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Abstract

Deep learning in medical image analysis often requires an extensive amount of high-quality
labeled data for training to achieve human-level accuracy. We propose Gist-set Online
Active Learning (GOAL), a novel solution for limited high-quality labeled data in medical
imaging analysis. Our approach advances the existing active learning methods in three
aspects. Firstly, we improve the classification performance with fewer manual annotations
by presenting a sample selection strategy called gist set selection. Secondly, unlike tradi-
tional methods focusing only on random uncertain samples of low prediction confidence, we
propose a new method in which only informative uncertain samples are selected for human
annotation. Thirdly, we propose an application of online learning where high-confidence
samples are automatically selected, iteratively assigned, and pseudo-labels are updated.
We validated our approach on two private and one public datasets. The experimental re-
sults show that, by applying GOAL, we can reduce required labeled data up to 88% while
maintaining the same F1 scores compared to the models trained on full datasets.
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1. Introduction

Chest X-ray (CXR) is one of the most popular and important imaging examination methods
for screening, diagnosing, and managing public health. However, the clinical interpretation
of a CXR image requires the expertise of highly qualified radiologists whose diagnosis may
include potential biases. Firstly, the geographical bias where some diseases appear more
frequently in specific areas but are very rare in some others. Secondly, expertise bias where
radiologists are only good at diagnosing a specific set of diseases. Thirdly, inconsistency
among radiologists, especially on ambiguous edge cases, causes more noisy labeled data. The
automated CXR interpretation system that assists radiologists in decision-making would,
therefore, tackle these problems.

An automated CXR interpretation software, at the level of an experienced radiologist,
could provide a great benefit in both consistency and efficiency of diagnosis. However,
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it poses a computational challenge to develop software that matches the expertise and
experiences of practicing radiologists. Taking recent advantage of Artificial Intelligent (AI)
and Deep Learning (DL), many systems can surpass the human-level decision in terms of
accuracy in a number of computer vision tasks. However, DL, in particular supervised
learning, generally requires large-scale and high-quality labeled datasets to achieve the
human level of accuracy. Most importantly, these datasets are not easy to obtain in practice.
This is due to the expertise required to label a large amount of data, and doctors’ consensus
cannot be reached easily. Thus, acquiring a high-quality and large labeled dataset is costly
and time-consuming.

Several publicly available CXR datasets can be used for image classification task, for
example, CheXpert (Irvin et al., 2019), which contains 224,316 chest radiographs collect
from 65,240 patients in Stanford Hospital. Overall, these CXR datasets used information
in doctor’s notes, extracted by Natural Language Processing (NLP), as a ground-truth
for training and validating any proposed Machine Learning (ML) models. However, this
technique has a limitation in dealing with multi-language ambiguity and uncertainties in
radiology reports. Furthermore, most of the annotations are not validated by radiologists or
professional physicians to ensure the annotations’ quality. Therefore, it leads to the decreas-
ing of confidences in labels extracted from radiologist’s notes. Majkowska et al. (Majkowska
et al., 2020) proposed a procedure to obtain qualified labels. However, this method only
produces high-quality labels but also consumes a lot of time and cost; hence, it is only
well-suited for making the high-quality test and validation set.

Active Learning (AL) is a promising method to solve limited, highly qualified labeled
data in the medical domain. AL mainly lies in evaluating the informativeness of data points.
The main families of informativeness measurement in AL are uncertainty, Cost-Effective
Active Learning (CEAL) (Wang et al., 2017), and representation, Suggestive Annotation
(Yang et al., 2017).

In this work, we study the effect of the AL methods in the regime of a large and
small amount of available unlabeled data. We present a novel AL method, called Gist Set
Online Activate Learning (GOAL), for efficient annotations. Our approach further saves
annotation costs by reducing the amount of data that needs to be additionally labeled
by doctors while keeping the same performance as using full data. Our method shares
a similar flow with CEAL but is different from it in two aspects. Firstly, uncertainty
and representation are combined for sample selection, which we call the Gist-set Selection.
Secondly, the pseudo-labels are updated using momentum after each iteration, which we
call Online Active Learning. We evaluated our method based on both our private and
public datasets. The private dataset consists of two findings, 68,959 positive instances
of Airspace Opacity (AO) and 12,848 positive instances of Lung Lesion (LL) out of
131,030 annotated instances. For the public domain, we use Pneumonia (PN) data
from RSNA Pneumonia dataset1, which contains 9,555 positive instances out of 26,684
instances, and Pleural Effusion (PE) from CheXpert (Irvin et al., 2019), which contains
86,477 positive instances out of 191,027 frontal instances.

