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Abstract

This paper studies a natural generalization of the problem of minimizing a convex function f
by querying its values sequentially. At each time-step t, the optimizer selects a query point
Xt and invests a budget bt (chosen by the environment) to obtain a fuzzy evaluation of f
at Xt whose accuracy depends on the amount of budget invested in Xt across times. This
setting is motivated by the minimization of objectives whose values can only be determined
approximately through lengthy or expensive computations, where it is paramount to recycle
past information. In the univariate case, we design ReSearch, an anytime parameter-free
algorithm for which we prove near-optimal optimization-error guarantees. Then, we present
two applications of our univariate analysis. First, we show how to use ReSearch for stochastic
convex optimization, obtaining theoretical and empirical improvements on state-of-the-art
benchmarks. Second, we handle the d-dimensional budget problem by combining ReSearch
with a coordinate descent method, presenting theoretical guarantees and experiments.

1 Introduction

Consider the following fundamental question: given a convex real-valued function f , how can we efficiently
and sequentially select oracle queries of it in order to recommend a point x such that f(x) is as close as
possible to the infimum of f? This problem is known as zeroth order convex optimization and has been
studied for more than half a century (Rosenbrock, 1960). The field has also recently attracted the interest of
the machine learning and statistical community because computing the gradient of a function that depends
on a large dataset (e.g., the empirical risk) can be very expensive if not unfeasible (see for example Bubeck
et al. 2021 and references therein). Another significant application arises in simulation-based optimization,
where the goal is to optimally tune the parameters of a system by only observing its output (Conn et al.,
2009; Spall, 2005).
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There are several different ways to model this problem. In the deterministic setting, the oracle answers
each query x with the exact value f(x). The classic stochastic setting alleviates the restrictiveness of the
deterministic oracle by assuming that each query x returns a noisy independent estimation of f(x). This
oracle model is still not flexible enough to cover applications where perturbations are not independent or
where the optimizer can compute the value f(x) at a query point x with incremental precision. The former is
crucial to include scenarios where errors have long-range dependence (Lahiri, 2003; Beran, 2017). The latter
has several practical applications, e.g., when the values of f are the results of long sums (as in time-series
forecasting via weighted empirical risk minimization; Kuznetsov & Mohri 2015; 2016) or, crucially, when they
can only be computed approximately through lengthy simulations (as it happens ubiquitously in the field of
computer experiments; Santner et al. 2003; Sacks et al. 1989).

Contributions. We make the following contributions:

• We design a novel zeroth-order budget optimization setting where the oracle answers each query x
with an interval that is guaranteed to contain f(x) and whose length decreases with the amount of
budget invested on x so far. In addition to generalizing the deterministic and stochastic settings, our
model also captures the aforementioned problems not covered by them. (Section 2.)

• We design ReSearch, an anytime, practicable, and parameter free algorithm for univariate zeroth-order
budget convex optimization that works under a minimal convexity assumption on f . (Section 3.1.)

• We prove a sharp anytime upper bound on the optimization error of ReSearch. Furthermore,
our analysis reveals that the optimal dependence on the Lipschitz constant of f is extremely
mild, asymptotically negligible, and can be entirely lifted by transitioning to a continuous budget
optimization setting. (Section 3.2.)

• We prove a matching (up to constants) lower bound, certifying the optimality of ReSearch. (Sec-
tion 3.3.)

• We apply ReSearch and its analysis to univariate stochastic convex optimization, improving the
state-of-the-art guarantees for this problem. (Section 4.1.)

• We illustrate how to handle the d-dimensional budget setting using ReSearch as a subroutine of a
coordinate-descent algorithm and provide corresponding theoretical guarantees. (Section 4.2.)

• Finally, we present illustrative experiments supporting our theory in the univariate stochastic and
uni/multivariate budget settings. (Section 5.)

Related Work. Zeroth-order convex optimization is a massive field with vast literature. We limit our
discussion to references more closely aligned with the scope of this paper.

The deterministic case is the simplest setting in zeroth-order optimization, where the oracle answers each
query x with the exact value of the objective f(x) (see Nesterov et al. 2018 and references therein). Although
not the core of our work, we highlight that in this setting, our one-dimensional algorithm ReSearch achieves
the well-known optimal geometric decay on the optimization error while not requiring the objective to be
globally Lipschitz.

To the best of our knowledge, our flexible budget setting with errors decaying as functions of the budget is
not addressed theoretically in the convex optimization literature. The more specific stochastic setting, where
the oracle answers queries with random independent estimates of the objective, is studied in particular by
Agarwal et al. (2013); Jamieson et al. (2012); Shamir (2013); Belloni et al. (2015). Our budget setting recovers
it as a special case when errors decay as O(1/

√
budget). In the one-dimensional case, an optimization error of

Ω(1/√T) is unavoidable in the stochastic setting, even knowing the time-horizon T in advance and under the
additional assumptions of smoothness and strong-convexity (see Shamir 2013, Theorem 3). This rate is also
achieved by Belloni et al. (2015) and Lattimore (2020), with high-probability and in-expectation respectively,
up to extra log terms; however, these algorithms are quite involved. Agarwal et al. (2013) and Jamieson
et al. (2012) propose simpler and more practical trisection-based algorithms with similar optimization error
guarantees. While these algorithms share some features with ReSearch (e.g., they monitor confidence-interval
separation to discard domain portions), our analysis departs substantially from those of Agarwal et al. (2013)
and Jamieson et al. (2012), leading to additional theoretical benefits (in particular, a negligible dependence
on the Lipschitz constant and an improved logarithmic dependence on the time horizon T ). Finally, in
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contrast to the works above, we highlight that our reduction from the univariate budget to the univariate
stochastic setting hold without any additional assumption (such as strong convexity, smoothness, or global
Lipschitzness).

2 Setting

Given a bounded convex set I ⊂ Rd, our goal is to minimize an unknown convex function f ∶ I → R picked
by a possibly adversarial and adaptive environment by only requesting fuzzy evaluations of f . At every
interaction t, the optimizer selects a query point Xt and the environment selects and reveals a budget bt.
This budget is then used to reduce the fuzziness on the value of f(Xt), modeled by an interval Jt ∋ f(Xt). In
other words, the reader might think of the budget as a perishable (must be spent in full at every interaction)
and non-divisible (all must be spent in a single query point) amount of resources made available by the
environment to reduce the fuzziness of the value of the unknown objective at the current query point.

The interactions between the optimizer and the environment are described in Optimization Protocol 1.

Optimization Protocol 1
input: A non-empty bounded convex set I ⊂ Rd (the domain of the unknown objective
f)

1: for t = 1, 2, . . . do
2: The optimizer selects a query point Xt ∈ I where to invest the next budget
3: The environment picks and reveals budget bt > 0 and an interval Jt ⊂ R such that f(Xt) ∈ Jt

4: The optimizer recommends a point Rt ∈ I

We stress that the environment is adaptive. Indeed, the intervals Jt that are given as answers to the queries
Xt can be chosen by the environment as an arbitrary function of the past history, as long as they represent
fuzzy evaluations of the convex objective f (i.e., as long as f(Xt) ∈ Jt for all t).

Note that optimization would be impossible without further restrictions on the behavior of the environment,
since an adversarial convex environment could return Jt = R for all t ∈ N, making it impossible to gather any
meaningful information. We limit the power of the environment by relating the amount of budget invested in
a query point Xt with the length of the corresponding fuzzy representation Jt of f(Xt), as quantified by the
following assumption.
Assumption 2.1. There exist c ≥ 0 and α > 0 such that, for any t ∈ N, if the optimizer invested the budgets
b1, . . . , bt in the query points X1, . . . , Xt, then

∣Jt∣ ≤ c/Bα
t ,

where ∣Jt∣ denotes the length of Jt and Bt ∶= ∑t
s=1 bsI{Xs =Xt} is the total budget invested in Xt up to time

t.

The performance of a recommendation RT is evaluated with the optimization error f(RT ) − infx∈I f(x).

3 An optimal algorithm for the univariate case

In this section we study the univariate budget convex optimization problem, i.e., the case when the underlying
convex set I ⊂ R is a bounded interval. To solve this problem we propose ReSearch, an algorithm exploiting
the 1-dimensional nature of the problem by following a query strategy that allows the learner to recycle most
of the past queries (Algorithm 2).

3.1 ReSearch

Before presenting its pseudo-code, we introduce some notation. For any positive integer n ∈ N we denote by
[n] the set {1, . . . , n} of the first n integers. Let P ∶= {∎◻◻◻,◻◻◻∎,∎∎◻◻,◻◻∎∎,∎◻◻∎}. The blackened parts
of the elements of P represent which portions of the active interval maintained by ReSearch the algorithm
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Figure 1: A representation of the delete function. Since J+l ≤ J−r , the points right of r are deleted, i.e.,
delete(Jl, Jc, Jr) = ◻◻◻∎.
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Figure 2: The uniform (u) and non-uniform (/u) partition functions applied to the interval I = [0, 1].

will delete. Additionally, we will consider the element ◻◻◻◻ representing the case where no parts of the
active interval will be deleted. Let J be the set of all intervals, and I ⊂ J that of all bounded intervals.
Furthermore, for any interval J ∈ J , let J− ∶= inf(J) and J+ ∶= sup(J). ReSearch relies on four auxiliary
functions: the delete function, the uniform partition function u, the non-uniform partition function /u, and
the update function. The delete function (see Figure 1)

delete ∶ J 3 → P ∪ {◻◻◻◻}

is defined, for all (Jl, Jc, Jr) ∈ J 3, by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∎∎◻◻ if J−c ≥ J+r , else
◻◻∎∎ if J−c ≥ J+l , else
∎◻◻∎ if J−l ≥min(J+c , J+r ) & J−r ≥min(J+l , J+c ), else
∎◻◻◻ if J−l ≥min(J+c , J+r ), else
◻◻◻∎ if J−r ≥min(J+l , J+c ), else
◻◻◻◻ .

