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Abstract

Large-scale multi-agent systems are often deployed across wide geographic areas, where agents
interact with heterogeneous environments. There is an emerging interest in understanding
the role of heterogeneity in the performance of the federated versions of classic reinforcement
learning algorithms. In this paper, we study synchronous federated Q-learning, which aims
to learn an optimal Q-function by having K agents average their local Q-estimates per E
iterations. We observe an interesting phenomenon on the convergence speeds in terms of
K and E. Similar to the homogeneous environment settings, there is a linear speed-up
concerning K in reducing the errors that arise from sampling randomness. Yet, in sharp
contrast to the homogeneous settings, E > 1 leads to significant performance degradation.
Specifically, we provide a fine-grained characterization of the error evolution in the presence
of environmental heterogeneity, which decay to zero as the number of iterations T increases.
The slow convergence of having E > 1 turns out to be fundamental rather than an artifact of
our analysis. We prove that, for a wide range of stepsizes, the ℓ∞ norm of the error cannot
decay faster than Θ( E

(1−γ)T ).
In addition, our experiments demonstrate that the convergence exhibits an interesting
two-phase phenomenon. For any given stepsize, there is a sharp phase-transition of the
convergence: the error decays rapidly in the beginning yet later bounces up and stabilizes.

1 Introduction

Advancements in unmanned capabilities are rapidly transforming industries and national security by enabling
fast-paced and versatile operations across domains such as advanced manufacturing (Park et al., 2019),
autonomous driving (Kiran et al., 2021), and battlefields (Möhlenhof et al., 2021). Reinforcement learning
(RL) – a cornerstone for unmanned capabilities – is a powerful machine learning method that aims to enable
an agent to learn an optimal policy via interacting with its operating environment to solve sequential decision-
making problems (Bertsekas & Tsitsiklis, 1996; Bertsekas, 2019). However, the ever-increasing complexity of
the environment results in a high-dimensional state-action space, often imposing overwhelmingly high sample
collection requirements on individual agents. This limited-data challenge becomes a significant hurdle that
must be addressed to realize the potential of reinforcement learning.

In this paper, we study reinforcement learning within a federated learning framework (also known as
Federated Reinforcement Learning (Qi et al., 2021; Jin et al., 2022; Woo et al., 2023)), wherein multiple
agents independently collect samples and collaboratively train a common policy under the orchestration of a
parameter server without disclosing the local data trajectories. A simple illustration can be found in Fig. 1.
When the environments of all agents are homogeneous, it has been shown that the federated version of classic
reinforcement learning algorithms can significantly alleviate the data collection burden on individual agents
(Woo et al., 2023; Khodadadian et al., 2022) – error bounds derived therein exhibit a linear speedup in terms
of number of agents.

Moreover, by tuning the synchronization period E (i.e., the number of iterations between agent synchroniza-
tion), the communication cost can be significantly reduced compared with E = 1 yet without significant
performance degradation. However, many large-scale multi-agent systems are often deployed across wide
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geographic areas, resulting in agents interacting with heterogeneous environments. For instance, connected
and autonomous vehicles (CAVs) operating in various regions of a metropolitan area encounter diverse
conditions such as varying traffic patterns, road infrastructure, and local regulations. The clients’ federa-
tion must be managed in a way that ensures the learned policy is robust to environmental heterogeneity.

Figure 1: An illustration of a federated learning system.

There is an emerging interest in mathematically un-
derstanding the role of heterogeneity in the perfor-
mance of the federated versions of classic reinforce-
ment learning algorithms (Jin et al., 2022; Woo et al.,
2023; Doan et al., 2019; Wang et al., 2023; Xie &
Song, 2023) such as Q-learning, policy gradient meth-
ods, and temporal difference (TD) methods. In this
paper, we study synchronous federated Q-learning
(FQL) in the presence of environmental heterogene-
ity, which aims to learn an optimal Q-function by
averaging local Q-estimates per E (where E ≥ 1)
update iterations on their local data. We leave the
exploration of asynchronous Q-learning for future
work. Federated Q-learning is a natural integration of FedAvg and Q-learning (Jin et al., 2022; Woo et al.,
2023). The former is the most widely adopted classic federated learning algorithm (Kairouz et al., 2021;
McMahan et al., 2017), and the latter is one of the most fundamental model-free reinforcement learning
algorithms (Watkins & Dayan, 1992). Despite intensive study, the tight sample complexity of Q-learning in
the single-agent setting was open until recently (Li et al., 2024). Similarly, the understanding of FedAvg is
far from complete; a detailed discussion can be found in Section 2. A concise comparison of our work to the
related work can be found in Table 1.

Contributions. In this paper, we study synchronous federated Q-learning in the presence of environment
heterogeneity.

• We provide a fine-grained characterization of the error evolution, which decays to zero as the
number of iterations T increases. Similar to the homogeneous environment settings, there is a linear
speed-up concerning K in reducing the errors that arise from sampling randomness. Yet, in sharp
contrast, when K(E − 1) is above a certain threshold, heterogeneous environments lead to significant
performance degradation and results a unique sample complexity of Õ

(
|S||A|E
(1−γ)3ϵ

)
, where S, A are

the state and action sets, and γ ∈ (0, 1) denotes the discount factor. When K(E − 1) is below the
threshold, the sample complexity is Õ( |S||A|

K(1−γ)5ϵ2 ), matching the homegenous setting (Woo et al.,
2023).

• We prove that the convergence slowing down for E > 1 is fundamental. We show that the ℓ∞ norm
of the error cannot decay faster than Θ( E

(1−γ)T ). A practical implication of this impossibility result
is that, eventually, having multiple local updates (i.e., E > 1) ends up consuming more samples (i.e.,
E× more) than using E = 1.

• Our numerical results illustrate that when the environments are heterogeneous and E > 1, and
there exists a sharp phase-transition of the error convergence for not too small stepsizes: The error
decays rapidly in the beginning yet later bounces up and stabilizes. In addition, provided that the
phase-transition time can be estimated, choosing different stepsizes for the two phases can lead to
faster overall convergence for both constant and time-decaying stepsizes.

2 Related Work

Federated Learning. Federated learning is a communication-efficient distributed machine learning approach
that enables training global models without sharing raw local data (McMahan et al., 2017; Kairouz et al.,
2021). Federated learning has been adopted in commercial applications that involve diverse edge devices
such as autonomous vehicles (Du et al., 2020; Chen et al., 2021; Zeng et al., 2022; Posner et al., 2021; Peng
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et al., 2023), internet of things (Nguyen et al., 2019; Yu et al., 2020), industrial automation (Liu et al.,
2020), healthcare (Yan et al., 2021; Sheller et al., 2019), and natural language processing (Yang et al., 2018;
Ramaswamy et al., 2019). Multiple open-source frameworks and libraries are available such as FATE, Flower,
OpenMinded-PySyft, OpenFL, TensorFlow Federated, and NVIDIA Clara.

FedAvg was proposed in the seminal work (McMahan et al., 2017), and has been one of the most widely
implemented federated learning algorithms. It also has inspired many follow-up algorithms such as FedProx
(Li et al., 2020b), FedNova (Wang et al., 2020), SCAFFOLD (Karimireddy et al., 2020), and adaptive
federated methods (Deng et al., 2020). Despite intensive efforts, the theoretical understanding of FedAvg is
far from complete. Most existing theoretical work on FedAvg overlooks the underlying data statistics at the
agents, which often leads to misalignment of the pessimistic theoretical predictions and empirical success (Su
et al., 2023; Pathak & Wainwright, 2020; Wang et al., 2022a;b). This theory and practice gap is studied in a
recent work (Su et al., 2023) in the context of solving general non-parametric regression problems. It shows
that the limiting points of the global model under FedAvg is one unbiased estimator of the underlying model
that generates the data.

Reinforcement Learning. There has been extensive research on the convergence guarantees of reinforcement
learning algorithms. A recent surge of work focuses on non-asymptotic convergence and the corresponding
sample complexity for the single-agent setup. Bhandari et al. (2018) analyses non-asymptotic TD learning
with linear function approximation (LFA) considering a variety of noise conditions, including noiseless,
independent noise and Markovian noise. The results were extended to TD(λ) and Q-learning. Li et al. (2020a)
investigates the sample complexity of asynchronous Q-learning with different families of learning rates. They
also provide an extension of using variance reduction methods inspired by the seminal SVRG algorithm. Li
et al. (2024) shows the sample complexity of Q-learning. Let A be the set of actions. When |A| = 1, the
sample complexity of synchronous Q-learning is sharp and minimax optimal, however, when |A| ≥ 2, it is
shown that synchronous Q-learning has a lower bound which is not minimax optimal.

Federated Reinforcement Learning. Woo et al. (2023) provides sample complexity guarantees for
both synchronous and asynchronous distributed Q-learning and reveals that given the same transition
probability (i.e., homogeneous environment) for all agents, they can speed up the convergence process linearly
by collaboratively learning the optimal Q-function. Doan et al. (2019) investigates distributed Temporal
Difference (TD) algorithm TD(0) with LFA under the setting of multi-agent MDP, where multiple agents act
in a shared environment and each agent has its own reward function. They provide a finite-time analysis of
this algorithm that with constant stepsize, the estimates of agents can converge to a neighborhood around
optimal solutions at the rate of O(1/T ) and asymptotically converge to the optimal solutions at the rate of
O(1/

√
T + 1), where T is the timestep. Khodadadian et al. (2022) studies on-policy federated TD learning,

off-policy federated TD learning, and federated Q-learning of homogeneous environment and reward with
Markovian noise. The sample complexity derived exhibits linear speedup with respect to the number of
agents. Heterogeneous environments are considered in Jin et al. (2022); Wang et al. (2023); Xie & Song
(2023); Zhang et al. (2023). Jin et al. (2022) studies federated Q-learning and policy gradient methods under
the setting of different known transition probabilities for each agent. Yet, no state sampling is considered.
Wang et al. (2023) proposes FedTD(0) with LFA dealing with the environmental and reward heterogeneity of
MDPs. They rigorously prove that in a low-heterogeneity regime, there is a linear convergence speedup in
the number of agents. Xie & Song (2023) uses KL-divergence to penalize the deviation of local update from
the global policy, and they prove that under the setting of heterogeneous environments, the local update is
beneficial for global convergence using their method. Zhang et al. (2024) proposes FedSARSA using the classic
on-policy RL algorithm SARSA with linear function approximation (LFA) under the setting of heterogeneous
environments and rewards. They theoretically prove that the algorithm can converge to the near-optimal
solution. Neither Xie & Song (2023) nor Zhang et al. (2024) characterize sample complexity.

