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ABSTRACT

Few-shot class incremental learning—the problem of updating a trained classifier
to discriminate among an expanded set of classes with limited labeled data—is a
key challenge for machine learning systems deployed in non-stationary environ-
ments. Existing approaches to the problem rely on complex model architectures
and training procedures that are difficult to tune and re-use. In this paper, we
present an extremely simple approach that enables the use of ordinary logistic re-
gression classifiers for few-shot incremental learning. The key to this approach is
a new family of subspace regularization schemes that encourage weight vectors
for new classes to lie close to the subspace spanned by the weights of existing
classes. When combined with pretrained convolutional feature extractors, logis-
tic regression models trained with subspace regularization outperform specialized,
state-of-the-art approaches to few-shot incremental image classification by up to
23% on the miniImageNet dataset. Because of its simplicity, subspace regular-
ization can be straightforwardly configured to incorporate additional background
information about the new classes (including class names and descriptions speci-
fied in natural language); this offers additional control over the trade-off between
existing and new classes. Our results show that simple geometric regularization
of class representations offers an effective tool for continual learning.1

1 INTRODUCTION

Standard approaches to classification in machine learning assume a fixed training dataset and a fixed
set of class labels. But for many real-world classification problems, these assumptions are unreal-
istic. Classifiers must sometimes be updated on-the-fly to recognize new concepts (e.g. new skills
in personal assistants or new road signs in self-driving vehicles), while training data is sometimes
unavailable for reuse (e.g. due to privacy regulations, Lesort et al. 2019; McClure et al. 2018; or
storage and retraining costs, Bender et al. 2021). Development of models that support few-shot
class-incremental learning (FSCIL), in which classifiers’ label sets can be easily extended with
small numbers of new examples and no retraining, is a key challenge for machine learning systems
deployed in the real world (Masana et al., 2020).

As a concrete example, consider the classification problem depicted in Fig. 1. A model, initially
trained on a large set of examples from several base classes (snorkel, arctic fox, meerkat; Fig. 1a),
must subsequently be updated to additionally recognize two novel classes (white wolf and poncho;
Fig. 1b), and ultimately distinguish among all five classes (Fig. 1c). Training a model to recognize
the base classes is straightforward: for example, we can jointly optimize the parameters of a feature
extractor (perhaps a convolutional network parameterized by θ) and a linear classification layer (η)
to maximize the regularized likelihood of (image, label) pairs from the dataset in Fig. 1a:

L(θ, η) =
1

n

∑
(x,y)

log
exp(η>y fθ(x))∑
y′ exp(η>y′fθ(x))

+ α
(
‖η‖2 + ‖θ‖2

)
(1)

But how can this model be updated to additionally recognize the classes in Fig. 1b, with only a few
examples of each new class and no access to the original training data?

1Code for the experiments is released under https://github.com/feyzaakyurek/subspace-reg.

1

https://github.com/feyzaakyurek/subspace-reg


Published as a conference paper at ICLR 2022

Figure 1: Few-shot class incremental learning: (a) A base classifier is trained on a large dataset (D(0)). (b)
This classifier is extended to also discriminate among a set of new classes with a small number of labeled
examples (D(1)). (c) Models are evaluated on a test set that includes all seen classes (Q(1)). This paper
focuses on extremely simple, regularization-based approaches to FSCIL, with and without side information
from natural language: (i) We regularize novel classifier weights toward the shortest direction to the subspace
spanned by base classifier weights. (ii) We regularize novel classifiers pulling them toward the weighted
average of base classifiers where weights are calculated using label/description similarity between novel and
base class names or one-sentence descriptions. (iii) We learn a linear mapping L between word labels and
classifier weights of the base classes. Later, we project the novel label white wolf and regularize the novel
classifier weight ηwhite wolf towards the projection.

Naı̈vely continuing to optimize Eq. 1 on (x, y) pairs drawn from the new dataset will cause several
problems. In the absence of any positive examples of those classes, performance on base classes
will suffer due to catastrophic forgetting (Goodfellow et al., 2013), while performance on novel
classes will likely be poor as a result of overfitting (Anderson & Burnham, 2004).

As a consequence, most past work on FSCIL has focused on alternative approaches that use non-
standard prediction architectures (e.g., Tao et al., 2020b) or optimize non-likelihood objectives (e.g.,
Yoon et al., 2020; Ren et al., 2019). This divergence between approaches to standard and incremen-
tal classification has its own costs—state-of-the-art approaches to FSCIL are complicated, requiring
nested optimizers, complex data structures, and numerous hyperparameters. When improved repre-
sentation learning and optimization techniques are developed for standard classification problems,
it is often unclear to how to apply these to the incremental setting.

In this paper, we turn the standard approach to classification into a surprisingly effective tool for
FSCIL. Specifically, we show that both catastrophic forgetting and overfitting can be reduced by
introducing an additional subspace regularizer (related to one studied by Agarwal et al. 2010
and Kirkpatrick et al. 2017) that encourages novel η to lie close to the subspace spanned by the
base classes. On its own, the proposed subspace regularizer produces ordinary linear classifiers
that achieve state-of-the-art results on FSCIL, improving over existing work in multiple tasks and
datasets.