In words, the intervals Jl, Jc, Jr will represent the fuzzy evaluations of three points l < c < r in the domain of
the unknown objective (left, center, and right). Since we are assuming that the objective is convex, note
that whenever an upper bound on the value of the objective at a point x is lower than the lower bound at
another point y that is left (resp., right) of x, then, all points that are left (resp., right) of y (y included) are
no better than x. Therefore, the function delete returns which part of an interval containing three distinct
points l < c < r should be deleted given the fuzzy evaluations Jl, Jc, Jr. (E.g., ∎∎◻◻ represents the deletion of
all points of the active interval left of c, ◻◻◻∎ represents the deletion of all points of the active interval right
of r, ◻◻◻◻ is returned when the fuzzy evaluations are not sufficient to delete anything, etc.)

The uniform and non-uniform partition functions (see Figure 2) are defined, respectively, by

u ∶ I→ R3 , I ↦ ( 3
4 I− + 1

4 I+, 1
2 I− + 1

2 I+, 1
4 I− + 3

4 I+) ,

/u ∶ I→ R3 , I ↦ ( 2
3 I− + 1

3 I+, 1
2 I− + 1

2 I+, 1
3 I− + 2

3 I+) .

In words, the uniform (resp., non-uniform) partition function u (resp., /u) returns the three points that are at
1/4, 1/2, and 3/4 (resp., 1/3, 1/2, and 2/3) of the input interval I.
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The update function
update ∶ I × {u, /u} ×P → I × {u, /u}

is defined, for all (I, ϑ, del) ∈ I × {u, /u} ×P, by the table:

u /u
∎∎◻◻ ([ 1

2 I− + 1
2 I+, I+], u) ([ 1

2 I− + 1
2 I+, I+], /u)

◻◻∎∎ ([I−, 1
2 I− + 1

2 I+], u) ([I−, 1
2 I− + 1

2 I+], /u)
∎◻◻∎ ([ 3I−+I+

4 , I−+3I+

4 ], u) ([ 2I−+I+

3 , I−+2I+

3 ], u)
∎◻◻◻ ([ 3

4 I− + 1
4 I+, I+], /u) ([ 2

3 I− + 1
3 I+, I+], u)

◻◻◻∎ ([I−, 1
4 I− + 3

4 I+], /u) ([I−, 1
3 I− + 2

3 I+], u)

In words, when applied to an interval I, a type of partition ϑ, and a symbol del (representing the subset of I
to be deleted), the update function returns as the first component the interval I pruned of the subset of I
specified by ϑ and del, and, as the second component, how the new interval will be partitioned. It can be
seen that the types of partitions returned by update are chosen so that our ReSearch algorithm will only
query points on a (rescaled) dyadic mesh (e.g., if I = [0, 1], ReSearch will only query points of the form k/2h,
for k, h ∈ N).

For all t ∈ N, if the sequence of budgets picked by the environment up to time t is b1, . . . , bt, the se-
quence of query points selected by the optimizer is X1, . . . , Xt, the corresponding feedback is J1, . . . , Jt (see
Optimization Protocol 1), then, for each x ∈ R, we define the quantities

Bx,t ∶=
t

∑
s=1

bsI{Xs = x} and Jx,t ∶= ⋂
s∈[t],Xs=x

Js

with the understanding that Jx,t = R whenever Xs ≠ x for all s ∈ [t]. Furthermore, define Bx,0 = 0 for all
x ∈ R. In words, Bx,t is the total budget that has been invested in x by the optimizer up to and including
time t, while Jx,t is the best fuzzy evaluation of the unknown objective at x that is available at the end of
time t.

The pseudocode of ReSearch is provided in Algorithm 2. ReSearch proceeds in epochs τ where it maintains
an active interval Iτ and three query points lτ , cτ , rτ ∈ Iτ . During each epoch τ , it repeatedly queries a point
in {lτ , cτ , rτ} where it invested the least amount of budget until the function delete has gathered enough
information to prune the current active interval. When this happens, first it updates the active interval and
the type of partition using the update function. Then, it computes the three query points lτ+1, cτ+1, rτ+1 of
the next epoch τ + 1. Notably, among lτ+1, cτ+1, rτ+1 there will be the point among lτ , cτ , rτ that has the
smallest value of f (or one of them, if there are more than one). Afterwards, the algorithm recommends a
point x ∈ {lτ+1, cτ+1, rτ+1} with the best known upper bound J+x,t on the value of f(x) available at the present
time t,1 and concludes the current epoch. In all rounds in which function delete has not yet gathered enough
information to prune the current active interval, the algorithm makes different recommendations depending
on whether or not the amount of budget invested in the current epoch is higher than the amount of budget
spent in all past epochs combined. See Figure 3 for an illustration of how ReSearch works.

We stress that ReSearch is any-time (it does not need to know the time horizon T a priori), any-budget
(it does not need to know the total budget B ∶= ∑T

t=1 bt) and does not require the unknown objective to be
Lipschitz. Nevertheless, we will show in Theorems 3.1 and 3.2 that its performance is guaranteed to be
near-optimal even when compared to algorithms with full knowledge of T and B, and run on convex Lipschitz
functions with known Lipschitz constant.

3.2 Upper bound

We now provide theoretical guarantees for ReSearch.
1Under Assumption 2.1, this corresponds to recommending a point x ∈ {lτ , cτ , rτ} with the best known upper bound J+x,t on

the value of f(x) that will “survive” as a query point of the next epoch. Indeed, for x ∈ {lτ+1, cτ+1, rτ+1} ∖ {lτ , cτ , rτ}, we have
J+x,t = +∞, since x has never been evaluated. On the other hand, any x ∈ {lτ , cτ , rτ} has already been evaluated, hence J+x,t <∞.
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Algorithm 2 ReSearch
input: A non-empty bounded interval I ⊂ R (the domain of the unknown objective)
initialization: I1 ∶= [I−, I+], ϑ1 ∶= u, (l1, c1, r1) ∶= ϑ1(I1), t0 ∶= 0, B0 ∶= 0, B1,0 ∶= 0

1: for epochs τ = 1, 2, . . . do
2: for t = tτ−1 + 1, tτ−1 + 2, . . . do
3: Query Xt ∈ argminx∈{lτ ,cτ ,rτ}

Bx,t−1
4: Let delt ∶= delete(Jlτ ,t, Jcτ ,t, Jrτ ,t)
5: Let Bτ,t ∶= Bτ,t−1 + bt and τt ∶= τ
6: if delt ≠ ◻◻◻◻ then
7: Let tτ ∶= t, Bτ ∶= Bτ,t, and Bτ+1,t ∶= 0
8: Let (Iτ+1, ϑτ+1) ∶= update(Iτ , ϑτ , delt)
9: Let (lτ+1, cτ+1, rτ+1) ∶= ϑτ+1(Iτ+1)

10: Recommend Rt ∈argminx∈{lτ+1,cτ+1,rτ+1} J+x,t

11: break
12: else if Bτ,t ≥ ∑τ−1

τ ′=0 Bτ ′ then
13: Recommend Rt ∈ argminx∈{lτ ,cτ ,rτ}

J+x,t

14: else
15: Recommend Rt ∶= Rtτ−1

f(x)

x

τ

Figure 3: A run of ReSearch. Here, the function is piece-wise linear and its graph is in thick black. The
horizontal segments are the active intervals Iτ of consecutive epochs τ . The short vertical segments are the
current query points lτ , cτ , rτ of epoch τ , and the dots (prolonged down vertically) are the recommendations
at the end of each epoch, that converge towards x⋆. Note that, from one epoch to the next, two out of three
points are kept (together with their guarantees), maximizing the recycling of past information.
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Theorem 3.1. For any bounded interval I ⊂ R, if the optimizer is running ReSearch (Algorithm 2) with
input I in an environment satisfying Assumption 2.1 for some c ≥ 0 and α > 0, then, there exist c1 ≤
12 ⋅ (48/(21/α − 1))α, c2 ≤ 9/8, c3 ≥ (ln 2)/48 such that, for any time T ∈ N, every sequence of budgets
b1, . . . , bT > 0, and every convex function f ∶ I → R, the optimization error f(RT ) − infx∈I f(x) is upper
bounded by

c1 ⋅
c

(∑T
t=1 bt)α

+ c2 ⋅L ∣I ∣ exp(−c3 ⋅
∑T

t=1 bt

maxt∈[T ] bt
) , (1)

where L is the local Lipschitz constant of f on [lτT
, rτT
].

The full proof of this result can be found in Appendix A. Before presenting a sketch of it here, we make a few
remarks. First, note that the bound is non-trivial even when the function is not globally Lipschitz (as it is
the case, e.g., for the function f(x) = −

√
1 − x2 defined on the interval I = [−1, 1]), since it depends on a local

Lipschitz constant L (which is always finite) that, informally, as the epochs go by, captures better and better
how much the function varies around the points that are close to the minimum.2 Second, note that (up to
the constants c1, c2, c3) the bound consists of two terms.

The first term c/(∑T
t=1 bt)α is a consequence of the fuzziness of the evaluations, that is regulated by Assumption

2.1: when ∑T
t=1 bt ≥ 1, it decreases when α increases or c decreases. Moreover, when c = 0 and bt = 1 for

all t ∈ [T ], our problem reduces to deterministic convex optimization. In this case, the first term vanishes
completely, leaving behind only the known optimal exponentially-decaying rate L ∣I ∣ e−Ω(T ) for deterministic
convex optimization.

