
Under review as a conference paper at ICLR 2021

LEARNING TO COMMUNICATE THROUGH IMAGINA-
TION WITH MODEL-BASED DEEP MULTI-AGENT REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The human imagination is an integral component of our intelligence. Furthermore,
the core utility of our imagination is deeply coupled with communication. Lan-
guage, argued to have been developed through complex interaction within growing
collective societies serves as an instruction to the imagination, giving us the ability
to share abstract mental representations and perform joint spatiotemporal planning.
In this paper, we explore communication through imagination with multi-agent
reinforcement learning. Specifically, we develop a model-based approach where
agents jointly plan through recurrent communication of their respective predictions
of the future. Each agent has access to a learned world model capable of producing
model rollouts of future states and predicted rewards, conditioned on the actions
sampled from the agent’s policy. These rollouts are then encoded into messages and
used to learn a communication protocol during training via differentiable message
passing. We highlight the benefits of our model-based approach, compared to a set
of strong baselines, by developing a set of specialised experiments using novel as
well as well-known multi-agent environments.

1 INTRODUCTION

“We use imagination in our ordinary perception of the world. This perception cannot be separated
from interpretation.” (Warnock, 1976). The human brain, and the mind that emerges from its working,
is currently our best example of a general purpose intelligent learning system. And our ability
to imagine, is an integral part of it (Abraham, 2020). The imagination is furthermore intimately
connected to other parts of our cognition such as our use of language (Shulman, 2012). In fact, Dor
(2015) argues that:

“The functional specificity of language lies in the very particular functional strategy
it employs. It is dedicated to the systematic instruction of imagination: we use it to
communicate directly with our interlocutors’ imaginations.”

However, the origin of language resides not only in individual cognition, but in society (Von Humboldt,
1999), grounded in part through interpersonal experience (Bisk et al., 2020). The complexity of
the world necessitates our use of individual mental models (Forrester, 1971), to store abstract
representations of the information we perceive through the direct experiences of our senses (Chang
and Tsao, 2017). As society expanded, the sharing of direct experiences within groups reached its limit.
Growing societies could only continue to function through the invention of language, a unique and
effective communication protocol where a sender’s coded message of abstract mental representations
delivered through speech, could serve as a direct instruction to the receiver’s imagination (Dor, 2015).
Therefore, the combination of language and imagination gave us the ability to solve complex tasks by
performing abstract reasoning (Perkins, 1985) and joint spatiotemporal planning (Reuland, 2010).

In this work, we explore a plausible learning system architecture for the development of an artificial
multi-agent communication protocol of the imagination. Based on the above discussion, the minimum
set of required features of such a system include: (1) that it be constructed from multiple individual
agents where, (2) each agent possesses an abstract model of the world that can serve as an imagination,
(3) has access to a communication medium, or channel, and (4) jointly learns and interacts in a

1

Under review as a conference paper at ICLR 2021

collective society. Consequently, these features map most directly onto the learning framework of
model-based deep multi-agent reinforcement learning.

Reinforcement learning (RL) has demonstrated close connections with neuroscientific models of
learning (Barto, 1995; Schultz et al., 1997). However, beside this connection, RL has proven to
be an extremely useful computational framework for building effective artificial learning systems
(Sutton and Barto, 2018). This is true, not only in simulated environments and games (Mnih et al.,
2015; Silver et al., 2017), but also in real-world applications (Gregurić et al., 2020). Futhermore, RL
approaches are being considered for some of humanities most pressing problems, such as the need to
build sustainable food supply (Binas et al., 2019) and energy forecasting systems (Jeong and Kim,
2020), brought about through global climate change (Manabe and Wetherald, 1967; Hays et al., 1976;
Hansen et al., 2012; Rolnick et al., 2019).

Our system. We develop our system specifically in the context of cooperative mutli-agent RL
(OroojlooyJadid and Hajinezhad, 2019), where multiple agents jointly attempt to learn how to act
in a partially observable environment by maximising a shared global reward. Our agents make
use of model-based reinforcement learning (Langlois et al., 2019; Moerland et al., 2020). To learn
an artificial language of the imagination, each individual agent in our system is given access to a
recurrent world model capable of learning rich abstract representations of real and imagined future
states. We combine this world model with an encoder function to encode world model rollouts as
messages and use a recurrent differentiable message passing channel for communication. To show
the benefits of our system, we develop a set of ablation tests and specialised experiments using novel
as well as well-known multi-agent environments and compare the performance of our system to a set
of strong model-free deep MARL baselines.

Our findings and contributions. We find that joint planning using learned communication through
imagination can significantly improve MARL system performance when compared to a set of state-
of-the-art baselines. We demonstrate this advantage of planning in a set of specialised environments
specifically designed to test for the use of communication combined with imagined future prediction.

Our present work is not at scale and we only consider situations containing two agents. However,
to the best of our knowledge, this is the first demonstration of a model-based deep MARL system
that combines world models with differentiable communication for joint planning, able to solve
tasks successfully, where state-of-the-art model-free deep MARL methods fail. We see this work
as a preliminary step towards building larger-scale joint planning systems using model-based deep
multi-agent RL.

