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Abstract

We consider the detection and localization of gradual changes in the distribution
of a sequence of time-ordered observations. Existing literature focuses mostly
on the simpler abrupt setting which assumes a discontinuity jump in distribution,
and is unrealistic for some applied settings. We propose a general method for
detecting and localizing gradual changes that does not require a specific data
generating model, a particular data type, or prior knowledge about which features
of the distribution are subject to change. Despite relaxed assumptions, the proposed
method possesses proven theoretical guarantees for both detection and localization.

1 Introduction

In a sequence of time-ordered observations {Yt,T : t = 1, 2, · · · , T}, the aim of change point
detection (CPD) is to (a) detect: answer the question of whether the distribution of Yt,T changes,
and (b) localize: if it changes, answer the question of when. The classic formulation of CPD usually
assumes that the possible change point is abrupt, i.e., there is a discontinuity jump in the distribution
of Yt,T , leading to a simpler problem. However, in many real-life situations, the changes in a sequence
happen smoothly or gradually, rather than abruptly. Figure 1 illustrates some examples.
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(b) S&P 500 stock index daily returns.

Figure 1: Examples of gradual changes. The vertical red dashed lines indicate the gradual change start points
estimated by the method proposed in this paper.

The first example concerns climatology, and investigates the temperature patterns over years. Figure
1a depicts the annual average temperature in central England from 1750 to 2020, where we observe
a smooth increase starting around 1850. The second example comes from finance. The S&P 500
stock index is an important indicator of the overall market. As shown in Figure 1b, its volatility level
usually remains constant in a stable market, and then gradually increases with the development of
some events such as the financial crisis in 2008 or the COVID-19 pandemic in 2020.

Despite the wide variety of applications, inference for gradual changes is under-researched, and
most existing methods require domain knowledge. Early research assumed that the gradual change
follows a particular parametric model. For example, Lombard (1987) considers a setting where some
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unknown parameter changes linearly, while others (Hušková, 1999; Hušková and Steinebach, 2002;
Aue and Steinebach, 2002) consider models with polynomial changes.

Recent methods also consider nonparametric settings. However, most of them still require specific
assumptions on the data model. For example, Muller (1992); Raimondo (1998); Goldenshluger et al.
(2006) consider the location model where first order moment of observations changes. Mallik et al.
(2011, 2013) investigate a stronger assumption: the mean change is monotonic. Mercurio et al. (2004)
consider the volatility model where second order moment of observations fluctuates. Quessy (2019)
assumes that the sequence follows two stationary distributions at the beginning and the end, and the
changing phase in-between is a mixture of them with weights changing linearly with time.

As far as we know, Vogt and Dette (2015) is the only nonparametric method that applies to general
types of models and data types. Despite its generality, the method proposed in Vogt and Dette (2015)
requires prior knowledge about which stochastic feature(s) might change. Moreover, their method
requires specification of a threshold determined through expensive simulations. Also, Vogt and Dette
(2015) considers only the localization problem, while ignoring the detection step which is shown to
be important for false positive control in real-data applications (Van den Burg and Williams, 2020).

We propose a nonparametric method for detecting and localizing gradual changes. The proposed
method requires no prior domain knowledge, and we offer theoretical guarantees on both detection
(false positive rate, power) and localization (consistency).

2 Problem Statement

Suppose we observe a time-ordered independent sequence {Yt,T : t = 1, 2, · · · , T} taking values in
a general metric space (Y, k · kY). Yt,T is observed at time u = t/T 2 [0, 1]. We are concerned with:

1. (Detection) Deciding whether the distribution of observation changes with time u. This is
formulated as a hypothesis testing problem with null H0 and alternative HA hypotheses shown below.
Let Pu be a probability measure on (Y, k · kY) such that Yt,T ⇠ Pu for u = t/T , then
H0 : Pu is constant over u 2 [0, 1].

HA : Pu is constant over u 2 [0, u0] for some u0 2 (0, 1), but is not constant over u 2 [0, 1]. (1)
Further, we assume that Pu is continuous with respect to the weak topology in the sense that
8u 2 [0, 1], Pv weakly converges to Pu, as v ! u.

2. (Localization) If rejecting H0 in step 1, obtain an estimator ⇢̂ of the gradual change point ⇢⇤ where
the probability measure Pu starts to change, i.e., ⇢⇤ := sup{u : Pv = P0, 8v 2 [0, u]}.

Notice that we do not put specific assumptions on the data type or distribution of Yt,T and thus, our
formulation allows a large number of special models such as

location model: Yt,T = µ(t/T ) + "t, (2)
volatility model: Yt,T = �(t/T )"t, (3)

where µ(·),�(·) can be any continuous function, and "t’s are zero mean i.i.d errors.

Notations. We denote dxe as the least integer no smaller than x, 1d = (1, · · · , 1)> 2 Rd, Id 2 Rd⇥d

the identity matrix. We use I to denote indicator function, w
�! weak convergence, Z+ the set of

positive integers. For a set of constants aT , bT and random variables XT , we write aT = ⇥(bT ) if
there exist constants C1, C2 > 0, t0 2 Z+ s.t. C1aT  bT  C2aT , 8T � t0. Denote XT = Op(aT )
if XT /aT is stochastically bounded, and XT = op(aT ) if XT /aT converges to zero in probability.