Technical Comparisons with Woo et al. (2023); Zhang et al. (2024); Wang et al. (2023).
While Zhang et al. (2024) and Wang et al. (2023) examined federated versions of TD learning and SARSA,
our paper uniquely addresses federated Q-Learning, emphasizing its distinct theoretical and applicational
advantages for optimal policy learning and planning—areas inadequately covered by the former methods.
Specifically, the upper bound in Zhang et al. (2024) and Wang et al. (2023) do not indicate how fundamentally
the convergence rates are impacted by the heterogeneity κ and synchronization period E, and the upper
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Work RL
Algorithm

Hetero-
geneity Optimality Lower

bound Sampling Finite-
time Task

Wang et al.
(2023) TD(0) ✔ ✗ ✗ ✔ ✔ Pred

Xie & Song
(2023)

Policy Gradi-
ent ✔ ✗ ✗ ✔ ✗

Pred,
Plan

Zhang et al.
(2024) SARSA ✔ ✗ ✗ ✔ ✔

Pred,
Plan

Khodadadian
et al. (2022)

TD,
Q-Learning ✗ ✔ ✗ ✔ ✔

Pred,
Plan

Jin et al.
(2022)

Q-Learning,
Policy Gradi-
ent

✔ ✔ ✗ ✗ ✔
Pred,
Plan

Woo et al.
(2023) Q-Learning ✗ ✔ ✗ ✔ ✔

Pred,
Plan

Zheng et al.
(2023) Q-Learning ✗ ✔ ✗ ✔ ✔

Pred,
Plan

Our work Q-Learning ✔ ✔ ✔ ✔ ✔
Pred,
Plan

Table 1: Comparison of various works in the context of FRL.

bounds does not decay to 0 as T → ∞. In contrast, our upper bound converges to 0 as T → ∞. Furthermore,
we derived a lower bound on the convergence rates, showing the fundamental limitation of multiple local
updates (i.e., E > 1) in the presence of environmental heterogeneity. To the best of our knowledge, this is
the first result of its kind.

Our analysis of Theorem 1 builds upon the roadmap established by Woo et al. (2023), but adapting their
analysis to our setting introduces significant challenges. In Woo et al. (2023), all agents operate in a
homogeneous environment, meaning each of the K agents shares the same underlying transition distribution.
This homogeneity allows the concentration bound on the difference between the true transition distribution
and sampled estimates to become arbitrarily small as the number of samples increases. However, in our
setting, each agent has its own environment with a distinct transition distribution. This heterogeneity
introduces a perturbation term in the error upper bound that does not decrease with additional samples.
Additionally, when E > 1 and κ > 0, the term involving κ(E − 1) in the upper bound becomes the dominant
term, resulting a unique sample complexity. Further technical details and implications of these adjustments
are provided in Corollary 2.

3 Preliminary on Q-Learning

Markov decision process. A Markov decision process (MDP) is defined by the tuple ⟨S, A, P, γ, R⟩, where S
represents the set of states, A represents the set of actions, the transition probability P : S×A → [0, 1] provides
the probability distribution over the next states given a current state s and action a, the reward function
R : S × A → [0, 1] assigns a reward value to each state-action pair, and the discount factor γ ∈ (0, 1) models
the preference for immediate rewards over future rewards. It is worth noting that P = {P (· | s, a)}s∈S,a∈A is
a collection of |S| × |A| probability distributions over S, one for each state-action pair (s, a).

Policy, value function, Q-Function, and optimality. A policy π specifies the action-selection strategy
and is defined by the mapping π : S → ∆(A), where π(a | s) denotes the probability of choosing action a
when in state s. For a given policy π, the value function V π : S → R measures the expected total discounted
reward starting from state s:

V π(s) = Eat∼π(·|st),st+1∼P (·|st,at)

[∑
t

γtR(st, at) | s0 = s

]
, ∀s ∈ S.
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The state-action value function, or Q-function Qπ : S × A → R, evaluates the expected total discounted
reward from taking action a in state s and then following policy π:

Qπ(s, a) = R(s, a) + Eat∼π(·|st),st+1∼P (·|st,at)

[∑
t

γtR(st, at) | s0 = s, a0 = a

]
, ∀(s, a) ∈ S × A.

An optimal policy π∗ is one that maximizes the value function for every state, that is ∀s ∈ S, V π∗(s) ≥ V π(s)
for any other π ̸= π∗. Such a policy ensures the highest possible cumulative reward. The optimal value
function V ∗ (shorthand for V π∗) and the optimal Q-function Q∗ (shorthand for Qπ∗) are defined under the
optimal policy π∗.

The Bellman optimality equation for the value function and state-value function are:

V ∗(s) = max
a

[R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′)]

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′).

Q-learning. Q-learning (Watkins & Dayan, 1992) is a model-free reinforcement learning algorithm that
aims to learn the value of actions of all states by updating Q-values through iterative exploration of the
environment, ultimately converging to the optimal state-action function. Based on the Bellman optimality
equation for the state-action function, the update rule for Q-Learning is formulated as:

Qt+1(s, a) = (1 − λ)Qt(s, a) + λ[R(s, a) + γ max
a′∈A

Qt(s′, a′)], ∀(s, a) ∈ S × A,

where s′ is sampled from the environment or the transition probability and λ is the stepsize.

4 Federated Q-learning

The federated learning system consists of one parameter server (PS) and K agents. The K agents are deployed
in possibly heterogeneous yet independent environments. The K agents are modeled as Markov Decision
Processes (MDPs) with Mk = ⟨S, A, Pk, γ, R⟩ for k = 1, · · · , K, where Pk = {P k(· | s, a)}s∈S,a∈A are the
collection of probability distributions that can be heterogeneous across agents. In the synchronous setting,
each agent k has access to a generative model, and generates a new state sample for each (s, a) via

sk
t (s, a) ∼ P k(· | s, a)

i.e., P
{

sk
t (s, a) = s′} = P k(s′ | s, a) for all s′ ∈ S, independently across state-action pairs (s, a). For each

(s, a), the global environment P̄ (· | s, a) (Jin et al., 2022) is defined as

P̄ (s′ | s, a) = 1
K

K∑
k=1

P k(s′ | s, a), ∀s′. (1)

with the corresponding global MDP defined as Mg = ⟨S, A, P̄, γ, R⟩. Define transition heterogeneity κ as

sup
k,s,a

∥∥P̄ (· | s, a) − P k(· | s, a)
∥∥

∞ := κ. (2)

Let Q∗ denote the optimal Q-function of the global MDP. By the Bellman optimality equation, we have for
all (s, a),

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P̄ (s′ | s, a)V ∗(s′), (3)

where V ∗(s) = maxa∈A Q∗(s, a) is the optimal value function.
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Algorithm 1 Synchronous Federated Q-Learning
Inputs: discount factor γ, E, total iteration T , step-

size λ, initial estimate Q0
1: for k ∈ [K] do
2: Qk

0 = Q0
3: end for
4: for t = 0 to T − 1 do
5: for k ∈ [K] and (s, a) ∈ S × A do
6: Qk

t+ 1
2
(s, a) = (1 − λ)Qk

t (s, a) +
λ
(
R(s, a) + γ maxa′∈A Qk

t (sk
t (s, a), a′)

)
.

7: if (t + 1) mod E = 0 then
8: Qk

t+1 = 1
K

∑K
k=1 Qk

t+ 1
2

9: else
10: Qk

t+1 = Qk
t+ 1

2
11: end if
12: end for
13: end for
14: return QT = 1

K

∑K
k=1 Qk

T

The goal of federated Q-learning is to have the K
agents collaboratively learn Q∗. We consider syn-
chronous federated Q-learning, which is a natural
integration of FedAvg and Q-learning (Woo et al.,
2023; Jin et al., 2022) – described in Algorithm 1.
Every agent initializes its local Qk estimate as Q0
and performs standard synchronous Q-learning based
on the locally collected samples sk

t (s, a). Whenever
t + 1 mod E = 0, through the parameter server,
the K agents average their local estimate of Q; that
is, all agents report their Qk

t+ 1
2

to the parameter
server, which computes the average and sends back
to agents.

5 Main Results

With a little abuse of notation, let the matrix
P k ∈ R|S||A|×|S| represent the transition kernel of
the MDP of agent k with the (s, a)-th row being
P k(· | s, a) ∈ R|S| – the transition probability of the
state-action pair (s, a). For ease of exposition, we
write P k(· | s, a) = P k(s, a) as the state transition probability at the state-action pair (s, a) when its meaning
is clear from the context.

5.1 Main Convergence Results.

Let P̃ k
t ∈ {0, 1}|S||A|×|S| denote the local empirical transition matrix at the t-th iteration, defined as

P̃ k
t (s′ | s, a) = 1{s′ = sk

t (s, a)}.

Denoting P̃ k
i V ∗ ∈ R|S||A|×1 with the (s, a)-th entry as P̃ k

i (s, a)V ∗ =
∑

s′∈S P̃ k
i (s′|s, a)V ∗(s′). Let Q̄t+1 :=

1
K

∑K
k=1 Qk

t+1. From lines 6, 8, and 10 of Algorithm 1, it follows that

Q̄t+1 = 1
K

K∑
k=1

(
(1 − λ)Qk

t + λ(R + γP̃ k
t V k

t )
)

,

where V k
t (s) := maxa∈A Qk

t (s, a) for all s ∈ S. Define

∆t+1 := Q∗ − Q̄t+1, and ∆0 := Q∗ − Q0. (4)

The error iteration ∆t is captured in the following lemma.
Lemma 1 (Error iteration). For any t ≥ 0,

∆t+1 = (1 − λ)t+1∆0 + γλ

t∑
i=0

(1 − λ)t−i 1
K

K∑
k=1

(P̄ − P̃ k
i )V ∗

+ γλ

t∑
i=0

(1 − λ)t−i 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i ). (5)

To show the convergence of ∥∆t+1∥∞, we bound each of the three terms in the right-hand-side of (5). The
following lemma is a coarse upper bound of errors.