Because of its simplicity, this regularization approach can be easily configured to incorporate ad-
ditional information about relationships between base and novel classes. Using language data as a
source of background knowledge about classes, we describe a variation of our approach, which we
term semantic subspace regularization, that pulls weight vectors toward particular convex combi-
nations of base classes that capture their semantic similarity to existing classes. Semantic subspace
regularization results in a comparable performance to subspace regularization on average; it bet-
ter preserves performance on existing classes at the expense of higher accuracy on newer classes.
These results suggest that FSCIL and related problems may not require specialized machinery to
solve, and that simple regularization approaches can solve the problems that result from limited
access to training data for both base and novel classes.
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2 BACKGROUND

A long line of research has focused on the development of automated decision-making systems
that support online expansion of the set of concepts they can recognize and generate. An early
example (closely related to our learning-from-definitions experiment in Section 5) appears in the
classic SHRDLU language grounding environment (Winograd, 1972): given the definition a steeple
is a small triangle on top of a tall rectangle, SHRDLU acquires the ability to answer questions
containing the novel concept steeple. Recent work in machine learning describes several versions of
this problem in featuring more complex perception or control:

Few-shot and incremental learning Few-shot classification problems test learners’ ability to dis-
tinguish among a fixed set of classes using only a handful of labeled examples per class (Scheirer
et al., 2012). Most effective approaches to few-shot learning rely on additional data for pre-training
(Tian et al., 2020) or meta-learning (Vinyals et al., 2016; Finn et al., 2017; Snell et al., 2017; Yoon
et al., 2019). One peculiarity of this evaluation paradigm is that, even when pre-trained, models are
evaluated only on new (few-shot) classes, and free to update their parameters in ways that cause
them to perform poorly on pre-training tasks. As noted by past work (Kuzborskij et al., 2013), a
more realistic evaluation of models’ ability to rapidly acquire new concepts should consider their
ability to discriminate among both new concepts and old ones, a problem usually referred to as
few-shot class-incremental learning (FSCIL)2 (Tao et al., 2020b).

FSCIL requires learners to incrementally acquire novel classes with few labeled examples while
retaining high accuracy on previously learned classes. It combines the most challenging aspects of
class-incremental learning (Rebuffi et al., 2017) task-incremental learning (Delange et al., 2021),
and rehearsal-based learning (Rolnick et al., 2019; Chaudhry et al., 2019), three related problems
with much stronger assumptions about the kind of information available to learners. Existing ap-
proaches to this problem either prioritize novel class adaptation (Ren et al., 2019; Yoon et al., 2020;
Chen & Lee, 2021; Cheraghian et al., 2021) or reducing forgetting in old classes (Tao et al., 2020b).

Learning class representations Even prior to the widespread use of deep representation learn-
ing approaches, the view of classification as problem of learning class representations motivated a
number of approaches to multi-class and multi-task learning (Argyriou et al., 2007a; Agarwal et al.,
2010). In few-shot and incremental learning settings, many recent approaches have also focused on
the space of class representations (Tao et al., 2020a). Qi et al. (2018) initialize novel class repre-
sentations using the average features from few-shot samples. Others (Gidaris & Komodakis, 2018;
Yoon et al., 2020; Zhang et al., 2021) train a class representation predictor via meta-learning, and
Tao et al. (2020b) impose topological constraints on the manifold of class representations as new
representations are added. Alternatively, Chen & Lee (2021) models the visual feature space as a
Gaussian mixture and use the cluster centers in a similarity-based classification scheme. Lastly, two
concurrent works condition both old and new class representations at each session according to an
auxiliary scheme; graph attention network in Zhang et al. (2021) and relation projection in Zhu et al.
(2021).

Our approach is related to Ren et al. (2019), who uses a nested optimization framework to learn
auxiliary parameters for every base and novel class to influence the novel weights via regularization;
we show that these regularization targets can be derived geometrically without the need for an inner
optimization step. Also related is the work of Barzilai & Crammer (2015), which synthesizes the
novel weights as linear combinations of base weights; we adopt a regularization approach that allows
learning of class representations that are not strict linear combinations of base classes. Moreover,
Kuzborskij et al. (2013) study a class incremental learning setup where they increment the number of
classes by one. Similar to ours, the parameters for the novel class is regularized towards a weighted
combination of old class parameters while using as many examples from old classes as there are
from novel classes. In comparison, our approach does not require any examples from old classes.

Learning with side information from language The use of background information from other
modalities (especially language) to bootstrap learning of new classes is widely studied (Frome et al.,

2Variants of this problem have gone by numerous names in past work, including generalized few-shot learn-
ing (Schönfeld et al., 2019), dynamic few-shot learning (Gidaris & Komodakis, 2018) or simply incremental
few-shot learning (Ren et al., 2019; Chen & Lee, 2021).
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2013; Radford et al., 2021; Reed et al., 2016; Yan et al., 2021)—particularly in the zero-shot learn-
ing and generalized zero-shot learning where side information is the only source of information
about the novel class (Chang et al., 2008; Larochelle et al., 2008; Akata et al., 2013; Pourpanah et al.,
2020). Specialized approaches exist for integrating side information in few-shot learning settings
(Schwartz et al., 2019; Cheraghian et al., 2021).

3 PROBLEM FORMULATION

We follow the notation in Tao et al. (2020b) for FSCIL: assume a stream of T learning sessions,
each associated with a labeled dataset D(0), D(1), . . . , D(T ). Every D(t) consists of a support set
S(t) (used for training) and a query set Q(t) (used for evaluation). We will refer to the classes
represented in D(0) as base classes; as in Fig. 1a, we will assume that it contains a large number
of examples for every class. D(1) (and subsequent datasets) introduce novel classes (Fig. 1b). Let
C(S) = {y : (x, y) ∈ S} denote the set of classes expressed in a set of examples S; we will write
C(t) = C(S(t)) and C(≤t) :=

⋃
j≤t C(S(j)) for convenience. The learning problem we study is

incremental in the sense that each support set contains only new classes (C(t) ∩ C(<t) = ∅)3, while
each query set evaluates models on both novel classes and previously seen ones (C(Q(t)) = C(≤t)).
It is few-shot in the sense that for t > 0, |S(t)| is small (containing 1–5 examples for all datasets
studied in this paper). Given an incremental learning session t > 0 the goal is to fine-tune existing
classifier with the limited training data from novel classes such that the classifier performs well in
classifying all classes learned thus far.

FSCIL with a single session Prior to Tao et al. (2020b), a simpler version of the multi-session
FSCIL was proposed by Qi et al. (2018) where there is only single incremental learning session
after the pre-training stage i.e. T = 1. This version, which we call single-session FSCIL, has been
extensively studied by previous work (Qi et al., 2018; Gidaris & Komodakis, 2018; Ren et al., 2019;
Yoon et al., 2020). This problem formulation is the same as above with T = 1: a feature extractor is
trained on the samples from D(0), then D(1), then evaluated on samples with classes in C(0) ∪C(1).