1. https://www.kaggle.com/c/rsna-pneumonia-detection challenge
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2. Method

2.1. Decision Boundary

A typical approach to AL (Wang et al., 2017) is to get an uncertainty using entropy measure

U(x) =
∑
c=0,1

−p(c|x) log(p(c|x)) (1)

followed by assigning label to low uncertain score instances, and randomly sample high
uncertain instances for human annotation. Such approach is the same as sampling high
confidence instances2 to assign label and low confidence instances for human annotation.
However, high confidence instances only yield small information gain since its feature vector
lies deep above/under the decision boundary (Fig. 1). In contrast, instances whose feature
vectors are in the neighborhood of the decision boundary present the most uncertain for
the model to assign a specific label, thus they are the most informative for further learning.

2.2. Gist Data Point

Furthermore, our aim is to reduce the amount of data that needs to be annotated. In other
word, we want to select only those data points that represents the global structure of the
decision boundary neighborhood. However, due to the complexity of a deep CNN, the global
structure of the result feature space is not well understood. Despite that, deep CNN was
shown to be a good feature extractor that maps an image to an embedded high dimensional
sphere (Schroff et al., 2015). Based on that, we hypothesize that the general feature space
of a deep CNN can be treated as an embedded manifold inside a flat Euclidean space3.
Using that hypothesis, we first build a local neighborhood around each data point in the
neighborhood of the decision boundary using the method from (Rahmah and Sitanggang,
2016) which is quite robust, compared to global structure of the feature space. We, then,
define gist points as each of them has at least some minimum amount of data points inside
its neighborhood (Rahmah and Sitanggang, 2016). Finally, we sample from the set of gist
points to reduce the amount of data.

2.3. Online Learning with Momentum

Labeled data is inherently noisy at the begining of an AL iteration, the model may not learn
enough feature to generate consistent label e.g. high confidence instances in an iteration
may become low confidence instances in the next one. Therefore, we adopt the approach of
using a running average to stabilize the output of the model.

p̂t = µp̂t−1 + (1− µ)pt (2)

where p̂t is the confident score after applying momentum modification, pt is the original
confidence score of the model in iteration t and µ controls how much past score affects the
final score. For µ ∈ [0, 0.4], p̂t−1 has little effect on the final confidence score, therefore

2. Instances with high p(c = 1|x) or p(c = 0|x)
3. The reason we assume embedding instead of immersion is because we want images with different visual

to have distanced feature vector
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Figure 1: High confidence sample are far from decision boundary, so they’re not as infor-
mative as those that are near the boundary.

instances with small fluctuation in pt will get removed from the pseudo-labeling process.
Such aggressive removal is uncalled for since instances with pt ∈ [0.8, 0.9) but p̂t−1 ≥ 0.9
can be treated as high confidence data point.

In contrast to that, for µ ∈ [0.6, 1], instances with pt < 0.6 may end up with p̂t ≥ 0.9,
which can destabilize the training process because unstable instances are being kept in the
training set. Therefore we set µ = 0.5 in our experiment.

3. Experimental Results

3.1. Implementation Details

For network architecture, we use ResNeXT50-32x4d (Xie et al., 2017) as our pre-trained
backbone. We use SGD with Nesterov momentum (Sutskever et al., 2013) as optimizer
and train the network for 8 epochs. The learning rate and scheduler is selected using the
procedure from one-cycle policy (Smith and Topin, 2017) for fast convergence. Since medical
data is inherently unbalanced, we follow the weighting scheme of (Cui et al., 2019) to make
training more stable.

For DBSCAN feature vector, we use the output vector of the trained backbone. We fol-
low (Rahmah and Sitanggang, 2016) to pick the radius neighborhood of each data instance.
For the minimum number of data points of gist instances, we find that taking the inflection
point of the previous step and divided by 10 works well (see Fig. 2).
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Figure 2: Lung Lesion CXR instances with p̂t ∈ [0.4, 0.6]. Blue dots represent normal data
point, orange dots represent gist points which cover almost all instances.