6



Under review as submission to TMLR

Lemma 2. Choosing R(s, a) ∈ [0, 1] for each state-action pair (s, a), and choose 0 ≤ Q0(s, a) ≤ 1
1−γ for any

(s, a) ∈ S × A, then 0 ≤ Qk
t (s, a) ≤ 1

1−γ , 0 ≤ Q∗(s, a) ≤ 1
1−γ ,

∥∥Q∗ − Qk
t

∥∥
∞ ≤ 1

1 − γ
, and

∥∥V ∗ − V k
t

∥∥
∞ ≤ 1

1 − γ
, ∀ t ≥ 0, and k ∈ [K]. (6)

With the choice of Q0 in Lemma 2, the first term in (5) can be bounded as
∥∥(1 − λ)t+1∆0

∥∥
∞ ≤ (1−λ)t+1 1

1−γ .
In addition, as detailed in the proof of Lemma 4 and Theorem 1, the boundedness in Lemma 2 enables us to
bound the second term in (5) via invoking the Hoeffding’s inequality. It remains to bound the third term in
(5), for which we follow the analysis roadmap of Woo et al. (2023) by a two-step procedure that is described
in Lemma 3 and Lemma 4. Let

∆k
t = Q∗ − Qk

t , and χ(t) = t − (t mod E), (7)

i.e., ∆k
t is the local error of agent k, and χ(t) is the most recent synchronization iteration of t.

Lemma 3. If t mod E = 0, then
∥∥∥ 1

K

∑K
k=1 P̃ k

t (V ∗ − Vt)
∥∥∥

∞
≤ ∥∆t∥∞. Otherwise,

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
t (V ∗ − V k

t )
∥∥∥∥∥

∞

≤
∥∥∆χ(t)

∥∥
∞ + 2λ

1
K

K∑
k=1

t−1∑
t′=χ(t)

∥∥∆k
t′

∥∥
∞

+ γλ
1
K

K∑
k=1

max
s,a

∣∣∣∣∣∣
t−1∑

t′=χ(t)

(
P̃ k

t′ (s, a) − P̄ (s, a)
)

V ∗

∣∣∣∣∣∣ .
where we use the convention that

∑χ(t)−1
t′=χ(t)

∥∥∆k
t′

∥∥
∞ = 0.

Lemma 4. Choose λ ≤ 1
E . For any δ ∈ (0, 1), with probability at least (1 − δ),

∥∥∆k
i

∥∥
∞ ≤

∥∥∆χ(i)
∥∥

∞ + 3γ

1 − γ
λ(E − 1)κ + 3γ

1 − γ

√
λ log |S||A|KT

δ
, ∀ i ≤ T, k ∈ [K]. (8)

To bound the ℓ∞ norm of the third term in (5), we first invoke Lemma 3, followed by Lemma 4. It is worth
noting that directly applying Lemma 4 can also lead to a valid error bound yet the resulting bound will not
decay as T increases with proper choice of stepsizes.

Both Lemma 3 and Lemma 4 are non-trivial adaptations of the approach in Woo et al. (2023) due to
the absence of a common optimal action for any given state in heterogeneous environments. Moreover, in
the homogeneous setting, each agent draws samples from the same true transition distribution, allowing
concentration inequalities to bound the discrepancy between the true distribution and sampled estimates.
However, this line of reasoning does not go through in the presence of environmental heterogeneity. When
κ > 0, each of the K agents has its own transition distribution, and the discrepancy is captured by the
environmental heterogeneity parameter κ.
Theorem 1 (Convergence). Choose E − 1 ≤ 1

λ min{ 1−γ
4γ , 1

K } and λ ≤ 1
E . For any δ ∈ (0, 1

3 ), with probability
at least 1 − 3δ, it holds that

∥∆T ∥∞ ≤ 4
(1 − γ)2 exp

{
−1

2
√

(1 − γ)λT

}
+ 14γ2

(1 − γ)2 λ(E − 1)κ + 16
(1 − γ)2

√
λ

K
log |S||A|KT

δ
.

The first term of Theorem 1 is the standard error bound in the absence of environmental heterogeneity and
sampling noises. The second term arises from environmental heterogeneity. It is clear that when E = 1, the
environmental heterogeneity does not negatively impact the convergence. The last term results from the
randomness in sampling.
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Remark 1 (Eventual zero error). It is common to choose the stepsize λ based on the time horizon T . Let
λ = g(T ) be a non-increasing function of T . As long as λ = g(T ) decay in T , terms 2 and 3 in Theorem 1
will go to 0 as T increases. In addition, when λ = ω(1/T ), the first term will decay to 0. Conversely, the
convergence bounds in Zhang et al. (2024) and Wang et al. (2023) do not decay to 0.

There is a tradeoff in the convergence rates of the first term and the remaining terms – the slower λ decay in
T leads to faster decay in the first term but slower in the remaining terms. Forcing these terms to decay
around the same speed leads to slow overall convergence. Corollary 1 follows immediately from Theorem 1
via carefully choosing λ to balance the decay rates of different terms.

Corollary 1. Choose (E − 1) ≤ min 1
λ { γ

1−γ , 1
K }, and λ = 4 log2(T K)

T (1−γ) . Let T ≥ E. For any δ ∈ (0, 1
3 ), with

probability at least 1 − 3δ,

∥∆T ∥∞ ≤ 4
(1 − γ)2TK

+ 32
(1 − γ)3

log(TK)√
TK

√
log |S||A|TK

δ
+ 56 log2(TK)

(1 − γ)3
E − 1

T
κ.

Remark 2 (Partial linear speedup and the negative impacts of E > 1). Intuitively, both terms 1 and 2 decay
as if there are TK iterations – a linear speedup. In fact, the decay rate of the sampling noises in Corollary
1, with respect to TK, is the minimax optimal up to polylog factors (Vershynin, 2018). The decay of the
third term is controlled by environmental heterogeneity when E > 1. In sharp contrast to the homogeneous
settings, larger E significantly slows down the convergence of this term. We show in the next subsection that
this slow convergence is fundamental.

Corollary 2. Choose E − 1 ≤ 1
λ min{ 1−γ

4γ , 1
K } and λ ≤ 1

E .

• When κ = 0 or E = 1, for any δ ∈ (0, 1
3 ), with probability at least 1 − 3δ, it holds that

∥∆T ∥∞ ≤ ϵ,

when T ≥ 4096
K(1−γ)5ϵ2 log |S||A|KT

δ log2( (1−γ)2ϵ
8 ). The resulting sample complexity is Õ( |S||A|

K(1−γ)5ϵ2 ).

• When κ > 0 and E > 1,

– If K(E − 1) ≥ 55 log |S||A|KT
δ

κγ2ϵ(1−γ)2 , for any δ ∈ (0, 1
3 ), with probability at least 1 − 3δ, it holds that

∥∆T ∥∞ ≤ ϵ,

when T ≥ 168κ(E−1)γ2

(1−γ)3ϵ log2( (1−γ)2ϵ
12 ) . The resulting sample complexity is Õ( |S||A|E

(1−γ)3ϵ ).

– If K(E − 1) ≤ 55 log |S||A|KT
δ

κγ2ϵ(1−γ)2 , for any δ ∈ (0, 1
3 ), with probability at least 1 − 3δ, it holds that

∥∆T ∥∞ ≤ ϵ,

when T ≥ 9216
K(1−γ)5ϵ2 log |S||A|KT

δ log2( (1−γ)2ϵ
12 ). The resulting sample complexity is Õ( |S||A|

K(1−γ)5ϵ2 ).

Remark 3 (Sample complexity on K and E). From Corollary 2, we can conclude that when the setting
is homogeneous, i.e., κ = 0, or, the agents communicate every step, i.e., E = 1, the sample complexity
Õ( |S||A|

K(1−γ)5ϵ2 ) matches the one in Woo et al. (2023). On the other hand, when the setting is heterogeneous
(i.e., κ > 0) and E > 1, it is clear that when the total computation steps per synchronization is sufficiently
small, i.e., K(E − 1) ≤ Õ( 1

ϵ(1−γ)2 ), the sample complexity also matches the one in the homogeneous setting.
Otherwise, the sample complexity Õ( |S||A|E

(1−γ)3ϵ ) increases with E, meaning that multiple local rounds only
consumes more samples (i.e., E-times more) samples.

8



Under review as submission to TMLR

5.2 On the Fundamentals of Convergence Slowing Down for E > 1.

Theorem 2. Let Q0 = 0. For any even K ≥ 2, there exists a collection of {(S, A, Pk, R, γ) : k ∈ [K]}

where |S| = 2 and |A| = 1 such that, for E ≥ 2 and time-invariant stepsize λ ≤ 1
1+γ , ∀R :=

[
r1
r2

]
,

∥∆T ∥∞ ≥ cR
E

(1 − γ)T ,

when T/E ∈ N and T ≥ E·max
{

exp{ 4E(γ+2)
(1+γ)γ2(E−1) }, exp

{
−W−1

(
− 1−γ

2(1+γ)

)}}
, where W−1 is the Lambert W

function, cR = 1
2 min

{
|r1+r2|

e , |r1 − r2|
}

when r1 ̸= r2 and cR = |r1+r2|
2e otherwise.

Remark 4 (Communication and convergence tradeoff). Since the parameter server aggregates the local
parameters per E rounds, the communication cost is O( T

E ) for each agent, which is inversely proportional to
the convergence lower bound. Therefore, larger E gives lower communication cost and slower convergence.

Proof Sketch. Below we discuss the key ideas and provide the proof sketch of Theorem 2. The full proof is
deferred to Appendix F.

The eventual slow rate convergence is due to the heterogeneous environments Pk regardless of the cardinality
of the action space. In particular, we prove the slow rate when the action space is a singleton, in which
case the Q-function coincides with the V-function. The process is also known as the Markov reward process.
According to Algorithm 1, when (t + 1) mod E ̸= 0, we have

Qk
t+1 =

(
(1 − λ)I + λγP k

)
Qk

t + λR.