4 APPROACH

Our approach to FSCIL consists of two steps. In the base session, we jointly train a feature extractor
and classification layer on base classes (Section 4.1). In subsequent (incremental learning) sessions,
we freeze the feature extractor and update only the classification layer using regularizers that (1)
stabilize representations of base classes, and (2) bring the representations of new classes close to
existing ones (Sections 4.2-4.4).

4.1 FEATURE EXTRACTOR TRAINING

As in Eq. 1, we begin by training an ordinary classifier comprising a non-linear feature extractor fθ
and a linear decision layer with parameters η. We choose η and θ to maximize:

L(η, θ) =
1

|S(0)|
∑

(x,y)∈S(0)

log
exp(η>y fθ(x))∑

c∈C(0)

exp(η>c fθ(x))
− α

(
‖η‖2 + ‖θ‖2

)
(2)

As discussed in Section 5, all experiments in this paper implement fθ as a convolutional neural
network. In subsequent loss formulations we refer to ‖η‖2 + ‖θ‖2 as Rprior(η, θ).

4.2 FINE-TUNING

Along with the estimated θ̂, feature extractor training yields parameters only for base classes
ηy∈C(0) . Given an incremental learning dataset D(t), we introduce new weight vectors ηc∈C(t)

3This is the original setup established by Tao et al. (2020b). We will also present experiments in which we
retain one example per class for memory replay following Chen & Lee (2021).
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and optimize

L(η) =
1

|S(t)|
∑

(x,y)∈S(t)

log
exp(η>y fθ̂(x))∑

c∈C(≤t)

exp(η>c fθ̂(x))
− αRprior(η,0)− βR(t)

old(η)− γR(t)
new(η) . (3)

with respect to η alone. Eq. 3 features two new regularization terms, R(t)
old and R(t)

new. Rtold which
also appears in past work (Kuzborskij et al., 2013), limits the extent to which fine-tuning can change
parameters for classes that have already been learned:

R
(t)
old(η) =

∑
t′<t

∑
c∈C(t′)

‖ηt
′

c − ηc‖2 (4)

where ηt
′

c denotes the value of the corresponding variable at the end of session t′. (For example, η0c
refers to the weights for the base class c prior to fine tuning, i.e. after session t′ = 0.) As shown in
Section 5.2, using Rold alone, and setting Rnew = 0, is a surprisingly effective baseline; however,
performance can be improved by appropriately regularizing new parameters as described below.

Variant: Memory Following past work (Chen & Lee, 2021) which performs incremental learn-
ing while retaining a small “memory” of previous samples M , we explore an alternative baseline
approach in which we append S(t) in Eq. 3 with M (t). We define the memory at session t as
M (t) =

⋃
(t′<t)M

(t′) where M (t′) ⊆ S(t′) and |M (t′)| = |C(t′)|. We sample only 1 example per
previous class and we reuse the same example in subsequent sessions.

4.3 METHOD 1: SUBSPACE REGULARIZATION

Past work on other multitask learning problems has demonstrated the effectiveness of constraining
parameters for related tasks to be similar (Jacob et al., 2008), lie on the same manifold (Agarwal
et al., 2010) or even on the same linear subspace (Argyriou et al., 2007a). Moreover, Schönfeld
et al. (2019) showed that a shared latent feature space for all classes is useful for class-incremental
classification. Features independently learned for novel classes from small numbers of examples
are likely to capture spurious correlations (unrelated to the true causal structure of the prediction
problem) as a result of dataset biases (Arjovsky et al., 2019). In contrast, we expect most informative
semantic features to be shared across multiple classes: indeed, cognitive research suggests that in
humans’ early visual cortex, representations of different objects occupy a common feature space
(Kriegeskorte et al., 2008). Therefore, regularizing toward the space spanned by base class weight
vectors encourages new class representations to depend on semantic rather than spurious features
and features for all tasks to lie in the same universal subspace.

We apply this intuition to FSCIL via a simple subspace regularization approach. Given a parameter
for an incremental class ηc and base class parameters {ηj∈C(0)}, we first compute the subspace
target mc for each class. We then compute the distance between ηc from mc and define:

R(t)
new(η) =

∑
c∈C(t)

‖ηc −mc‖2 (5)

where mc is the projection of ηc onto the space spanned by {ηj∈C(0)}:

mc = P>C(0)ηc (6)
and PC(0) contains the orthogonal basis vectors of the subspace spanned by the initial set of base
weights ηj∈C(0) . (PC(0) can be found using a QR decomposition of the matrix of base class vectors,
as described in the appendix.)

Previous work that leverages subspace regularization for multitask learning assume that data from
all tasks are available from the beginning (Argyriou et al., 2007b; Agarwal et al., 2010; Argyriou
et al., 2007a). Our approach to subspace regularization removes these assumptions, enabling tasks
(in this case, novel classes) to arrive incrementally and predictions to be made cumulatively over all
classes seen thus far without any further information on which task that a query belongs to. Agarwal
et al. (2010) is similar to ours in encouraging all task parameters to lie on the same manifold; it
is different in that they learn the manifold and the task parameters alternately. Also related Simon
et al. (2020) and Devos & Grossglauser (2019) model class representations over a set of subspaces
(disjoint in the latter) for non-incremental few-shot learning.
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4.4 METHOD 2: SEMANTIC SUBSPACE REGULARIZATION

The constraint in Eq. 5 makes explicit use of geometric information about base classes, pulling
novel weights toward the base subspace. However, it provides no information about where within
that subspace the weights for a new class should lie—potentially causing interference with base
classes. In most classification problems, classes have names consisting of natural language words or
phrases; these names often contain a significant amount of information relevant to the classification
problem of interest. (Even without having ever seen a white wolf, a typical English speaker can guess
that a white wolf is more likely to resemble an arctic fox than a snorkel.) These kinds of relations
are often captured by embeddings of class labels (or more detailed class descriptions) (Pennington
et al., 2014).