The second term L ∣I ∣ e−Ω(∑T
t=1 bt/maxt∈[T ] bt) is a consequence of the discrete nature of our setting. Notably, if

the optimizer could choose to invest infinitesimally small budgets bt (i.e., if the discrete optimization protocol
became a continuous one), the term would vanish completely. Strikingly, when this is the case, the bound
becomes completely independent of the Lipschitz constant L. To the best of our knowledge, this is the first
result in convex optimization that shows how the dependence on L could be entirely lifted if we transitioned
from a discrete to a continuous setting. In other words, our bound gives a parameterization of the dependence
on the Lipschitz constant in terms of how close our setting is to a continuous one. The high-level reason for
this behavior is that, in a discrete setting, the optimizer might be forced to spend a large amount of budget
bt on a point Xt where a significantly smaller investment would have been sufficient to determine whether or
not that point was suboptimal. In this case, if the function is varying significantly, the number of queries
could not be sufficient to get close to a minimizer, and this would yield an optimization error that scales with
L. Finally, we note that, naturally, the Lipschitz constant L and the domain length ∣I ∣ appear as a product.
Indeed, shrinking (resp., dilating) the domain of a function f ∶ I → R corresponds (inversely-proportionally) to
an increase (resp., decrease) of the Lipschitz constant.

Proof sketch. We divide the analysis in the 3 cases sketched below, depending on how ReSearch selects RT .

1. delT ≠ ◻◻◻◻. In this case, we partition the number of epochs in several classes and focus our attention
on the class where we invested the highest fraction of the total budget ∑T

t=1 bt. Say that this class
contains n epochs. If n is small, we show that in the last epoch of this class there exist two query
points that are near-optimal and that the recommendation RT of ReSearch has guarantees that are
close to those of these two near-optimal points. If, on the other hand, n is large, the result follows by
the local Lipschitzness of f .

2. delT = ◻◻◻◻ and the majority of the budget was invested in the last epoch. In this case, we split
again the analysis in two further cases. If the maximum budget maxt∈[T ] bt is small, we show that all
three query points of the last epoch are near-optimal, therefore so is the recommendation RT . If, on
the other hand, the maximum budget maxt∈[T ] bt is large, we fall back again to the local Lipschitzness
of the objective.

3. delT = ◻◻◻◻ and the majority of the budget was invested before the last epoch. Since in this case the
recommendation RT is the same as the recommendation that ended the previous epoch, the result
follows by Item 1, using half of the total budget.

2For more on the advantages of an adaptive local Lipschitz constant, see Appendix E.

7



Published in Transactions on Machine Learning Research (10/2024)

3.3 Lower bound

In this section, we show that ReSearch is worst-case optimal: there exist instances where the upper bound of
Theorem 3.1 is matched (up to possibly different constants c1, c2, c3). The apparent asymmetry between our
upper and lower bounds is due to the fact that, in Theorem 3.2:

• We gave the optimizer the freedom to select the time horizon T and total budget B ahead of time.
• We restricted the result to convex Lipschitz functions.

Note that both these changes make our results stronger, since ReSearch is able to match the lower bound
despite lacking the freedom to select T, B (in fact, being totally oblivious to a possibly adversarial choice of
both) and Theorem 3.1 holds even for non-Lipschitz functions.
Theorem 3.2. For any nondegenerate bounded interval I ⊂ R, if the environment satisfies Assumption 2.1
for some c ≥ 0 and α > 0, then, there exist c1 ≥ 1/4, c2 ≥ 1/32e, c3 ≤ 1 such that, for any time T ∈ N, every total
budget B > 0, every Lipschitz constant L > 0, and every deterministic algorithm run by the optimizer, there
exists a sequence of budgets b1, . . . , bT such that ∑T

t=1 bt = B and there exists a max ( c
∣I ∣Bα , L)-Lipschitz convex

function f ∶ I → R, for which the optimization error f(RT ) − infx∈I f(x) is lower bounded by

c1 ⋅
c

(∑T
t=1 bt)α

+ c2 ⋅L ∣I ∣ exp(−c3 ⋅
∑T

t=1 bt

maxt∈[T ] bt
) . (2)

We defer the proof of this result to Appendix B.

4 Applications

We present two notable applications of our method. First, we show how to apply ReSearch to the case of
univariate stochastic convex optimization, improving on state-of-art bounds; remarkably and in contrast with
previous works, the algorithm does not require the Lipschitzness of the objective. Second, we illustrate how
to address the multivariate budget case by combining ReSearch with a classic coordinate descent method (see
Tseng 2001 and references therein) when the objective is smooth and strongly convex.

4.1 Univariate Stochastic Convex Optimization

In this section, we show how to apply ReSearch to the related problem of univariate stochastic convex
optimization (SCO). Typically, in this problem, one assumes that querying a point x returns an i.i.d.
subgaussian (noisy) evaluation of the unknown objective f(x). Instead, we will introduce a more general
setting where the key property is the concentration of the (averages of the) queried evaluations. This way, we
can recover the classic SCO but also obtain results for more general non-i.i.d. settings (see below).

Let I be a bounded interval and f ∶ I → R an unknown convex function.
Assumption 4.1. There exist α > 0, c∶ (0, 1) → (0,∞), m∶⋃t∈NRt → R, and a family of random variables
(Yx,s)x∈I,s∈N safisfying, for all x ∈ I and t ∈ N,

P [∣m(Yx,1, . . . , Yx,t) − f(x)∣ ≤ 1
2

c(δ)
tα ] ≥ 1 − δ .

Note that, in classic SCO, where for each x ∈ I, the sequence (Yx,t)t∈N is i.i.d. and σ-subgaussian, Assumption
4.1 is implied by Hoeffding’s inequality for α ∶= 1/2, c(δ) ∶=

√
8σ2 ln(2/δ) (for all δ ∈ (0, 1)) and m as

the empirical average. The case α < 1/2 in Assumption 4.1 is relevant to model errors with long-range
dependence (Lahiri, 2003; Beran, 2017). To give a simple example, consider that (Yx,t)t∈N are Gaussian
with Cov(Yx,t, Yx,s) = σ2(1 + ∣t − s∣)−β for t, s ∈ N and for a fixed β ∈ (0, 1). Then, it can be checked that
Assumption 4.1 holds with m as the empirical average, with α ∶= β/2 and with c(δ) ∶=

√
16σ2 ln(2/δ). This is

obtained by bounding the variance and then the tail of the (Gaussian) average.

Let T ∈ N be the time horizon. The learner interacts with the environment according to Optimization
Protocol 3. As before, the goal is to minimize the optimization error after T time steps f(RT ) − infx∈I f(x).
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Stochastic Optimization Protocol 3
1: for t = 1, . . . , T do
2: The optimizer selects a query point Xt ∈ I
3: The environment reveals YXt,Nt , where

Nt ∶= ∑s∈[t] I{Xs =Xt}
4: The optimizer recommends a point RT ∈ I

By running ReSearch with feedback Jt equal to a suitable confidence interval for f(Xt) (at each time
t), we extend the state-of-the-art for stochastic convex optimization (Agarwal et al., 2013) beyond the
globally-Lipschitz case and, even where the previous guarantees held, we improve them in two ways: we
remove a logarithmic factor from the bound and we only pay the Lipschitz constant in the non-dominating
term, which decreases exponentially with T .

To lighten the notation, let Mt ∶=m(YXt,1, . . . , YXt,Nt) and consider Algorithm 4.

Algorithm 4 ReSearch for SCO
input: Confidence parameter δ ∈ (0, 1)

1: for t = 1, . . . , T do
2: ReSearch selects the next query point Xt

3: The optimizer feeds ReSearch with the feedback
Jt ∶= [Mt − 1

2
c(δ)
Nα

t
, Mt + 1

2
c(δ)
Nα

t
]

4: ReSearch recommends a point RT

Note also that Mt is (in general) a biased estimate of f(Xt), even in the case when m is the empirical
average3.
Theorem 4.2. If the optimizer runs ReSearch for SCO (Algorithm 4), its optimization error is upper bounded
by

c1 ⋅
c(δ)
T α
+ c2 ⋅L ∣I ∣ exp (−c3 ⋅ T ) ,

on the complement of an event having probability O(T 2δ), where c1, c2, c3, L are as in Theorem 3.1.

In particular, in the i.i.d. subgaussian setting, picking δ = Θ(1/T 5/2) yields an expected optimization error of
order

√
(log T )/T , improving the state-of-the-art in Agarwal et al. (2013) by a log T factor.

We defer the proof of Theorem 4.2 to Appendix C.

4.2 Multivariate Budget Convex Optimization

We now illustrate how to use ReSearch to address the multivariate budget setting (see Algorithm 5), where
the objective f is defined on a convex bounded subset I ⊂ Rd. We use an adaptation to the budget setting of
a coordinate descent method in the spirit of Jamieson et al. (2012). Coordinate descent is typically analyzed
assuming that the objective f is strongly convex and smooth, which we also assume until the end of the
section.

Algorithm 5 proceeds by performing sequential line searches. During line search k, it uses ReSearch along a
segment determined by a base point xk and a randomly drawn axis i(k), recommending points based on
the recommendations of ReSearch. A line search is concluded as soon as the length of the active interval of
ReSearch is ≤ η. At the end of each line search, the base point xk+1 is updated using the best point found by
ReSearch.

3Because ReSearch recycles past observations multiple times, even after they have been used to decide which part of the
current interval to discard. (At a high level, the estimates of the values of the function at the points that we keep have the
tendency to “look better”.) This recycling of information is a feature, not a flaw of the algorithm, as it allows reaching an
approximate minimizer with a smaller number of queries (see Section 5.2).
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Figure 4: (a) The optimization error of ReSearch (black) is compared with the corresponding upper (red)
and lower (blue) bounds. (b) The median optimization error of ReSearch for SCO (black) is compared with
Jamieson et al. 2012 (green) and Agarwal et al. 2013 (orange); shaded areas are Inter-Quartile Ranges. (c)
The average optimization error of Algorithm 5 tuned as in Theorems 4.3 and D.1 (black) is compared with
its corresponding upper bound (red) and alternative choices of η: 1 (blue), 0.1 (purple), 0.01 (orange) —see
Section 5.3. Plots are in log scale. (d) The average runtime of Algorithm 5 is plotted against the dimension
of the problem —see Section 5.3. All, but (d), plots are in log scale.