Following Algorithm 1, we obtain the following recursion between two synchronization rounds:

∆(r+1)E = Ā(E)∆rE +
((

I − Ā(E)
)

−
(

I + Ā(1) + . . . Ā(E−1)
)(

I − Ā(1)
))

Q∗, (9)

where Ā(ℓ) ≜ 1
K

∑K
k=1(Ak)ℓ and Ak ≜ (1 − λ)I + λγP k. While the first term on the right-hand side of (9)

decays rapidly to zero, the second term is non-vanishing due to environment heterogeneity for E ≥ 2.
Specifically, to ensure the rapid decay of the first term, it is necessary to select a stepsize λ = Ω̃( 1

rE ). However,
this choice results in the dominating residual error from the second term, which increases linearly with
λE = Ω̃( 1

r ).

Next, we instantiate the analyses by constructing the set Pk over a pair of states and an even number of
clients with

P 2k−1 =
[
1 0
0 1

]
, P 2k =

[
0 1
1 0

]
, for k ∈ N. (10)

Applying the formula of Ā(ℓ) yields the following eigen-decomposition:

Ā(ℓ) = αℓ(I − P̄ ) + βℓP̄ ,

where P̄ = 1
2 11⊤, αℓ ≜ 1

2 (νℓ
1 + νℓ

2), βℓ ≜ νℓ
2, ν1 ≜ 1 − (1 + γ)λ, and ν2 ≜ 1 − (1 − γ)λ. For this

instance of Pk, the error evolution (9) reduces to ∆(r+1)E =
(
αE(I − P̄ ) + βEP̄

)
∆rE + κE(I − P̄ )Q∗ with

κE ≜ − γ
2

(
1−νE

2
1−γ − 1−νE

1
1+γ

)
, which further yields the following full error recursion:

∆rE =
(
αr

E(I − P̄ ) + βr
EP̄
)

∆0 + 1 − αr
E

1 − αE
κE(I − P̄ )Q∗.

Starting from Q0 = 0, the error can be decomposed into

∆rE = βr
EP̄Q∗ +

(
αr

E + 1 − αr
E

1 − αE
κE

)
(I − P̄ )Q∗. (11)

The two terms of the error are orthogonal and both non-vanishing. Therefore, it remains to lower bound the
maximum magnitude of two coefficients irrespective of the stepsize λ. To this end, we analyze two regimes of
λ separated by a threshold λ0 ≜ log r

(1−γ)rE :

9
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• Slow rate due to small stepsize when λ ≤ λ0. Since βr
E decreases as λ increases,

βr
E ≥ (1 − (1 − γ)λ0)rE =

(
1 − log r

rE

)rE

≥ E

eT
.

• Slow rate due to environment heterogeneity when λ ≥ λ0. We show that∣∣∣∣αr
E + 1 − αr

E

1 − αE
κE

∣∣∣∣ ≥ E

(1 − γ)T
.

We conclude that at least one component of the error in (11) must be slower than the rate Ω(E/T ).
Remark 5. The explicit calculations are based on a set Pk over a pair of states. Nevertheless, the evolution (9)
is generally applicable. Similar analyses can be extended to scenarios involving more than two states, provided
that the sequence of matrices Ā(ℓ) is simultaneously diagonalizable. For instance, the construction of the
transition kernels in (10) can be readily extended to multiple states if the set S can be partitioned into two
different classes. The key insight is the non-vanishing residual on the right-hand side of (9) when E ≥ 2 due
to the environment heterogeneity.

5.3 Discussion on Time-varying Stepsize

Although using time-varying stepsize is common and simple when implementing the algorithm, it is not easy
to transfer from current time-invariant stepsize analysis to time-varying stepsize analysis. This is because in
the time-invariant stepsize analysis we are dealing with a function of one variable, however, in the time-varying
case, we are dealing with a function of T variables.

For example, in our lower bound analysis, we picked a threshold λ0 and showed that no matter λ is greater
or smaller than λ0, the convergence rate is greater than O( E

(1−γ)T ), and we can claim we have covered all the
cases. However, for time-varying stepsize, the number of stepsizes is T , and it is not easy to generalize a
similar result by just considering several cases because each stepsize gives an additional dimension. Even if
we know the sequence is decaying, without specifying a particular family of stepsizes, it is not possible to
divide it into several cases as we did for time-invariant stepsize.

We conjecture that both approaches lead to comparable residual error levels over extended training. For
example, the stepsizes used in Figure 4a and Figure 4b are 1√

T
and 1√

t+1 , respectively. While the time-
decaying stepsize appears to enable faster initial convergence due to its larger values at the start, we observe
that as t increases, the convergence rates of the two strategies seem to align, suggesting a similar asymptotic
behavior.
6 Experiments
Description of the setup. In our experiments, we consider K = 20 agents (Jin et al., 2022), each
interacting with an independently and randomly generated 5 × 5 maze environment ⟨S, A, Pk, R, γ⟩ for
k ∈ {1, 2, · · · , 20}. The state set S contains 25 cells that the agent is currently in. The action set contains
4 actions A = {left, up, right, down}. Thus, |S| × |A| = 100. We choose γ = 0.99. For ease of verifying our
theory, each entry of the reward R ∈ R100 is sampled from Bern(p = 0.05), which slightly departs from
a typical maze environment wherein only two state-action pairs have nonzero rewards. We choose this
reward so that ∥∆0∥∞ ≈ 100 = 1

1−γ , which is the coarse upper bound of ∥∆t∥∞ for all t. For each agent k,
its state transition probability vectors Pk are constructed on top of standard state transition probability
vectors of maze environments incorporated with a drifting probability 0.1 in each non-intentional action
as in WindyCliff (Jin et al., 2022; Paul et al., 2019). In this way, the environment heterogeneity lies not
only in the differences of the non-zero probability values (Jin et al., 2022; Paul et al., 2019) but also in the
probability supports (i.e., the locations of non-zero entries). Our construction is more challenging: The
environment heterogeneity κ as per (2) of our environment construction was calculated to be 1.2. Yet, the
largest environment heterogeneity of the WindyCliff construction in Jin et al. (2022) is about 0.31.

10



Under review as submission to TMLR

We choose Q0 = 0 ∈ R100. All numerical results are based on 5 independent runs to capture the variability.
The dark lines represent the mean of the runs, while the shaded areas around each line illustrate the range
obtained by adding and subtracting one standard deviation from the mean. The maximum time duration is
T = 20, 000 in our experiment since it is sufficient to capture the characteristics of the training process.

Convergence behavior and two-phase phenomenon. We demonstrate through numerical simulations
that our analysis aligns with the observed behaviors. For algorithms with a time-invariant stepsize, convergence
requires sufficiently small stepsizes and a sufficiently large number of iterations, T .

To explore the impact of stepsizes on convergence, we use λ ∈ {0.9, 0.5, 0.2, 0.1, 0.05}, spanning a range
within (0, 1). As shown in Figure 2a, these stepsizes are not sufficiently small, leading to a two-phase
phenomenon: the ℓ∞-norm of ∆t = Q∗ − Q̄t has a rapid decay in the first phase followed by a bounce back
in the second phase. This phenomenon is distinctive to heterogeneous settings. In contrast, 2b indicates that
in homogeneous environments, no drastic bounce occurs, irrespective of the stepsize.

Figure 4a (light blue curve) demonstrates that with a sufficiently small stepsize, such as λ = 1√
T

, the error
continuously decreases, reaching approximately 24 by iteration 20,000.

A useful practice implication of our results is that: While constant stepsizes are often used in reinforcement
learning problems because of the great performance in applications as described in Sutton & Barto (2018),
they suffer significant performance degradation in the presence of environmental heterogeneity.

Impacts of the synchronization period E. In homogeneous settings (refer to Figure 5 in Appendix
G.1), the synchronization period E has negligible impact, consistent with prior findings in the literature
(Woo et al., 2023; Khodadadian et al., 2022). However, under heterogeneous conditions, larger E values
lead to increased final error across the five constant stepsizes, as depicted in Figure 3 and Figure 2a. This
degradation persists even with time-decaying stepsizes λt = 1√

t+1 , as shown in Figure 6. We hypothesize that
larger E values require either smaller or more rapidly decaying stepsizes to mitigate the degradation caused
by increased synchronization periods.

Potential utilization of the two-phase phenomenon. As shown in Figures 2a and 3, in the presence of
environmental heterogeneity, the smaller the stepsizes, the smaller error ∥∆t∥∞ can reach and less significant
of the error bouncing in the second phase.

In our preliminary experiments, we tested small stepsizes λ = 1/T α for α ∈ {0.4, 0.5, · · · , 1}, which eventually
lead to small errors yet at the cost of being extremely slow. Among these choices, λ = 1/

√
T has the fastest

convergence performance yet is still ≈ 24 up to iteration 20,000.

(a) Heterogeneous environments E = 10. (b) Homogeneous environments E = 10.

Figure 2: The ℓ∞ error of different constant stepsizes under the heterogeneous and homogenous settings.
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(a) E=1 (b) E=20

(c) E=40 (d) E=∞
Figure 3: Convergence behavior for constant stepsizes (0.05, 0.1, 0.2, 0.5, 0.9) under various synchronization
intervals E (1, 20, 40, ∞). In heterogeneous settings, higher E and larger λ lead to higher residual errors.

Let t0 be the iteration at which the error trajectory ∥∆t∥∞ switches from phase 1 to phase 2. Provided that
t0 can be estimated, choosing different stepsizes for the two phases can lead to faster overall convergence,
compared with using the same stepsize throughout.

Figure 4a illustrates two-phase training with different phase 1 stepsizes and phase 2 stepsize λ = 1/
√

T
compared with using λ = 1/

√
T throughout. Overall, using λ = 1/

√
T throughout leads to the slowest

convergence, highlighting the benefits of the two-phase training strategy. Among all two-phase stepsize
choices, the stepsize of 0.05 in the first phase results in a longer phase 1 duration (t0 = 5550 ) but the lowest
final error (2.75327), suggesting a better convergence. We further test the convergence performance with
respect to different target error levels, details can be found in Appendix G.3.

We also evaluated the two-phase training strategy using various time-decaying step sizes, including 1√
t+1 ,

c+1
t+c , 1

t+1 , and 1
(t+1)0.7 . In all cases, Figure 4 shows the two-phase training has an advantage.