When available, this kind of information about class semantics can be used to construct an improved
subspace regularizer by encouraging new class representations to lie close to a convex combination
of base classes weighted by their semantic similarity. We replace the subspace projection P>

C(0)ηc in
Eq. 5 with a semantic target lc for each class. Letting ec denote a semantic embedding of the class
c, we compute:

R(t)
new(η) =

∑
c∈C(t)

‖ηc − lc‖2 (7)

where

lc =
∑
j∈C(0)

exp (ej · ec/τ)∑
j∈C(0) exp (ej · ec/τ)

ηj (8)

and τ is a hyper-parameter. Embeddings ec can be derived from multiple sources: in addition to
the class names discussed above, a popular source of side information for zero-shot and few-shot
learning problems is detailed textual descriptions of classes; we evaluate both label and description
embeddings in Section 5.

Schönfeld et al. (2019) also leverage label information on a shared subspace for few-shot incre-
mental learning where they project both visual and semantic features onto a shared latent space for
prediction in the single-session setting. In comparison, we re-use the base visual space for joint
projection for multiple incremental sessions.

Baseline: Linear Mapping While the approach described in Eq. 7 combines semantic informa-
tion and label subspace information, a number of previous studies in vision and language have also
investigated the effectiveness of directly learning a mapping from the space of semantic embeddings
to the space of class weights (Das & Lee, 2019; Socher et al., 2013; Pourpanah et al., 2020; Romera-
Paredes & Torr, 2015). Despite pervasiveness of the idea in other domains, this is the first time we
are aware of it being explored for FSCIL. We extend our approach to incorporate this past work
by learning a linear map L between the embedding space ej ∈ E and the weight space containing
ηC(0) :

L∗ = min
L

∑
j∈C(0)

‖ηj − L(ej)‖2 (9)

then set
R(t)

new =
∑
c∈C(t)

‖ηc − L∗(ec)‖2 . (10)

Concurrent work by (Cheraghian et al., 2021) also leverages side information for FSCIL where they
learn a mapping from image space onto the label space to directly produce predictions in the label
space. We provide comparisons in Section 5.

5 EXPERIMENTS

Given a classifier trained on an initial set of base classes, our experiments aim to evaluate the effect
of subspace regularization (1) on the learning of new classes, and (2) on the retention of base classes.
To evaluate the generality of our method, we evaluate using two different experimental paradigms
that have been used in past work: a multi-session experiment in which new classes are continuously
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Figure 2: Multi-Session FSCIL accuracy (%) results on miniImageNet. In the first session 0, there are a total
of 60 classes (base). Every session following the first one introduces 5 novel classes with 5 labeled samples
from each. Each session provides accuracy over all classes that were seen thus far. Weighted average is the
weighted combination of novel and base accuracies with respect to the number of classes in each category.
Error bars are standard deviation (95% CI). In accordance with Chen & Lee (2021) we preserve only one
sample per class from previous classes and append them to the support set during fine-tuning (+M variant).
Regularization based approaches i.e. subspace regularization, semantic subspace regularization and linear
mapping consistently outperform previous benchmark and fine-tuning in weighted average (a).

added and the classifier must be repeatedly updated, and a single-session setup (T = 1) in which new
classes arrive only once. As our optimizer, we use stochastic gradient descent for feature extractor
training and gradient descent in incremental sessions to train all models. Details about experiment
setups and results are discussed below. Additional details may be found in the appendix.

5.1 MULTI-SESSION

Table 1: Multi-Session FSCIL weighted average of accuracy
(%) results on miniImageNet using an identical setup to Fig. 2
with memory distinction. We report the average results over 10
random splits of the data for incremental sessions 1, 2 and 8.
±M indicates 1 sample per class is kept (or not) in the memory
to further regularize forgetting. Our Fine-tuning baseline is
already superior to previous results. In both memory settings,
our regularizers substantially outperform respective
benchmarks for all 1-8 sessions. ∗Results are only estimates
from the plot in the respective work. Bold indicates the highest.

Session 1 2 8
Model −M +M −M +M −M +M

Tao et al. (2020b) 50.1 45.2 24.4
Chen & Lee (2021) 59.9 55.9 41.8
Fine-tuning 61.8 67.7 49.9 62.9 26.5 48.1
Subspace Reg. 74.0 74.7 68.9 69.4 50.6 51.7
+language

Cheraghian et al. (2021)* 58.0 53.0 39.0
Linear Mapping 72.6 73.2 67.1 68.0 46.9 50.0
Semantic Subspace Reg. 73.8 73.9 68.4 69.0 47.6 49.7

Joint-training 73.1 67.5 47.3

We follow the same setup established
in Tao et al. (2020b) as well as Sec-
tion 3: we first train a ResNet (He et al.,
2016) network from scratch as the fea-
ture extractor on a large number of ex-
amples from base classes C(0) to ob-
tain an initial classifier ηj∈C(0) . We
then observe a new batch of examples
S(t) and produce a new classifier de-
fined by ηc∈C(≤t) . Finally, we evaluate
the classifier according to top-1 accu-
racy in base and novel samples as well
as their weighted average (Tao et al.,
2020b; Chen & Lee, 2021). We use
the miniImageNet dataset (Vinyals et al.,
2016; Russakovsky et al., 2015) for our
multi-session evaluation. miniImageNet
contains 100 classes with 600 samples
per class.

Feature extractor training In session t = 0, we randomly select 60 classes as base classes
(|C(0)| = 60) and use the remaining 40 classes as novel classes. Reported results are averaged
across 10 random splits of the data (Fig. 2). We use a ResNet-18 model that is identical to the one
described in Tian et al. (2020). Following Tao et al. (2020b), we use 500 labeled samples per base
class to train our feature extractor and 100 for testing.