Algorithm 5 Budget coordinate descent via ReSearch
input: Initial base point x0 ∈ I, threshold length η > 0

1: for k = 0, 1, . . . do
2: Pick i(k) uniformly at random from [d]
3: Run ReSearch for time steps s = 1, . . . , Tk(η) on the interval Ik ∶= {z ∈ R ∶ xk+zei(k) ∈ I}, recommending

xk +Rsei(k) at time ∑k−1
j=0 Tj(η) + s, where Tk(η) is the first time step where the length of the active

interval maintained by ReSearch is ≤ η
4: Set xk+1 = xk +RTk(η)ei(k)

For the sake of simplicity, we present our results in the case where the budgets bt are equal to 1, for all t.
Theorem 4.3 (Informal statement). Under Assumption 2.1, whenever f is strongly convex and smooth, for
any η > 0, the expected optimization error of Algorithm 5 is upper bounded by

(f(x0) − inf
x∈I

f(x))(1 − 1/Θ(d))K(T,η) +Θ(dη2) ,

where K(T, η) is the total number of line searches performed up to time T and the expectation is taken with
respect to the random draws of the directions i(0), i(1), . . . .

Moreover, an appropriate tuning of η yields the bound Õ(d(d/T )α) on the expected optimization error.

10
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For a formal statement, the proof of the previous theorem, and a more general version holding for arbitrary
budgets see Appendix D.

We now make the following comments.

First, to put things into perspective, when α = 1/2, we note that our rate d(d/T )1/2 for the budget setting
is in line with state-of-the-art bounds in the related classic field of (i.i.d. subgaussian) stochastic convex
optimization (Jamieson et al., 2012), where confidence intervals shrink at the rate in Assumption 2.1, with
α = 1/2.

Second, in convex optimization, strong convexity usually allows for unconstrained optimization (i.e., I ∶= Rd);
our method can be extended to this case by adding a pre-processing step before each line search that works
by doubling the search space sequentially on the given line until we can guarantee to contain the minimizer.
For the sake of conciseness, we leave this standard step out of our presentation.

Third, if one sets a target optimization error of ε, it is a consequence of Theorem D.1 that the runtime of
Algorithm 5 is of the order of (d1+α/ε)1/α. This is due to the fact that Line 3 takes constant time for each
function query and that after T iterations of Algorithm 5, the optimization error is of the order of d1+α/T α

(ignoring logarithmic factors). Furthermore, the algorithm, at each iteration, only needs to store three points
for ReSearch, the d-dimensional vector with the current direction, and finally the d pairs of interval limits
delimiting the box-constraint. Thus, the overall space complexity is of the order of d. We believe that it
is unlikely that in this setting one can obtains bounds that are independent from d. Indeed, in the related
stochastic case, (Shamir, 2013) shows that at least a linear dependence on d is unavoidable.

Finally, we highlight a remarkable benefit of coordinate descent frameworks (in particular, Algorithm 5): they
trade off some generality (by requiring strong convexity and smoothness) to gain an easy implementation and
obtain efficiency on the two separate fronts of query (by featuring state-of-the-art optimization error bounds)
and computational complexity (having low memory requirements and fast execution, irrespectively of the
dimension).

5 Experiments

We present a preliminary experimental evaluation in support of our theoretical findings, illustrating the
following. First, the performance of ReSearch is in line with the theoretical guarantees and, in practice,
closer to the lower (Theorem 3.2) than to the upper bound (Theorem 3.1). Second, Algorithm 4 significantly
outperforms its natural competitors. Third, the role played by the threshold parameter η in Algorithm 5,
and its performance compared to the upper bound.

5.1 Comparison with upper and lower bounds

This experiment aims at comparing the performance of ReSearch with the corresponding theoretical upper
(Theorem 3.1) and lower (Theorem 3.2) bounds. The oracle is based on the setting described in the first
part of the proof of Theorem 3.2 with parameters c = 0.1, α = 1/2, bt = 1 for all t. We test the performance of
ReSearch on a grid of time horizons T ∈ {102, 103, . . . , 106} against the objective f constructed in the lower
bound. Figure 4(a) shows that ReSearch performs well, appearing significantly (note the log scale) closer to
the lower than the upper bound.

5.2 Stochastic Case

This experiment (Figure 4(b)) aims at showing the effectiveness of Algorithm 4 when compared to the
uni-dimensional algorithms proposed in Agarwal et al. (2013) and Jamieson et al. (2012), which are state-
of-the-art for this setting. To this end, we optimize the function f(x) = 1

2 x2 over I = [0, 1]; notice that
f is 1-Lipschitz over I and its minimum value is 0. The stochastic oracle is implemented according to
Stochastic Optimization Protocol 3 with independent Gaussian noise with mean 0 and variance σ2 = 0.1.
This corresponds to having c(δ) =

√
σ2 ln(1/δ) and α = 1/2 in Assumption 4.1. We set all the algorithms with

the parameters indicated by the theory, so that the overall confidence is 1 − 1/T in all cases. Consistently
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with the previous section, we evaluate the algorithms on a grid of time horizons T ∈ {102, 103, . . . , 106}. Since
we are comparing high probability bounds, we measure the median optimization error and plot it with the
corresponding Inter-Quartile Range over 10 repetitions.

5.3 Multivariate case

These experiments illustrate the performance of Assumption 5 in the multivariate budget case. We minimize
the function f(x) = 1

2∥x∥
2
2 over [−1, 3d]d for d = 10, which has the minimum close to a corner, but not

exactly there. We implemented the oracle according to Optimization Protocol 1 and Assumption 2.1 with
c = 1, α = 1 and bt = 1 for all t. In addition to using the threshold ηT recommended by the tuning in
appendix D and the corresponding theoretical upper bound, we also run algorithm 5 using η ∈ {1, 10−1, 10−2}
for T ∈ {102, 103, . . . , 106}. We repeat each run 10 times and report the average optimization error and the
standard deviation (note the high concentration: paths have little to no variance). Figure 4(c) shows the
results (in logarithmic scale), highlighting that the tuning of the threshold ηT dictated by the theory can be
a little more conservative in some cases than some ad hoc choices of η, but it is still far better than the upper
bound (which is on par with state-of-the-art bounds for analogous settings) and a random guess of η.

In a second experiment, we considered the same problem setting and measured the runtime of the algorithm
against the dimension, varying the dimension d in the interval [10, 100] with a step of 10. We set a target
optimization error 0.1 and run the algorithm until it reaches it. In Figure 4(d) we reported the average
runtime across 10 repetitions. As predicted by the theory, the runtime follows the predicted d2 behavior and
remarkably the execution for d = 100 takes less than a second.

6 Conclusions

We designed and studied a flexible zeroth-order convex optimization setting, where the accuracy of the queries
improves with the invested budget (Assumption 2.1). This framework grants additional modeling power (see
Section 1) compared to standard stochastic settings. In dimension one, we designed an any-time, any-budget,
parameter-free algorithm, called ReSearch (Algorithm 2), that does not require the a priori knowledge of
the (local) Lipschitz constant of the objective and works even in an adversarial and adaptive environment.
We provided upper and lower bounds on the optimization error that match up to constants. We provided a
natural adaptation of ReSearch to the stochastic setting together with a corresponding upper bound featuring
the same mild dependence on the Lipschitz constant, and further improved the state-of-the-art for this
setting by a logarithmic term. Finally, in the multivariate budget setting, we illustrated the benefits of using
ReSearch as a line search procedure in a coordinate descent method: this results in a numerically efficient
and practicable budget optimizer that can run even in high-dimensional spaces.
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A Full proof of Theorem 3.1

In this section, we give a detailed proof of Theorem 3.1.

Proof of Theorem 3.1. Fix any bounded interval I ⊂ R, a time T ∈ N, and a convex function f ∶ I → R. Without
loss of generality, we can (and do!) assume that I contains at least two distinct points.4 Moreover, without
loss of generality, we can also (and do!) assume that f attains its minimum in I.5 Then, note that the active
interval Iτ of any epoch τ ∈ [τT ] (defined in the initialization and updated at Line 8) always contains at least
a minimizer, because the first active interval I1 is the entire domain I and, by the unimodality of f and
the definition of the delete and update functions, ReSearch deletes a fraction of the active interval (Line 8)
only if it is certain that the value of f at one of the remaining points is no bigger than all of the deleted
points. Thus, there exists (and we fix for the rest of the proof) an x⋆ ∈ I such that x⋆ ∈ IτT

⊂ . . . ⊂ I1 and
f(x⋆) =min(f). Recall that, for all t ∈ N, τt is the epoch of round t (Line 5 of Algorithm 2). Also, for the
sake of convenience, we define t0 ∶= 0 and, if the last epoch is not concluded exactly at the end of time T , we
redefine tτT

∶= T and BτT
∶= BτT ,T .

To prove the result, we analyze separately the performance of the recommendation RT of ReSearch in the
three cases of Lines 10, 13 and 15 in Algorithm 2.

Assume at first that delT ≠ ◻◻◻◻ (i.e., the condition on Line 6 is true and we recommend RT as in Line
10). We partition the epochs τ ∈ [τT ] into four sets, depending on whether or not the epoch is uniform and
whether or not x⋆ ≤ cτ . More precisely, for any ζ ∈ {u, /u} and ⊢ ∈ {≤,>}, we let Aζ,⊢ be the set of all epochs
τ ∈ [τT ] such that ϑτ = ζ and x⋆ ⊢ cτ . (or, equivalently stated, that there exist at least two distinct elements
x, y ∈ {lτ , cτ , rτ} such that x⋆ ⊢ x ⊢ y). Now fix A ∶= Aζ,⊢, where

(ζ,⊢) ∈ argmax
(ζ′,⊢′)∈{u,/u}×{≤,>}

∑
τ∈Aζ′,⊢′

Bτ .

In words, A is the set of epochs Aζ′,⊢′ where ReSearch spent the highest budget. Define, for each τ ∈ A,
the points xτ ≠ yτ as the closest and second-closest points in {lτ , cτ , rτ} to x⋆ such that x⋆ ⊢ xτ ⊢ yτ (they
always exist by definition of A). More precisely,

xτ ∶= argmin
x∈{lτ ,cτ ,rτ}, x⋆⊢x

∣x − x⋆∣ ,

yτ ∶= argmin
x∈{lτ ,cτ ,rτ}∖{xτ}, x⋆⊢x

∣x − x⋆∣ .