We leave the estimation and characterization of t0 for future work.
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Appendices

A Proof of Lemma 1

The update of ∆t+1 is as follows:

∆t+1 = Q∗ − Q̄t+1

= 1
K

K∑
k=1

(Q∗ − ((1 − λ)Qk
t + λ(R + γP̃ k

t Qk
t )))

= 1
K

K∑
k=1

((1 − λ)(Q∗ − Qk
t ) + λ(Q∗ − R − γP̃ k

t V k
t ))

= (1 − λ)∆t + γλ
1
K

K∑
k=1

(P̄ V ∗ − P̃ k
t V k

t )

= (1 − λ)∆t + γλ

K

K∑
k=1

(P̄ − P̃ k
t )V ∗ + γλ

K

K∑
k=1

P̃ k
t (V ∗ − V k

t )

= (1 − λ)t+1∆0 + γλ

t∑
i=0

(1 − λ)t−i 1
K

K∑
k=1

(P̄ − P̃ k
i )V ∗

+ γλ

t∑
i=0

(1 − λ)t−i 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i ),

recalling that ∆0 = Q∗ − Q0.

B Proof of Lemma 2

We first show 0 ≤ Qk
t (s, a) ≤ 1

1−γ by inducting on t. When t = 0, this is true by the choice of Q0. Suppose
that 0 ≤ Qk

t−1(s, a) ≤ 1
1−γ for any state-action pair (s, a) and any client k. Let’s focus on time t. When t is

not a synchronization iteration (i.e., t + 1 mod E ̸= 0), we have

Qk
t (s, a) = (1 − λ)Qk

t−1(s, a) + λ(R(s, a) + γP̃ k
t (s, a)V k

t−1)

≤ 1 − λ

1 − γ
+ λ(R(s, a) + γP̃ k

t (s, a)V k
t−1)

(a)
≤ 1 − λ

1 − γ
+ λ(1 + γ

1 − γ
)

≤ 1
1 − γ

− λ

1 − γ
+ λ

1 − γ

= 1
1 − γ

,

where inequality (a) holds because for any s, V k
t−1(s) = maxa∈A Qk

t−1(s, a) ≤ 1
1−γ by the inductive hypothesis,

and each element of P̃ k
t (s, a) ∈ [0, 1]. Then P̃ k

t (s, a)V k
t−1 ≤ ∥P̃ k

t (s, a)∥1
∥∥V k

t−1
∥∥

∞ ≤ 1
1−γ by Hölder’s inequality.

Similarly, we can show the case when t is a synchronization iteration.

With the above argument, we can also show that 0 ≤ Q∗(s, a) ≤ 1
1−γ for any state-action pair (s, a). Therefore,

we have that
∥∥Q∗ − Qk

t

∥∥
∞ ≤ 1

1−γ .
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Next, we show that bound on
∥∥V ∗ − V k

t

∥∥
∞.

∥∥V ∗ − V k
t

∥∥
∞ = max

s∈S

∣∣V ∗(s) − V k
t (s)

∣∣
= max

s∈S

∣∣∣∣max
a∈A

Q∗(s, a) − max
a′∈A

Qk
t (s, a′)

∣∣∣∣
≤ max

s∈S,a∈A

∣∣Q∗(s, a) − Qk
t (s, a)

∣∣
=
∥∥Q∗ − Qk

t

∥∥
∞

≤ 1
1 − γ

.

C Proof of Lemma 3

When t mod E = 0, i.e., i is a synchronization round, Qk
t = Qk′

t for any pair of agents k, k′ ∈ [K]. Hence,

1
K

K∑
k=1

P̃ k
t (s, a)(V ∗ − V k

t ) =
(

1
K

K∑
k=1

P̃ k
t (s, a)

)
(V ∗ − V̄t)

≤ ∥ 1
K

K∑
k=1

P̃ k
t (s, a)∥1

∥∥V ∗ − V̄t

∥∥
∞

≤
∥∥Q∗ − Q̄t

∥∥
∞

= ∥∆t∥∞ . (12)

For general t, we have

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
t (V ∗ − V k

t )
∥∥∥∥∥

∞

=
∥∥∥∥∥ 1

K

K∑
k=1

P̃ k
t (V ∗ − V k

χ(t) + V k
χ(t) − V k

i )
∥∥∥∥∥

∞

≤

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
t (V ∗ − V k

χ(t))
∥∥∥∥∥

∞

+
∥∥∥∥∥ 1

K

K∑
k=1

P̃ k
t (V k

χ(t) − V k
t )
∥∥∥∥∥

∞

≤
∥∥∆χ(t)

∥∥
∞ +

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
t (V k

χ(t) − V k
t )
∥∥∥∥∥

∞

by (12)

≤
∥∥∆χ(t)

∥∥
∞ + 1

K

K∑
k=1

∥∥∥V k
χ(t) − V k

t

∥∥∥
∞

. (13)

For any state s ∈ S, we have

V k
t (s) − V k

χ(t)(s)
= Qk

t (s, ak
t (s)) − Qk

χ(t)(s, ak
χ(t)(s))

(a)
≤ Qk

t (s, ak
t (s)) − Qk

χ(t)(s, ak
t (s))

= Qk
t (s, ak

t (s)) − Qk
t−1(s, ak

t (s)) + Qk
t−1(s, ak

t (s)) − Qk
t−2(s, ak

t (s))
+ · · · + Qk

χ(t)+1(s, ak
t (s)) − Qk

χ(t)(s, ak
t (s)). (14)

where inequality (a) holds because Qk
χ(t)(s, ak

t (s)) ≤ Qk
χ(t)(s, ak

χ(t)(s)).

17
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For each t′ such that χ(t) ≤ t′ ≤ t, it holds that,

Qk
t′+1(s, ak

t (s)) − Qk
t′(s, ak

t (s))
= (1 − λ)Qk

t′(s, ak
t (s)) + λ(R(s, ak

t (s)) + γP̃ k
t′ (s, ak

t (s))V k
t′ ) − Qk

t′(s, ak
t (s))

(a)= −λQk
t′(s, ak

t (s)) + λ
(

Q∗(s, ak
t (s)) − R(s, ak

t (s)) − γP̄ (s, ak
t (s))V ∗ + R(s, ak

t (s)) + γP̃ k
t′ (s, ak

t (s))V k
t′

)
= λ∆k

t′(s, ak
t (s)) + γλ

(
(P̃ k

t′ (s, ak
t (s)) − P̄ (s, ak

t (s)))V ∗ + P̃ k
t′ (s, ak

t (s))(V k
t′ − V ∗)

)
≤ 2λ

∥∥∆k
t′

∥∥
∞ + γλ

(
P̃ k

t′ (s, ak
t (s)) − P̄ (s, ak

t (s))
)

V ∗,

where equality (a) follows from the Bellman equation (3). Thus,

V k
t (s) − V k

χ(t)(s) ≤
t−1∑

t′=χ(t)

Qk
t′+1(s, ak

t (s)) − Qk
t′(s, ak

t (s))

= 2λ

t−1∑
t′=χ(t)

∥∥∆k
t′

∥∥
∞ + γλ

t−1∑
t′=χ(t)

(
P̃ k

t′ (s, ak
t (s)) − P̄ (s, ak

t (s))
)

V ∗. (15)

Similarly, we have

V k
t (s) − V k

χ(t)(s) ≥
t−1∑

t′=χ(t)

Qk
t′+1(s, ak

χ(t)(s)) − Qk
t′(s, ak

χ(t)(s))

≥ −2λ

t−1∑
t′=χ(t)

∥∥∆k
t′

∥∥
∞ + γλ

t−1∑
t′=χ(t)

(
P̃ k

t′ (s, ak
χ(t)(s)) − P̄ (s, ak

χ(t)(s))
)

V ∗. (16)

Plugging the bounds in (15) and in (16) back into (13), we get

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
t (V ∗ − V k

t )
∥∥∥∥∥

∞

≤
∥∥∆χ(t)

∥∥
∞ + 1

K

K∑
k=1

∥∥∥V k
χ(t) − V k

t

∥∥∥
∞

≤
∥∥∆χ(t)

∥∥
∞ + 2λ

1
K

K∑
k=1

t−1∑
t′=χ(t)

∥∥∆k
t′

∥∥
∞

+ γλ
1
K

K∑
k=1

max
s,a

∣∣∣∣∣∣
t−1∑

t′=χ(t)

(
P̃ k

t′ (s, a) − P̄ (s, a)
)

V ∗

∣∣∣∣∣∣.

D Proof of Lemma 4

When i mod E = 0, then ∆k
i = ∆χ(i). When i mod E ̸= 0, we have

Qk
i = (1 − λ)Qk

i−1 + λ
(

R + γP̃ k
i−1V k

i−1

)
= (1 − λ)Qk

i−1 + λ
(

Q∗ − R − γP̄V ∗ + R + γP̃ k
i−1V k

i−1

)
.
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So,

∆k
i = (1 − λ)∆k

i−1 + λγ
(

P̄ V ∗ − P̃ k
i−1V k

i−1

)
= (1 − λ)∆k

i−1 + λγ(P̄ − P̃ k
i−1)V ∗ + λγP̃ k

i−1(V ∗ − V k
i−1)

≤ (1 − λ)i−χ(i)∆χ(i) + γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1(P̄ − P̃ k
j )V ∗

+ γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1P̃ k
j (V ∗ − V k

j ). (17)

For any state-action pair (s, a),

|(1 − λ)i−χ(i)∆χ(i)(s, a)| ≤ (1 − λ)i−χ(i) ∥∥∆χ(i)
∥∥

∞ . (18)

For the second term, we have∥∥∥∥∥∥γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1(P̄ − P̃ k
j )V ∗

∥∥∥∥∥∥
∞

(19)

≤

∥∥∥∥∥∥γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1(P̄ − P k
j )V ∗

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1(P k
j − P̃ k

j )V ∗

∥∥∥∥∥∥
∞

(20)

≤ γ

1 − γ
λ

i−1∑
j=χ(i)

(1 − λ)i−1−jκ + γ

1 − γ

√
λ log |S||A|KT

δ
(21)

≤ γ

1 − γ
λ(E − 1)κ + γ

1 − γ

√
λ log |S||A|KT

δ
, (22)

for all (s, a) ∈ S × A, i ∈ [T ], k ∈ [K]. From (20) to (21), we used Hoeffding’s inequality by treating
λ(1−λ)i−j−1(P k

j −P̃ k
j )V ∗ as the random variables with their absolute values bounded by λ(1−λ)i−j−1 ∥V ∗∥∞.