Incremental evaluation Again following Tao et al. (2020b), we evaluate for a total of 8 incre-
mental sessions 1 ≤ t ≤ 8 for miniImageNet. In each session, for S(t), we sample 5 novel classes
for training and 5 samples from each class. Hence, at the last session t = 8, evaluation involves
the entire set of 100 miniImageNet classes. We use GloVe embeddings (Pennington et al., 2014) for
label embeddings in Eq. 7.
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Joint-training In order to assess how our approaches compare to a setting where memory is abun-
dant and retraining is allowed, we train a separate model in each session t from scratch. These
models are trained on the combination of all training examples including those from the base classes⋃

(t′<t) S
(t′) using the loss described in Eq. 2. Note that in this setup the memory requirement is

substantially large (500 examples per each class in C(0), and 5 for each of the subsequent classes
C(1≤t′≤t)) and the computation is more expensive.

Results Fig. 2 and Table 1 show the results of multi-session experiments with and without mem-
ory. Session 0 indicates base class accuracy after feature extractor training. We compare subspace
and language-guided regularization (linear mapping and semantic subspace reg.) to simple fine-
tuning (a surprisingly strong baseline) and joint-training. We also compare our results to three
recent benchmarks: Tao et al. (2020b), Chen & Lee (2021) and Cheraghian et al. (2021).4

When models are evaluated on combined base and novel accuracy, subspace regularization outper-
forms previous approaches (by 23% (-M) and 10% (+M) at session 8); when semantic information
about labels is available, linear mapping and semantic subspace regularization outperform Cher-
aghian et al. (2021) (Table 1). Evaluating only base sample accuracies (Fig. 2b), semantic subspace
reg. outperforms others; compared to regularization based approaches fine-tuning is subject to catas-
trophic forgetting. Rold is still useful in regulating forgetting (Table 3 in appendix). The method
of Chen & Lee (2021) follows a similar trajectory to our regularizers, but at a much lower accu-
racy (Fig. 2a). In Fig. 2c, a high degree of forgetting in base classes with fine-tuning allows higher
accuracy for novel classes—though not enough to improve average performance (Fig. 2a). By con-
trast, subspace regularizers provide a good balance between plasticity and stability (Mermillod et al.,
2013). In Table 1, storing as few as a single example per an old class substantially helps to reduce
forgetting. Results from linear mapping and semantic subspace regularization are close, with se-
mantic subspace regularization performing roughly 1% better on average. The two approaches offer
different trade-offs between base and novel accuracies: the latter is more competitive for base classes
and vice-versa. A similar argument can be made when comparing the subspace regularizer with the
semantic counterpart where the latter is more efficient in base classes than the former. Last but not
least, keeping as little as one example per old class in the memory along with our subspace regular-
izers is sufficient to surpass joint-training—a procedure which is extremely inefficient in terms of
both space and computation.

5.2 SINGLE SESSION

In this section we describe the experiment setup for the single-session evaluation, (T = 1), and
compare our approach to state-of-the-art XtarNet (Yoon et al., 2020), as well as Ren et al. (2019),
Gidaris & Komodakis (2018) and Qi et al. (2018). We evaluate our models on 1-shot and 5-shot
settings.5

miniImageNet and tieredImageNet For miniImageNet single-session experiments, we follow the
the splits provided by Yoon et al. (2020). Out of 100, 64 classes are used in session t = 0, 20 in
session t = 1 and the remaining for development. Following Yoon et al. (2020), we use ResNet-12
(a smaller version of the model described in Section 5.1). tieredImageNet (Ren et al., 2018) contains
a total of 608 classes out of which 351 are used in session t = 0 and 160 are reserved for t = 1. The
remaining 97 are used for development. While previous work (Ren et al., 2019; Yoon et al., 2020)
separate 151 classes out of the 351 for meta training, we pool all 351 for feature extractor training.

4Chen & Lee (2021) and Cheraghian et al. (2021) do not provide a codebase and Tao et al. (2020b) does not
provide an implementation for the main TOPIC algorithm in their released code. Therefore, we report published
results rather than a reproduction. This comparison is inexact: our feature extractor performs substantially
better than Tao et al. (2020b) and Chen & Lee (2021). Despite extensive experiments (see appendix) on various
versions of ResNet-18 (He et al., 2016), we were unable to identify a training procedure that reproduced the
reported accuracy for session 0: all model variants investigated achieved 80%+ validation accuracy.

5Unlike in the preceding section, we were able to successfully reproduce the XtarNet model. Our version
gives better results on the miniImageNet dataset but worse results on the tieredImageNet datasets; for fair-
ness, we thus report results for our version of XtarNet on miniImageNet and previously reported numbers on
tieredImageNet. For other models, we show accuracies reported in previous work.
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Table 2: miniImageNet 64+5-way and tieredImageNet 200+5-way single-session results. We follow previous
work in reporting the average of accuracies of base and novel samples over all classes rather than weighted
average. In addition to accuracy, we report a quantity labeled ∆ by Ren et al. (2019), which is the gap between
individual accuracies and joint accuracies of both base and novel samples averaged. Lower values of ∆ are
better. Bold numbers are not significantly different from the best result in each column under a paired t-test
(p < 0.05 after Bonferroni correction). All results are averaged across 2000 runs.

miniImageNet tieredImageNet

Model 1-shot 5-shot 1-shot 5-shot

Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Imprinted Networks (Qi et al., 2018) 41.34 ±0.54 -23.79% 46.34 ±0.54 -25.25% 40.83 ±0.45 -22.29% 53.87 ±0.48 -17.18%
LwoF (Gidaris & Komodakis, 2018) 49.65 ±0.64 -14.47% 59.66 ±0.55 -12.35% 53.42 ±0.56 -9.59% 63.22 ±0.52 -7.27%
Attention Attractor Networks (Ren et al., 2019) 54.95 ±0.30 -11.84% 63.04 ±0.30 -10.66% 56.11 ±0.33 -6.11% 65.52 ±0.31 -4.48%
XtarNet (Yoon et al., 2020) 56.12 ±0.17 -13.62% 69.51 ±0.15 -9.76% 61.37 ±0.36 -1.85% 69.58 ±0.32 -1.79%

