework elegantly reformulates abduction into deduction, proving instrumental in navigating the
complex active reasoning challenges posed by & Conan.

2 Related Work

Machine Abductive Reasoning Abductive reasoning, foundational to human cognition, is crucial
for scientific exploration, decision-making, and problem-solving (Peirce, 1965; Magnani, 2011). In
the Artificial Intelligence (AI) landscape, there is a rich history of efforts to equip machines with this
ability, where they use prior knowledge and sparse observations to hypothesize amidst uncertainty
(Josephson and Josephson, 1996; Xu et al., 2023). Key developments span logic-based abduction
(Kakas et al., 1992; Poole, 1993) and hybrid neural-symbolic methods (Rocktischel and Riedel,
2017; Zhang et al., 2021b; Li et al., 2022, 2023). With computational progress, Large Language
Models (LLMs) have effectively addressed several challenges through text generation, exhibiting
outstanding performance (Brown et al., 2020; OpenAl, 2023; Thoppilan et al., 2022). Modern research
usually frames abductive reasoning within natural language understanding (Bhagavatula et al., 2019)
or multimodal vision-language integration (Hessel et al., 2022; Liang et al., 2022). However, there is
still a notable gap: many benchmarks lean heavily on deduction, sidelining abduction’s interactive
essence. Our work addresses this gap, emphasizing the core of active reasoning in abductive contexts.

Embodied Question Answering Embodied question answering enhances traditional Visual Ques-
tion Answering (VQA) by placing agents in interactive environments (Johnson et al., 2017; Das
et al., 2018; Gordon et al., 2018; Yu et al., 2019). In & Conan, agents actively explore to gather
data, preparing them to solve abductive questions based on partial information. Unlike standard
embodied question-answering frameworks (Das et al., 2018; Gordon et al., 2018; Yu et al., 2019),
where questions become simple instructions for agents, & Conan introduces complexity: (i) its
questions, rooted in high-level intent and goals, resist simple decomposition into a series of actions;
(i1) agents in & Conan act as detectives, constantly hypothesizing from observations and prior
knowledge, and iterating their strategies in light of new data. For a comprehensive comparison of
( Conan with other benchmarks, see Tab. 1.

3 The { Conan Environment

( Conan is crafted as an interactive question-answering environment aimed at evaluating a ma-
chine’s active abductive reasoning capacity, as depicted in Fig. 1. Building on the foundation of the
Crafter (Hafner, 2021), & Conan evolves into a detective game featuring two agents: the vandal
and the detective. The gameplay kickstarts with the vandal undertaking a randomly designated task,
leaving behind traces for the detective to unravel. Subsequently, given these traces, pertinent queries
are generated. Finally, the detective is spawned in the environment, tasked with navigating these
traces and actively probing the environment, all to derive answers through abductive reasoning.



Table 1: Comparison between & Conan and related visual reasoning benchmarks. & Conan is unique for
its active reasoning and interactive multi-round setting on abductive reasoning tasks.

Benchmark Format Multimodal  Interactive  Multi-round  Abductive
CLEVR (Johnson et al., 2017) image v X X X
IQA (Gordon et al., 2018) embodied v v X X
EmbodiedQA (Das et al., 2018)  embodied v v X X
ART (Bhagavatula et al., 2019) language X X X v
VAR (Liang et al., 2022) video v X X v
Sherlock (Hessel et al., 2022) image v X X v
& Conan (Ours) open-world v v v v

3.1 Basic Components

Playground Originating from the Crafter
playground, & Conan operates within a 64 x 64
grid matrix. Agents navigate this space with a lo-
calized 9 x 9 grid field of view centered on their
current position. Once the detective is created
in the environment, all traces left behind by the
vandal persist, serving as clues for the detective
to unravel. While pivotal studies (Johnson et al.,
2016; Fan et al., 2022; Cai et al., 2023; Wang
et al., 2023) address perception in 3D Minecraft

settings using foundational models, our empha-
sis is on honing active abductive reasoning. To )l _)( Survive
this end, we transition from a 3D visual percep-

tion to a 2D plane, ensuring a harmonious blend ‘ Collect
of reduced visual complexity and retaining rich ‘ Make

interactivity (Xie et al., 2021). Defeat

Items and Actions ( Conan offers an ex- Figure 2: Part of the task dependency graph. Starting
tensive assortment of interactive items: food, from the root note, any path forms a multi-step task for
materials, mobs, and tools, each tied to specific an agent to interact with the environment.

actions, as illustrated in Fig. 2. It furnishes 26

unique actions to foster agent-environment en-

gagement. Certain actions leave traces, and together, the items and their mechanics provide a rich
set of affordances for agents in the playground. This knowledge about item operations and traces
aids the detective in comprehending the incident scene. Advancing from its predecessor, the original
Crafter, &, Conan now boasts over 30 achievements, a significant rise of over 50%. It features 32
distinct traces covering all agent actions such as crafting, collecting, defeating, eating, drinking, and
incurring injuries. This enhancement enables the design of 60 varied abductive reasoning tasks within
the scene. For an in-depth overview of the playground, refer to Appx. A.

Vandal Each G Conan map starts with the initialization of a vandal. This agent is driven by two
primary aims: executing a specific task and preserving its existence within the environment. It is
noteworthy that external threats might terminate the vandal prematurely. Traces left in the aftermath
of the vandal’s activities form the question foundation for the detective, with every trace potentially
birthing several questions. For a detailed overview, see Sec. 3.2. We model the vandal as optimal:
when given a random task and the full map, it strategically delineates a sequence of subgoals based
on the task dependency graph, all while ensuring its survival. In scenarios with multiple viable paths
to an objective, uniform sampling comes into play. This sampling, supported by a probabilistic parser,
presents varied strategies for task completion. Hence, the defective must delve deeper to distinguish
the actual sequence of events from possible decoys. The execution of the vandal’s individual actions,
as per the planned subgoal sequence, is steered by a collection of pre-established policies.

