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Abstract

In this paper we propose a general framework to perform statistical online inference
in a class of constant step size stochastic approximation (SA) problems, including
the well-known stochastic gradient descent (SGD) and Q-learning. Regarding a
constant step size SA procedure as a time-homogeneous Markov chain, we establish
a functional central limit theorem (FCLT) for it under weaker conditions, and then
construct confidence intervals for parameters via random scaling. To leverage the
FCLT results in the Markov chain setting, an alternative condition that is more
applicable for SA problems is established. We conduct experiments to perform
inference with both random scaling and other traditional inference methods, and
finds that the former has a more accurate and robust performance.

1 Introduction

Stochastic approximation (SA) is a class of fixed-point algorithms that enjoys a wide range of
applications and research [23, 24, 21, 14]. In general, with the goal of solving an underlying
deterministic equation z(θ∗) = 0, SA algorithms perform iterative updates based on random
approximations of z(θ). An SA procedure has the following form

θt+1 = θt − ηZt, t = 0, 1, 2, . . . , (1)
where η > 0 is the constant step size and Zt = Z(θt, ξt+1) is a random realization satisfying
Eξt+1

Z(θt, ξt+1) = z(θt). Although SA algorithms are initially proposed for solving optimization
problems, a large variety of modern machine learning problems such as TD learning [25] and Q-
learning [28] can also be solved via stochastic approximation, and hence studies of such problems in
an SA perspective have emerged in recent years [6, 15, 20, 18].

The celebrated Polyak-Ruppert averaged estimator [22] is often used to stabilize and accelerate SA
algorithms. Instead of using the last iterate of an SA procedure, the estimator takes an average
over all iterates. It is well-known and extensively studied that if the step size η in (1) is replaced
by suitably decaying step sizes, the estimator converges almost surely to the ground-truth solution
θ∗, and a central limit theorem (CLT) with optimal covariance can be established for the averaged
iterates. Examples include [5], which proposes the batch-means inference method for SGD-type
estimator; and [4], which gives the very first asymptotic results and a statistical inference framework
for adaptively collected data. Recently, this result has been extended to a functional central limit
theorem (FCLT) in particular settings, such as SGD [16], Local SGD [17], and Q-learning [18].
In these works, however, additional conditions such as (2 + δ)-th bounded moments of noises are
required to obtain such stronger FCLT result, and proofs are based on an elaborated decomposition
on the partial sum, which leads to some cumbersome calculation.

This motivates us to consider whether the same results can be established in a simpler way. In many
real applications, constant step size SA algorithms are often used for convenience, and in this case
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the SA algorithm can be seen as a time-homogeneous Markov chain because each iteration of the
SA procedure is only based on the current state. Such perspective is also adopted by [9], which
gives some nice theoretical results on the constant step size SGD. Meanwhile, FCLT results are
well-established in the Markov chain setting [19, 11, 26, 3, 7, 8]. Due to the fine structure of such
Markov chains, the FCLT may be established with weak conditions, i.e., with only second bounded
moments of noises.

Based on the established FCLT, statistical inference via the random scaling method can be imple-
mented. First proposed in [13] for time series regression and recently adapted in the inference of
SGD parameters [16], random scaling utilizes the whole trajectory of the partial sum of iterates to
construct a covariance-like matrix, and studentizes the averaged iterates using this matrix. This results
in a pivotal statistic whose limit distribution does not depend on any other redundant parameter that
needs to be further estimated. Without the need of the additional estimation step, so random scaling
turns out to be more robust and efficient compared with traditional methods, such as spectral variance
and batch-means [10].

The remainder of this paper is organized as follows. In Section 2 we propose a general statistical
inference framework that includes the establishment of the FCLT and random scaling. In Section
3, we present applications of the framework in three modern problems including linear stochastic
approximation (LSA), stochastic gradient descent (SGD) and Q-learning. Generally, the Polyak-
Ruppert averaged estimator does not converge exactly to the ground-truth solution θ∗, but we give
bounds on the bias to show such bias diminishes as the step size η converges to zero. Numerical
experiments are given in Section 4 to illustrate the accuracy and efficiency of our inference framework.