Fine-tuning 58.56 ±0.33 -12.14% 66.54 ±0.33 -13.77% 64.42 ±0.38 -7.23% 72.59 ±0.34 -6.88%
Subspace Regularization 58.38 ±0.32 -12.30% 68.88 ±0.32 -10.74% 64.39 ±0.38 -7.23% 73.03 ±0.34 -6.16%

+language
Linear Mapping 58.87 ±0.33 -12.83% 69.68 ±0.31 -10.40% 64.55 ±0.38 -7.31% 73.10 ±0.33 -6.16%
Semantic Subspace Reg. (w/ description) 59.09 ±0.32 -12.38% 68.46 ±0.32 -11.70% 64.49 ±0.38 -7.14% 72.94 ±0.34 -6.29%
Semantic Subspace Reg. (w/ label) 58.70 ±0.32 -12.24% 69.75 ±0.32 -10.48% 64.75 ±0.38 -7.22% 73.51 ±0.33 -6.08%

We train the same ResNet-18 described in Section 5.1. Additional details regarding learning rate
scheduling, optimizer parameters and other training configurations may be found in the appendix.

Incremental evaluation We follow Yoon et al. (2020) for evaluation. Yoon et al. independently
sample 2000D(1) incremental datasets (“episodes”) from the testing classes C(1). They report aver-
age accuracies over all episodes with 95% confidence intervals. At every episode, Q(1) is resampled
from both base and novel classes, C(0) and C(1), with equal probability for both miniImageNet and
tieredImageNet. We again fine-tune the weights until convergence. We do not reserve samples from
base classes, thus the only training samples during incremental evaluation is from the novel classes
C(1). We use the same resources for label embeddings and Sentence-BERT embeddings (Reimers
& Gurevych, 2019) for descriptions which are retrieved from WordNet (Miller, 1995).

Results We report aggregate results for 1-shot and 5-shots settings of miniImageNet and
tieredImageNet (Table 2). Compared to previous work specialized for the single-session setup with-
out a straightforward way to expand into multi-session (Ren et al., 2019; Yoon et al., 2020), even
our simple fine-tuning baseline perform well on both datasets—outperforming the previous state-
of-the-art in three out of four settings in Table 2. Addition of subspace and semantic regularization
improves performance overall but tieredImageNet 1-shot setting. Semantic subspace regularizers
match or outperform linear label mapping. Subspace regularization outperforms fine-tuning in 5-
shot settings and matches it in 1-shot. In addition to accuracy, we report a quantity labeled ∆ by
Ren et al. (2019). ∆ serves as a measure of catastrophic forgetting, with the caveat that it can be
minimized by a model that achieves a classification accuracy of 0 on both base and novel classes.
We find that our approaches result in approximately the same ∆ in miniImageNet and worse in
tieredImageNet than previous work.

6 ANALYSIS AND LIMITATIONS

What does regularization actually do? Fine-tuning results in prediction biased towards the most
recently learned classes (top of Fig. 3) when no subspace regularization is imposed. Our experiments
show that preserving the base weights while regularizing novel weights gives significant improve-
ments over ordinary fine-tuning (bottom of Fig. 3)—resulting a fairer prediction over all classes and
reducing catastrophic forgetting. In Table 1, Semantic Subspace Reg. results in 73.8% and 47.6%
accuracies in the 1st and 8th sessions whereas, fine-tuning results in 61.8% and 26.5%, respectively,
even without any memory—suggesting that regularization ensures a better retention of accuracy.
While the trade-off between accuracies of base and novel classes is inevitable due to the nature of
the classification problem, the proposed regularizers provide a good balance between the two.

What are the limitations of the proposed regularization scheme? Our approach targets only
errors that originate in the final layer of the model—while a convolutional feature extractor is used,
the parameters of this feature extractor are fixed, and we have focused on FSCIL as a linear clas-
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Figure 3: Simple fine-tuning (top) vs. subspace regularization (bottom) predictions without memory across the
first four incremental sessions of miniImageNet. In the x- and y-axes, we present predictions and gold labels
ranging from 0 to 79 where the first 60 are base classes. The number of classes grows by 5 every session
starting from 60 up to 80. Brighter colors indicate more frequent predictions. Note that simple fune-tuning
entails bias towards the most recently learned classes (top row) whereas addition of subspace regularization on
the novel weights remedies the aforementioned bias; resulting in a fairer prediction performance for all classes.

sification problem. Future work might extend these approaches to incorporate fine-tuning of the
(nonlinear) feature extractor itself while preserving performance on all classes in the longer term.

7 CONCLUSIONS

We have described a family of regularization-based approaches to few-shot class-incremental learn-
ing, drawing connections between incremental learning and the general multi-task and zero-shot
learning literature. The proposed regularizers are extremely simple—they involve only one extra
hyperparameter, require no additional training steps or model parameters, and are easy to understand
and implement. Despite this simplicity, our approach enables ordinary classification architectures to
achieve state-of-the-art results on the doubly challenging few-shot incremental image classification
across multiple datasets and problem formulations.
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A CODE AND DATASETS

Code is released under https://github.com/feyzaakyurek/subspace-reg. We use
miniImageNet (Vinyals et al., 2016) and tieredImageNet (Ren et al., 2018) datasets both are sub-
sets of ImageNet dataset (Russakovsky et al., 2015). Use of terms and licenses are available through
the respective sources.

B ANALYSIS OF CATASTROPHIC FORGETTING

In Table 3, we demonstrate the effectiveness of the regularization term Rold in mitigating catas-
trophic forgetting.

Table 3: miniImageNet weighted average results across multiple sessions showcasing the
usefulness of Rold in reducing catastrophic forgetting across multiple sessions for -M setting.
Higher accuracies are highlighted and results are averages over 10 random splits. Rold is useful in
combination with Subspace Reg. for all sessions while it is more helpful in the long-run for
Fine-tuning. Note that Subspace Reg. consistently outperforms Fine-tuning regardless the use of
Rold.