Detective After generating questions from a given trace, a defective is spawned to answer them.
Traces left by the vandal span multiple steps and are only partially observable within the detective’s
9 x 9 grid field of view. This requires the defective to actively interact with the environment and
gather evidence to answer the questions.



Though both detective and vandal share the same action space, the defective boasts a unique capability.
It not only navigates and interacts like the vandal, but can also generate its own traces during
its investigation. These overlaid traces from the defective enhance the environment’s depth and
complexity. This setup pushes the agent to actively derive conclusions from its dynamic interactions.
Importantly, the detective is invulnerable; its focus lies squarely on problem-solving, eliminating
concerns about survival or evasion. This design emphasizes active exploration and reasoning, ensuring
(§ Conan’s primary goal remains addressing complex reasoning tasks and answering visual scene-
related questions.

3.2 Questions and Choices

(y Conan is designed to assess the abductive reasoning capability of machine models through a
diverse set of questions varying in difficulty and abstraction. These questions fall into three primary
categories: Intent (local intent), Goal (global goal), and Survival (agent’s survival status change).
We approach evaluation as a multi-choice question-answering task. Each question offers four choices,
with only one being correct. Questions and choices derive from predefined templates, as showcased
in Tab. 2. For a more detailed explanation, see Appx. B.1.

Table 2: Examples of three categories of questions in &, Conan created from predefined templates.

Type Questions

What did the vandal make on this table?

A: wood sword; B: wood pickaxe; C: iron sword; D: stone sword;

Why did the vandal cut a tree here?

A: make table; B: make wood sword; C: make finance; D: collect apple;

Intent

What was the vandal’s primary objective in this scenario?

A: get diamond; B: defeat zombie; C: collect apple; D: make iron sword;
What was the desired outcome of the task performed by the vandal?

A: make steak; B: make table; C: defeat skeleton; D: collect lava;

Goal

Why did the vandal die in this situation?

A: lack of water; B: lack of food; C: hurt by monster; D: hurt by lava;
What could the vandal have done differently to avoid a negative outcome?
A: avoid monsters; B: get sleep; C: get food; D: get water;

Survival

Intent questions target the vandal’s immediate objectives or intentions during its task. To decipher
these traces, agents must deduce the vandal’s underlying intent or subgoals. Solving these questions
necessitates a learning model’s comprehension of the local context.

Goal questions probe the vandal’s overarching objectives, extending beyond immediate intents. They
necessitate grasping the wider context of a task or action sequence. Such questions query the vandal’s
ultimate aims, demanding a learning model to reason within the broader context of the traces.

Survival questions address the wider investigative scope, posing added challenges to the detective.
Centered on the vandal’s survival status changes during tasks (e.g., collecting food for sustenance),
they lead to deviations from the optimal action plan. While not tied to a task’s primary objective,
these questions require a deeper grasp of the present context, often necessitating reasoning around
potential scenarios or alternate results.

Compared with the prevalent VQA setup, wherein questions are based on factual information that
is readily obtainable from the input, & Conan questions cannot be deciphered given only the
initial information, necessitating further exploration in the scene. Unlike standard embodied question
answering, & Conan questions cannot be directly parsed as modular primitives; they demand
abductive reasoning, drawing from both new observation and former knowledge to hypothesize,
validate, and revise. For benchmarking purposes, & Conan produced a corpus comprising 100,000
questions. These were derived from 10,000 unique scenes, generated via the Crafter’s scene generator,
with each scene stemming from a task executed by a vandal. This resulted in an average generation
of 10 questions per scene.
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Figure 3: An illustration of the detective pipeline for &, Conan. An RL explorer is first trained to gather traces
in accordance with the given question. Given a question and the incident scene, the detective calls the explorer
subroutine to gather evidence. Next, the exploration sequence undergoes key-frame extraction, processed by a
visual encoder, subsequently feeding into a vision-language model for answer selection.

4 The Detective Pipeline

(& Conan casts the abductive reasoning challenge as a detective game, necessitating a detective to
efficiently explore and gather information from the environment to deduce plausible explanations (i.e.,
answers) for the given question. This process involves taking into account the temporal dependencies
and incompleteness of the traces. To tackle these challenges encountered in & Conan, we devise a
detective pipeline, as depicted in Fig. 3.

Building on previous work that utilizes hierarchical models for task decomposition (Gordon et al.,
2018; Das et al., 2018; Wijmans et al., 2019), our pipeline is structured into two primary phases: an
exploration phase for trace collection, followed by an abductive reasoning phase. Initially, interaction
with the playground is carried out to collect relevant visual information, which is subsequently
leveraged in the reasoning phase to infer answers to the posed questions.

Computationally, our pipeline first employs RL agents as explorers (see Sec. 4.1) that learn an
exploration policy based on the traces and the question, thereby rendering it goal-oriented. Next,
given the question, we recruit vision-language models (see Sec. 4.3) to predict the answer based on the
observation. A key-frame extractor (see Sec. 4.2) is inserted into the two phases to selectively identify
relevant frames for abduction. The individual components undergo separate training procedures.

4.1 Explorer for Trace Gathering

The primary responsibility of an explorer is to efficiently collect information pertinent to the provided
question. Initially, masks are employed to encode questions by highlighting relevant grids. Subse-
quently, the explorer takes in both the observation and the target question as input and outputs the
action probability.

We use a reward function that incentivizes the agent to scout for clues and traces relevant to the
given question. Additionally, a penalty term is incorporated to discourage unnecessary actions and
inefficient searching, thereby promoting a more targeted exploration strategy.