3.2. Datasets

We study the AL’s effectiveness in 3 cases: 1. when the number of unlabeled data is
abundant; 2. when the number of unlabeled data is few; 3. when NLP extracts the label
from the medical report.

For the 1st case, we use our private datasets of AO and LL. The train set consists of
131, 030 data points with 68, 959 positive AO instances and 12, 848 positive LL instances.
Two or three radiologists annotated each instance. We chose these radiologists from a pool
of more than 30 radiologists with at least five years of experience. The test set consists of
4, 279 instances. Each instance is annotated by a group of five to eight radiologists from
the same pool. It contains 1, 789 positive AO instances and 857 positive LL instances.

For the 2nd case, we use the public RSNA Pneumonia dataset4. It consists of 26,684
data points, we then stratified split the data with a ratio of 9:1. The final training set
consists of 24,015 data points with 5,411 positive instances, and the final test set consists
of 2,669 data points with 601 positive instances.

For the 3rd case, we picked PE, the finding with the most positive samples, from the
CheXpert dataset to study the difference between NLP labels and pseudo labels. For PE,
we use the U-One (Irvin et al., 2019) approach to assign positive labels to uncertainty
instances. We then test the models on the same test set as the 1st case. The test set
consists of 4, 279 instances with 865 positive samples. Each instance was also annotated by
a group of five to eight radiologists.

4. https://www.kaggle.com/c/rsna-pneumonia-detection challenge
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(a) Private Airspace Opacity Dataset (b) Private Lung Lesion Dataset

(c) Public Pneumonia Dataset (d) Public Pleural Effusion Dataset

Figure 3: Performance gains of AL methods on private Airspace Opacity dataset, private
Lung Lesion dataset and public Pneumonia dataset. Compare to other methods,
GOAL has the most performance gain per data annotated.

3.3. Analysis

We retrospectively study how much data is needed for a model using AL acquired data to
reach the same performance as a model using full data. We construct many AL pipelines
to compare with GOAL. The details is as follows.
Baseline: We sample uniformly 10K instances for annotation each iterations.
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Table 1: F1 score performance of Airspace Opacity (AO), Lung Lesion (LL), Pneumonia
(PN), and Pleural Effusion (PE) from the CheXpert dataset. We ran 10 iterations
to investigate the effect of NLP and pseudo labels

Method Finding
Active Learning Iteration

Finding
Active Learning Iteration

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

Full

AO

0.871

PN

0.631
Baseline

0.768

0.845 0.856 0.853 0.857

0.525

0.604 0.599 0.605 0.607 - - - - -
CEAL 0.855 0.836 0.857 0.848 0.567 0.589 0.613 0.625 - - - - -
Naive 0.844 0.855 0.854 0.861 0.574 0.592 0.612 0.626 - - - - -
Naive+ 0.825 0.845 0.845 0.845 0.556 0.585 0.616 0.620 - - - - -
Momentum 0.855 0.862 0.865 0.871 0.576 0.608 0.614 0.623 - - - - -
GOAL 0.854 0.867 0.870 0.871 0.576 0.607 0.619 0.623 - - - - -

Full

LL

0.743

PE

0.785
Baseline

0.688

0.698 0.708 0.719 0.728

0.755

0.764 0.755 0.762 0.762 0.726 0.776 0.786 0.689 0.731
CEAL 0.706 0.719 0.720 0.737 0.726 0.745 0.753 0.766 0.770 0.778 0.775 0.769 0.777
Naive 0.705 0.719 0.733 0.741 0.731 0.727 0.779 0.758 0.692 0.760 0.768 0.763 0.766
Naive+ 0.700 0.706 0.711 0.735 0.757 0.776 0.770 0.763 0.762 0.763 0.784 0.763 0.769
Momentum 0.722 0.742 0.742 0.749 0.749 0.744 0.732 0.758 0.750 0.780 0.782 0.775 0.772
GOAL 0.730 0.735 0.741 0.753 0.750 0.743 0.733 0.757 0.748 0.783 0.780 0.776 0.775

CEAL: We follow the author’s process to assign labels to extremely high confidence in-
stances pt ∈ [0, 0.001]

⋃
[0.999, 1]. For example, with lower confidences in the complementary

interval, 10K were sampled uniformly for annotation.
Naive: We expand CEAL’s pseudo label interval to include more high confidence instances
(i.e., pt ∈ [0, 0.1]

⋃
[0.9, 1]).