3 Methodology

Existing statistic. We consider first univariate Yt,T ’s. Suppose the change is in EYt,T ; traditional
CUSUM statistic (Page, 1954) solves CPD problem by defining

bCT (u, v) = 1/T
P

dvTe

t=1 Yt,T � v/(uT )
P

duTe

t=1 Yt,T , for any 0  v < u  1.

which compares cumulative sums of Yt,T over different time spans [0, v] and [0, u]. Then
bDuni
T (u) = maxv2[0,u]|

bCT (u, v)|, for any 0  u  1.
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Figure 2: Plots of Yt,T (top row) and their bDgen
T (t/T ) (bottom row) against t. The blue vertical line denotes true

change point. Data in column 1, 2 follow location model (2) with "t ⇠ N(0, 1), and µ1(u) = I(1/3  u 
2/3)(3u � 1)1.5 + I(u > 2/3), µ2(u) = 2 sin(4⇡(u � 1/3))I(1/3  u  2/3) + 2 sin(4⇡/3)I(u � 2/3),
respectively. Data in column 3 follows volatility model (3) with "t ⇠ N(0, 1) and �(·) = µ1(·) + 1. Column 1,
2 set F = {f : x 7! x}, and column 3 F = {f : x 7! x2}.

can be used to detect changes in feature EYt,T over time span [0, u]. Intuitively, if there are no
changes over [0, u], bDuni

T (u) should be small. For example, in Figure 2, the first and second column
depicts a sequence with change in EYt,T (shown in top row), and bDuni

T (shown in bottom row) take
small values before ⌧⇤ = 200 where ⌧⇤ = dT⇢⇤e, and then grow substantially. Thus, bDuni

T (u)
essentially measures the variation over [0, u] in these univariate settings.

For multivariate/structured Yt,T or for changes in more general features of the form Ef(Yt,T ) where
f : Y ! R is a measurable function, Vogt and Dette (2015) replaces bDuni

T with

bDgen
T (u) = supf2F

maxv2[0,u]|
bCT (u, v, f)|, where

bCT (u, v, f) = 1/T
P

dvTe

t=1 f(Yt,T )� v/(uT )
P

duTe

t=1 f(Yt,T ). (4)

bDgen
T takes supremum over a pre-specified set of functions F to ensure that changes in Ef(Yt,T ) for

all f 2 F are considered. Note that bDuni
T is a special case of bDgen

T with F = {f : x 7! x}, and
column 3 of Figure 2 sets F = {f : x 7! x2

}.

There are three main issues with bDgen
T . First, it relies heavily on the pre-specified function class

F . Also, to calculate bDgen
T , F can only contain a finite (usually small) number of functions (e.g.,

f : x 7! x or f : x 7! x2), the choice of which relies heavily on prior knowledge about which
features might change. When F is misspecified, bDgen

T can be non-informative and fail subsequent
tasks. Second, bDgen

T does not consider the scale of bCT (·, ·, f) which could be incomparable for
different f ’s. Third, the limiting distribution of bDgen

T (·) is unknown, leading to computational
challenges in subsequent analyses.

Proposed statistic. We introduce a new statistic that puts minimal assumptions on data types and
generating process, and is free of the issues discussed above. It is motivated by the recent success of
applying kernel approaches to abrupt CPD problems (e.g., Harchaoui et al. (2008); Li et al. (2015);
see Section 7 for more details). These kernel approaches assume access to a positive semidefinite
kernel k : Y ⇥ Y ! R that measures pairwise similarity among observations. Compared with
features, kernels are more flexible and easier to specify, especially for structured data, showing great
potential for solving gradual CPD problem. Inference starts with measuring data variation in time
span [0, u]; for each possible change point v < u, v divides the observations into two groups: those
coming before dTve and those after dTve. Note that the average similarity among observations
within the same group is:

bSwithin
T (u, v) = 0.5(l)�2Pl

s,t=1k(Ys,T , Yt,T ) + 0.5(r � l)�2
Pr

s,t=l+1k(Ys,T , Yt,T ),

where l = dvT e, r = duT e, and the average similarity among observations between different groups
is

bSbetween
T (u, v) = [l(r � l)]�1Pl

s=1

Pr
t=l+1k(Ys,T , Yt,T ).
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Intuitively, k(y, y0) should in general be larger if y, y0 follow the same distribution, and smaller if
y, y0 follow different distributions. Thus, if v is the true change point, we expect bSwithin

T (u, v) to be
large compared with bSbetween

T (u, v). This intuition underlies the following statistic,

bDT (u) = maxv2[0,u]
bKT (u, v) where (5)

bKT (u, v) = 2v2(u� v)2/u2[bSwithin
T (u, v)� bSbetween

T (u, v)]. (6)

bDT takes the maximum over v 2 [0, u] using a similar idea as bDuni
T and bDgen

T . The scaling factor
v2(u� v)2/u2 is important and ensures that the limiting distribution of bDT is well-defined for all
u 2 (0, 1] (see more details in Section 4). bDT plays the same role as bDgen

T and measures data variation
among [0, u].