Specifically, the agent is rewarded with +1 when a trace first appears within its local view, or 42
when the trace bears a close association with the question. A substantial reward of +100 is conferred
upon the agent if it successfully uncovers all traces left by the vandal. Concurrently, the agent incurs
a penalty of —0.1 for every timestep elapsed, with an additional penalty of —1 imposed for executing
operating actions.

We evaluate multiple well-regarded RL frameworks as our explorer, including Deep Q-Network
(DQN) (Mnih et al., 2015), Trust Region Policy Optimization (TRPO) (Schulman et al., 2015),
and Recurrent Proximal Policy Optimization (RecurrentPPO) (Schulman et al., 2017). The Stable-
Baselines3 library (Raffin et al., 2021) is employed for all implementations.



4.2 Key-Frame Extractor

Given that the frames gathered by the explorer tend to be excessively lengthy and redundant, a key-
frame extractor is utilized to sift through and select informative frames containing crucial evidence
for the detective. We adopt a prevalent selection strategy employed in video understanding (Arnab
et al., 2021). Specifically, frames within the temporal bounds determined by the detection of the first
and last traces are retained, from which k frames are uniformly sampled. This design is intended to
tailor the input with the constrained context window size to downstream vision-language models.

4.3 Vision-Language Models for Abductive Reasoning

We employ a multi-choice question-answering paradigm akin to the one used in Ding et al. (2021).
Specifically, the model is presented with a question, its corresponding exploration frame sequence,
and each potential answer choice, subsequently generating a score for each choice. The model is
trained with a categorical cross-entropy loss. During inference, the choice with the highest score
is considered the answer. We evaluate several well-established multimodal models; these models
are known for their efficacy in processing both visual and textual data. Additional details on model
implementation can be found in Appx. D.1.

Vanilla-Trans The first baseline method leverages a vanilla transformer encoder to fuse observation
and textual inputs. Specifically,the raw symbolic map from & Conan serves as the visual feature,
while CLIP’s text encoder (Radford et al., 2021) is employed to encode the textual input.

FrozenBiLM FrozenBiLM (Yang et al., 2022), a state-of-the-art model for video question an-
swering, combines visual input with frozen bidirectional language models, trained on web-scraped
multimodal data. The approach integrates a frozen language model and a frozen vision encoder
with light trainable visual projection modules. FrozenBiLM is tested with BERT-Large (Kenton and
Toutanova, 2019) and DeBERTa-v3 (He et al., 2022) as the language model within our question-
answering system, utilizing the symbolic map from & Conan for visual input.

Flamingo-Mini Flamingo (Alayrac et al., 2022) is a family of vision-language models adept at
rapid adaptation to novel tasks with minimal annotated examples. These models can handle sequences
of visual and textual data, seamlessly accommodating interleaved images or videos as input. We
finetune an open-sourced Flamingo-Mini model with frozen OPT-125M (Zhang et al., 2022), utilizing
the symbolic map from & Conan for visual input.

4.4 Abduction from Deduction (AfD)

The adage “Set a thief to catch a thief” suggests the use of someone with a similar background or
expertise to apprehend a wrongdoer: the best vandal catchers are vandals. This notion resonates
with the core principle of Abduction from Deduction (AfD): for a skillful detective to abduce what
a vandal does, it needs an in-depth grasp of vandals’ modus operandi, motivations, and decision-
making process. Translating the implication to a mathematical language, we articulate the problem of
abductive reasoning based on evidence and knowledge from known deductive transitions. It can also
be seen as an extension of inverse planning (Baker et al., 2007, 2009; Baker and Tenenbaum, 2014).
Formally, let g denote the goal of the vandal, O the detective’s observation, and S the playground
states post the vandal’s actions. We then have:

Plg0) = E [Plg]50)]=E [P(g]S)] (1
where we assume the independence of g w.r.t. O given S, as the goal ought to be clear given the
states. Leveraging Bayesian rules, we further observe that

Pg|S)ec P(S|g) Hﬂ(ai | 5i,9); 2

assuming a uniform prior over g and known deterministic environment transitions. Eq. (2) asserts
that P(g | S) is proportional to a goal-conditioned forward action policy, where s;, a; — $;11.

Intuitively, Egs. (1) and (2) can be understood as follows: to abduce the vandal’s goal from observa-
tion, it is imperative to first reconstruct the actual states traversed by the vandal and subsequently
ascertain the most plausible goal that, if pursued forward, would result in those states; see Eq. (1).
Eq. (2) can be interpreted as a form of deduction, being contingent on transition knowledge derived
from a forward action policy. Hence the name Abduction from Deduction (AfD).



In practice, two approaches emerge for implementing P(g | S) based on Eq. (2). The first entails
iterating over all g and utilizing a learned or predefined 7 (-) to score a lengthy sequence of states.
Conversely, the second approach embraces a data-driven strategy, wherein one arbitrarily selects g,
samples S from 7(-), and learns a model of P(g | S) using the (g, .S) pairs. The former approach
proves time-intensive during inference due to the combinatorial temporal space and expansive goal
space, thereby compelling us towards the latter approach. For implementation, we train P(S | O)
independently as a Dirac delta function of §(f(0O)) and P(g | S) from sampled pairs from 7(-)
employed in task execution in the vandal. The derived goal features, along with the question, are fed
into the model for answer prediction. Please refer to Appx. F for additional details.

5 Experiments

5.1 Experimental Setup

Exploration The explorer is trained using DQN, TRPO, and RecurrentPPO for 108 steps, with a
buffer size of 107 and a batch size of 512. In the case of DQN, training is conducted with ¢ = 0.96.
Each episode is capped at a maximum of 500 steps for the explorer. A curriculum is employed to
encourage long-term exploration whilst maintaining a balance with local search: initial training is
carried out with traces from long-horizon tasks like “get the diamond,” compelling the agent to
venture farther from its starting point. Subsequently, the agent undergoes further finetuning across the
entire dataset. Such a curriculum design prevents a sole focus on local discovery. For downstream
reasoning models, £ = 30 keyframes are extracted by the key-frame extractor.