2 A Statistical Online Inference Framework

In this section, we introduce a general statistical inference framework for a class of constant step
size stochastic approximation (SA) problems. The inference procedure contains three main steps:
establishing a functional central limit theorem (FCLT) for the parameters to be estimated, constructing
a pivotal statistic via random scaling based on the previously established FCLT, and providing a
problem-dependent estimate on the bias between the ground-truth solution and the expectation of the
stationary distribution to which the SA process converges.

2.1 Functional Central Limit Theorem

We first state a FCLT established under a Markov chain setting. Let (Xn)n≥0 be an ergodic Markov
chain on the measurable space (S,S), with transition probability P and stationary distribution π. For
any measurable function g ∈ L2

π , define the operator Pg(x) =
∫
g(y)P (x, dy) = E[g(X1)|X0 = x].

By Px or Pπ we denote the probability law of (Xn)n≥0 starting from x or having π as its initial
distribution; Ex or Eπ the corresponding expectations. Given f ∈ L2

π, we define the additive
functionals Sn(f) =

∑n−1
k=0 f(Xk) and Yn(t) = n− 1

2S⌊nt⌋(f).

In [8], the authors proved a FCLT for a univariate functional of (Xn)n≥0 started at a point x. With
slight modification, we can obtain the following multivariate functional version.
Theorem 2.1. Suppose f : S → Rm satisfies

∫
∥f(x)∥2π(dx) < ∞ and

∫
f(x)π(dx) = 0. If there

exists 0 < α < 1
2 such that ∥∥∥∥∥

n−1∑
k=0

P kf

∥∥∥∥∥
L2

π

= O(nα), (2)

then Σf := limn→∞
1
nEπ(Sn(f)Sn(f)

⊤) exists, and for π-almost every point x ∈ S the se-
quence n− 1

2Sn(f) converges in distribution, under the probability measure Px, to the d-dimensional
Gaussian distribution N (0,Σf ). Furthermore, the process (Yn(t))0≤t≤1 converges weakly to

(Σ
1
2

fB(t))0≤t≤1 on the Skorokhod space D[0, 1], where B = (B(t))t≥0 is the d-dimensional stan-
dard Brownian motion.

See Section A.1 for the detailed discussion and proof. In the sequel, we use d−→ to denote “converge in
distribution” and ⇒ to denote “converge weakly in D[0, 1]”. Note that an SA procedure of the form
(1) can be seen as a time-homogeneous Markov chain, and therefore in order to establish a FCLT for
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the parameter sequence (θt)t≥0, it suffices to prove the existence of its stationary distribution π, and
verify the conditions in Theorem 2.1 for f = Id−Eπθ. The condition (2) is a bit harder to verify, so
we attempt to ensure it with a stronger Wasserstein contraction condition. For p, q ≥ 1, we define the
Wasserstein distance Wp,q induced from the Lp(Rd) space by

Wp,q(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
Rd×Rd

∥x− y∥qpdγ(x, y)
) 1

q

,

where Γ(µ, ν) is the set of all couplings of µ and ν; and denote Pp,q as its corresponding Wasserstein
space. We have the following proposition.
Proposition 2.1. Suppose for some p, q ≥ 1, there exists a constant γ ∈ (0, 1) such that for any
µ, ν ∈ Pp,q , the Wasserstein contraction

Wp,q(µP, νP ) ≤ γWp,q(µ, ν) (3)

holds. Suppose in addition that Wp,q(δ(·), π) ∈ L2
π , where δ(·) is the Dirac measure and π is the sta-

tionary distribution. Then for any f : Rd → Rm satisfying
∫
∥f(x)∥2π(dx) < ∞,

∫
f(x)π(dx) = 0

and
∥f(x)− f(y)∥∞ ≤ Lipp(f)∥x− y∥p for all x,y ∈ Rd,

for some constant Lipp(f) (i.e., each component of f is Lipp(f)-Lipschitz in the ∥ · ∥p norm), the
condition (2) holds.

The proof of Proposition 2.1 is deferred to Section A.2. As we will see later, many SA problems
(e.g., linear SA, SGD and Q-learning) possess such a Wasserstein contraction property, and hence the
corresponding FCLT holds.