Note that bDT has also a CUSUM-style representation, which is crucial for understanding its theoretical
properties. Define a centered kernel k0(y, y0) = k(y, y0) � EY⇠P0k(y, Y ) � EY⇠P0k(y

0, Y ) +
EY,Y 0⇠P0k(Y, Y

0). Then k0 can be decomposed in terms of eigenfunctions { j}
1

j=1 w.r.t. P0 as:

k0(y, y
0) =

P
1

j=1�j j(y) j(y0) with (7)

s k0(y, y
0) j(y)dP0(y) = �j j(y

0), s  j(y) j0(y)dP0(y) = �j,j0 ,

and �j,j0 is the Kronecker delta function. We denote the feature map � associated with k0 as

�(y) = (�1/21  1(y),�
1/2
2  2(y), · · · )

>
2 H, h�(y),�(y0)iH :=

P
1

l=1�l(y)�l(y
0) = k0(y, y0).

Using properties of h·, ·i1/2
H

and denoting k · kH = h·, ·i1/2
H

, we have

bKT (u, v) = k1/T
P[vT ]

t=1 �(Yt,T )� v/(uT )
P[uT ]

t=1 �(Yt,T )k2H =
P

1

j=1|
bCT (u, v,�j)|2. (8)

Equation (8) helps the comparison of bDT against bDgen
T . In general, bDT has three advantages.

First, recall that bDgen
T strongly depends on the specification of the function class F ; we allow

implicitly a much larger F with infinite functions. For example, by using universal kernels such as
k(y, y0) = exp{�ky � y0k2

Y
/2}, we consider any change in Ef(Yt,T ), f 2 F where F has infinite

cardinality and satisfies the property that under mild assumptions, there always exists f 2 F such
that Ef(X) 6= Ef(X 0) when random variables X,X 0 follow different distributions. Second, the
asymptotic distribution of bDgen

T (as n grows to infinity) is intractable, caused by its dependence
structure on bCT . There are two key facts, under H0, for fixed u, v, as T goes to infinity,

bCT (u, v,�j)
d
�! Gaussian random variable, and E[ bCT (u, v,�j) bCT (u, v,�j0)] ! 0, 8j, j0 2 Z+.

It implies bCT (u, v,�j) are asymptotically independent Gaussian random variables (r.v.). Since the
sum of squares of independent Gaussian r.v. follows a known distribution (chi-square), in view of (8),
the asymptotic distribution of our statistic is much simpler than that of bDgen

T . Third, using kernels
to define bKT does not lead to technical/implementation issues. In contrast, if we define bKT directly
using (8) with the function class F = {�j , j = 1, 2, · · · } replaced by an arbitrary function class of
infinite cardinality, the infinite series will not necessarily converge, and even when it converges, it
may not be calculated exactly. Using kernels, we circumvent this issue and with the trick mentioned
in Appendix A, the total cost of calculating bDT (u) for all u’s takes O(T 2) in both time and space.
Remark 3.1. Some useful kernels for the gradual CPD problem: (i) For Y = Rd, we recommend
using the dot-product kernel k(y, y0) = hy, y0iRd if location model (2) holds. Here �j : x =

(x1, · · · , xd)> 7! xj � EP0Xj , 8j = 1, · · · , d. When d = 1, bDT with this kernel equals bDgen
T with

F = {f : x 7! x � EP0X} and bDuni
T . (ii) For Y = R, we recommend using k(y, y0) = y2(y0)2 if

volatility model (3) holds. Here �j : x 7! x2
� a where a = EX⇠P0X

2. And bDT with this kernel
equals bDgen

T with F = {f : x 7! x2
� a}. (iii) For any general Y , k(y, y0) = exp{�ky � y0k2

Y
/h}

is the RBF kernel with bandwidth h > 0. This can be set as the default kernel without any prior
knowledge about data model.

Now we will utilize bDT for the detection and localization of gradual change points.
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Detection. As shown in Figure 2, under a good choice of k, bDT (u) summarizes the degree of
variation over time span [0, u] and satisfies

bDT (u) is
⇢

small, when u  ⇢⇤,
large, when u > ⇢⇤.

(9)

The case of no change point is equivalent to ⇢⇤ = 1. The existence of a change point can be
tested using bDT (1). The p-value depends on the asymptotic null distribution of bDT (1), the rigorous
establishment of which requires many technical details and is deferred to the next section (Theorem
4.4). Practitioners can use the following formula to calculate p-values:

P(T bDT (1) > x) ⇡ 2(q̂+3)/2[�(q̂/2)]�1p⇡(x/�̂1)
(q̂�1)/2e�2x/�̂1

QT
l=q+1(1� �̂l/�̂1)�1/2, (10)

where �̂1 � �̂2 � · · · � �̂T are eigenvalues of the matrix (1/T )K0 where
K0 = HKH 2 RT⇥T , K = [k(Yi,t, Yj,T )]

T
i,j=1 2 RT⇥T and H = IT � (1/T )1T1

>

T , (11)
and q̂ is the estimated multiplicity of the leading eigenvalue. Accuracy of this approximation depends
on the accuracy of estimated eigenvalues. In practice, we find it works well when q is small (say,
q  5). When q is large, we recommend estimating p-values by permutation tests.