Abductive Inference Our reasoning models are tested under three different settings: Standard,
Ideal Explorer, and AfD. In the Standard setting, models undergo training and testing based on the
explorer’s exploration. The Ideal Explorer setting sees models leveraging on an optimal exploration
policy—visible to the ground-truth vandal’s trajectory, albeit imperfect, it facilitates the agent in
gathering sufficient evidence for reasoning. This scenario can be conceived as a measure of the
reasoning model’s aptitude for passive reasoning given complete information. Under the AfD setting,
models are trained and used as delineated in Sec. 4.4. All models are trained utilizing 8 NVIDIA
GeForce RTX 3090 GPUs. For further training specifics, please refer to Appx. D.2.

5.2 Results and Analysis 100

Fig. 4 shows the learning curves of vari-
ous RL agents during exploration. TRPO and
RecurrentPPO manifest similar performance in
terms of rewards following a substantial number
of steps, markedly surpassing the DQN explorer.
Additionally, we probe the impact of augment- .50
ing the maximum number of exploration steps

50

Reward

—— TRPO-500

to 5,000 on performance. The data suggestsa | T
marginal performance uplift. Nonetheless, we A TRPO-5000

. RecurrentPPO-5000
acknowledge that such a performance increment — DON-5000
is at the expense of substantially longer explo- 7 o 2e7 ae7 6e7 8e7 les

ration time and a notable surge in the accrual of ) . Sti,p .
unrelated information. Consequently, we select Figure 4: Learning curves of various RL explorers.

TRPO with a maximum of 500 steps per episode  Lc Suffix n denotes the maximum number of steps per
episode during exploration. Results show that (i) TRPO
as our standard RL explorer.

and RecurrentPPO markedly outperform DQN in perfor-
Quantitative results on & Conan are depicted mance, and (ii) longer episodes marginally contribute
in Tab. 3; both the standard and AfD results tg the performance at the expense_of longe_r exploration
reported employ TRPO as the explorer. In the time and the accrual of unrelated information.
standard setting, we discern that while models exhibit some aptitude in tackling low-level Intent
questions, they struggle with higher-level questions pertaining to Goal and Survival. Among the
models, Flamingo-Mini ascends to the pinnacle with an accuracy of 66.3%. FrozenBiLM models
also perform relatively well. Notably, the DeBERTa variant slightly outperforms BERT, insinuating
that a robust language backbone can improve general comprehension. Contrarily, the Vanilla-Trans
model languishes across all tasks, achieving merely random-level performance.



Table 3: Performance of abductive reasoning models on & Conan. We report the question-answering
accuracy (%) across various settings, with the overall accuracy averages over all question categories. F-BiLM
refers to the FrozenBiLM model. I denotes Intent, G denotes Goal, S denotes Survival, and O denotes Overall.
Results exhibiting the top individual performance are highlighted in bold, while models with the superior overall
performance are shaded in

Standard Ideal Explorer AfD
1 G S o 1 G S o I G N 0

Vanilla-Trans 329 250 245 288 640 784 58.1 66.1 248 233 245 243
F-BiLM-BERT 726 444 544 0610 875 595 615 740 828 429 555 66.0
F-BiLM-DeBERTa 829 43.1 522 653 877 718 639 718 829 419 538 654
Flamingo-Mini 86.2 433 495 66.3 858 478 566 69.0 849 425 522 66.1

With the Ideal Explorer, we notice a clear performance boost across all tasks, particularly in the
Goal and Survival questions. These results allude to the potential bottlenecking of models’ abductive
reasoning capability due to the insufficient information collected, underscoring the significance of
effective exploration. An adept explorer can significantly aid in the accrual of useful information,
informatively pursuing a hypothesis to scrutinize evidence, swiftly self-correcting upon encountering
conflicting evidence, and reasonably re-planning. The findings also hint sufficient room for the RL
explorer to improve. Remarkably, the Vanilla-Trans exhibits the greatest increase, insinuating that, in
comparison to other baseline models, it is markedly vulnerable to insufficient evidence.

For AfD results, nearly all multimodal models exhibit performance on par with end-to-end supervis-
edly trained models. Remarkably, FrozenBiLM models even surpass the performance observed in
standard settings. The persisting failure of Vanilla-Trans can be ascribed to its weakness in reasoning
amidst incomplete observations due to the significant disparity between the familiar complete state S
and incomplete observation O. Examining task-specific results, a notable performance uplift in the
Survival task models is discernible for almost all models relative to the standard setting, albeit sharing
the same observation. These results intimate that the inclusion of deductive information sensitizes
the detective to vandal’s concerns during task execution. Nevertheless, the exhibited performance
in long-term planning remains weak, reinforcing the pressing need for a better exploration policy.
Critically, these models continue to find short-term intent questions to be most easily answered.

5.3 Further Discussion

Additional Experiments We further experiment in the absence of visual inputs, serving as a
negative control baseline, resulting in random performance across all settings; see Appx. E. This
random-level performance underscores the severe constraints imposed on the agent without visual
information. The TRPO explorer shows a noticeable improvement over the ones without visual
inputs, suggesting that even minimal exploration is preferable to none. Nonetheless, the performance
remains relatively modest. On the other hand, the Ideal Explorer demonstrates markedly superior
performance, attesting to the substantial benefits its capacity to accrue perfect trace evidence renders
to the downstream reasoning task. This accentuates the imperative of effective exploration.