In addition, we have∥∥∥∥∥∥γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1P̃ k
j (V ∗ − V k

j )

∥∥∥∥∥∥
∞

≤ γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1 ∥∥∆k
j

∥∥
∞ . (23)

Combining the bounds in (18), (19), and (23), we get∥∥∆k
i

∥∥
∞ ≤ (1 − λ)i−χ(i) ∥∥∆χ(i)

∥∥
∞ + γ

1 − γ
λ(E − 1)κ + γ

1 − γ

√
λ log |S||A|KT

δ

+ γλ

i−1∑
j=χ(i)

(1 − λ)i−j−1 ∥∥∆k
j

∥∥
∞

≤ (1 − (1 − γ)λ)i−χ(i) ∥∥∆χ(i)
∥∥

∞

+ (1 + γλ)i−χ(i)

(
γ

1 − γ
λ(E − 1)κ + γ

1 − γ

√
λ log |S||A|KT

δ

)
, (24)

where the last inequality can be shown via inducting on i − χ(i) ∈ {0, · · · , E − 1}. When λ ≤ 1
E ,

(1 + γλ)i−χ(i) ≤ (1 + λ)E ≤ (1 + 1/E)E ≤ e ≤ 3.

We get ∥∥∆k
i

∥∥
∞ ≤

∥∥∆χ(i)
∥∥

∞ + 3 γ

1 − γ
λ(E − 1)κ + 3 γ

1 − γ

√
λ log |S||A|KT

δ
.
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E Proof of Theorem 1

By Lemma 1,

∆t+1 = (1 − λ)t+1∆0 +
t∑

i=0
(1 − λ)i γλ

K

K∑
k=1

(P̄ − P̃ k
t−i)V ∗ +

t∑
i=0

(1 − λ)i γλ

K

K∑
k=1

P̃ k
t−i(V ∗ − V k

t−i).

Taking the ℓ∞ norm on both sides, we get

∥∆t+1∥∞ ≤ (1 − λ)t+1 ∥∆0∥∞ +
∥∥∥∥∥

t∑
i=0

(1 − λ)iλγ
1
K

K∑
k=1

(P̄ − P̃ k
t−i)V ∗

∥∥∥∥∥
∞

+
t∑

i=0
(1 − λ)iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
t−i(V ∗ − V k

t−i)
∥∥∥∥∥

∞

.

We bound the three terms in the right-hand-side of the above-displayed equation separately.

Since 0 ≤ Q0(s, a) ≤ 1
1−γ , the first term can be bounded as

(1 − λ)t+1 ∥∆0∥∞ ≤ (1 − λ)t+1 1
1 − γ

. (25)

To bound the second term
∥∥∥∑t

i=0(1 − λ)iλγ 1
K

∑K
k=1(P̄ − P̃ k

t−i)V ∗
∥∥∥

∞
, we have

t∑
i=0

(1 − λ)iλγ
1
K

K∑
k=1

(P̄ − P̃ k
t−i)V ∗ =

t∑
i=0

(1 − λ)iλγ
1
K

K∑
k=1

(P k − P̃ k
t−i)V ∗

= 1
K

K∑
k=1

t∑
i=0

(1 − λ)iλγ(P k − P̃ k
t−i)V ∗.

Let Xi,k = 1
K γλ(1 − λ)i(P k − P̃ k

t−i)V ∗. It is easy to see that E [Xi,k(s, a)] = 0 for all (s, a). By Lemma 2, we
have |Xi,k(s, a)| ≤ 2

K(1−γ) γλ(1 − λ)i for all (s, a). Since the sampling across clients and across iterations are
independent, via invoking Hoeffding’s inequality, for any given δ ∈ (0, 1), with probability at least 1 − δ,∥∥∥∥∥

t∑
i=0

(1 − λ)iλγ
1
K

K∑
k=1

(P̄ − P̃ k
t−i)V ∗

∥∥∥∥∥
∞

≤ γ

1 − γ

√
1
K

λ log |S||A|TK

δ
. (26)

To bound the third term
∑t

i=0(1 − λ)iλγ
∥∥∥ 1

K

∑K
k=1 P̃ k

t−i(V ∗ − V k
t−i)

∥∥∥
∞

, following the roadmap of Woo et al.
(2023), we divide the summation into two parts as follows. For any βE ≤ t ≤ T , we have

t∑
i=0

(1 − λ)iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
t−i(V ∗ − V k

t−i)
∥∥∥∥∥

∞

=
t∑

i=0
(1 − λ)t−iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i )
∥∥∥∥∥

∞

=
χ(t)−βE∑

i=0
(1 − λ)t−iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i )
∥∥∥∥∥

∞

+
t∑

i=χ(t)−βE+1

(1 − λ)t−iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i )
∥∥∥∥∥

∞

≤ γ

1 − γ
(1 − λ)t−χ(t)+βE +

t∑
i=χ(t)−βE+1

(1 − λ)t−iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i )
∥∥∥∥∥

∞

.
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By Lemma 3,

t∑
i=χ(t)−βE+1

(1 − λ)t−iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i )
∥∥∥∥∥

∞

≤
t∑

i=χ(t)−βE+1

(1 − λ)t−iλγ

∥∥∆χ(i)
∥∥

∞ + 2λ
1
K

K∑
k=1

i−1∑
j=χ(i)

∥∥∆k
t′

∥∥
∞

+γλ
1
K

K∑
k=1

max
s,a

∣∣∣∣∣∣
i−1∑

j=χ(i)

(
P̃ k

j (s, a) − P̄ (s, a)
)

V ∗

∣∣∣∣∣∣
 .

Since P̃ k
j (s, a)’s are independent across time j and across state action pair (s, a), and |P̃ k

j (s, a) − P̄ (s, a)V ∗| ≤
1

1−γ (from Lemma 2), with Hoeffding’s inequality and union bound, we get for any δ ∈ (0, 1), with probability
at least 1 − δ,

∣∣∣∣∣∣
i−1∑

j=χ(i)

(
P̃ k

j (s, a) − P̄ (s, a)
)

V ∗

∣∣∣∣∣∣ ≤ (E − 1) 1
1 − γ

κ + 1
1 − γ

√
(E − 1) log |S|A|KT

δ
(27)

for all (s, a) ∈ S × A, k ∈ K, and i. By Lemma 4, with probability at least (1 − δ), we have

t∑
i=χ(t)−βE+1

(1 − λ)t−iλγ2λ
1
K

K∑
k=1

i−1∑
j=χ(i)

∥∥∆k
j

∥∥
∞

≤ 2λ2γ

t∑
i=χ(t)−βE+1

(1 − λ)t−i 1
K

K∑
k=1

i−1∑
j=χ(i)

(∥∥∆χ(i)
∥∥

∞ + 3 γ

1 − γ
λ(E − 1)κ + 3 γ

1 − γ

√
λ log |S||A|KT

δ

)

≤ 2λγ(E − 1) max
χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + 6γ2λ2

1 − γ
(E − 1)2κ + 6γ2λ

1 − γ
(E − 1)

√
λ log |S||A|KT

δ
.

Thus, with probability at least (1 − 2δ),

t∑
i=χ(t)−βE+1

(1 − λ)t−iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i )
∥∥∥∥∥

∞

≤ γ max
χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + 2λγ(E − 1) max
χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + 6γ2λ2

1 − γ
(E − 1)2κ

+ 6γ2λ

1 − γ
(E − 1)

√
λ log |S||A|KT

δ

+
t∑

i=χ(t)−βE+1

(1 − λ)t−iλγ

(
γλ

1 − γ
(E − 1)κ + γλ

1 − γ

√
(E − 1) log |S||A|KT

δ

)

= γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + γ2

1 − γ
(6λ2(E − 1)2 + λ(E − 1))κ

+ γ2λ

1 − γ

√
(E − 1) log |S||A|KT

δ
+ 6γ2λ

1 − γ
(E − 1)

√
λ log |S||A|KT

δ
.
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The third term can be bounded as

t∑
i=0

(1 − λ)iλγ

∥∥∥∥∥ 1
K

K∑
k=1

P̃ k
i (V ∗ − V k

i )
∥∥∥∥∥

∞

≤ γ

1 − γ
(1 − λ)t−χ(t)+βE + γ(1 + 2λ(E − 1)) max

χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + γ2

1 − γ
(6λ2(E − 1)2 + λ(E − 1))κ

+ γ2λ

1 − γ

√
(E − 1) log |S||A|KT

δ
+ 6γ2λ

1 − γ
(E − 1)

√
λ log |S||A|KT

δ
. (28)

Combing the bounds for terms (25), (26), and (28), we get the following recursion holds for all rounds T with
probability at least (1 − 3δ):

∥∆t+1∥∞ ≤ (1 − λ)t+1 1
1 − γ

+ γ

1 − γ

√
1
K

λ log |S||A|TK

δ
+ γ

1 − γ
(1 − λ)t−χ(t)+βE

+ γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + γ2

1 − γ
(6λ2(E − 1)2 + λ(E − 1))κ

+ γ2λ

1 − γ

√
(E − 1) log |S||A|KT

δ
+ 6γ2λ

1 − γ
(E − 1)

√
λ log |S||A|KT

δ

≤ γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + 2
1 − γ

(1 − λ)βE + γ2

1 − γ
(6λ2(E − 1)2 + λ(E − 1))κ

+ γ2λ

1 − γ

√
(E − 1) log |S||A|KT

δ
+ 6γ2λ

1 − γ
(E − 1)

√
λ log |S||A|KT

δ

+ γ

1 − γ

√
1
K

λ log |S||A|TK

δ
.

Let

ρ := 2
1 − γ

(1 − λ)βE + γ2

1 − γ
(6λ2(E − 1)2 + λ(E − 1))κ

+ γ2λ

1 − γ

√
(E − 1) log |S||A|KT

δ
+ 6γ2λ

1 − γ
(E − 1)

√
λ log |S||A|KT

δ

+ γ

1 − γ

√
1
K

λ log |S||A|TK

δ
. (29)

With the assumption that λ ≤ 1−γ
4γ(E−1) , the above recursion can be written as

∥∆t+1∥∞ ≤ 1 + γ

2 max
χ(t)−βE≤i≤t

∥∥∆χ(i)
∥∥

∞ + ρ.