Let n be the number of elements of A and κ1, . . . , κn be the elements of A in increasing order. Then, for any
i ∈ N, we have

∣Iκi ∣ ≤ ∣Iκi−1 ∣ /2 if 2 ≤ i ≤ n , (3)
∣yκi − xκi ∣ ≤ ∣yκi−1 − xκi−1 ∣ /2 if 2 ≤ i ≤ n , (4)
∣xκi − x⋆∣ ≤ ∣yκi − xκi ∣ ⋅ 2 if i ≤ n , (5)
∣xκi − x⋆∣ ≤ ∣xκi−1 − x⋆∣ if 2 ≤ i ≤ n , (6)
∣yκi − x⋆∣ ≤ ∣yκi−1 − x⋆∣ if 2 ≤ i ≤ n . (7)

Here, equation 3 follows directly by the definition of the update function, noting that there are never two
uniform or two non-uniform epochs in a row, unless half of the current interval is eliminated in one single call
of the update function. Inequality equation 4 follows directly from equation 3. Inequality equation 5 is a
consequence of the definitions of the partition functions u and /u. To prove equation 6, note first that the claim

4Otherwise, the optimization error is trivially zero.
5Indeed, if it does not, then there exists x⋆ ∈ {I−, I+} such that limx→x⋆,x∈I f(x) = infx∈I f(x) (this can only happen if I is

not closed or f is discontinuous at x⋆; in the latter case, note that by convexity, f(x⋆) > limx→x⋆,x∈I f(x) = infx∈I f(x)). Thus,
noting that ReSearch never queries nor recommends the endpoints {I−, I+} of I, one can replace f with f̄ , where f̄(x) ∶= f(x)
for all x ∈ I and f̄(x⋆) ∶= infx∈I f(x). This way, up to extending (or redefining) f at x⋆, we are left with a convex function f̄ such
that f̄(X1) ∈ J1, . . . , f̄(XT ) ∈ JT , attains its minimum at x⋆ (in its domain), and satisfies f(RT ) − infx∈I f(x) = f̄(RT ) − f̄(x⋆).
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holds trivially when xκi−1 ∈ {lκi , cκi , rκi}. When this is not the case, since ReSearch discarded xκi−1 at the end
of some previous epoch, it either holds that Iκi ⊂ (−∞, xκi−1] or Iκi ⊂ [xκi−1 ,∞). If x⋆ ≤ xκi−1 (meaning that
⊢=≤), it follows from x⋆ ∈ Iκi that Iκi ⊂ (−∞, xκi−1], which implies x⋆ ≤ xκi < xκi−1 . Analogously, if x⋆ > xκi−1

(meaning that ⊢=>), it follows from x⋆ ∈ Iκi that Iκi ⊂ [xκi−1 ,∞), which implies x⋆ > xκi > xκi−1 . This proves
equation 6. Moreover, as a direct consequence of equation 4 and equation 6, we obtain equation 7.

By construction, we have that

4∑
τ∈A

Bτ ≥ ∑
τ∈[τT ]

Bτ =
T

∑
t=1

bt . (8)

Now, we show that for any τ ∈ [τT ] and k ∈ {0, . . . , tτ}, we have

min
x∈{lτ ,cτ ,rτ}

Bx, tτ−k ≥
Bτ − (2 + k)maxt∈[T ] bt

3
, (9)

i.e., that the total budget Bx, tτ−k spent on any query point x ∈ {lτ , cτ , rτ} up to time tτ −k is no smaller (up to
Θ(k) ⋅maxt∈[T ] bt) than the budget Bτ spent (on all query points) only during epoch τ . Indeed, for any τ ∈ [τT ]
and k ∈ {0, . . . , tτ}, letting xmin ∈ argminx∈{lτ ,cτ ,rτ}

Bx, tτ−k be a query point where the algorithm spent the
least amount of budget up to time tτ − k and M ∶= {x ∈ {lτ , cτ , rτ} ∶Bx,tτ−k −Bxmin,tτ−k ≤maxt∈[T ] bt} be the
set of all query points in which the algorithm spent a budget close to that of xmin, we have

3 ⋅ min
x∈{lτ ,cτ ,rτ}

Bx, tτ−k ≥ ∑
x∈M

Bx,tτ−k − 2 max
t∈[T ]

bt

≥ ∑
x∈M

tτ−k

∑
t=tτ−1+1

btI{Xt = x} − 2 max
t∈[T ]

bt

(∗)= Bτ −
tτ

∑
t=tτ−k+1

bt − 2 max
t∈[T ]

bt

≥ Bτ − (2 + k)max
t∈[T ]

bt

with the understanding that any sum ∑j
s=i zs is equal to zero whenever i > j, and where in (∗) we used the

fact that, if x ∈ {lτ , cτ , rτ} is such that Bx,tτ−k −Bxmin,tτ−k >maxt∈[T ] bt, then ReSearch never queried x in
epoch τ up to time tτ − k, i.e.,

tτ−k

∑
t=tτ−1+1

bt = 0.

This proves equation 9.

Thus, for any τ ∈ A, if Bτ > 3 maxt∈[T ] bt, since J+xτ ,tτ−1 > J−yτ ,tτ−1 (this follows from the definition of the
delete function and can be proved by exhaustion), it holds that

f(yτ) − f(xτ) ≤ J+yτ ,tτ−1 − J−xτ ,tτ−1

< J+yτ ,tτ−1 − J−yτ ,tτ−1 + J+xτ ,tτ−1 − J−xτ ,tτ−1

= ∣Jyτ ,tτ−1∣ + ∣Jxτ ,tτ−1∣ ≤
c

Bα
yτ , tτ−1

+ c

Bα
xτ , tτ−1

≤ 2 ⋅ c
(minx∈{lτ ,cτ ,rτ}Bx, tτ−1)

α

equation 9
≤ 3α ⋅ 2 ⋅ c

(Bτ − 3 maxt∈[T ] bt)
α . (10)

Assume now that f(yκn) − f(xκn) > 0. Then, for any τ ∈ A, by convexity and inequalities equation 6–
equation 7, we have that f(yτ) − f(xτ) > 0 is also true. By equation 10, it follows that, for any i ∈ [n],
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regardless of the fact that the inequality Bκi > 3 maxt∈[T ] bt holds or not,

Bκi ≤ 3 max
t∈[T ]

bt +
3 ⋅ (2 ⋅ c)1/α

(f(yκi) − f(xκi))
1/α . (11)

Summing equation 11 over i ∈ [a], we obtain

T

∑
t=1

bt

equation 8
≤ 4∑

τ∈A

Bτ = 4
n

∑
i=1

Bκi

equation 11
≤ 4

n

∑
i=1

⎛
⎜
⎝

3 max
t∈[T ]

bt +
3 ⋅ (2 ⋅ c)1/α

(f(yκi) − f(xκi))
1/α

⎞
⎟
⎠

= 12 ⋅max
t∈[T ]

bt ⋅ n +
n

∑
i=1

12 ⋅ (2 ⋅ c)1/α

(f(yκi) − f(xκi))
1/α . (12)

Now, using equation 6–equation 7 together with the fact that difference quotients of a convex function are
non-decreasing in both variables, and since for each i ∈ [n] it holds that (yκn − xκn) ⋅ (yκi − xκi) > 0, we have

n

∑
i=1

(f(yκn) − f(xκn))
1/α

(f(yκi) − f(xκi))
1/α =

n

∑
i=1
(f(yκn) − f(xκn)

f(yκi) − f(xκi)
)

1/α

=
n

∑
i=1

⎛
⎜⎜
⎝

⎛
⎜
⎝

f(yκn)−f(xκn)

yκn−xκn

f(yκi
)−f(xκi

)

yκi
−xκi

⎞
⎟
⎠

1/α

⋅ ∣yκn − xκn

yκi − xκi

∣
1/α⎞
⎟⎟
⎠

equation 6+equation 7
≤

n

∑
i=1
∣yκn − xκn

yκi − xκi

∣
1/α

equation 4
≤

n

∑
i=1
( 1

2n−i
)

1/α
≤ 1

1 − 2−1/α . (13)

Putting equation 12 and equation 13 together, we obtain the inequality

T

∑
t=1

bt ≤ 12 ⋅max
t∈[T ]

bt ⋅ n +
12 ⋅ (2 ⋅ c)1/α ⋅ 1

1−2−1/α

(f(yκn) − f(xκn))
1/α ,

that can be rearranged, whenever ∑T
t=1 bt ≥ 24 ⋅maxt∈[T ] bt ⋅ n, to obtain the inequality

f(yκn) − f(xκn) ≤ 4 ⋅ ( 24
21/α − 1

)
α

⋅ c

(∑T
t=1 bt)α

. (14)

Then, relying again on the fact that difference quotients of a convex function are non-decreasing in both
variables, and that (ykn − xkn) ⋅ (xkn − x⋆) ≥ 0, whenever ∑T

t=1 bt ≥ 24 ⋅maxt∈[T ] bt ⋅ n and xκn ≠ x⋆, we have
that

f(xκn) − f(x⋆) = f(xκn) − f(x⋆)
xκn − x⋆

⋅ (xκn − x⋆)

≤ f(yκn) − f(xκn)
yκn − xκn

⋅ (xκn − x⋆)

equation 14
≤ 4 ⋅ ( 24

21/α − 1
)

α

⋅ c

(∑T
t=1 bt)α

⋅ ∣ xκn
− x⋆

yκn − xκn

∣

equation 5
≤ 8 ⋅ ( 24

21/α − 1
)

α

⋅ c

(∑T
t=1 bt)α

(15)
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(note that equation 15 is trivially true also when xκn = x⋆) and

f(yκn) − f(x⋆) = f(yκn) − f(xκn) + f(xκn) − f(x⋆)
equation 14+equation 15

≤ 12 ⋅ ( 24
21/α − 1

)
α

⋅ c

(∑T
t=1 bt)α

. (16)

Recall that the derivations for equation 15 and equation 16 were carried out under the assumption that
f(yκn) − f(xκn) > 0. If this assumption does not hold, by convexity, f(yκn) = f(xκn) = f(x⋆), therefore
equation 15 and equation 16 are still (trivially) true.