Table 4: Error analysis on & Conan. We examine the accuracy of FrozenBiLM-DeBERTa across various

tasks, comparing two explorer groups: reasoning based on the TRPO explorer and the Ideal explorer (in ).
get_drink defeat_cow get_apple defeat_skeleton make_iron_pickaxe
47.06 43.90 35.7 46.59 56.52
100.00 85.37 78.57 82.95 52.17
place_bed make_steak make_stone_pickaxe get_coal make_stone_sword
43.90 46.15 48.48 50.00 37.50
87.80 50.00 39.39 45.45 4.17
get_iron get_water get_stone make_iron_sword place_furnace
28.57 45.95 36.84 56.25 44.44
46.43 54.05 47.37 28.12 83.95
get_diamond place_table get_wood make_wood_pickaxe make_wood_sword
40.62 39.36 36.00 40.00 50.00
84.38 91.49 96.00 55.00 64.29
make_bed get_lava make_bucket get_beef defeat_zombie
47.83 50.00 35.29 53.85 52.50
39.13 66.67 73.53 42.31 75.00




Error Analysis We extend an error analysis for the “goal” split, probing the reasoning model across
a spectrum of tasks. Table 4 compares two groups: reasoning based on the Ideal explorer and the
TRPO explorer. The findings underscore that proficient exploration, i.e., the heuristic Ideal explorer
who recovers the vandal’s trajectory, is sufficient for satisfactory performance. However, to fully
harness the potential, a more adept reasoner is requisite, one capable of deciphering the vandal’s
hidden states from observed traces. For instance, the act of felling trees could signify a need for either
wood or food (apples), and discerning the intent solely from traces of felled trees presents a challenge.
When it comes to “trace-relevant” frames or “keyframes,” the Ideal explorer could ostensibly furnish
all trace-relevant frames. However, the concept of keyframes remains nebulous. Within the video
understanding domain, a formidable challenge lies in the extraction of “keyframes.” This is a post-hoc
concept that eludes straightforward acquisition upfront. A prevailing approach, aimed at augmenting
efficiency (diminishing context length in Transformer), entails truncating it via every k-th frame.

Joint Reasoning The collective enhancement of both exploration and reasoning elements emerges
as quintessential, given its mirroring of human-like intelligence. For instance, by providing feedback,
the reasoner can steer the explorer towards actions that are potentially more insightful and likely
to produce pertinent traces. Nonetheless, practical implementation encounters significant hurdles.
Assigning credit to exploratory decisions bearing long-term implications can be intricate, particularly
when the outcomes of exploratory actions become evident after a substantial time lapse, thereby
muddying the causal relationship between the decisions and their ultimate effect on reasoning and
answering questions. This accentuates the mutual reliance between exploration and reasoning—
advancement in one facet demands progression in the other, introducing a bilateral dependency that
complicates optimization. The reasoning component alone demands hefty training and computational
resources, especially when utilizing large language models. The demand for formidable computational
power renders the simultaneous optimization of exploration and reasoning exceedingly daunting.
Collectively, this approach is also widely adopted (Gordon et al., 2018; Lei et al., 2018; Kocisky
et al., 2018). Consequently, we navigate along this trajectory, projecting that future endeavors on
(& Conan should prioritize reasoning above exploration.

To summarize, the engagement of a proficient explorer substantially enhances abductive reasoning,
particularly in higher-level tasks such as goal-oriented and survival-centric inquiries. This underlines
the criticality of exploration as a precursor to tackling abductive reasoning tasks in the presence of
incomplete information. Furthermore, the achievement of the AfD hint at the potential for models to
harness world knowledge, especially transition knowledge pertaining to tasks and traces, to transform
abductive reasoning into deductive simulation. We posit that the presented approach resonates more
with human-like reasoning, edging us closer to the core of human intelligence.

6 Conclusion

In this paper, we introduce & Conan, a benchmark tailored to evaluate and assess models’ active
reasoning ability in addressing incomplete-information questions in an interactive environment.
C Conan sets itself apart from existing abductive reasoning benchmarks by incorporating an open-
world playground facilitating active exploration. It differentiates itself from prevailing embodied
question-answering benchmarks by introducing the demanding abductive process in question answer-
ing, necessitating multi-round abductive inference based on gathered evidence. Moreover, we propose
a new learning paradigm, Abduction from Deduction (AfD), that turns the problem of abduction to
deduction, exploiting the problem structure through Bayesian principles. Benchmarking the efficacy
of contemporary machine learning models on & Conan, we elucidate the model limitations in
interacting with the environment that leads to failure in higher-level, longer-term abductive reasoning.

Limitations and Future Work In general, we notice two significant limitations from the ex-
perimental results. For one, the explorer does not supply particularly relevant information for the
reasoning model. In the human abductive reasoning process, exploration and reasoning should be
closely intertwined, with an agent using the current hypothesis to guide exploration and improve its
understanding. However, due to long-range exploration and complex vision-language reasoning, we
only applied the conventional visual question-answering method and did not fully integrate these two
processes. For another, learning naive question-answer mapping shall be sub-optimal. By leveraging
the problem structure, AfD has shown improved performance on a particular set of problems. Never-
theless, the current AfD formulation is still rudimentary. We believe an in-depth understanding of the
structure and well-crafted implementation could further boost performance.
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A ( Conan Playground

(G Conan’s playground is a computationally efficient 2D open-world environment with diverse
items and rich tasks. The most distinctive feature of & Conan’s playground over the original Crafter
environment is that agents in O, Conan leave diverse traces when interacting with the environment.
These traces serve as the foundation for abductive reasoning; the detective has to effectively connect
the traces to figure out what the vandal has done.