Naive+: Based on Naive, we further refine the sampling interval for data annotation to
the most informative interval pt ∈ [0.4, 0.5].
Momentum: We refine Naive+ method by replacing model’s output probability with a
running average of previous AL iterations. The running average is calculated using Eq. 2.
GOAL: Finally, we reduce the total amount of annotated data of the Momentum method
by only selecting representative data points.

For all datasets, we sample an initial train set of 6, 550 instances from the original
train set. For each learning iteration, we sample a maximum of 6, 500 instances from the
remaining train pool to add to the current train set5. As shown in Table 1, for the AO
dataset, the performance of AL methods gets better as we refine CEAL into GOAL, the
final AO F1 score gain going from CEAL to GOAL is 2.3% while reducing the amount of
data used by CEAL from 24.84% to 17.13% (Table 2). The GOAL method achieve best
performance gain per annotated as shown in Fig. 3(a).

For LL dataset, there’s a dip of 0.6% in going from Naive to Naive+ method, we hy-
pothesize that sampling from uncertainty region for an unbalanced class would result in
drastic change on old pseudo label. Therefore, when we use momentum to stabilize the
pseudo label, the final F1 score take a drastic increase from 0.735 to 0.749 The final GOAL
method achieves the best performance per annotated data as shown in Fig. 3(b).

On PN dataset, all AL approaches achieve the same comparable F1 score, we hypothesize
this to be the result of lacking pseudo-labeled instance. Despite that, GOAL only uses
34.12% of the total data while CEAL needs to use 48.58% (Table 2) to achieve the same
performance.

5. Each AL approach has a different way to sample instances in the big training set but all of them use the
same initial set of training data
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Table 2: Number of annotated data for each methods. The lowest amount of annotated
data are in bold.

Method Finding #Neg. #Pos. Total % Finding #Neg. #Pos. Total %

Full

AO

68,959 62,071 131,030 100.00

PN

18,604 5,411 24,015 100.00
Baseline 17,199 15,351 32,550 24.84 11,005 3,393 14,398 59.95
CEAL 20,135 12,415 32,550 24.84 8,996 2,671 11,667 48.58
Naive 18,342 14,208 32,550 24.84 9,036 2,785 11,821 49.22
Naive+ 11,678 9,912 21,590 16.48 7,337 2,425 9,762 40.65
Momentum 13,799 12,642 26,441 20.18 6,579 2,528 9,107 37.92
GOAL 11,844 10,603 22,447 17.13 5,770 2,426 8,196 34.12

Full

LL

118,182 12,848 131,030 100.00

PE

104,550 86,477 191,027 100.00
Baseline 26,946 5,604 32,550 24.84 55,093 45,951 101,044 52.90
CEAL 27,699 4,851 32,550 24.84 76,030 68,301 144,331 75.56
Naive 26,843 5,707 32,550 24.84 55,234 45,810 101,044 52.90
Naive+ 13,118 4,271 17,389 13.27 75,441 62,621 138,062 72.27
Momentum 13,466 5,224 18,690 14.26 45,309 32,273 77,582 40.61
GOAL 11,477 4,848 16,32 12.46 36,792 27,912 64,704 33.87

We study the effect of active learning methods on CheXpert, the dataset with NLP gen-
erated annotation. Fig. 3(d) shows that CEAL, momentum, and GOAL methods perform
more stable than other methods. We hypothesize this more stable performance is due to the
consistency of using a small amount of extremely high confidence instances in CEAL and
stable confidence instances in momentum and GOAL. Furthermore, the unstable perfor-
mance of all methods comes from only using NLP generated annotation. Therefore, manual
annotation is required if active learning methods are to be applied in medical domain.

4. Conclusions

We propose a simple yet novel active learning algorithm to support practitioners to acquire
additional annotated CXR images efficiently. The results show that GOAL achieves full
data training performance while using only 12.5% ∼ 34.1% of the available annotated data.
Because only data points representing the informative region are sampled, the amount of
data needed decreases dramatically. Furthermore, the usage of momentum helps stabilize
the training by potentially removing the noisy label and keeping only stable and high con-
fidence data points. We have not evaluated the proposed method on other public datasets
in the general domain because the primary purpose of developing this is for the medical
industry. In future work, we intend to study in-depth how the representation of deep CNN
affects data choice and further evaluate our work on other domains.
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