Model 0 1 2 3 4 5 6 7 8

Subspace Reg. 80.37 72.99 67.21 62.40 58.46 54.28 50.33 48.03 45.06
Subspace Reg. no Rold 80.37 71.96 65.49 60.43 55.56 50.35 45.66 42.91 39.54

Fine-tuning 80.37 61.77 49.93 40.45 34.04 31.63 28.43 27.91 26.54
Fine-tuning no Rold 80.37 62.39 53.89 46.56 39.73 32.92 27.00 23.95 20.39
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Table 4: miniImageNet +M results across multiple sessions in tabular form. Initial number of base
classes is 60 and 5 new classes are introduced at every session. Results are on the test set that
grows with the increasing number of classes. In the last session we evaluate over all 100 classes.
Joint-training involves keeping all training data seen thus far in the memory and retrains a feature
extractor from scratch on the entirety of base and novel classes.

Session 0 1 2 3 4 5 6 7 8
Model

Chen & Lee (2021) 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84
Fine-tuning 80.37 67.69 62.91 59.52 56.87 54.37 51.92 50.26 48.13
Subspace Reg. 80.37 74.68 69.39 65.51 62.38 59.03 56.36 53.95 51.73

+language
Linear Mapping 80.37 73.24 67.96 64.50 61.28 57.68 54.64 52.25 50.00
Semantic Subspace Reg. 80.37 73.92 69.00 65.10 61.73 58.12 54.98 52.21 49.65

Joint-training 80.37 73.06 67.52 63.21 59.19 55.98 52.11 49.59 47.31

Table 5: miniImageNet -M results across multiple sessions in tabular form. Initial number of base
classes is 60 and 5 new classes are introduced at every session. Results are on the test set that
grows with the increasing number of classes. The last session is evaluated over all 100 classes.
*Note that the entries for Cheraghian et al. (2021) are only rough estimates from the visual plot
provided in their published work.

Model 0 1 2 3 4 5 6 7 8

Tao et al. (2020) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
Fine-tuning 80.37 61.77 49.93 40.45 34.04 31.63 28.43 27.91 26.54
Subspace Regularization 80.37 74.01 68.92 64.37 61.35 58.22 54.99 53.15 50.58

+language
Cheraghian et al. (2021)* 62.00 58.00 52.00 49.00 48.00 45.00 42.00 40.00 39.00
Linear Mapping 80.37 72.65 67.11 63.47 59.82 55.44 51.42 49.64 46.90
Semantic Subspace Reg. 80.37 73.76 68.36 64.07 60.36 56.27 53.10 50.45 47.55

C RESULTS IN TABULAR FORM

In Table 4 and Table 5, we present the multi-session results in the main paper in the tabular form.

D DETAILS OF FEATURE EXTRACTOR TRAINING

We use the exact ResNet described in Tian et al. (2020), the differences compared to the standard
ResNet (He et al., 2016): (1) Each block (collection of convolutional blocks) is composed of three
convolutional layers instead of two. (2) Number of blocks for ResNet-12 is 4 instead of 6 of the
standard version, thus the total number of convolutional layers are the same. (3) Filter sizes are
[64,160,320,640] rather than [64,128,256,512], though the total number of filters is comparable
since Tian et al. (2020) has less blocks. (4) There is Dropblock at the end of the last blocks.

Tian et al. (2020) provides a full visualization in Appendix and their code repository6 is easy to
browse on which we base our own codebase. We observe that the previous work oftentimes use
their slightly modified version of the standard ResNet. Ren et al. (2019) uses the ResNet-10 (Mishra
et al., 2017) and ResNet-18 for for miniImageNet and tieredImageNet, respectively. XtarNet(Yoon
et al., 2020) is originally based on a slightly modified version of ResNet-12 and ResNet-18 which
we replaced with our version, improving their results for miniImageNet but not in tieredImageNet,
thus we report improved results for miniImageNet and their results for tieredImageNet in the main
paper.

6https://github.com/WangYueFt/rfs
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Table 6: miniImageNet validation set accuracy with two ResNet-18 architectures with slight
differences as listed in Appendix D. Overall performances are comparable.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10 Mean

Our ResNet-18 (Tian et al., 2020) 84.833 79.167 83.200 81.300 81.267 78.933 82.033 82.067 81.800 82.367 81.6967
Standard ResNet-18 (He et al., 2016) 83.333 80.100 83.867 81.333 80.967 79.100 81.833 82.500 81.167 81.567 81.5767

D.1 DEFAULT SETTINGS

Unless otherwise indicated we use the following default settings of Tian et al. (2020) in our feature
extractor training. We use SGD optimizer with learning starting at 0.05 with decays by 0.1 at epochs
60 and 80. We train for a total of 100 epochs. Weight decay is 5e-4, momentum is 0.9 and batch
size is 64. As per transformations on training images, we use random crop of 84x84 with padding
8. We also use color jitter (brightness=0.4, contrast=0.4, saturation=0.4) and horizontal flips. For
each run, we sample 1000 images from base classes and 25 images from each of novel classes. Our
classifier does not have bias.

D.2 MULTI-SESSION miniIMAGENET

We re-sample the set of base classes (60 classes) 10 times across different seeds and train ten ResNet-
18 models. Each class has 500 training images. We follow the default settings for training.

D.3 MULTI-SESSION COMPARISON TO STANDARD RESNET-18

In Table 6 we provide validation set results for two types of ResNet-18’s: Tian et al. (2020) and He
et al. (2016) across ten different seeds. Results show that use of Tian et al. (2020) does not incur
unfair advantage over those who used He et al. (2016).

D.4 SINGLE-SESSION miniIMAGENET

We follow the default hyperparameters parameters Appendix D.1 except that for training, validation
and testing we use the exact splits provided by Ren et al. (2019) also used by Yoon et al. (2020).
There are 64 base, 16 validation and 20 testing classes provided (totaling 100). Training data consists
of 600 images per base class. Dataset statistics are delineated in the Appendix of Ren et al. (2019)
and downloadable splits are available here, courtesy of Ren et al. (2019).