A.1 Items and Traces

Land Based on Crafter, there are three types of terrains that agents can walk on: sand, grass, and
path. Sand and grass are soft surfaces where agents leave directional footprints after walking on
them (see Fig. Al first 2 rows in Columns 2 and 3 for examples). If a grid is left with more than one
footprint, the footprints will become melded (Fig. A1 Column 4 in first 2 rows). Agents’ actions will
also leave traces on the terrain, e.g., water on the ground (Fig. A1 Column 5 first 2 rows). If an agent
gets injured, blood will be shed on the ground (Fig. A1 Column 6 first 2 rows).

Creatures There are four creatures in the playground: plant, cow, zombie and skeleton. plant
grows from sapling to ripe plant. Cow randomly wander on the ground, whereas zombie and skeleton
(monsters in general) will target agents in sight: zombie chases agents and skelefon shoots arrow at
agents. Agents can fight with creatures and kill them. These actions will leave monster bodies on the
ground.

Tools Agents can make tools on the table. There are 7 tools in total: bucket, wood_sword,
wood_pickaxe, stone_sword, stone_pickaxe, iron_sword, and iron_pickaxe. These tools can be made
using different materials and used for certain tasks. Both swords and pickaxes can be used to fight
with creatures, but only pickaxes can be used in mining. Buckets can be used to collect water and
lava.

Actions  Conan’s playground enables agents to interact with objects, non-playable characters,
and even other agents in the playground. Agents can cut tree to get apple and wood, as well as
collect sapling and grow plant (Fig. A1 Row 3). They can also mine with different tools to get stone,
coal, iron, and diamond. Using these materials, agents can make bed for sleep, furnace for keeping
monsters away and grilling food, fable for making tools, efc. Of note, these items should be placed in
an empty grid to use and they can be destroyed by monsters.

A.2 Achievements and Tasks

There are 60 tasks and 39 achievements in & Conan’s playground. We list all achievements in
Tab. Al. Tasks are composed achievements. We select 60 nontrivial and meaningful tasks from all
compositions in & Conan as the final task set.

Table Al: Achievements in C Conan.

Type Achievements
drink_water eat_apple eat_beef eat_steak
Survive sleep sleep_on_bed wake_up eat_grilled_apple
drink_water_from_bucket eat_plant
collect_wood collect_apple collect_water collect_stone
Collect collect_iron collect_diamond collect_beef collect_coal
collect_water collect_lava collect_sapling collect_plant
make_steak make_grilled_apple make_bucket make_fence
make_wood_sword make_wood_pickaxe make_stone_sword make_stone_pickaxe
Make . ) .
make_iron_sword make_iron_pickaxe place_table place bed
place_furnace place_plant
Defeat defeat_cow defeat_zombie defeat_skeleton

A.3 Observation and Action

C Conan offers both pixel representation and symbolic representation for training agents. For pixel
representation, the environment returns a 900 x 900 RGB image each time step for the defective’s
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9 x 9 local view. For symbolic representation, the environment returns a 9 x 9 tensor, with each entry
an index representing one of 50 grid types, covering materials, resources, objects, creatures, and efc.
The agent is always at the center of the observation.

C, Conan affords a larger action space. See Tab. A2 for a detailed list of actions.

Table A2: Actions in & Conan.

Action Details

Noop Do nothing.

Move Left Move left if the grid is walkable.

Move Right Move right if the grid is walkable.

Move Up Move up if the grid is walkable.

Move Down Move down if the grid is walkable.

Do Collect materials or fight with monsters. Use tools if possible.
Sleep Sleep to restore energy. Sleep on bed can restore energy faster;
Place Stone Place a stone if the grid is not occupied. Should have a stone.
Place Table Place a table if the grid is not occupied. Should have a table.

Place Furnace
Place Plant

Place a furnace if the grid is not occupied. Should have furnace.
Place a plant if the grid is grass. Should have sapling.

Place Bed Place a bed if the grid is not occupied. Should have bed.
Make Wood Pickaxe  Nearby table. Should have wood.

Make Stone Pickaxe  Nearby table. Should have wood, stone.

Make Iron Pickaxe Nearby table, furnace. Should have wood, coal, iron.
Make Wood Sword Nearby table. Should have wood.

Make Stone Sword Nearby table. Should have wood, stone.

Make Iron Sword Nearby table, furnace. Should have wood, coal, iron.
Make Bucket Nearby table. Should have wood, stone.

Make Steak Nearby table, furnace. Should have beef.

Eat Apple Restore 2 health. Should have apple.

Eat Beef Restore 4 health. Should have beef.

Eat Steak Restore 6 health. Should have steak.

Collect Water Collect water to bucket. Should have empty bucket.
Collect Lava Collect lava to bucket. Should have empty bucket.
Drink Drink water. Drink water from water bucket if not near the water.

B C Conan Questions

B.1 Question Generation

Questions in & Conan are generated based on vandal’s task-finishing process. To generate a question,
(1) we initialize a playground and put the vandal in it; (2) the vandal is randomly assigned a task;
(3) the vandal tries to finish the task with the help of the pre-build parser and planner, and generates
logs along the way; (4) a question is generated based on a certain part of the log. We randomly
select a template from the template pool and fill placeholders with related objects in it. The answer is
also parsed from the log. Other choices are sampled based on the question and the context to avoid
unrelated choices that can be easily excluded.

B.2 Question Templates

Tab. A3 lists all the templates we use for generating questions.
B.3 Dataset Statistics

See Tab. A4 and Tab. A5 for details.

C Explorer

The Explorer in the defective is an RL agent. The agent receives an observation of a [64, 64, 2] tensor.
This tensor combines the 9 x 9 symbolic local view of the detective and a 64 x 64 question mask.
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Table A3: Question templates in & Conan. [] is the placeholder.

Type Templates
What was the vandal’s objective in these area? What was the vandal’s current intent?
What did the vandal do after this step? What did the vandal do before this step?
What did the vandal make on this table? Why did the vandal make this table?
What item did the vandal most likely craft using the table? Why did the vandal make the []?
What action did the [] perform immediately? What was the [] used for?