2.2 Random Scaling

Once the FCLT for an SA problem is established, we can use the random scaling method to carry out
inference. For the sequence (θt)t≥0 which is supposed to converge to its stationary distribution π
and satisfy the FCLT

1√
n

⌊nt⌋∑
k=1

(θk − Eπθ) ⇒ Σ
1
2B(t), 0 ≤ t ≤ 1, (4)

we studentize it with a matrix V̂n constructed as follows

V̂n :=
1

n

n∑
j=1

{
1√
n

j∑
i=1

(θi − θ̄n)

}{
1√
n

j∑
i=1

(θi − θ̄n)

}⊤

, (5)

where θ̄n := 1
n

∑n
k=1 θk is the Polyak-Ruppert averaged estimator for the parameter θ. Such

studentization leads to a pivotal statistic whose asymptotic distribution does not depend on the
parameters of the problem.
Proposition 2.2. Suppose the sequence (θt)t≥0 converges to its stationary distribution π and its
FCLT (4) holds. For a matrix R ∈ Rℓ×d of rank ℓ ≤ d, we have

n
(
R(θ̄n − Eπθ)

)⊤ (
RV̂nR

⊤
)−1 (

R(θ̄n − Eπθ)
)

d−→ Bℓ(1)
⊤
(∫ 1

0

(Bℓ(r)− rBℓ(1))(Bℓ(r)− rBℓ(1))
⊤dr

)−1

Bℓ(1),

where Bℓ is a ℓ-dimensional standard Brownian motion and V̂n is defined as in (5).

Proposition 2.2 follows directly from the continuous mapping theorem. Statistical inference for Eπθ
can be carried out via Proposition 2.2. For example, by setting R = Id we can construct a (1−α)
asymptotic ellipsoidal confidence region centered at θ̄n for estimating the whole vector Eπθ. More
often, we set R = ej (the j-th unit vector) to construct a (1−α) asymptotic confidence interval for
estimating the j-th component of the expectation (Eπθ)j , so as to avoid heavy computation from the
matrix inverse (RV̂nR

⊤)−1.
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Corollary 2.1. Under the same assumptions of Proposition 2.2, we have that

P
(
(θ̄n)j − qα

2

√
V̂n,jj/n ≤ (Eπθ)j ≤ (θ̄n)j + qα

2

√
V̂n,jj/n

)
→ 1− α,

where V̂n,jj is the j-th diagonal element of V̂n, and qα
2

is the (1− α/2)-th quantile of the following
random variable

t∗ :=

(∫ 1

0

(B1(r)− rB1(1))
2dr
)− 1

2

B1(1), (6)

with (B1(t))t≥0 a one-dimensional standard Brownian motion.

Table 1: Asymptotic critical values qα defined by qα = min{t : P(t∗ ≤ t) ≥ 1− α}.

(1− α) 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

qα -8.634 -6.753 -5.324 -3.877 0.000 3.877 5.324 6.753 8.634

The random variable t∗ is mixed normal with its distribution symmetric around zero. For easy
reference, its critical values are listed in Table 1.1

It is crucial to explain why inference via random scaling takes advantage over traditional inference
procedures (e.g., the spectral variance method and the batch-means method that will be introduced
hereafter) in our SA problem. Traditional estimators are mostly constructed on top of the CLT

1√
n

n∑
k=1

(θk − Eπθ)
d−→ N (0,Σ), (7)

where Σ = limn→∞
1
nEπ

[
(
∑n

k=1(θk − Eπθ)) (
∑n

k=1(θk − Eπθ))
⊤
]

is the asymptotic covari-

ance. Because Σ is unknown, one attempts to first construct an estimate Σ̂ for Σ based on parameter
samples (θt)t≥0 and then establish a confidence interval based on (7) with Σ replaced by Σ̂. As
a consequence, the estimation error in Σ̂ may cause significant impact on the inference efficiency.
Meanwhile, during the estimation of Σ, additional hyper-parameters are likely to occur, and different
choices of such hyper-parameters may affect the inference performance. Random scaling, on the
other hand, studentize the sum 1√

n

∑n
k=1(θk − Eπθ) to obtain a pivotal statistic. It does not need

the additional estimation step and additional hyper-parameters, resulting in its higher accuracy over
traditional estimators.