D.5 SINGLE-SESSION tieredIMAGENET

tieredImageNet is first introduced by Ren et al. (2018). Same as above, we use the default parameters
except that we train for a total of 60 epochs decaying the initial learning rate of 0.05 by 0.1 at
epochs 30 and 45. Again, we use the same data as previous work available at the same link above.
tieredImageNet is split into 351, 97 and 160 classes. Past work that use meta-learning Ren et al.
(2019); Yoon et al. (2020) split 351 training classes into further 200 and 151 clases where the latter is
used for meta learning. We pool all 351 for feature extractor training. At the end of feature extractor
training, we only keep the classifier weights for the first 200 classes to adhere to the evaluation
scheme of 200+5 classes as past work.

E DETAILS OF INCREMENTAL EVALUATION

E.1 QR DECOMPOSITION FOR SUBSPACE REGULARIZATION

To compute the orthogonal basis PC(0) for the subspace spanned by base classifier weights ηC(0) we
use QR decomposition(Trefethen & Bau III, 1997):

[
PC(0) Q

′] [R
0

]
= η>C(0) (11)
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E.2 MULTI-SESSION

For testing, we sample 1000 images from base classes and 25 images from each of novel classes.
Testing images from a given class stay the same across sessions. Harmonic mean results take into
account the ratio of base classes to novel classes in a given session. In this setting, there is no explicit
development set (with disjoint classes than train and test) defined by previous work thus we use the
first incremental learning session (containing 5 novel classes) as our development set.

Default settings We use the same transformations as in Appendix D.1 on the training images.
We stop fine-tuning when loss does not change more than 0.0001 for at least 10 epochs. We use
SGD optimizer. We repeat the experiments 10 times and report the average accuracy with standard
deviation (95% confidence interval) in the paper.

Simple Fine-tuning We use learning rate of 0.002 and do not use learning decay. Weight-decay
α is set at 5e-3. In order to limit the change in weights, we use different β’s for base and previously
learned novel classes, where the former is 0.2 and the latter 0.1. We rely on the default settings
otherwise.

Subspace Regularization Different from simple fine-tuning we use a weight decay of 5e-4. There
is an additional parameter called γ in this setting controlling the degree of pulling of novel weights
toward the subspace which we set to 1.0.

Semantic Subspace Regularization Different than simple subspace regularization, there is a tem-
perature parameter used in the Softmax operation used in computation of lc’s which we set to 3.0.

Linear mapping regularization Same parameters as in subspace regularization are used except
γ = 0.1. We formulate L as a linear layer with bias and we use gradient descent to train the
parameters.

E.3 SINGLE-SESSION

In our 1-shot experiments unless fine-tuning converges by then, we stop at the maximum number of
epochs at 1000. We sample 2000 episodes which includes 5 novels classes and 1-5 samples from
each and report average accuracy. For testing, base and novel samples have equal weight in average
per previous work (Yoon et al., 2020). SGD optimizer is used. For description similarity we use
Sentence-BERT’s stsb-roberta-large.

miniImageNet Settings We use the same set of transformations on the training images as de-
scribed in Appendix D.1. We first describe details of 1-shot setting. In 1-shot experiments we set
the maximum epochs to 1000. For simple fine-tuning we use learning rate of 0.003, and weight de-
cay of 5e-3. In Semantic Subspace Reg., we set temperature to 1.5. Both in Semantic Subspace Reg.
and linear mapping γ = 0.005 and weight-decay is 5e-4. In subspace regularization, γ = 0.005 and
weight-decay is set to 5e-5. Description similarity follows the same setup as Semantic Subspace
Reg..

In 5-shot setting, we set β = 0.03 weight-decay to 5e-3 and learning rate to 0.002. For subspace
regularization, Semantic Subspace Reg. and linear mapping we use γ = 0.03 and for description
similarity we use γ = 0.01.

tieredImageNet Settings In 1-shot setting, fine-tuning uses learning rate of 0.003. Semantic Sub-
space Reg. has learning rate of 0.005, weight-decay 5e-3 and γ = 0.005. Subspace reg. and linear
mapping use γ = 0.001.

In 5-shot setting, for simple fine-tuning we set lr = 0.001, weight-decay=5e-3, β = 0.3. For Seman-
tic Subspace Reg. γ = 0.05 and β = 0.2 while others have γ = 0.03.
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Figure 4: Clasifier weight space when subspace regularization is applied for miniImageNet
single-session 5-shot setting. First two principal components are shown according to PCA. Red
labels indicate novel classes while the black indicates base. The green crosses indicate the
projection of the respective novel class weight to the base subspace. Note that unlike
label/description similarity and linear mapping, subspace target is dynamic: it changes according
to its corresponding novel weights and vice versa.

Figure 5: Clasifier weight space when Semantic Subspace Reg. is applied for miniImageNet
single-session 5-shot setting. First two principal components are shown according to PCA. Red
labels indicate novel classes while the black indicates base. The green crosses indicate the semantic
target l of the respective novel class. Note that semantic targets are static: they don’t change during
fine-tuning. Notably, the semantic target for theater curtain falls closely to the class representation
of the base class stage, dragging novel weight for theater curtain towards there. Same dynamic is
visible for novel class crate and base barrel.
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F VISUALIZATIONS

In Fig. 4 and Fig. 5 we depict principal components of classifier weights as well as semantic or
subspace targets for novel weights.

G COMPUTE

We use a single 32 GB V100 NVIDIA GPU for all our experiments.

19


	Introduction
	Background
	Problem Formulation
	Approach
	Feature Extractor Training
	Fine-tuning
	Method 1: Subspace Regularization
	Method 2: Semantic Subspace Regularization

	Experiments
	Multi-Session
	Single Session

	Analysis and Limitations
	Conclusions
	Code and Datasets
	Analysis of Catastrophic Forgetting
	Results in Tabular Form
	Details of Feature Extractor Training
	Default Settings
	Multi-Session miniImageNet
	Multi-Session Comparison to Standard ResNet-18
	Single-Session miniImageNet
	Single-Session tieredImageNet

	Details of Incremental Evaluation
	QR Decomposition for Subspace Regularization
	Multi-Session
	Single-Session

	Visualizations
	Compute