Intent What did the vandal make on this furnace? Why did the vandal make this furnace?
What item did the vandal most likely craft using the furnace? =~ Why was tree cut?
What was the intended use for the wood? How was the tree cut?
What was the purpose of mining []? Why was the [] mined?
‘What was the intended use for the []? How did the vandal defeat the []?
‘What did the vandal use to defeat the []? Why did the vandal defeat the []?

Goal What was the vandal’s final goal? What was this vandal trying to achieve?
What did the vandal want to achieve?
What was the vandal’s survival intent for doing []? why did the vandal collect/make []?
What was the vandal’s goal for survival currently? Did the vandal die? Why?

Survival ~Why did the vandal die during the task? How did the vandal die?

What was the vandal trying to do when died? What can the vandal do to avoid death?
what helped keep the vandal away from hungry? what food did the vandal eat?

Table A4: Dataset split and choice distribution.
Category  Train  Test Val  Choice A Choice B Choice C  Choice D

Intent 71162 9152 8822  24.99% 25.20% 24.89% 24.93%
Goal 8000 1000 1000  24.89% 25.08% 24.87% 25.16%
Suvival 7365 1560 1596 < 25.13% 24.95% 24.95% 24.97%

Table AS: Task distribution.

Task get_drink defeat_cow get_apple make_stone_pickaxe place_bed place_furnace
Percentage 2.47 8.49 .52 2.87 8.44 8.23
get_lava defeat_skeleton make_iron_sword get_coal get_beef get_diamond get_stone

2.72 8.7 2.64 242 2.7 2.39 2.67

make_bucket get_iron get_water make_iron_pickaxe make_bed make_steak make_wood_sword
2.44 2.2 2.95 2.71
defeat_zombie make_stone_sword place_table get_wood make_wood_pickaxe

2.67

The local view is zero-padded to 64 x 64. This ensures the agent knows its relative position on the
map. Additionally, the mask is generated based on the question, with the area related to the question
unmasked. The mask serves as the goal of the exploration policy.

All the RL baselines are trained for 108 steps. See more details below. Unless specified otherwise,
parameters are set as default in Stable Baselines.

C.1 Model Details

DQN The DQN baseline is trained using a « value of 0.98, a 7 value of 1, a learning rate of 0.0001,
a buffer size of 107, and a batch size of 512. We leverage an MLP policy with two layers of 64
neurons each. The model is updated every 10 steps.

TRPO The TRPO baseline updates its policy with a special KL-divergence constraint on the
distance between the new and old policies. We also leverage an MLP policy for TRPO, where the
same multi-layer perceptron is used for both policy and value prediction.

RecurrentPPO The ReucrrentPPO baseline uses long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) as the recurrent policy. The LSTM layers’ weights are initialized with standard
Gaussian. We reset LSTM states at the end of the episode. The LSTMs for both the actor and the
critic have the same architecture, with two LSTM layers of 256 neurons each.
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C.2 Training Details

Explorers are firstly trained on long-horizon tasks as explained in the main text. These long-horizon
tasks include “get diamond,” “get lava,” “get water,” “make iron sword,” “make iron pickaxe” and
“eat steak.” These tasks can be further broken down into over 20 subtasks and have an average episode
length of more than 200 steps. We generate 10,000 unique scenes with traces given these tasks and
train explorers on them for 108 steps. Then the explores are fine-tuned on all tasks in & Conan for

107 steps.

We also show the frame rate per second (FPS) for different RL baselines during training in Fig. A2. As
can be seen from the figure, DQN exhibits the highest training efficiency, reaching an FPS exceeding
3000. TRPO maintains a stable FPS of 2000. On the contrary, RecurrentPPO operates significantly
slower, requiring over 96 hours to complete training with 128 subproc environments, whereas TRPO
accomplishes the task in just 14 hours.

D VL Reasoning 5000

In this section, we describe the experimental 4000
details for the Vision-Language (VL) models

used in the paper.

3000

FPS

D.1 Model Details 2000
. . —— TRPO-500
Vanilla-Trans For  Vanilla-Trans, the 1000 =L e
visual features together with the text TRPO-5000
. RecurrentPPO-5000
features are concatenated in the for- ' — DQN-5000
0
mat  of [frame_1, frame_2, ..., 0 2e7 47 rep ° 8e7 1e8
frarpe_n ; question, , choice_1, . Figure A2: Frame rate per second (FPS) curves of sev-
choice_2, ..., choice_4]. Visual

- - > eral RL explorers in training. Results show that DQN
featu?es, if from t.he symbolic observatlpn, and TRPO are significantly faster than RecurrentPPO.
are directly passed into the model. Otherwise,

we utilize CLIP’s pre-trained image encoder

(ViT-B/16) to extract features from pixel input. Text features are calculated using the text encoder of
CLIP. These input features are then passed through a 6-layer Transformer model with an MLP head
for classification.

FrozenBiLM We adopt the cross-modal FrozenBiLM for & Conan, drawing inspiration from
models used in Multiple-choice VideoQA benchmarks such as How2QA (Li et al., 2020) and
TVQA (Lei et al., 2018)'. & Conan can be formulated as a multiple-choice VideoQA problem given
the fixed explorer. We concatenate all of the observation frames as the video input. The questions and
choices are converted into the following format: [“{question} Is it {choice_1}7?,”

., “{question} Is it {choice_4}7?"”]. We then evaluate the probabilities of the
model producing “Yes” and “No”. The visual features are processed in the same way as in Vanilla-
Trans and then forwarded for visual-text projection. We utilize BERT-Large and DeBERTa as our
frozen language backbones in this work; however, other general language models are applicable as
well.