2.3 Problem-Dependent Bias

The random scaling method mentioned above has already provided an efficient way to carry out
inference on (Eπθ)j (or more generally, any linear combination of the expectation Eπθ). However,
in most nonlinear SA problems there is often a gap between the expectation Eπθ and the ground-truth
solution θ∗. This issue will be further illustrated by the examples discussed in Section 3. Therefore, it
is theoretically not valid to carry out inference on θ∗ with a confidence interval constructed following
Corollary 2.1. However, in the following applications we try to upper bound the bias ∥Eπθ − θ∗∥
with a quantity of order O(ηα) for some α > 0. When the step size is small, such bias is negligible
and thus the original inference procedure may still be reasonable.

3 Case Studies

In Section 2, we have established a general statistical inference framework for constant step size
stochastic approximation problems. We now illustrate several specific applications that are well-
known in optimization and reinforcement learning.

1These critical values are quoted from [17] (Table 2, the β = 0 case). In that paper the authors used kernel
density estimation to smooth the empirical density function before obtaining critical values. Critical values
without smoothing data in advance can be found in [1, 13].
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3.1 Linear Stochastic Approximation (LSA)

The first example considers solving a linear system of the form Aθ = b, where A ∈ Rd×d and
b ∈ Rd. We assume that A is invertible, and there is a unique solution θ∗ to the linear equation.
Suppose we can observe a sequence of random variables of the form {(At, bt)}t≥1, assumed to
be independent and identically distributed, and unbiased in the sense that E(At|Ft−1) = A and
E(bt|Ft−1) = b, where Ft−1 denotes the σ-field generated by {(Ak, bk)}t−1

k=1. For a given initial
vector θ0, LSA is formulated as

θt+1 = θt − η(At+1θt − bt+1), (8)

where η > 0 is the constant step size. Before presenting our results, we make some assumptions.
Assumption 3.1. The matrix −A ∈ Rd×d is Hurwitz, i.e., λ := min1≤i≤d ℜ(λi(A)) > 0 where
λi(A) is the i-th eigenvalue of A and ℜ(λi(A)) is its corresponding real part.
Assumption 3.2 (Bounded second moment of noise). Denote Ξt = At −A and ξt = bt − b. There
exist v2A > 0 and v2b > 0 such that E∥Ξtu∥2 ≤ v2A and E|ξ⊤t u|2 ≤ v2b for any t ≥ 1 and u ∈ Sd−1.
Moreover, Ξt and ξt are uncorrelated.
Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold for the LSA procedure (8). Then there exists a
constant η0 > 0 such that for any η ∈ (0, η0),

1. the Markov process (θt)t≥0 defined by (8) has a unique stationary distribution πη;

2. for θ ∼ πη , we have Eπηθ = θ∗;

3. the following FCLT holds

1√
n

⌊nt⌋∑
k=1

(θk − θ∗) ⇒ Σ
1
2
πηB(t), 0 ≤ t ≤ 1,

where (B(t))t≥0 is the d-dimensional standard Brownian motion and Σπη
=

limn→∞ ncovπη
(θ̄n) is the asymptotic covariance matrix.

Remark 3.1. If we further suppose that {At}t≥1 and {bt}t≥1 have i.i.d. entries, then the asymptotic
covariance matrix Σπη has an explicit form (see Section A.3 for details). This matches the asymptotic
results in [20], where the same assumptions are needed and a central limit theorem (CLT) is
established, based on an additional requirement that the noises Ξt and ξt have bounded (2 + δ)-th
moments for some δ > 0. Theorem 3.1 extends this CLT result into a functional version even without
such an additional moment requirement.

Note that in the LSA problem, the expectation of the stationary distribution Eπη
θ exactly matches the

unique solution θ∗, so that the problem-dependent bias in this case vanishes. The established FCLT
allows us to perform statistical inference directly on θ∗ via Corollary 2.1.