Now, we will prove that the recommendation RT is approximately at least as good as xκn
and yκn

. Since
under the assumption that ∑T

t=1 bt ≥ 24 ⋅n ⋅maxt∈[T ] bt we showed in equation 15 and equation 16 that xκn and
yκn are both near-minimizers, this will yield under the same assumption that RT is also a near-minimizer.

Recalling that we are currently assuming delT ≠ ◻◻◻◻, we have that RT ∈ argminx∈{lτT +1,cτT +1,rτT +1} J+x,T ,
which (as can be checked directly) implies in turn that RT ∈ argminx∈{lτT

,cτT
,rτT

} J+x,T and, whenever
∑T

t=1 bt ≥ 24 ⋅ n ⋅maxt∈[T ] bt:

1. If RT ∈ {xκn , yκn}, then equation 1 follows by equation 15 and equation 16.

2. If RT ∉ {xκn , yκn}, and {xκn , yκn} ⊂ {lτT
, cτT

, rτT
}, then there exists x ∈ {lτT

, cτT
, rτT
} ∖ {RT } =

{xκn , yκn} such that f(RT ) ≤ J+RT ,T ≤ J−x,T ≤ f(x); therefore, equation 1 follows by equation 15 and
equation 16.

3. If RT ∉ {xκn , yκn}, and {xκn , yκn} ⊄ {lτT
, cτT

, rτT
}, then, since at least one between xκn and yκn

does not belong to the set of active query points {lτT
, cτT

, rτT
} at time T , there exist a past time

t ∈ [T ] and a past query point x ∈ {lτt , cτt , rτt} such that J+x,t ≤max(J−xκn ,t, J−yκn ,t); therefore, noting
that the sequence s ↦ minx′∈{lτs ,cτs ,rτs}

J+x′,s is non-increasing, we have f(RT ) ≤ J+RT ,T ≤ J+x,t ≤
max(J−xκn,t

, J−yκn,t
) ≤max(f(xκn), f(yκn)) and equation 1 follows by equation 15 and equation 16.

On the other hand, if ∑T
t=1 bt < 24 ⋅ n ⋅maxt∈[T ] bt, then

f(RT ) − f(x⋆) ≤ 3
4

L ∣IτT+1∣ ≤
9
16

L ∣Iκn ∣

equation 3
≤ 9

16
L ∣I ∣ (1/2)n−1 ≤ 9

16
L ∣I ∣ (1/2)

∑T
t=1 bt

24 maxt∈[T ] bt
−1

= 9
8

L ∣I ∣ exp(− ln 2
24

∑T
t=1 bt

maxt∈[T ] bt
) ,

where L is the smallest between the Lipschitz constants of f on [lτT
, rτT
] and [lτT+1, rτT+1] —indeed, by

convexity, L is a Lipschitz constant for f on the convex hull of {x⋆, lτT
, rτT
} (resp., {x⋆, lτT+1 , rτT+1}) if

and only if it is a Lipschitz constant on [lτT
, rτT
] (resp., [lτT+1 , rτT+1]). Putting everything together yields

equation 1 when delT ≠ ◻◻◻◻.

Assume now that delT = ◻◻◻◻ and BτT
≥ ∑τT−1

τ ′=0 Bτ ′ (i.e., the condition on Line 12 is true and we recommend
RT as in Line 13). This implies that the three intervals JlτT

,T , JcτT
,T , JrτT

,T have non-empty intersection,
which in turn implies that

max
x′∈{lτT

,cτT
,rτT

}
J+x′,T − min

x′∈{lτT
,cτT

,rτT
}
J−x′,T ≤ 2 max

x′∈{lτT
,cτT

,rτT
}
∣Jx′,T ∣ . (17)

Now, we define f1, f2, f3, f4 as the four functions whose graphs are straight lines such that f1 passes through
the points (lτT

, J−lτT
,T ) and (rτT

, J+rτT
,T ), f2 passes through the points (cτT

, J−cτ ,T ) and (rτT
, J+rτT

,T ), f3

passes through the points (lτT
, J+lτT

,T ) and (cτT
, J−cτT

,T ), and f4 passes through the points (lτT
, J+lτT

,T ) and
(rτT

, J−rτT
,T ) (Figure 5).
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J−lτT
,T

J+lτT
,T

J−cτT
,T

J+cτT
,T

J−rτT
,T

J+rτT
,T

lτT
cτT

rτT

f1
f2

f3

f4

f

Figure 5: A representation of the four lines f1, . . . , f4. By convexity, f is lower bounded by the blue solid
segments. Note that, since JlτT

,T ∩JcτT
,T ∩JrτT

,T ≠ ∅, then f1, f2 are nondecreasing and f3, f4 nonincreasing.
Therefore, the minimum of the y coordinates of the red dots is a lower bound on the value of the function,
which in turn implies equation 18.

By the convexity of f , for each x ∈ [I−τT
, lτT
] we have f(x) ≥ f1(x), for each x ∈ [lτT

, cτT
] we have f(x) ≥ f2(x),

for each x ∈ [cτT
, rτT
] we have f(x) ≥ f3(x), and for each x ∈ [rτT

, I+τT
] we have f(x) ≥ f4(x). Writing down

explicitly these four inequalities and upper bounding, we conclude that

f(x⋆) ≥ min
x′∈{lτT

,cτT
,rτT

}
J−x,T

− 2( max
x′∈{lτT

,cτT
,rτT

}
J+x′,T − min

x′∈{lτT
,cτT

,rτT
}
J−x′,T) . (18)

Then, if BτT
≥ 4 maxt∈[T ] bt, for all x ∈ {lτT

, cτT
, rτT
}, we have

f(x) − f(x⋆) ≤ J+x,T − f(x⋆)
equation 18
≤ J+x,T − min

x′∈{lτT
,cτT

,rτT
}
J−x,T

+ 2( max
x′∈{lτT

,cτT
,rτT

}
J+x′,T − min

x′∈{lτT
,cτT

,rτT
}
J−x′,T)

equation 17
≤ 6 max

x′∈{lτT
,cτT

,rτT
}
∣Jx′,T ∣ ≤ 6 max

x′∈{lτT
,cτT

,rτT
}

c

Bα
x′,T

equation 9
≤ 6 c

(BτT
−2 maxt∈[T ] bt

3 )
α ≤ 6 ⋅ 3α c

(BτT
/2)α

≤ 6 ⋅ 12α ⋅ c

(∑T
t=1 bt)α

≤ 12 ⋅ ( 48
21/α − 1

)
α

⋅ c

(∑T
t=1 bt)α

.

If, on the other hand, BτT
< 4 maxt∈[T ] bt, since BτT

≥ 1
2 ∑

T
t=1 bt, then for all x ∈ {lτT

, cτT
, rτT
}, we have

f(x) − f(x⋆) ≤ L ∣I ∣ (3/4) ≤ L ∣I ∣ (1/2)
4 maxt∈[T ] bt

12 maxt∈[T ] bt

≤ L ∣I ∣ (1/2)
BτT

12 maxt∈[T ] bt ≤ L ∣I ∣ (1/2)
∑T

t=1 bt
24 maxt∈[T ] bt

= L ∣I ∣ exp(− ln 2
24

∑T
t=1 bt

maxt∈[T ] bt
)

where L the Lipschitz constant of f on [lτT
, rτT
]. Thus, adding together the two bounds for BτT

≥ 4 maxt∈[T ] bt

and BτT
< 4 maxt∈[T ] bt yields equation 1 when delT = ◻◻◻◻ and BτT

≥ ∑τT−1
τ ′=0 Bτ ′ .

Finally, assume that delT = ◻◻◻◻ and BτT
< ∑τT−1

τ ′=0 Bτ ′ (i.e., the condition on Line 14 is true and we
recommend RT as in Line 15). Then the recommendation RT is the point with the best upper bound at the
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end of the second-to-last epoch. Thus, proceeding as in the first part of the proof (case delT ≠ ◻◻◻◻), we get

f(RT ) − f(x⋆) = f(RtτT −1) − f(x⋆)

≤ 12( 24
21/α − 1

)
α c

(∑
tτT −1
t=1 bt)α

+ 9
8

L ∣I ∣ exp
⎛
⎝
− ln 2

24
∑

tτT −1
t=1 bt

maxt∈[tτT −1] bt

⎞
⎠

< 12( 48
21/α − 1

)
α c

(∑T
t=1 bt)α

+ 9
8

L ∣I ∣ exp(− ln 2
48

∑T
t=1 bt

maxt∈[T ] bt
)

where L the Lipschitz constant of f on [lτT
, rτT
]. Being the interval I, the time T and the convex function f

arbitrarily chosen, the proof is complete.

B Full proof of Theorem 3.2

In this section, we give a detailed proof of Theorem 3.2.

Proof. Fix a nondegenerate bounded interval I ⊂ R. Fix also an horizon T ∈ N, a total budget B > 0, and a
Lipschitz constant L > 0. For each t ∈ [T ], define bt ∶= B/T . We divide the proof in two cases, depending on
which of the two addends in equation 2 is the dominant term.

Assume first 1
4 ⋅

c
(∑

T
t=1 bt)α

≥ 1
32e
⋅ L ∣I ∣ exp(− ∑

T
t=1 bt

maxt∈[T ] bt
). For all b > 0, define J(b) ∶= [−c/(2bα), c/(2bα)].

Consider the two alternative objective functions f+ and f−, defined for all x ∈ I, by

f±(x) ∶= ±(1 −
2(x − I−)
∣I ∣

) ⋅ c

2Bα
.

