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Abstract

Algorithmic bias remains a critical challenge in dermatological diagnosis, especially as deep
learning models often underperform for underrepresented populations. In this work, we
present a novel framework that integrates bias mitigation directly into the training process
for skin lesion classification. Motivated by the chronic underrepresentation of darker skin
tones (Fitzpatrick types V-VI) in standard dermatology resources, our approach employs a
composite loss function that jointly optimizes disease classification and skin-tone prediction.
By incorporating cosine dissimilarity regularization, the method encourages the learning
of disentangled, robust feature representations, while a Gradient Reversal Layer ensures
that these features remain invariant to skin tone. Evaluated on both the Fitzpatrick-17k
and ISIC datasets, our framework demonstrates significant improvements in fairness and
accuracy, paving the way for more equitable diagnostic tools in medical imaging.
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1. Introduction

Dermatological diagnosis is a critical field where algorithmic bias can affect clinical out-
comes. Deep neural networks, especially convolutional neural networks (CNNs), have ex-
celled in classifying skin lesions—often matching experienced dermatologists (Esteva et al.,
2017). However, when applied to diverse populations, these systems can exhibit systematic
biases related to skin tone, gender (Daneshjou et al., 2021), surgical markings and rulers
(Bevan and Atapour-Abarghouei, 2021), and other latent factors.

The underrepresentation of darker skin tones in training datasets leads to disparities in
diagnostic accuracy. In standard dermatology datasets, images of darker skin (Fitzpatrick
types V=VI) account a very small fraction, perpetuating bias in algorithmically trained
systems (Daneshjou et al., 2021). The Fitzpatrick scale (Fitzpatrick, 1988), categorizes
skin into six types based on ultraviolet response; despite its widespread use, it has been
criticized for its Eurocentric bias. Nevertheless, the Fitzpatrick-17k dataset (Groh et al.,
2021) remains a key benchmark by combining disease and skin-tone labels to assess fairness.
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While several bias reduction strategies exist—such as

post-processing (Hardt et al., 2016) and in-training ‘ ‘ ‘
mitigation (Zemel et al., 2013)—recent work lever- m T T3 T4 T T6
aging VAE-derived latent representations (Pundhir ) ) )

et al., 2024) still tends to address bias through data Figure 1: Fitzpatrick Scale

balancing or post-hoc fixes, overlooking critical learning dynamics. Motivated by domain
adaptation, we propose developing skin color-invariant disease classifiers by embedding bias
mitigation directly into training. Our approach employs a composite loss that simultane-
ously optimizes classification and bias prediction, with a cosine dissimilarity term discour-
aging feature alignment by skin color, and a Gradient Reversal Layer (GRL) (Ganin et al.,
2016) that reinforces the extraction of robust, disease-specific features across demographics.

2. Methodology and Dataset

We train our proposed model
on dataset D = {(:Ui,yi,bi)}i]\;l,
where z; are RGB skin images,
y; denote disease labels, and
b; € {0,...,5} indicate Fitzpatrick
skin-tone categories (see Figure 1).
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The model begins with a shared Figure 2: Proposed Model

encoder Ey, that extracts feature
vectors h; = Eg(x;). These features are fed into two parallel branches with 3 MLP and a
classification layer:

e The debiased branch Bp(1) produces features ZZ(D) for the disease classification

head Hs(7y), focusing on disease-related patterns while ignoring skin-tone cues.

e The biased branch Bp(w) outputs features zZ(B)

Hyas(0), thus informing the adversarial process.

for the skin-tone prediction head

A Gradient Reversal Layer (GRL) is applied before Hy;,s. The GRL acts as an identity
in the forward pass but reverses and scales gradients during backpropagation, enabling E
to learn skin-tone invariant representations. In addition to this, a cosine regularization term
Leos is applied between the penultimate layer of the two branches (Bp(¢) and Bg(w)), and
it is intended to enforce feature disentanglement between the debiased and biased branches:
The network is optimized using a composite loss:

£ - £main + /\aﬁaux + )\COSECOSa

where Lyain is the weighted cross-entropy loss (Yog(9i,yi))for disease classification, Laux
is the cross-entropy loss for skin-tone prediction, and Lcos = (1 — cos#), where cosf =

(d)

i

1/|B| > ,cp cos(6;) regulates the average cosine similarity between disease features z;"” and
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bias features zi(b) to ensure their distinctness at the penultimate layer. A, and A, are

constants multiplied to control the level of regularization happening. This framework aims
for discriminative and fair modelling, inspired by multi-task learning approaches (Kendall
et al., 2018).

Dataset: We evaluate our method (in Figure 2) on the ISIC (Rotemberg et al., 2021)
and FitzPatrick-17k (Groh et al., 2021) datasets. For ISIC, the Fitzpatrick skin type is
computed using the Individual Typology Angle (ITA) method (Chardon et al., 1991). While
ISIC includes eight disease classes, we restrict our analysis to three—benign, malignant,
and neo-plastic—in FitzPatrick-17k. Additionally, since a dedicated validation set is not
provided for FitzPatrick-17k, we create one by performing a random 20% split.

Table 1: Performance comparison on the Fitzpatrick-17k and ISIC datasets using different
base encoders. T1, --- T6 are Fitzpatrick types. 1

Acc. on Fitzpatrick Scale [1]
T1 T2 T3 T4 T5 T6
ERM EfficientNet-B3 73.28 83.92 83.83 75.76 72.14 70.58 69.02
LNTL | EfficientNet-B3 81.77 86.51 87.93 86.13 82.74 78.94 80.42
Ours EfficientNet-B3 83.87 88.11 90.43 87.43 85.54 80.84 79.52

Dataset Exp. Base Encoder Acc.

FitzPatrick

ERM ResNet18 73.52 78.32 82.84 75.22 71.54 71.52 71.94

LNTL ResNet18 82.16 85.11 92.30 83.91 82.74 77.29 78.49

Ours ResNet18 83.66 87.41 93.40 86.71 84.64 79.79 79.69

ERM EfficientNet-B3 46.60 47.62 45.68 49.64 55.18 49.31 40.62

LNTL | EfficientNet-B3 65.38 65.99 63.19 66.69 74.89 76.19 59.85

ISIC Ours EfficientNet-B3 67.58 67.49 65.99 67.79 77.39 77.99 61.15
ERM ResNet18 46.70 46.49 45.22 50.00 56.63 51.61 41.29

LNTL ResNet18 62.79 60.73 61.64 65.11 74.37 67.54 57.90

Ours ResNet18 64.69 63.43 63.04 67.21 75.97 70.44 59.10

3. Results and Discussion

In our evaluation, we compared the proposed method with baseline models (ERM and LNTL
(Kim et al., 2019)) on the Fitzpatrick-17k (Groh et al., 2021) and ISIC (Rotemberg et al.,
2021) datasets using EfficientNet-B3 (Tan and Le, 2019) and ResNet18 (He et al., 2015)
as base encoders. Our method consistently outperformed the baselines by improving both
overall disease classification accuracy and fairness across diverse Fitzpatrick skin types. As
shown in Table 1 and illustrated by Figures 2, integrating cosine dissimilarity regularization
with a Gradient Reversal Layer leads to balanced performance—achieving up to 83.87%
accuracy on Fitzpatrick-17k and 67.58% on ISIC using EfficientNet-B3 and ResNet18. This
approach not only refines the extraction of disease-relevant features but also minimizes the
impact of skin-tone discrepancies, ensuring a more robust and fair classification system.
Although the method depends on accurate bias annotations and requires careful tuning of
the hyperparameters A, and A5, these promising results highlight its potential for broader
applications in medical imaging tasks where bias labels are available or can be reliably
estimated. The method overall proposes a promising direction in enhancing bias invariant
diagnostic abilities.
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