3.2 Stochastic Gradient Descent (SGD)

Next, we consider the inference problem for a minimizer of an objective function, define by

θ∗ := argmin
θ∈Rd

f(θ),

where f(θ) := E[f(θ, ξ)] and f(θ, ξ) is an unbiased random variable for the objective function. The
constant step size SGD iteratively updates the parameter in the following form

θt+1 = θt − η∇f(θt, ξt+1). (9)

In this case, we make the following assumptions to derive our results.
Assumption 3.3. f(·) is m-strongly convex, and for each ξ, f(·, ξ) is L-smooth.
Assumption 3.4 (Regularized gradient noise). Define ε(θ, ξ) = ∇f(θ, ξ)−∇f(θ) as the gradient
noise at θ, and S = E[ε(θ∗, ξ)ε(θ∗, ξ)⊤]. There exists some C > 0 such that∥∥E[ε(θ, ξ)ε(θ, ξ)⊤]− S

∥∥ ≤ C
[
∥θ − θ∗∥+ ∥θ − θ∗∥2

]
. (10)

5



Theorem 3.2. Suppose Assumptions 3.3 and 3.4 hold for the SGD iterates (9). Then there exists a
constant η0 > 0 such that for any η ∈ (0, η0),

1. the Markov process (θt)t≥0 defined by (9) has a unique stationary distribution πη;

2. for θ ∼ πη , we have Eπη
∥θ − θ∗∥2 ≤ η

mEπη
∥ε(θ, ξ)∥2 = O(η);

3. The following FCLT holds

1√
n

⌊nt⌋∑
k=1

(θk − Eπη
θ) ⇒ Σ

1
2
πηB(t), 0 ≤ t ≤ 1, (11)

where (B(t))t≥0 is the d-dimensional standard Brownian motion and Σπη
=

limn→∞ ncovπη
(θ̄n) is the asymptotic covariance matrix.

Theorem 3.2 provides all ingredients for performing inference on Eπη
θ. In addition, the bias can be

bounded via

∥Eπη
θ − θ∗∥ ≤

(
Eπη

∥θ − θ∗∥2
) 1

2 ≤
√

η

m

(
Eπη

∥ε(θ, ξ)∥2
) 1

2 ≤
√

η

m

(
Eπη

∥∇f(θ, ξ)∥2
) 1

2 ,

that is, it is of order O(η1/2).

3.3 Q-Learning

Finally we consider an application in Q-learning. An infinite-horizon MDP is represented by
M = (S,A, γ, P,R, r), where S is the state space and A is the action space, γ ∈ (0, 1) is the
discount factor, P : S ×A → ∆(S) represents the probability transition kernel, R : S ×A → [0,∞)
is the random reward, and r : S × A → [0,∞) is the expectation of the reward. For a given
deterministic policy π : S → A, the expected long-term reward is measured by a value function V π

and a Q-function Qπ defined as follows:

V π(s) = Eτ∼π

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s

]
and Qπ(s, a) = Eτ∼π

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s, a0 = a

]
,

for any state-action pair (s, a) ∈ S ×A. Here τ = {(st, at)}t≥0 is a trajectory of the MDP induced
by the policy π and the expectation Eτ∼π(·) is taken with respect to the randomness of the trajectory
τ . The optimal value function V ∗ and optimal Q-function Q∗ are defined as V ∗(s) = maxπ V

π(s)
and Q∗(s, a) = maxπ Q

π(s, a), respectively. It is well known that Q∗ is the unique fixed point of
the Bellman operator T , i.e., T (Q∗) = Q∗, where

T (Q)(s, a) = r(s, a) + γEs′∼P (·|s,a) max
a′∈A

Q(s′, a′).

Now assume access to a generative model. In particular, in each iteration t ≥ 0, we collect
independent samples of the reward rt(s, a) and the next state st(s, a) ∼ P (·|s, a) for every state-
action pair (s, a) ∈ S × A. The constant step size Q-learning maintains a Q-function estimate,
Qt : S ×A → R, for all t ≥ 0 and updates its entries by the following update rule

Qt+1 = (1− η)Qt + ηT̂t+1(Qt), (12)

where η ∈ (0, 1] is the step size and T̂t is the empirical Bellman operator constructed by samples
collected in the t-th iteration:

T̂t(Q)(s, a) = rt(s, a) + γmax
a′∈A

Q(st, a
′), where rt(s, a) ∼ R(s, a) and st = st(s, a) ∼ P (·|s, a).