At each time t ∈ [T ], if the algorithm chosen by the optimizer queried X1, . . . , Xt, the environment returns
the fuzzy evaluation Jt ∶= J(BXt,t), where we recall that Bx,t was defined, for any x ∈ I, by ∑t

s=1 bsI{Xs = x}.
Note that the environment satisfies Assumption 2.1 and that both functions f± are c

∣I ∣Bα -Lipschitz. Moreover,
the algorithm provides the same queries and recommendations for both f− and f+, as it receives the same
J1, . . . , JT . Furthermore, if the algorithm recommends RT ≥ (I−+I+)/2 then f−(RT )− infx∈I f−(x) ≥ c/(2Bα),
while if the algorithm recommends RT < (I− + I+)/2 then f+(RT ) − infx∈I f+(x) ≥ c/(2Bα). Thus, in both
cases there exists a c

∣I ∣Bα -Lipschitz convex function f ∈ {f−, f+} for which:

f(RT ) − inf
x∈I

f(x) ≥ 1
4
⋅ c

(∑T
t=1 bt)α

+ 1
32e

L ∣I ∣ e−
∑T

t=1 bt
maxt∈[T ] bt .

Assume now 1
4 ⋅

c
(∑

T
t=1 bt)α

< 1
32e
⋅ L ∣I ∣ exp(− ∑

T
t=1 bt

maxt∈[T ] bt
). In this case, at each time t ∈ [T ], the environment

returns Jt ∶= {f(Xt)}. Note that, in this instance, our problem reduces to deterministic convex optimization.
By a classic lower bound for deterministic convex optimization (see, e.g., Nesterov et al. 2018, Theorem 3.2.8),
then, there exists an L-Lipschitz convex function f ∶ I → R for which

f(RT ) − inf
x∈I

f(x) > 1
16e

L ∣I ∣ e−T = 1
16e

L ∣I ∣ e−
∑T

t=1 bt
maxt∈[T ] bt

≥ 1
4
⋅ c

(∑T
t=1 bt)α

+ 1
32e

L ∣I ∣ e−
∑T

t=1 bt
maxt∈[T ] bt .

Being the interval I, the horizon T , the budget B, and the Lipschitz constant L arbitrarily chosen, the
theorem follows.
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C Full proof of Theorem 4.2

In this section, we give a detailed proof of Theorem 4.2.

Proof. For the sake of simplicity, we assume that I ∶= [0, 1], f is continuous and admits a unique minimizer
x⋆ ∈ [0, 1] (the other cases can be treated similarly). For each n ∈ N, let Dn ∶= {k ⋅ 2−n ∣ k ∈ Z}, let
D⋆n ∶= {xn,1, . . . , xn,10} ⊂ Dn such that

xn,1 < ⋅ ⋅ ⋅ < xn,5 ≤ x⋆ ≤ xn,6 < ⋅ ⋅ ⋅ < xn,10

and xn,j+1 − xn,j ≤ 2−n, for all j ∈ [9]. Define D ∶= ⋃n∈[T ]D⋆n ∩ (0, 1). Consider the “good event”

E ∶= ⋂
n,t∈[T ]
j∈[10]

{∣m(Yxn,j ,1, . . . , Yxn,j ,t) − f(xn,j)∣ ≤
c(δ)
tα
}

and note that ⋂t∈[T ]{f(Xt) ∈ Jt} ⊂ E . By De Morgan’s laws, a union bound, and Assumption 4.1, we have
P[Ec] ≤ 10T 2δ. Now, if we are in the good event E , then Assumption 2.1 holds for all t ∈ [T ], with c = c(δ)
and b1 = ⋅ ⋅ ⋅ = bT = 1, since ReSearch queries points only in D. To prove the last claim, consider the budget
version of ReSearch. Recall the observation (at the beginning of the proof in Appendix A) that the minimizer
x⋆ of f belongs to all active intervals of ReSearch at all epochs. Assume by contradiction that there exists
an epoch τ ∈ [τT ] such that {lτ , cτ , rτ} is not included in D. Then, the set of query points {lτ , cτ , rτ} is not
included in D⋆n ∩ (0, 1) when n = − log2((rτ − lτ)/2). Consider the case where rτ ∉ D⋆n ∩ (0, 1) and rτ > xn,10
(the other cases can be analyzed analogously). Since the leftmost point I−τ of the active interval of epoch τ is
always bigger than or equal to rτ − 4 ⋅ 2−n, then

x⋆ ≥ I−τ ≥ rτ − 4 ⋅ 2−n ≥ xn,10 + 2−n − 4 ⋅ 2−n = xn,7 > xn,6 ≥ x⋆

which yields a contradiction. It follows that, in the good event E (hence, with probability at least 1 − 10T 2δ),
we can apply Theorem 3.1, obtaining the result.

D Missing details on Section 4.2

We now consider the minimization of a multivariate objective over a convex bounded subset I ⊂ Rd, where
Optimization Protocol 1 has bt = 1 for each t and Assumption 2.1 holds. In this section, we refer to this
setting as Multivariate Budget Convex Optimization (MBCO) for the sake of emphasis. We assume the
objective to be µ strongly convex and β-smooth with 0 < µ ≤ β i.e., ∀x, x0 ∈ Rd

f(x) ≥ f(x0) + ⟨∇f(x0), x − x0⟩ +
µ

2
∥x − x0∥2

f(x) ≤ f(x0) + ⟨∇f(x0), x − x0⟩ +
β

2
∥x − x0∥2

where the first equation corresponds to the strong convexity and the second to the smoothness. For simplicity,
we further assume the existence of a unique minimizer6 x∗ ∈ int(I). As it will be apparent later, it is not
necessary to assume that x∗ is in the interior of I: the entire analysis that follows holds if the objective is
Lipschitz, a condition that is implied by the strong convexity and smoothness. This cosmetic choice allows us
to replace the local Lipschitz constant appearing in equation 1 with β.

Before providing the detailed version of Theorem 4.3, let us provide some intuition on the bounds appearing
there. Given some budget T̄ for a line search subroutine, the bound of equation 1 scales roughly as 1/T̄ α,
which implies that the point recommended by ReSearch is at distance at most 1/T̄ α/2 from x∗ due to strong

convexity. We denote with T (η) = ⌈( 4c1
µη2 )

1
α ⌉ the maximum number of iterations needed by ReSearch to find

6The existence of a unique minimizer is an easy consequence of the strong convexity of f .
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an η-minimizer in a given epoch and by K̄(T, η) ∶= ⌊T /T (η)⌋ the corresponding minimum number of epochs
made by the algorithm with an overall budget of T (we have approximately K(T, η) ≥ K̄(T, η) with the
notation of Theorem 4.3).

Now, we state the detailed version of Theorem 4.3.
Theorem D.1. Let ∆0 ∶= f(x0) − f(x∗), x∗ be the unique minimizer, κ ∶= β/µ be the condition number of f ,
and Θ ∶=max

i∈[d]
∣Ik ∣. Recall c1, c2, c3 from Theorem 3.1. Suppose that α ≥ ln 2

48 and

T ≥max
⎧⎪⎪⎨⎪⎪⎩
(2dκβ)

1
α ,

1
log (1 − 1

4dκ
)

, 2 α

c3
ln( α

c3
) , 4 α

c3
ln(2 α

c3
) + 2

c3
ln(c2βΘdiam(I)

c1
)
⎫⎪⎪⎬⎪⎪⎭

.

If the optimizer runs ReSearch for MBCO (Algorithm 5), then, its expected optimization error is upper
bounded by

(1 − 1
4dκ
)

K̄(T,η)

∆0 + 2dκβη2. (19)

Thus by setting η = ( 1
c(α)T log(1− 1

4dκ
)

log ( 2dκβ
T α ))

α
2

with c(α) = (µ/(4c1))1/α, the expected optimization error is
upper bounded by

2dκβ

T α

⎛
⎝

∆0

(1 − 1
4dκ
)
+
⎛
⎝

1
c(α) log (1 − 1

4dκ
)

log (2dκβ

T α
)
⎞
⎠

α
⎞
⎠

. (20)

Proof of Theorem D.1. Take α, µ, β, κ and Θ as defined in Theorem D.1. Let g be a univariate function
obtained by considering f on a segment I ′ of I. We can upper bound the Lipschitz constant of the function g
using the global Lipschitz constant L of f , which, given that we are assuming that x⋆ ∈ I○, can be further
upper bounded by β ⋅ diam(I). We start noticing that, assuming bt = 1 for all t and c = 1, the bound of
equation 1 can be bounded from above by 2c1/T α whenever

T ≥max{2 α

c3
ln( α

c3
) , 4 α

c3
ln(2 α

c3
) + 2

c3
ln(c2LΘ

c1
)} . (21)

Indeed,

c1

T α
≥ c2LΘ exp (−c3T ) , (22)

is equivalent to

c1

c2LΘ
≥ T α exp (−c3T ) .

Taking logs both sides and re-arranging this is equivalent to

T ≥ α

c3
ln(T ) + 1

c3
ln(c2LΘ

c1
) .

Now consider the case when c2LΘ ≥ c1, so that the second term on the right hand side is positive. Notice that
by hypothesis we have that α/c3 ≥ 1, so by Lemma A.2 from Appendix A of Shalev-Shwartz & Ben-David
(2014), by taking

T ≥ 4 α

c3
ln(2 α

c3
) + 2

c3
ln(c2LΘ

c1
) ,
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equation 22 holds. On the other hand, if c2LΘ < c1, then the second term on the right hand side is negative
and we can solve the stronger inequality

T ≥ α

c3
ln(T ),

using Lemma A.1 from Appendix A of Shalev-Shwartz & Ben-David (2014). Thus by taking

T ≥ 2 α

c3
ln( α

c3
) ,

equation 22 holds.

Now let T any integer satisfying equation 21 and let denote with xT the output of ReSearch after T iterations.
Notice that for any function g as described above, by the strong convexity of g it holds that

∣xT − x∗∣ ≤
√

2
µ
(g(xT ) − g∗) ≤ 2

√
c1

µT α
.