Localization. Once a significant change point is detected, the next step is to localize it. Observing
property (9) with bDT replaced by bDgen

T , Vogt and Dette (2015) propose an estimator for ⇢⇤ as:

⇢̂gen = T�1PT
t=1I(T 1/2 bDgen

T (t/T )  bgen
T ),

where the scaling factor T 1/2 ensures that T 1/2 bDgen
T follows a non-degenerate distribution asymptoti-

cally as data size goes to infinity, and bgen
T is set to the (1� ↵)-quantile of the limiting distribution of

supv2[0,⇢⇤]
bDgen
T (v). In practice, both ⇢⇤ and limiting distribution of bDgen

T (·) are unknown, thus bT
is approximated by a two-step procedure with expensive simulations. For our statistic, we find that
under the null, bDT (u) and u bDT (1) follow the same limiting distribution for any u. It implies that we
can estimate ⇢⇤ by

⇢̂ = T�1PT
t=1I(T bDT (t/T )  cT (t/T )), where cT (u) = ubT , (12)

and the scaling factor T ensures that T bDT has a non-degenerate limiting distribution. Here, ⇢̂ is
affected by cT : a larger cT will lead to a larger ⇢̂ and vice versa. Ideally, the optimal choice of cT
should minimize a measure of error, and we propose using l1(⇢̂) = E |⇢̂� ⇢⇤| . It depends on the
finite sample distribution of bDT and could be hard to control in nonparametric settings, but we know
the asymptotic distribution of bDT (·) (Theorem 4.4). Thus, we choose the cT which minimizes the l1
error of the population version ⇢1 of ⇢̂:

l1(⇢
1) = E|⇢1 � ⇢⇤| with ⇢1 =

R ⇢⇤

0 I(L0(u)  cT (u))du+
R 1
⇢⇤I(T 1/2L1(u) + TD(u)  cT (u))du,

where L0(·), L1(·) correspond to the asymptotic distribution of properly re-scaled and re-centered
bDT (·) before and after ⇢⇤, respectively, and they are defined in Theorem 4.4. Under some assumptions,
minimizing l1(⇢1) leads to

bT = �̂1/(2) log T, (13)
where  � 2 is determined by the smoothness of change and the smoother it is, the larger  is. The
derivation of Equation (13) is included in the next section. The theoretical value of  is defined in
Assumption 4, and it depends on the alternative distribution of Yt,T and the kernel k. For practitioners,
we only need to know it for abrupt changes and any choice of kernel,  = 2 (indeed, our method is
also applicable for abrupt changes). For RBF, if the change in E exp{Yt,T } can be approximated by
(u� ⇢⇤)� in time span u 2 [⇢⇤, ⇢⇤ + ") for some small " > 0, we have  = 2� + 2. We emphasize
that the choice of  does not affect the consistency of ⇢̂. In experiments, using rule of thumb  = 4
works well. An alternative estimator that is less sensitive to  is introduced next.

Max-gap estimator. Despite its good theoretical properties, ⇢̂ has often a large positive bias. This
arises from the nature of gradual changes, and is common to previous gradual CPD methods as
discussed in Vogt and Dette (2015). Intuitively, we need to wait for enough signal strength in order to
identify the gradual change point. To design a less biased estimator, recall that in Figure 2, we plotted
bDT (·) against time and easily visually identified the change point as the time when bDT (·) starts to
grow. For example, for data in the first column, a zoomed-in region is shown in Figure 3, where the
black line is T bDT (·) and red line cT (·). In Figure 3, the growth starts around the point 285 (shown in
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brown vertical line). However, using ⇢̂ gives ⌧̂ = 342 (shown
in green vertical line). We want an algorithm capable of iden-
tifying this elbow point (285). Note that from Theorem 4.4,
we have

E[cT (u)� T bDT (u)]

⇢
increases with u, if u  ⇢⇤

decreases with u, if u > ⇢⇤.

Thus, ⇢⇤ should be the u where cT (u)�T bDT (u) is maximized
(in Figure 3, this is where the gap between the red line and
black curve is maximized). It suggests setting

⇢̌ = margmaxu2(0,⇢̂][cT (u)� T bDT (u)], (14)

where margmax takes the largest value in the set formed by
argmax. In Figure 3, ⇢̌ is shown by the brown line.

Compared with ⇢̂, empirical studies show two advantages of the max-gap estimator ⇢̌: it is more
accurate, and is much less sensitive to choice of . Some intuition for insensitivity to : in Figure 3,
 changes the slope of the red line and a slight change in slope does not affect the time where its gap
between the black line is maximized. The higher accuracy of ⇢̌ also has a theoretical explanation,
which is included in the Appendix due to space limit. In short, the l1 error of ⇢̌ consists of two parts:
the overestimation error E[⇢̌� ⇢⇤]+ and the underestimation error E[⇢⇤ � ⇢̌]+ with [x]+ denotes the
positive part of x. There is always a trade-off between overestimation and underestimation. Roughly,
⇢̌ focuses more on controlling the overestimation error (delay) while guaranteeing consistency of the
estimator, since delay is the main concern in small samples. In contrast, ⇢̂ controls the over/under-
estimation error equally, which might be less accurate in small samples.

Practical considerations. All steps of the proposed procedure are summarized in Algorithm 1 in
Section A of the Appendix. There we also discuss its time and space complexity.

4 Theory

This section establishes all theoretical results mentioned previously.

Asymptotic distribution of bDT . In order to utilize bDT for downstream tasks, we need to know its
asymptotic distribution. To establish that, we will first introduce some technical assumptions.
Assumption 1. 9M 2 (0,+1), 8t 2 {1, 2, · · · , T}, k(Yt,T , Yt,T )  M2

almost surely (a.s.).