(13)
Clearly, T̂t is an unbiased estimate of the Bellman operator T .
Assumption 3.5 (Uniformly bounded reward). The random reward R is non-negative and uniformly
bounded, i.e., 0 ≤ R(s, a) ≤ 1 almost surely for all (s, a) ∈ S ×A.
Theorem 3.3. Suppose Assumption 3.5 holds for the Q-learning update rule (12), and assume access
to a generative model for each state-action pair (s, a) ∈ S × A. Let Q ∈ R|S|×|A| be the matrix
form of the Q-function Q(s, a). Then there exists a constant η0 > 0 such that for any η ∈ (0, η0),
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1. the Markov process (Qt)t≥0 defined by (12) has a unique stationary distribution Qη;

2. for Q ∼ Qη , we have EQη
∥Q−Q∗∥∞ = O(η1/2);

3. The following FCLT holds

1√
n

⌊nt⌋∑
k=1

(Qk − EQη
Q) ⇒ Σ

1
2

Qη
B(t), 0 ≤ t ≤ 1, (14)

where (B(t))t≥0 is the d-dimensional standard Brownian motion and ΣQη
=

limn→∞ ncovQη
(Q̄n) is the asymptotic covariance matrix.

4 Experiments

In this section we conduct the empirical analysis of the random scaling method via Monte Carlo
experiments. Two traditional inference methods, namely, the spectral variance method and the batch-
means method, are also examined for comparison. These two methods are popular in estimating the
asymptotic variance of a Markov chain [10], and confidence intervals can be constructed based on
the CLT (7) with Σ replaced by an estimator Σ̂. From now on, we represent the concerned parameter
as β for clarity.

The spectral variance estimator is based on the fact that Σ =
∑+∞

s=−∞ covπη
(βt,βt+s). It is

constructed as

Σ̂SV :=

bn−1∑
s=−(bn−1)

wn(s)γn(s),

where wn(·) is the lag window, bn is the truncation point, and

γn(s) = γn(−s)⊤ :=
1

n

n−s∑
i=1

(βi − β̄n)(βi+s − β̄n)
⊤, s ≥ 0,

which is a consistent estimator of the lag s autocovariance γ(s) := covπη (βt,βt+s). Under mild
conditions on wn(·) and bn, Σ̂SV is a consistent estimator of Σ [10]. In our experiments we choose
wn(·) to be the Tukey-Hanning window wn(k) =

(
1
2 + 1

2 cos (π|k|/bn)
)
1{|k|<bn} with bn = n3/4.

The batch-means estimator is another consistent estimator of Σ. It first divides a total of n = anbn
iterates into an batches, and calculate the mean of each batch β̄k:k+1 := 1

bn

∑bn
i=1 βkbn+i for

k = 0, . . . , an − 1. The batch-means estimator is then defined as

Σ̂BM :=
bn

an − 1

an−1∑
k=0

(β̄k:k+1 − β̄n)(β̄k:k+1 − β̄n)
⊤.

When an and bn are allowed to increase as n increases (e.g., by setting an = bn = ⌊
√
n⌋), Σ̂BM is a

consistent estimator of Σ̂ [12]. In our experiments we choose an = bn = ⌊
√
n⌋.

In the following, we consider the constant step size SGD on two baseline models: linear regression
and logistic regression. Additional experiments for Q-learning on Grid World are included in
Appendix D. All experiments are run on Intel Xeon 14-core CPUs. The performance of the spectral
variance method, batch-means method, and random scaling method are compared in three aspects:
the coverage rates for Eπηβ and β∗, and the lengths of confidence intervals. The nominal coverage
rate is chosen as 95%. For brevity, we focus on the first coefficient β1 hereafter. The implementation
code is available in https://github.com/bangoz/sa-inference.

Linear Regression The data are generated from

yt = x⊤
t β

∗ + εt, t ≥ 1, (15)

where xt is a d-dimensional covariate following the multivariate normal distribution N (0, Id), εt
is the noise from N (0, 1), and β∗ is equi-spaced on the interval [0, 1]. The dimension of x is set as
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d = 5, 20. The constant learning rate is set as η = 0.01, 0.05, 0.1. The initial value of β0 is set as
zero. The simulation results are based on 1,000 replications. Our experimental design is the same
as that of [29, 16], except that our learning rates η are smaller than the initial learning rates in their
settings, which are chosen to be η0 = 0.5, 1. This is inevitable because constant step size SGD
requires smaller learning rates to ensure convergence. Note that SGD for linear regression is also
a case of LSA, so the expectation of the stationary distribution is equal to the true parameter, i.e.,
Eπη

β = β∗.