Let 0 < η ≤ Θ, if T (η) = ⌈( 4c1
µη2 )

1
α ⌉, then it follows that the point xT found by ReSearch satisfies ∣xT − x∗∣ ≤ η.

Now let f be a multi-variate function satisfying the assumption of Theorem D.1. Notice that any restriction
fk of f along a coordinate line k, will also satisfies the same assumptions over the interval Ik (see line 3 of
Algorithm 5).

The analysis of Jamieson et al. (2012) applies to our case and they show that after k epochs of coordinate
descend, the expected optimization error of the current iterate is bounded above by

(1 − 1
4dκ
)

k

∆0 + 2dκβη2.

Recalling that T (η) is the worst-case number of iterations required by ReSearch to find an η-optimizer, and
if we are given a total budget of T , the number of epochs made by equation 5 is at least K̄(T, η) = ⌊T /T (η)⌋.
From this we get the bound of equation 19. Now we set

η =
⎛
⎝

2
c(α)T log (1 − 1

4dκ
)

log (2dκβ

T α
)
⎞
⎠

α
2

,

whit c(α) = (µ/(4c1))1/α, and notice that if T > max{1/(log (1 − 1/(4dκ))), (2dκβ)1/α}, then T (η) ≤
2(4c1/(µη2))1/α > 1/2. Thus, the following holds

K̄(T, η) = ⌊T /T (η)⌋ ≥ T /T (η) − 1 ≥ T

2 ( 4c1
µη2 )

1
α

− 1 = T

2
( µ

4c1
)

1
α

η
2
α − 1

=
⎛
⎝

1
log (1 − 1

4dκ
)

log (2dκβ

T α
)
⎞
⎠
− 1.

Replacing this into equation 19

(1 − 1
4dκ
)

K̄(T,η)

∆0 + 2dκβη2

≤
2dκβ
T α

(1 − 1
4dκ
)

∆0 + 2dκβ
⎛
⎝

1
c(α)T log (1 − 1

4dκ
)

log (2dκβ

T α
)
⎞
⎠

α

= 2dκβ

T α

⎛
⎝

∆0

(1 − 1
4dκ
)
+
⎛
⎝

1
c(α) log (1 − 1

4dκ
)

log (2dκβ

T α
)
⎞
⎠

α
⎞
⎠

,
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we obtain equation 20.

In the following we also present a generalization of the above theorem to arbitrary budgets bt, α > 0 and c.
In the context of the next theorem B(η) (defined in the proof) is meant to be the worst case total budget
required to find an η-optimizer at a given epoch, BT is the total budget and K̄(T, η) = ⌊BT /B(η)⌋.
Theorem D.2. Let ∆0 ∶= f(x0) − f(x∗), x∗ be the unique minimizer, κ ∶= β/µ be the condition number of f ,
and Θ ∶=max

i∈[d]
∣Ik ∣. Recall c1, c2, c3 from Theorem 3.1. Let b∗T =maxt∈[T ] bt and BT = ∑T

t=1 bt. Suppose that

BT ≥max{(2dκβ)
1
α , 2αb∗T

c3
ln(αb∗T

c3
) , 4 max{αb∗T

c3
, 1} ln(2 max{αb∗T

c3
, 1}) + 2b∗T

c3
ln(c2βΘdiam(I)

c1c
)} .

If the optimizer runs ReSearch for MBCO (Algorithm 5), then, its expected optimization error is upper
bounded by

(1 − 1
4dκ
)

K̄(T,η)

∆0 + 2dκβη2. (23)

Thus by setting

η =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

c(α)BT log
⎡⎢⎢⎢⎢⎣
(1 − 1

4dκ
) ( Bα

T

2κβd
)

b∗
T

BT

⎤⎥⎥⎥⎥⎦

log(2dκβ

Bα
T

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

α
2

with c(α) = (µ/(4c1c))1/α, if η > 07, the expected optimization error is upper bounded by

2dκβ

Bα
T

⎛
⎜⎜⎜⎜⎜⎜
⎝

∆0

(1 − 1
4dκ
)
+

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

c(α) log
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(1 − 1

4dκ
) ( Bα

T

2κβd
)

b∗
T

BT

⎤⎥⎥⎥⎥⎦

log(2dκβ

Bα
T

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

α
⎞
⎟⎟⎟⎟⎟⎟
⎠

. (24)

Proof of Theorem D.2. Take α, µ, β, κ and Θ as defined in Theorem D.2. Let g be a univariate function
obtained by considering f on a segment I ′ of I. We can upper bound the Lipschitz constant of the function g
using the global Lipschitz constant L of f , which, given that we are assuming that x⋆ ∈ I○, can be further
upper bounded by β ⋅ diam(I). We start noticing that, using b∗T =maxt∈[T ] bt, the bound of equation 1 can
be bounded from above by 2c1c/(∑T

t=1 bt)α whenever

T

∑
t=1

bt ≥max{2αb∗T
c3

ln(αb∗T
c3
) , 4 max{αb∗T

c3
, 1} ln(2 max{αb∗T

c3
, 1}) + 2b∗T

c3
ln(c2LΘ

c1c
)} . (25)

Indeed,

c1c

(∑T
t=1 bt)α

≥ c2LΘ exp(−c3
∑T

t=1 bt

b∗T
) , (26)

is equivalent to

c1c

c2LΘ
≥ (

T

∑
t=1

bt)
α

exp(−c3
∑T

t=1 bt

b∗T
) .

7At a high level, note that η > 0 whenever the total budget BT is large compared to b∗T .
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Taking logs both sides and re-arranging this is equivalent to

T

∑
t=1

bt ≥
αb∗T
c3

ln(
T

∑
t=1

bt) +
b∗T
c3

ln(c2LΘ
c1c
) .

Now consider the case when c2LΘ ≥ c1c, so that the second term on the right hand side is positive. So by
Lemma A.2 from Appendix A of Shalev-Shwartz & Ben-David (2014), by taking

T

∑
t=1

bt ≥ 4 max{αb∗T
c3

, 1} ln(2 max{αb∗T
c3

, 1}) + 2b∗T
c3

ln(c2LΘ
c1c
) ,

equation 26 holds. On the other hand, if c2LΘ < c1c, then the second term on the right hand side is negative
and we can solve the stronger inequality

T

∑
t=1

bt ≥
αb∗T
c3

ln(
T

∑
t=1

bt) ,

using Lemma A.1 from Appendix A of Shalev-Shwartz & Ben-David (2014). Thus by taking

T

∑
t=1

bt ≥ 2αb∗T
c3

ln(αb∗T
c3
) ,

equation 26 holds.

Now let (bt)Tt=1 any sequence satisfying equation 25 and let denote with xT the output of ReSearch after T
iterations. Notice that for any function g as described above, by the strong convexity of g it holds that

∣xT − x∗∣ ≤
√

2
µ
(g(xT ) − g∗) ≤ 2

¿
ÁÁÀ c1c

µ (∑T
t=1 bt)

α .

Let 0 < η ≤ Θ, and define B(η) = ∑T (η)
t=1 bt with T (η) the first natural number s.t. ∑T (η)

t=1 bt ≥ ( 4c1c
µη2 )

1
α , then it

follows that the point xT found by ReSearch satisfies ∣xT − x∗∣ ≤ η. Now let f be a multi-variate function
satisfying the assumption of Theorem D.2. Notice that any restriction fk of f along a coordinate line k, will
also satisfies the same assumptions over the interval Ik (see line 3 of Algorithm 5).

The analysis of Jamieson et al. (2012) applies to our case and they show that after k epochs of coordinate
descend, the expected optimization error of the current iterate is bounded above by

(1 − 1
4dκ
)

k

∆0 + 2dκβη2.

Recalling that B(η) is the worst-case number budget required by ReSearch to find an η-optimizer, and
if we are given a total budget of BT , the number of epochs made by Line 1 of Algorithm 5 is at least
K̄(T, η) = ⌊BT /B(η)⌋. From this we get the bound of equation 23. Now notice that

B(η) ∈ [(4c1c

µη2 )
1
α

,(4c1c

µη2 )
1
α

+ b∗T)

and that

η =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

c(α)BT log
⎡⎢⎢⎢⎢⎣
(1 − 1

4dκ
) ( Bα

T

2κβd
)

b∗
T
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⎤⎥⎥⎥⎥⎦

log(2dκβ

Bα
T

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

α
2

,
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with c(α) = (µ/(4c1c))1/α implies the following

K̄(T, η) = ⌊BT /B(η)⌋ ≥ BT /B(η) − 1 = BT

( 4r∗c1c
µη2 )

1
α + b∗T

− 1

=
⎛
⎝

1
log (1 − 1

4dκ
)

log(2dκβ

Bα
T

)
⎞
⎠
− 1.

Replacing this into equation 23
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⎟⎟⎟⎟⎟⎟
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⎟⎟⎟⎟⎟⎟
⎠

,

we obtain equation 24. Notice finally that to make the above bound valid, it has to be BT ≥ (2dκβ)1/α.

E Adaptive Lipschitz constants

This experiment aims to show the advantages of featuring the local Lipschitz constant, as given in Theorem
3.1, over a bound that uses the global constant. To this end, we optimize the function f(x) = −

√
x + 1 over

the interval (a, 1) with a > 0. The Lipschitz constant of f grows roughly as 1/√a. Moreover, f(x∗) = 0 and
the maximum value is smaller than 1, thus any meaningful upper bound on the optimization error should be
smaller than 1. In the experiment we set a = 0.001, c = 0.1, α = 1 (Assumption 2.1), bt = 1 (for all t), and we
let the intervals Jt to be symmetric around f(x) for a query at x at time t. We run ReSearch for T = 1000
iterations.

Figure 6 shows that the upper bound featuring the local Lipschitz constants (local) is much tighter than that
featuring the global constant (global). In particular, as denoted by the vertical lines, the former falls below 1
after 84 iterations, while the latter becomes non-trivial only at iteration 339.
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Figure 6: The vertical green line raises at the first point where the local curve falls below 1; the red line
raises at the first point where the global curve falls below 1.
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