Remark 4.1. Assumption 1 requires that the kernel is a.s. bounded for all Yt,T . It is a weak assumption
which is satisfied when k(·, ·) is continuous and Y is closed and bounded, or when k is RBF kernel.

Assumption 1 suffices for getting asymptotic null of bDT . Under HA, however, we need to restrict
the changing pattern of Yt,T : roughly, we require the change to be gradual, so the speed of change
cannot be too fast compared with sample size. One useful concept to regulate such behavior is the
locally stationary process, which has been used in Vogt and Dette (2015) for gradual CPD problems.
Assumption 2 (Locally Stationary Process). The array {Yt,T : t = 1, 2, · · · , T}1T=1 is a locally

stationary process, i.e., 8u 2 [0, 1], there exists a strictly stationary process {Yt(u) : t 2 Z} s.t.

kYt,T � Yt(u)kY  (|t/T � u|+ 1/T )Ut,T (u) a.s.

where {Ut,T (u) : t = 1, 2, · · · , T}1T=1 is an array of positive random variables which satisfies

E[U�
t,T (u)]  c0 for some constant c0 2 (0,+1), � > 0.

Remark 4.2. Assumption 2 ensures that locally around each u = t/T , {Yt,T } can be approximated
by a stationary process {Yt(u)}. The constant � measures how well Yt,T is approximated by Yt(u):
the larger � is, the better the approximation will be.

Define

D(u) = maxv2[0,u]K(u, v) with K(u, v) = ks
v
0µ(w)dw � v/usu0µ(w)dwk

2
H
, (15)

where µ(·) = (µ1(·), µ2(·), · · · )>, µj(·) = E�j(Yt(·)). Comparing Equations (15) and (8), we find
that bKT (u, v) is in fact an estimator for K(u, v) and thus, bDT (u) is an estimator for D(u). Using the
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decomposition bDT (u) = D(u) + [ bDT (u) � D(u)], in order to study asymptotics of bDT , we only
need to study the approximation error bDT �D. We will need the following assumptions:
Assumption 3. The feature map � and stochastic processes {µj(u) : u 2 [0, 1]}, 8 j 2 Z+ satisfy

(i) k�(y)� �(y0)kH  C1ky � y0kY for all y, y0 2 Y .

(ii) � � 2 where � is defined in Assumption 2.

(iii)
P

1

j=1 maxu2(0,1)dµj(u)/du < +1.

Remark 4.3. Condition (i) requires sufficient smoothness for � which is always satisfied for suffi-
ciently smooth kernels k. Intuitively, this helps us preserve the smoothness of the change in Yt,T .
Condition (ii) requires that Yt,T can be sufficiently well approximated by Yt(u) in the sense that
Ut,T (u) has finite variance. Condition (iii) roughly says that µj has a well-defined Riemann integral
over [0, 1] so that the integral in D can be approximated by the Riemann sum in bDT .

Now we are ready to present our main result, where ⇢⇤ = 1 corresponds to no change point.
Theorem 4.4. Suppose Assumption 1 holds.

(1) For any u 2 (0, ⇢⇤],

T [ bDT (u)�D(u)]
w
�! maxv2[0,u]

P
1

l=1�l[Wl(v)�
v
uWl(u)]2 =: L0(u), (16)

where �l’s are defined in (7), and Wl(·), l = 1, · · · are independent standard Wiener processes.

(2) If, in addition, Assumptions 2 and 3 hold, for any u 2 (⇢⇤, 1], we have

p

T [ bDT (u)�D(u)]
w
�! maxv2[0,u]G(v, u) =: L1(u), (17)

where for any u, G(·, u) is a sample continuous Gaussian process.

Remark 4.5. Both
P

1

l=1�l[Wl(·)�
·

uWl(u)]2 and G(·, u) are sample continuous and thus, the right
hand size of (16) (17) are well-defined. �l’s are determined by P0, k and (16) states that the higher the
noise level of P0 is, the more dispersed the asymptotic null of bDT will be. Note that the asymptotic
distribution of bDT is quite different before and after the change point: before change point, for each
u, bDT (u) = Op(T�1) and after re-scaling, bDT (u) is maximum of a chi-square process; after change
point, bDT (u) = D(u) +Op(T�1/2) and after re-centering and re-scaling, bDT (u) is maximum of a
Gaussian process. This distinct property of bDT (·) is critical for the success of the proposed procedure.

Detection. To calculate p-values, Theorem 2.1 of Liu and Ji (2014) says that for 8n 2 Z+ and
�1 = · · · = �q > �q+1 � �q+2 � · · · � �n > 0, as x ! 1,

P(maxv2[0,1]

Pn
l=1�l [Wl(v)� vWl(1)]

2 > x)

= 2(q+3)/2[�(q/2)]�1p⇡ (x/�1)
(q�1)/2 exp {�2x/�1}

Qn
l=q+1 (1� �l/�1)

�1/2 (1 + o(1)) .

Combined with Theorem 4.4, it implies (10). Also, we have the following:

Corollary 4.1 (Power Consistency). Suppose Assumption 1, 2, 3 hold. If

p
TD(1) ! 1,

8x > 0, P(T bDT (1) > x) ! 1, T ! 1.

Remark 4.6. Corollary 4.1 shows that power of the proposed test is affected by the magnitude of
change measured in D(1). As long as D(1) goes to zero at a rate slower than T�1/2, the change will
be detected if it exists; it ensures correctness of the detection step.