Table 2 summarizes partial simulation results for d = 5. Full results for d = 5, 20 can be found in
Appendix C. Overall, the random scaling method is satisfactory in that its coverage rates are the
closest to the nominal one (95%) across all experimental settings. Nevertheless, the average lengths
of confidence intervals (CI) constructed via random scaling are always larger than that of both the
spectral variance method and the batch-means method. The batch-means method, on the contrary,
shows the lowest coverage rates and the smallest average CI lengths, and its performance varies
hugely when we choose different step sizes. When η = 0.01 it performs the worst, deviating from
the nominal rate about 10% even at n = 40, 000 (when d = 5) or at n = 100, 000 (when d = 20).
Comparing our experiment results with that of [16], where the authors use SGD with decaying step
sizes of the form ηt = η0t

−a, we find that average CI lengths in our settings are a bit larger. Such
observation is also reasonable, because SGD with particular decaying step sizes is shown to converge
to the true parameter almost surely, and so does its corresponding Polyak-Ruppert averaged estimator
[22]; but in the case of constant step sizes, the iterates converge to a non-degenerate stationary
distribution, and such non-degeneration adds to additional fluctuation of the Polyak-Ruppert averaged
estimator.

Logistic Regression The data are generated from

P(yt = 1) =
1

1 + exp(−x⊤
t β

∗)
, P(yt = 0) =

exp(−x⊤
t β

∗)

1 + exp(−x⊤
t β

∗)
, t ≥ 1. (16)

All the settings are the same as in linear regression. Note that for logistic regression, the expectation
of the stationary distribution is not necessarily equal to the true parameter, i.e., Eπη

β ̸= β∗. However,
since the difference is diminishing as η → 0, the confidence intervals may still be useful for inference
on β∗. Therefore, we include the coverage rates for β∗

1 in our results.

Table 3 summarizes partial simulation results for d = 5. Full results can be found in Appendix C.
These results are similar to those in linear regression. Coverage rates for β∗

1 are generally smaller than
coverage rates for Eπη

β∗
1 as expected, and their differences become larger as the step size gets larger.

Nevertheless, coverage rates for β∗
1 based on random scaling deviates within 5% of the nominal one

in most settings, which indicates that such confidence intervals are still reasonable when the step size
is small. The batch-means method is still not robust to different step sizes, because the coverage rates
even fall below 60% when η = 0.01.

5 Conclusion

In this paper we have studied statistical inference on a class of constant step size stochastic approxi-
mation (SA) problems. Based on a FCLT in the context of Markov chains, we have established the
corresponding FCLTs for LSA, SGD, and Q-learning. A sufficient condition for the FCLT has been
stated and proved for ease of application. Various inference methods including the random scaling
method, spectral variance method and batch-means method have been conducted in experiments,
based on the established FCLTs. We have shown that random scaling performs well in terms of
coverage rates, and is also robust against different step sizes.

There are also limitations and issues that need to be further investigated. First, except in trivial
cases, iterates converge to a stationary distribution whose expectation does not equal to the true
parameter, and such systematic bias prohibits efficient inference procedures for the true parameter
we are concerned about. It remains open whether there exist practical ways to mitigate the impact
of such bias. Probabilistic tools such as the large deviation theory might help construct valid
confidence intervals for the true parameter. Second, recent works considering SA problems with
decaying step sizes, such as [16, 17, 18], prove the FCLT by manually dividing the estimator into
several terms, applying martingale CLT to one term, and uniformly bounding other terms. It is
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Table 2: Linear Regression, d = 5

n = 5, 000 n = 10, 000 n = 20, 000 n = 40, 000

η = 0.01

Cov. for β∗
1 (%)

Spectral Variance 88.6(1.005) 91.1(0.900) 91.5(0.881) 92.4(0.837)
Batch Means 69.8(1.451) 77.8(1.314) 82.3(1.206) 86.7(1.073)
Random Scaling 92.8(0.817) 94.6(0.714) 95.0(0.689) 94.9(0.695)