Unrolling the above recursion L times where LβE ≤ t ≤ T , we obtain that

∥∆t+1∥∞ ≤ (1 + γ

2 )L max
χ(t)−LβE≤i≤t

∥∥∆χ(i)
∥∥

∞ +
L−1∑
i=0

(1 + γ

2 )iρ

≤ (1 + γ

2 )L 1
1 − γ

+ 2
1 − γ

ρ.
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Choosing β =
⌊

1
E

√
(1−γ)T

2λ

⌋
, L =

⌈√
λT

1−γ

⌉
, t + 1 = T , we get

∥∆T ∥∞ ≤ 1
1 − γ

(1 + γ

2 )
√

λT
1−γ + 2

1 − γ

(
2

1 − γ
(1 − λ)βE + γ2

1 − γ
(6λ2(E − 1)2 + λ(E − 1))κ

+
(

6γ2λ

1 − γ

√
E − 1 + γ2

√
λ

1 − γ

)√
λ(E − 1) log |S||A|KT

δ
+ γ

1 − γ

√
1
K

λ log |S||A|TK

δ

)

≤ 1
1 − γ

(1 + γ

2 )
√

λT
1−γ + 4

(1 − γ)2 (1 − λ)
√

(1−γ)T
2λ + 2γ2

(1 − γ)2 (6λ2(E − 1)2 + λ(E − 1))κ

+
(

12γ2λ

(1 − γ)2

√
E − 1 + 2γ2

√
λ

(1 − γ)2

)√
λ(E − 1) log |S||A|KT

δ
+ 2γ

(1 − γ)2

√
1
K

λ log |S||A|TK

δ

≤ 1
1 − γ

exp
{

−1
2
√

(1 − γ)λT

}
+ 4

(1 − γ)2 exp
{

−
√

(1 − γ)λT
}

+ 2γ2

(1 − γ)2 (6λ2(E − 1)2 + λ(E − 1))κ

+
(

12γ2λ

(1 − γ)2

√
E − 1 + 2γ2

√
λ

(1 − γ)2

)√
λ(E − 1) log |S||A|KT

δ
+ 2γ

(1 − γ)2

√
1
K

λ log |S||A|TK

δ

≤ 4
(1 − γ)2 exp

{
−1

2
√

(1 − γ)λT

}
+ 2γ2

(1 − γ)2 (6λ2(E − 1)2 + λ(E − 1))κ

+
(

14γ2λ

(1 − γ)2

√
E − 1

)√
log |S||A|KT

δ
+ 2γ

(1 − γ)2

√
1
K

λ log |S||A|TK

δ
.

By the assumption that (E − 1) ≤ 1
Kλ , the above can be further simplified as

∥∆T ∥∞ ≤ 4
(1 − γ)2 exp

{
−1

2
√

(1 − γ)λT

}
+ 14γ2

(1 − γ)2 λ(E − 1)κ + 16
(1 − γ)2

√
λ

K
log |S||A|KT

δ
.
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F Proof of Theorem 2

Let |A| = 1, in which case Q-function coincides with the V -function. According to Algorithm 1, when
(t + 1) mod E ̸= 0, we have

Qk
t+1 =

(
(1 − λ)I + λγP k

)
Qk

t + λR.

Define Ak ≜ (1 − λ)I + λγP k. We obtain the following recursion between two synchronization rounds:

Qk
(r+1)E = (Ak)EQk

rE +
(
(Ak)0 + . . . (Ak)E−1)λR.

Define

Ā(ℓ) ≜
1
K

K∑
k=1

(Ak)ℓ. (30)

Note that Q∗ is the fixed point under the transition kernel P̄ , we have λR = λ(I − γP̄ )Q∗ = (I − Ā(1))Q∗

since Ā(1) = I − λ(I − γP̄ ). Furthermore, since Q1
tE , . . . , QK

tE are identical due to synchronization, we get

Q̄(r+1)E = Ā(E)Q̄rE +
(

I + Ā(1) + . . . Ā(E−1)
)(

I − Ā(1)
)

Q∗.

Consequently,

∆(r+1)E = Q∗ − Q̄(r+1)E

= Ā(E)∆rE +
((

I − Ā(E)
)

−
(

I + Ā(1) + . . . Ā(E−1)
)(

I − Ā(1)
))

Q∗. (31)

Next, consider |S| = 2 and even K with

P 2k−1 =
[
1 0
0 1

]
, P 2k =

[
0 1
1 0

]
, for k ∈ N.

Then P̄ = 1
2 11⊤, where 1 denotes the all ones vector. For the above transition kernels, we have

1
k

K∑
k=1

(P k)ℓ =
{

I, ℓ even,

P̄ , ℓ odd.

Applying the definition of Ā(ℓ) in (30) yields that

Ā(ℓ) = 1
K

K∑
k=1

(Ak)ℓ

= 1
K

K∑
k=1

((1 − λ)I + λγP k)ℓ

= 1
K

K∑
k=1

ℓ∑
j=0

(
ℓ

j

)
(λγP k)j((1 − λ)I)ℓ−j

=
∑

j even

(
ℓ

j

)
(1 − λ)ℓ−j(λγ)j(I − P̄ + P̄ ) +

∑
j odd

(
ℓ

j

)
(1 − λ)ℓ−j(λγ)jP̄

= 1
2((1 − λ − λγ)ℓ + (1 − λ + λγ)ℓ)︸ ︷︷ ︸

≜αℓ

(I − P̄ ) + (1 − λ + λγ)ℓ︸ ︷︷ ︸
≜βℓ

P̄

= αℓ(I − P̄ ) + βℓP̄ ,

which is the eigen-decomposition of Ā(ℓ). Let

λ1 ≜ (1 + γ)λ, λ2 ≜ (1 − γ)λ, ν1 = 1 − λ1, ν2 = 1 − λ2.
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Then
αℓ = 1

2(νℓ
1 + νℓ

2), βℓ = νℓ
2. (32)

Note that 0 ≤ α ≤ β ≤ 1 and I − P̄ and P̄ are orthogonal projection matrices satisfying (I − P̄ )P̄ = 0. The
matrices for the second term of the error on the right-hand side of 31 reduce to(

I + Ā(1) + . . . Ā(E−1)
)(

I − Ā(1)
)

=
(

E−1∑
ℓ=0

αℓ(I − P̄ ) +
E−1∑
ℓ=0

βℓP̄

)(
(α0 − α1)(I − P̄ ) + (β0 − β1)P̄

)
=
(

(1 − α1)
E−1∑
ℓ=0

αℓ(I − P̄ )2 + (1 − β1)
E−1∑
ℓ=0

βℓP̄
2

)
since α0 = β0 = 1

=
(

(1 − α1)
E−1∑
ℓ=0

αℓ(I − P̄ ) + (1 − β1)
E−1∑
ℓ=0

βℓP̄

)
since (I − P̄ ) and P̄ are idempotent.

It follow that (
I − Ā(E)

)
−
(

I + Ā(1) + . . . Ā(E−1)
)(

I − Ā(1)
)

=
(

(1 − αE) − (1 − α1)
(

E−1∑
i=0

αi

))
︸ ︷︷ ︸

≜κE

(I − P̄ ) +
(

(1 − βE) − (1 − β1)
(

E−1∑
i=0

βi

))
︸ ︷︷ ︸

=0

P̄ .

Applying (32) yields that

κE = −γ

2

(
1 − νE

2
1 − γ

− 1 − νE
1

1 + γ

)
. (33)

It follows from (31) that the error evolves as

∆(r+1)E =
(
αE(I − P̄ ) + βEP̄

)
∆rE + κE(I − P̄ )Q∗,

which further yields the following full recursion of the error:

∆rE =
(
αE(I − P̄ ) + βEP̄

)r ∆0 +
r−1∑
ℓ=0

(
αE(I − P̄ ) + βEP̄

)ℓ
κE(I − P̄ )Q∗

=
(
αr

E(I − P̄ ) + βr
EP̄
)

∆0 +
r−1∑
ℓ=0

(
αℓ

E(I − P̄ ) + βℓ
EP̄
)

κE(I − P̄ )Q∗

since
(
αE(I − P̄ ) + βEP̄

)ℓ = αℓ
E(I − P̄ ) + βℓ

EP̄ , ∀ℓ ∈ N

=
(
αr

E(I − P̄ ) + βr
EP̄
)

∆0 + 1 − αr
E

1 − αE
κE(I − P̄ )Q∗

=
(

αr
E + 1 − αr

E

1 − αE
κE

)
(I − P̄ )Q∗ + βr

EP̄Q∗,

where the last equality applied the zero initialization condition.

Note that (I − P̄ )Q∗ and P̄Q∗ are orthogonal vectors. Since |S| = 2, we have

∥∆rE∥∞ ≥ 1√
2

∥∆rE∥2 ≥ min{∥(I − P̄ )Q∗∥2, ∥P̄Q∗∥2}√
2

· max
{

|αr
E + 1 − αr

E

1 − αE
κE |, βr

E

}
.
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Let R =
[
r1
r2

]
, since Q∗ = (I − γP̄ )−1R = (I − P̄ )R + 1

1−γ P̄R, we obtain that

(I − P̄ )Q∗ = (I − P̄ )R = 1
2

[
r1 − r2
r2 − r1

]
, P̄Q∗ = 1

1 − γ
P̄R = 1

2(1 − γ)

[
r1 + r2
r1 + r2

]
.

∥(I − P̄ )Q∗∥2 =
√

2
2 |r1 − r2| , ∥P̄Q∗∥2 =

√
2

2(1 − γ) |r1 + r2| .

When r1 = r2, the error ∆rE reduces to βr
EP̄Q∗, and ∥∆rE∥∞ = 1

2(1−γ) |r1 + r2| |βr
E |; otherwise, min{∥(I −

P̄ )Q∗∥2, ∥P̄Q∗∥2} =
√

2
2 min{|r1 − r2| , 1

1−γ |r1 + r2|}. It remains to analyze the coefficients as functions of λ.
To this end, we introduce the following lemma:
Lemma 5. The following properties hold:

1. Negativity: κE < 0;

2. Monotonicity: κE

1−αE
is monotonically decreasing for λ ∈ (0, 1

1+γ );

3. Upper bound: | κE

1−αE
| ≤ γ2

1−γ2 for λ ∈ (0, 1
1+γ );

4. Lower bound: if (1 + γ)λ ≤ 1
2E , then | κE

1−αE
| ≥ λγ2(E−1)

4 .