Localization. Recall we need to optimize cT . This requires regulating the local behavior of D at ⇢⇤:

Assumption 4. There is a cusp of order  at ⇢⇤ for D(·), i.e.,
D(u)

(u�⇢⇤) ! m > 0, u ! ⇢⇤ + .

Remark 4.7. Assumption 4 says D can be locally approximated by a Taylor-type expansion around
⇢⇤, which is a common assumption for gradual CPD (Mallik et al., 2013; Vogt and Dette, 2015).
Theorem 4.8. Suppose Assumptions 1, 2, 3, 4 hold, and cT (u) = ubT . The cT minimizing l1(⇢1)
satisfies

cT (u) = (u�1r log T )/2, r � 1/. (18)
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Remark 4.9. In Equation (18), the larger the noise level �1 is, the larger cT is. The smoother the
gradual change is (the larger  is), the smaller cT is. And r can be viewed as a tuning parameter s.t.
if we are less tolerant to delays in ⇢̂, we could set r to be small, and vice versa. In practice, ⇢̂ is often
overestimated. Thus, we suggest choosing r = 1/, which ultimately leads to (13).
Theorem 4.10. Under Assumptions 1, 2, 3, 4 and Equation (18), ⇢̂� ⇢⇤ = op(1), ⇢̌� ⇢⇤ = op(1).

Remark 4.11. Theorem 4.10 shows that the original estimator and the max-gap estimator are both
consistent, and establishes theoretical guarantees for the localization step.

5 Simulations

To better understand finite sample properties of the proposed method, we evaluate its performance
in simulations and against baselines. Additional details and results including type I error (p-value
calibration), power comparison and performance comparison on strings are included in the Appendix.

Data generating process. We set ⇢⇤ = 1/3. Following Vogt and Dette (2015), we consider a
location model, a volatility model, and we add a network model. For the location model (2), we
include univariate cases with "t ⇠ N(0, 1) and four different types of change ordered in increasing
difficulty: (i) linear change µ1(u) = I(1/3  u  2/3)(3u � 1) + I(u � 2/3); (ii) quadratic
change µ2(u) = I(1/3  u  2/3)(3u � 1)2 + I(u � 2/3); (iii) one-sided change µ3(u) =
2 sin(2.5⇡(u�1/3))I(1/3  u  2/3)+I(u � 2/3) in the sense that µ3(u) > µ3(⇢⇤) for all u > ⇢⇤;
and (iv) a complex change µ4(u) = 2 sin(4⇡(u�1/3))I(1/3  u  2/3)+2 sin(4⇡/3)I(u � 2/3).
We also consider multivariate Yt,T 2 Rd where µ5 = µ11d, "t ⇠ Nd(0, Id). For volatility model
(3), we consider �i(u) = µi(u) + 1, "t ⇠ N(0, 1), 8i = 1, 4. For network model, we set Yt,T as the
Erdos-Renyi random graph with 10 nodes. At each time u 2 [0, 1], there exists a 3-node community
such that the possibility of forming an edge among them follows Binomial(1, p(u)) independently.
Here p(u) = 0.8I(1/3  u  2/3)(3u� 1) + 0.8I(u � 2/3) + 0.1. The probability of forming an
edge between other pair of nodes always follows a Binomial(1, 0.1).

Baselines. We consider four gradual CPD baselines, ordered in increasing generality: ⇢̂poly (Hušková,
1999) which requires univariate location model with polynomial change, ⇢̂one-side (Mallik et al., 2013)
which requires univariate location model with one-sided change, ⇢̂mix (Quessy, 2019) which requires
any general model with a mixture type of change whose mixture weight changes linearly with time,
and ⇢̂gen (Vogt and Dette, 2015) which does not have any particular constraints on model or type of
change. We also include three nonparametric abrupt CPD methods: KCpA (Harchaoui et al., 2008),
Zw (Chu et al., 2019), and Q (Matteson and James, 2014)).

Detailed setup. Setting I (main experiment): We set T = 600. For ⇢̂one-side we tune the bandwidth on
20 independently generated datasets among {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 5}.
For each dataset, for fairness we use the same kernel for ⇢̂, ⇢̌ and KCpA, and use its corresponding
distance for Q,Zw and function class F for ⇢̂gen. For location model, F = {f : x 7! xi, 8i =
1, · · · , d}; for network model, F = {f : x 7! xij , 8i, j = 1, · · · , 10}; for volatility model,
F = {f : x 7! x2

}. For ⇢̂poly we set the polynomial to the true degree if the polynomial model is
correct, and 1 otherwise. As recommended by their authors, we use a granularity of 20 for ⇢̂mix and
minimum spanning tree to construct the binary graph for Zw. Threshold for ⇢̂gen is computed using
strategy described in Section 6 of Vogt and Dette (2015).

Setting II (influence of bandwidth): We note that both the proposed method and KCpA are kernel-
based. In setting I, we use the kernel that is theoretically best for both of them. As suggested by
reviewers, in this setting, we search for the empirically best RBF kernel k(y, y0) = exp{�ky �

y0k2/h} where h is the bandwidth and is tuned among {0.01, 0.05, 0.1, 1, 5, 10, 20, 50, 100, 500} on
20 independently generated data sets. Here k · k is the l2 distance for scalars/vectors and Frobenius
norm for network. We set T = 210 and report the testing performance on 20 separate testing sets.