Length
Spectral Variance 0.050(0.011) 0.036(0.007) 0.026(0.004) 0.018(0.003)
Batch Means 0.030(0.003) 0.024(0.002) 0.019(0.001) 0.015(0.001)
Random Scaling 0.074(0.033) 0.053(0.022) 0.036(0.014) 0.026(0.010)

η = 0.05

Cov. for β∗
1 (%)

Spectral Variance 91.9(0.862) 91.6(0.877) 90.8(0.913) 91.6(0.877)
Batch Means 90.0(0.948) 93.6(0.773) 92.7(0.822) 92.0(0.857)
Random Scaling 94.9(0.695) 95.2(0.675) 95.4(0.662) 94.1(0.745)

Length
Spectral Variance 0.055(0.012) 0.039(0.007) 0.028(0.005) 0.020(0.003)
Batch Means 0.050(0.004) 0.038(0.002) 0.027(0.001) 0.020(0.001)
Random Scaling 0.076(0.031) 0.055(0.023) 0.039(0.015) 0.027(0.010)

η = 0.1

Cov. for β∗
1 (%)

Spectral Variance 89.5(0.969) 89.8(0.957) 92.1(0.852) 92.7(0.822)
Batch Means 92.9(0.812) 94.1(0.745) 94.0(0.750) 92.8(0.817)
Random Scaling 94.3(0.733) 94.6(0.714) 94.1(0.745) 93.0(0.806)

Length
Spectral Variance 0.061(0.013) 0.043(0.008) 0.031(0.005) 0.022(0.003)
Batch Means 0.061(0.005) 0.045(0.003) 0.032(0.002) 0.023(0.001)
Random Scaling 0.085(0.035) 0.060(0.025) 0.042(0.016) 0.030(0.012)

Table 3: Logistic Regression, d = 5

n = 5, 000 n = 10, 000 n = 20, 000 n = 40, 000

η = 0.01

Cov. for Eπηβ1 (%)
Spectral Variance 60.0(1.549) 75.7(1.356) 84.5(1.144) 89.9(0.952)
Batch Means 32.6(1.482) 45.4(1.574) 51.8(1.580) 57.8(1.561)
Random Scaling 86.9(1.066) 91.0(0.904) 94.1(0.745) 95.6(0.648)

Cov. for β∗
1 (%)

Spectral Variance 59.4(1.552) 75.2(1.365) 84.4(1.147) 89.7(0.961)
Batch Means 27.8(1.416) 40.7(1.553) 47.9(1.579) 55.9(1.570)
Random Scaling 85.7(1.107) 89.8(0.957) 93.0(0.806) 95.1(0.682)

Length
Spectral Variance 0.079(0.022) 0.068(0.016) 0.055(0.010) 0.042(0.006)
Batch Means 0.033(0.007) 0.028(0.005) 0.023(0.003) 0.018(0.002)
Random Scaling 0.175(0.080) 0.129(0.056) 0.092(0.040) 0.063(0.026)

η = 0.1

Cov. for Eπηβ1 (%)
Spectral Variance 91.2(0.895) 91.9(0.862) 91.3(0.891) 92.3(0.843)
Batch Means 76.8(1.334) 83.7(1.168) 85.9(1.100) 87.8(1.034)
Random Scaling 95.1(0.682) 93.2(0.796) 95.2(0.675) 94.8(0.702)

Cov. for β∗
1 (%)

Spectral Variance 88.2(1.020) 87.9(1.031) 85.4(1.116) 80.1(1.262)
Batch Means 77.3(1.324) 80.6(1.250) 81.8(1.220) 79.3(1.281)
Random Scaling 94.3(0.733) 92.8(0.817) 94.1(0.745) 91.3(0.891)

Length
Spectral Variance 0.129(0.028) 0.094(0.018) 0.067(0.012) 0.048(0.007)
Batch Means 0.090(0.009) 0.071(0.006) 0.056(0.004) 0.042(0.002)
Random Scaling 0.180(0.079) 0.129(0.053) 0.092(0.039) 0.066(0.027)
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interesting to consider whether such proofs can be simplified by regarding these SA problems as
time-inhomogeneous Markov chains and applying techniques in the Markov chain setting.
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