Flamingo-Mini Our Flamingo-Mini baseline is based on an open-source implementation of the
Flamingo model?, as the original Flamingo model’s pre-trained weights are not accessible. Flamingo-
Mini is built upon OPT-125M and CLIP pre-trained ViT-L/14 model. We also formulate & Conan as
a multiple-choice problem for Flamingo-Mini. The questions and choices are converted into the follow-
ing format: [“Question: {question} Answer: {choice_1},” ..., “Question:
{question} Answer: {choice_4}"].Each question-choice pair is fed into the model and
then a binary classifier head is used on Flamingo’s last layer output to predict the final answer.

'mttps://github.com/antoyang/FrozenBiLM
https://github.com/lucidrains/flamingo-pytorch
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D.2 Training Details

Vanilla-Trans was trained for 100 epochs, with a batch size of 128. FrozenBiLM models were
trained for 50 epochs, with a masking probability (for the MLM objective) of 0.15, a batch size of
32, a learning rate of 3 x 1074, a gradient clipping max norm of 0.1, and Adam as the optimizer
(B1 = 0.9, B2 = 0.95,¢ = 1 x 10~%). Flamingo-Mini was trained for 100 epochs, with a learning rate
of 5 x 1072, a batch size of 8, and also Adam as the optimizer (3; = 0.9, 82 = 0.999,¢ = 1 x 1079).

E Additional Experiments

E.1 Negative Control Baselines

We compare our VL reasoning results on the trained explorers with those on empty visual inputs as a
negative control baseline. The results are shown in Tab. A6.

Table A6: VL Reasoning models’ performance on explorers compared with empty visual inputs.
Vanilla-Trans  F-BiLM-BERT F-BiLM-DeBERTa Flamingo-mini

Empty visual inputs 26.4 25.5 259 22.9
TRPO explorer 25.0 444 43.1 433
Ideal explorer 78.4 59.5 71.8 47.8

The results show that using empty visual inputs yields random performance across all settings. Besides,
it also shows that the training QA pairs are unbiased. The TRPO explorer achieves higher performance,
which suggests that the exploration strategy learned by TRPO helps gather some informative evidence
for the reasoning process. The Ideal explorer is an oracle-like exploration policy that has access to
perfect trace evidence and temporal information. It provides the most comprehensive information
about the environment. This highlights the importance of effective exploration in improving reasoning
performance. However, it does not mean that reasoning is less important, as even with the Ideal
explorer, the model still could not achieve satisfactory performance. Based on all results, collecting
informative evidence seems to be more important in the overall objective.

F Abduction from Deduction (AfD)

As mentioned in Sec. 4.4, we adopt a data-driven strategy to learn a model of P(g | S) and simulta-
neously answer the questions. To be more specific, we train the detective agent self-supervisedly. The
detective is randomly assigned with one of all possible tasks. It then finishes the task by following
the action policy 7(+). Note that we assume the detective’s m(-) is the same as the vandal’s in order
to best implement the idea of AfD. Based on the task execution process, questions are generated.
Since our ultimate goal is to have our models answer & Conan’s questions, we do not explicitly
construct P(g | .S), but rather consider the question-answer process as the g. We then train P(g | S),
where S is the detective’s observation during the task execution, and the label can be derived from
the assigned tasks together with the 7 (-).

Besides P(g | S), we still need to learn a model of P(S | O), which, intuitively, can be understood
as inferring the true state of the environment from partial observation. In our experiment, we tried two
ways to model P(S | O). One approach is to directly train a model using multi-frame observations
to predict the states. We employed a UNet (Ronneberger et al., 2015) and a multi-layer CNN as the
network. However, this method did not work effectively. Reasoning based on the reconstructed states
only achieved performance at a random level. The second approach, which was finally used to report
performance, aligned the hidden feature spaces from true states and observations. When training
P(g | S), we added a head before the VL models, converting the input S into a 4096-dimensional
vector. Then we trained a head on O with the same structure, minimizing the difference between
features from O and features from S.

G ( Conan Task Demo
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L 4

Figure A3: The
task struc-
ture of ‘get
diamond”.

To better illustrate the core components in & Conan, We take the playground
shown in Fig. 1 as an example. In this scenario, the assigned task is “get diamond”
(Fig. A3 shows the task dependency). As shown in Fig. A4, once the vandal
completes the task, it leaves behind traces in the playground. The vandal ends
at the bottom of the figure. The detective then enters the playground, starting at
the beginning of the traces. In this case, traces encompass footprints and remnants
left after certain actions. Note that footprints cannot be left on sand or stone, and
different footprints may overlap. The vandal will collect objects crafted on a table,
making them invisible.

Let’s suppose the detective’s exploration begins by following footprints (note the
context window size is 9x9).

Firstly we can see some cut trees. As the footprints are not seriously overlapped
and mostly one-directional, we can deduce the vandal did not return. After seeing
the tool-making table, with the only resources being wood, we could say that the
vandal could only make wooden tools, not stone swords or iron pickaxes, further
restricting possible actions the vandal took.

Note that this is already critical reasoning in & Conan.

Moving on, we note that footprints become missing on the sand surface. However,
we note broken stones and coals. Therefore, the wooden tool to break stones and
coals shall be a wooden pickaxe. So the agent should have made a wooden pickaxe
on the table earlier. Despite the fact that the tool has been collected, we could still
figure that out.

Following the reemerged footprints, we note blood and a zombie body on the ground, suggesting the
vandal should have had a fight.

Searching on, we find the broken diamond. As an iron pickaxe is the only tool to collect diamonds.
The vandal must have built an iron pickaxe with iron and coal in the furnace. With no other footprints
around, we can safely conclude our search.

Figure A4: A demostration of core components in C Conan. We show how a detective can do reasoning
based on the task structure and traces left in the playground. Zoom in for more details.
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