Metrics and Results. We report the power and l1 error of estimated change points. For fairness,
power of all methods are computed via 500 permutations under significance level ↵ = 0.05. Due
to space limit, detailed results on power are included in the Appendix - performance of all abrupt
as well as gradual CPD methods are similar. In terms of localization, however, performance varies.
In Table 1a, the abrupt CPD methods (KCpA, Q, Zw) have a large error in most settings, which is
not surprising because KCpA, Q are designed for abrupt changes. For ⇢̂poly, ⇢̂one-side which require
assumptions on the changing form, the localization is accurate when assumptions are satisfied, but
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Table 1: Comparison of average l1 localization error over 20 simulations. Numbers after ± are the standard
error of the average. Methods marked with ‘-’ means not applicable to that model.

(a) Setting I.
MODEL LOCATION VOLATILITY NETWORK

DIM 1 1 1 1 10 20 50 1 1 102

CHANGE LINEAR QUADRATIC ONE-SIDED COMPLEX LINEAR LINEAR LINEAR LINEAR COMPLEX LINEAR

⇢̌ 0.09±0.01 0.15±0.01 0.03±0.00 0.03±0.01 0.07±0.01 0.06±0.01 0.05±0.01 0.15±0.01 0.05±0.00 0.10±0.02

⇢̂ 0.10±0.01 0.24±0.01 0.08±0.00 0.05±0.01 0.08±0.01 0.10±0.01 0.09±0.01 0.26±0.01 0.12±0.00 0.11±0.02

⇢̂POLY
0.05±0.01 0.09±0.02 0.10±0.01 0.23±0.00 - - - - - -

⇢̂ONE-SIDE 0.07±0.01 0.09±0.02 0.02±0.00 0.62±0.00 - - - - - -
⇢̂MIX

0.05±0.01 0.09±0.01 0.14±0.00 0.12±0.00 0.08±0.00 0.18±0.02 0.43±0.00 0.08±0.01 0.14±0.00 -
⇢̂GEN 0.17±0.01 0.24±0.01 0.07±0.00 0.05±0.00 0.13±0.01 0.15±0.01 0.14±0.00 0.26±0.01 0.12±0.00 0.27±0.00

Q 0.18±0.01 0.23±0.01 0.05±0.00 0.27±0.00 0.16±0.01 0.17±0.00 0.16±0.00 0.21±0.01 0.06±0.00 0.16±0.01
KCPA 0.18±0.01 0.23±0.01 0.05±0.00 0.27±0.00 0.16±0.01 0.16±0.00 0.16±0.00 0.21±0.01 0.06±0.00 0.16±0.01
Zw 0.24±0.04 0.29±0.04 0.09±0.02 0.29±0.01 0.16±0.01 0.17±0.01 0.18±0.01 0.18±0.03 0.16±0.03 0.16±0.02

(b) Setting II.
MODEL LOCATION VOLATILITY NETWORK

DIM 1 1 1 1 10 20 50 1 1 102

CHANGE LINEAR QUADRATIC ONE-SIDED COMPLEX LINEAR LINEAR LINEAR LINEAR COMPLEX LINEAR

⇢̌ 0.14±0.01 0.19±0.01 0.05±0.01 0.04±0.01 0.07±0.01 0.05±0.01 0.08±0.01 0.15±0.01 0.13±0.01 0.02±0.01

⇢̂ 0.12±0.01 0.18±0.01 0.09±0.01 0.07±0.01 0.09±0.01 0.07±0.01 0.11±0.01 0.15±0.01 0.21±0.01 0.07±0.01

KCPA 0.18±0.01 0.23±0.01 0.05±0.01 0.29±0.01 0.21±0.01 0.16±0.01 0.18±0.01 0.28±0.02 0.23±0.06 0.17±0.01

poor otherwise. ⇢̂mix performs well in low dimensions and when the change (approximately) satisfies
its assumption, but poorly when either one is violated. The proposed estimators ⇢̂, ⇢̌ are robust across
different settings and ⇢̌ has improved performance over ⇢̂. ⇢̂gen is also significantly outperformed
by ⇢̌. Finally, note ⇢̂mix, ⇢̂gen are more computationally expensive than the others. In Table 1b, the
conclusion is consistent where we use RBF kernel with tuned bandwidth. Together, Table 1 shows
the advantage of ⇢̂, ⇢̌ in terms of handling general types of data and general types of changes.

6 Real Data Applications

Different from most machine learning tasks, there are currently no benchmarking dataset with human
annotations for gradual CPD. Thus, we consider the applications introduced in Section 1, and compare
our result with known external events and/or other CPD estimators.

Central England Temperature. The Central England Temperature (CET) record (Parker et al.,
1992) under Open Government License is the oldest temperature record worldwide and is a valuable
source for studying climate change. It contains the monthly mean temperature in central England
from 1750 to 2020. Since there is a cycle of 12 months for the measurements, following Horváth
et al. (1999), we view the data as n = 271 curves with 12 measurements on each curve. We set
k(y, y0) = y>y0 where y, y0 2 R12. Using max-gap estimator, we identify 1827 as the change
point (shown in red vertical line in Figure 1a), which roughly corresponds to the beginning of mass
industrialization and is close to the 1850 estimated by Berkes et al. (2009).