Proof. We prove the properties separately.

1. Note that ν1 < ν2, 1 − ν1 = (1 + γ)λ, and 1 − ν2 = (1 − γ)λ. Then it follows from (33) that

κE = −λγ

2

E−1∑
i=1

(νi
2 − νi

1) < 0.

2. For the monotonicity, it suffices to show that d
dλ

κE

1−αE
≤ 0. We calculate the derivative as

d

dλ

κE

1 − αE
= γE(1 − νE

1 )(1 − νE
2 )

2(1 − γ2)(1 − αE)2

(
(1 + γ)νE−1

1
1 − νE

1
− (1 − γ)νE−1

2
1 − νE

2

)
.

Note that

(1 + γ)νE−1
1

1 − νE
1

− (1 − γ)νE−1
2

1 − νE
2

= 1
λ

(
νE−1

1

1 + ν1 + · · · + νE−1
1

− νE−1
2

1 + ν2 + · · · + νE−1
2

)
≤ 0.

3. For the upper bound, it suffices to show the result at λ = 1
1+γ due to the negativity and monotonicity.

At λ = 1
1+γ , we have

∣∣∣∣ κE

1 − αE

∣∣∣∣ = γ

1 − γ2

(
γ −

( 2γ
1+γ )E

2 − ( 2γ
1+γ )E

)
≤ γ2

1 − γ2 .

4. For the lower bound, the case E = 1 trivially holds. Next, consider E ≥ 2. We have

κE

1 − αE
= − γ

1 − γ2
(1 + γ)(1 − νE

2 ) − (1 − γ)(1 − νE
1 )

(1 − νE
1 ) + (1 − νE

2 )

= −λγ

∑E−1
ℓ=1 (νℓ

2 − νℓ
1)

(1 − νE
1 ) + (1 − νE

2 )
.
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Note that 1 − nx ≤ (1 − x)n ≤ 1 − 1
2 nx for n ≥ 1 and 0 ≤ x ≤ 1

n . Then, for (1 + γ)λ ≤ 1
2E , we have

νE
1 = (1 − (1 + γ)λ)E ≥ 1 − (1 + γ)λE ≥ 1

2 ,

νE
2 = (1 − (1 − γ)λ)E ≥ 1 − (1 − γ)λE.

Moreover, for all x ∈ [ν1, ν2] ⊆ [0, 1] and ℓ − 1 ≤ E, we have

xℓ−1 ≥ xE ≥ νE
1 ≥ 1

2 .

We obtain that∑E−1
ℓ=1 (νℓ

2 − νℓ
1)

(1 − νE
1 ) + (1 − νE

2 )
≥
∑E−1

ℓ=1
∫ ν2

ν1
ℓ · xℓ−1dx

2λE
≥
∑E−1

ℓ=1 ℓ 1
2 (ν2 − ν1)

2λE
= 1

4γ(E − 1).

The proof is completed.

We consider two regimes of the stepsize separated by λ0 ≜ log r
(1−γ)rE < 1

1+γ , where the dominating error is due
to the small stepsize and the environment heterogeneity, respectively:

Slow rate due to small stepsize when λ ≤ λ0. Since βr
E monotonically decreases as λ increases,

βr
E = (1 − (1 − γ)λ)rE ≥ (1 − (1 − γ)λ0)rE =

(
1 − log r

rE

)rE

.

Note that log r
rE ∈ (0, 1

2 ), applying the fact log(1 − x) + x ≥ −x2 for x ∈ [0, 1
2 ] yields that

log
(

1 − log r

rE

)
+ log r

rE
≥ −

(
log r

rE

)2
≥ − 1

rE
.

Then we get

βr
E ≥

(
1 − log r

rE

)rE

≥ 1
er

.

Slow rate due to environment heterogeneity when λ ≥ λ0. Recall that λ < 1
1+γ . Applying the

triangle inequality yields that∣∣∣∣αr
E + 1 − αr

E

1 − αE
κE

∣∣∣∣ ≥
∣∣∣∣ κE

1 − αE

∣∣∣∣−
(

1 +
∣∣∣∣ κE

1 − αE

∣∣∣∣)αr
E .

For the first term, by the negativity and monotonicity in Lemma 5, it suffices to show the lower bound
at λ = λ0. Since λ < 1

1+γ , then αE = 1
2
(
(1 − (1 − γ)λ)E + (1 − (1 + γ)λ)E

)
decreases as λ increases. For

r ≥ exp
{

−W−1

(
− 1−γ

2(1+γ)

)}
, where W−1 is the Lambert W function, such that (1 + γ)λ0 ≤ 1

2E , we apply
the lower bound in Lemma 5 and obtain that

∣∣∣∣ κE

1 − αE

∣∣∣∣ ≥ λ0γ2(E − 1)
4 ≥

log r
(1−γ)rE γ2(E − 1)

4 ≥ (E − 1)
4E

γ2 log r

(1 − γ)r .

Additionally, applying the upper bound in Lemma 5 yields(
1 +

∣∣∣∣ κE

1 − αE

∣∣∣∣)αr
E ≤ νrE

2
1 − γ2 = (1 − (1 − γ)λ)rE

1 − γ2 ≤ 1
(1 − γ2)r .
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Therefore, ∣∣∣∣αr
E + 1 − αr

E

1 − αE
κE

∣∣∣∣ ≥
∣∣∣∣ κE

1 − αE

∣∣∣∣−
(

1 +
∣∣∣∣ κE

1 − αE

∣∣∣∣)αr
E

≥ (E − 1)
4E

γ2 log r

(1 − γ)r − 1
(1 − γ2)r

= 1
(1 − γ2)r

(
(1 + γ)γ2 log(r)(E − 1)/(4E) − 1

)
= 1

(1 − γ)r

(
γ2 log(r)(E − 1) − 4E/(1 + γ)

4E

)
.

When r1 = r2,

∥∆rE∥∞ = |r1 + r2|
2(1 − γ) |βr

E |

≥ |r1 + r2|
2(1 − γ)

E

eT
;

otherwise,

∥∆rE∥∞ ≥ min{∥(I − P̄ )Q∗∥2, ∥P̄Q∗∥2}√
2

· max
{

|αr
E + 1 − αr

E

1 − αE
κE |, βr

E

}
≥ 1

2 min
{

|r1 − r2| ,
1

1 − γ
|r1 + r2|

}
max

{
|αr

E + 1 − αr
E

1 − αE
κE |, βr

E

}
≥ 1

2 min
{

|r1 − r2| ,
1

1 − γ
|r1 + r2|

}
max

{
1

(1 − γ)r

(
γ2 log(r)(E − 1) − 4E/(1 + γ)

4E

)
,

1
er

}
= 1

2 min
{

|r1 − r2| ,
1

1 − γ
|r1 + r2|

}
max

{
E

(1 − γ)T

(
γ2 log(r)(E − 1) − 4E/(1 + γ)

4E

)
,

E

eT

}
.

We can choose log(r) ≥ 4E(γ+2)
(1+γ)γ2(E−1) , E ≥ 2 so that

(
γ2 log(r)(E−1)−4E/(1+γ)

4E

)
≥ 1. Then the first term inside

the max operator is bigger. Then,

∥∆rE∥∞ ≥ 1
2 min

{
|r1 − r2| ,

1
1 − γ

|r1 + r2|
}

E

(1 − γ)T .
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G Additional experiments

(a) Phase 2 stepsize λ = 1√
T

(b) Phase 2 stepsize λt = 1√
t+1

(c) Phase 2 stepsize λt = c+1
t+c

, where c = 10 (d) Phase 2 stepsize λt = 1
t+1

(e) Phase 2 stepsize λt = 1
(t+1)0.7

Figure 4: Choosing different stepsizes for phases 1 and 2 leads to faster overall convergence. E = 10.
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G.1 Impacts of E on homogeneous settings.

For the homogeneous settings, in addition to E = 10, we also consider E = {1, 20, 40, ∞}, where E = ∞
means no communication among the agents throughout the entire learning process. Similar to Figure 2b,
there is no obvious two-phase phenomenon even in the extreme case when E = ∞. Also, though there is
indeed performance degradation caused by larger E, the overall performance degradation is nearly negligible
compared with the heterogeneous settings shown in Figures 2a and 3.

(a) E=1 (b) E=20

(c) E=40 (d) E=∞

Figure 5: Homogeneous federated Q-learning with varying E.
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G.2 Impacts of E on time-decaying stepsize

Figure 6: Using time-decaying stepsize λt = 1√
t+1 , the overall convergence becomes worse as E increases

Figure 7: Final error versus T. It is clear that when choosing λ = 1√
T

, the final error decays as T increases.

G.3 Different target error levels.

In Figure 8, we show the error levels that these training strategies can achieve within a time horizon
T = 20, 000. The tolerance levels are 10%, 5%, 3%, and 1% of the initial error ∥∆0∥∞, respectively. At a
high level, choosing different stepsizes for phases 1 and 2 can speed up convergence.
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(a) One common λ = 1√
T

throughout. ∥∆t∥∞ does meet
any of the tolerance levels within 20000 iterations

(b) With a phase 1 stepsize of 0.9, it meets the 10%
tolerance level at iteration 16502.

(c) With a phase 1 stepsize of 0.5, it meets the 10%
tolerance level at iteration 15250.

(d) With a phase 1 stepsize of 0.2, it meets the 10%
and 5% tolerance level at iterations 9669 and 19597,
respectively.

(e) With a phase 1 stepsize of 0.1, it meets the 10%
and 5% tolerance level at iterations 3901 and 14008,
respectively.

(f) With a phase 1 stepsize of 0.05, it meets the 10%, 5%,
and 3% tolerance levels at iterations 4610, 8795, and
16687, respectively.

Figure 8: Convergence performance of different tolerance levels of different stepsize choices. The horizontal dashed lines
represent the tolerance levels not met, while the vertical dashed lines indicate the iterations at which the training processes meet
the corresponding tolerance levels.

32


	Introduction
	Related Work
	Preliminary on Q-Learning
	Federated Q-learning
	Main Results
	Main Convergence Results.
	On the Fundamentals of Convergence Slowing Down for E>1.
	Discussion on Time-varying Stepsize

	Experiments
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Theorem 2
	Additional experiments
	Impacts of E on homogeneous settings.
	Impacts of E on time-decaying stepsize
	Different target error levels.