S&P 500 Index. The S&P 500 is a stock market index which tracks the stock of 500 large US
companies and is usually used as a benchmark of the overall market. We investigate the daily return
data of the S&P 500 index1 in two periods, one from 2008/01/02 to 2008/12/31 and another from
2019/06/03 to 2020/06/01. Both time periods contain a change point where volatility level gradually
increases. Following Vogt and Dette (2015), the daily return Yt,T roughly follows the volatility model
(3) and our task is to identify changes in �(·). We define the kernel as k(y, y0) = y2(y0)2 where
y, y0 2 R. In both periods, we detect a change under ↵ = 0.05. The first period has an estimated
change point 2008/09/16, following Lehman Brothers Bankruptcy in September 15 which is often
viewed as a turning point in the crisis. The second period has an estimated change point 2020/02/24,
days in the initial phase of the community spread of COVID-19 in the United States. The estimated
change points are shown in red vertical lines in Figure 1b.

7 Related Work

Here we discuss some related work, with some additional reviews included in Section E in Appendix.
1S&P Dow Jones Indices LLC, S&P 500 [SP500], retrieved from https://finance.yahoo.com/quote/

%5EGSPC/history/.
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Difference with Vogt and Dette (2015). The major improvements of this work over Vogt and Dette
(2015) are discussed in detail in Sections 1, 3. Other differences include: Vogt and Dette (2015) allow
correlated observations, while we assume independence; Vogt and Dette (2015) uses estimator (3),
while we propose a refined max-gap estimator that performs better empirically. We note that the our
method might also be adapted for the correlated case, a possible direction for future work.

Abrupt CPD. Abrupt CPD methods assume the distribution remains stationary until the change
point when it jumps to another distribution, and remains stationary there. There is a rich literature
on them; see Niu et al. (2016); Aminikhanghahi and Cook (2017); Truong et al. (2020) for detailed
surveys. In our experiments, we find that abrupt CPD methods seem to produce poor localization
estimators for gradual changes. Here we explain this phenomenon by giving a toy example in
which the abrupt CPD methods fail to be consistent. Consider the case where Yi,T = µ1(i/T ) with
µ1(u) = I(1/3  u  2/3)(3u � 1) + I(u � 2/3). Recall that all three abrupt CPD methods we
consider (KCpA, Q, Zw) estimate the change point as

⇢̃ := argmax
t

d(P0(t), P1(t)), (19)

where d(P0(t), P1(t)) is some (standardized) discrepancy measure between the two groups of data
separated by t. Notice that Equation (19) differs fundamentally from the proposed estimator (12).
For Q, if we set ↵ = 2 in Equation (4) of Matteson and James (2014), one can easily show that ⇢̃
converges to 1/2, which is different from the truth 1/3. This same observation also holds for KCpA
and Zw with more complicated analysis, but the general observation is that estimators of the form
(19) may fail to be consistent under some gradual changes.

MMD. The Maximum Mean Discrepancy (MMD) is proposed in Gretton et al. (2012) for two-sample
tests. We note that our intermediate statistic bKT (u, v) is similar to MMD. However, we emphasize
the differences here: First, MMD is designed for two-sample tests where all theoretical analyses
are based on two fixed samples, while we aim at the change point problem where we do not know
where the true change point is. Thus, our final statistic bDT requires extra and careful handling (e.g.,
the scaling factor v2(u � v)2/u2 and the max over v 2 [0, u]). These extra terms complicate the
theoretical analysis (see Theorem 4.4). Second, the alternative in two-sample tests is that the two
groups of data follow two different distributions; however, with gradual change point problems,
we really do not have two distinct distributions but an infinite number of different distributions!
Indeed, the main theoretical difficulty of this work lies in characterizing the behavior of bDT under the
alternative with gradual changes, which is quite different from the (local) alternatives in two-sample
tests and requires more involved analysis. Further, the more difficult task we address is to localize the
change point (instead of detecting change points), which does not exist for two sample tests.

CUSUM. The CUSUM principle was proposed by Page (1954) and has led to a rich literature. Some
papers have investigated using CUSUM under gradual changes (Bissell, 1984a,b; Gan, 1992), but
they considered only simple settings with a linear trend in the mean of univariate data, and their
analyses are based mostly on empirical studies.

Kernel-based CPD methods. Existing kernel-based CPD methods all focus on the abrupt settings
(Harchaoui et al., 2008; Arlot et al., 2012; Li et al., 2015; Garreau et al., 2018). We emphasize that
their method is fundamentally different from ours, and, as far as we know, none of them produces a
consistent localization estimator in the settings considered in this paper.

8 Discussion

We propose a general method to detect and to localize gradual changes in sequence data. Despite the
relaxed assumptions, the proposed method is theoretically guaranteed, and the proposed max-gap
estimator achieves good empirical performance. Note that the proposed method also works for abrupt
CPD with Corollary 4.1 and Theorem 4.10 hold. In contrast, many abrupt CPD methods perform
poorly in gradual change settings. The trade-off is that for abrupt changes or gradual changes with
a known pattern (e.g., polynomial), our method often does not perform as good as those designed
especially for those settings. There are no foreseeable negative social impacts of this work.
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mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] All methods included in the experiment are unsupervised and
choice of other hyperparameters are specified in Section 5 and the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.
(b) Did you mention the license of the assets? [Yes] See Section 6.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Data are publicly available.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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