2 BACKGROUND AND RELATED WORK

Reinforcement learning is concerned with optimal sequential decision making within a particular
environment. In single agent RL, the problem is modeled as a Markov decision process (MDP)
defined by the following tuple (S,A, r, p, ρ0, γ) (Andreae, 1969; Watkins, 1989). At time step t,
in a state st, which is a member of the state space S, the agent can select an action at from a set
of actions A. The environment state transition function p(st+1|st, at) provides a distribution over
next states st+1 and a reward function r(st, at, st+1) returns a scalar reward, given the current state,
action and next state. The initial state distribution is given by ρ0, with s0 ∼ ρ0, and γ ∈ (0, 1] is a
discount factor controlling the influence of future reward. The goal of RL is to find an optimal policy
π∗, where the policy is a mapping from states to a distribution over actions, that maximises long-term
discounted future reward such that π∗ = argmaxπE[

∑∞
t=0 γ

tr(st, at, st+1)]. If the environment
state is partially observed by the agent, an observation function o(st) is assumed and the agent has
access only to the observation ot = o(st) at each time step, with the full observation space defined as
O = {o(s)|s ∈ S}. In this work, we focus only on the case of partial observability.

Deep RL. Popular algorithms for solving the RL problem include value-based methods such as Q-
learning (Watkins and Dayan, 1992) and policy gradient methods such as the REINFORCE algorithm
(Williams, 1992). Q-learning learns a value function Q(s, a) for state-action pairs and obtains a
policy by selecting actions according to these learned values using a specific action selector, e.g.
ε-greedy (Watkins, 1989) or UCB (Auer et al., 2002). In contrast, policy gradient methods learn a
parameterised policy πθ, with parameters θ, directly by following a performance gradient signal with
respect to θ. The above approaches are combined in actor-critic methods (Sutton et al., 2000), where

2

Under review as a conference paper at ICLR 2021

the actor refers to the policy being learned and the critic to the value function. In deep RL, the policy
and value functions use deep neural networks as high-capacity function approximators capable of
learning distributed abstract representations from raw input signals that are useful for downstream
decision making. Recent state-of-the-art deep RL methods include Deep Q-Networks (DQN) (Mnih
et al., 2013) and related variants (Hessel et al., 2017), as well as advanced actor-critic methods such
as PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018). See (Arulkumaran et al., 2017; Li,
2017) for an in-depth review of deep RL.

Real experience Imagined experience

Background planning Decision-time planning

Data

Action

Figure 1: Experience and planning in model-based
reinforcement learning

Model-based RL. In RL, the environment tran-
sition function p is typically unknown. As a
result, so-called model-free RL methods, such
as DQN and PPO, rely solely on data gathered
from the environment, i.e. real experience, to
learn an optimal policy. However, if given ac-
cess to a transition function, an agent can gen-
erate useful simulated, or imagined experience,
and use it to plan. Therefore, in model-based
RL, a model p̂φ(ot+1|ot, at) with parameters
φ is learned using stored transitions gathered
from either a random, heuristic or learned policy
to simulate transitions from the true (unknown)
transition function p. The model can then be
used for model-based planning, which can ei-
ther happen in the background, or at decision-
time. We briefly highlight the differences be-
tween these two types of planning and discuss
work related to each and how this relates to our own work.

– Background planning. In background planning, the model is primarily used to generate additional
experience and assist learning, i.e. for updating the parameters of the policy and/or value functions.
An early version of this approach is DYNA-Q (Sutton, 1990) which uses the additional experience to
help learn a value function. However, the usefulness of a model degrades over long time horizons as
model rollout error starts to compound (Gu et al., 2016). This has lead to different approaches that
either use fixed depth rollouts based on model uncertainty (Feinberg et al., 2018), dynamic rollout
schedules (Buckman et al., 2018), or short rollouts starting from intermediate states sampled from
a buffer (Janner et al., 2019). A promising alternative approach is to update gradients directly via
imagined rollouts in a lower-dimensional latent space (Hafner et al., 2019; 2020; Byravan et al.,
2020).

– Decision-time planning. In decision-time planning, the model is used to generate imagined rollouts
from a given state for the purpose of selecting the optimal action or sequence of actions. Decision-
time planning methods for discrete action spaces often rely on search methods such as Monte Carlo
tree search (MCTS) (Coulom, 2006) and have been used successfully in several works (Silver et al.,
2017; Anthony et al., 2017; Schrittwieser et al., 2019). In continuous action spaces, methods include
trajectory optimisation approaches using trajectory sampling (Todorov and Li, 2005; Theodorou et al.,
2010; Nagabandi et al., 2018; Chua et al., 2018) or collocation (Posa et al., 2014) (optimising reward
while forcing the model’s predictions to be close to already visited states).

The model in our system is utilised for decision-time planning and follows the approach of Ha and
Schmidhuber (2018), who used recurrent neural world models as a way to give agent’s the ability
to learn how to think (Schmidhuber, 2015). Specifically, we make use of a recurrent world model
that takes the form of a mixture density network LSTM (MDN-LSTM), as used in (Ha and Eck,
2017). The model is therefore a form of a recurrent Gaussian mixture model and allows us to sample
probabilistic predictions of imagined next states.

An illustration of the core features of model-based RL and the different types of planning is given in
Figure 1. Also see (Janner, 2019) and (Mordatch and Hamrick, 2020) for useful overviews.

Multi-agent RL (MARL). In the multi-agent case with N agents, we use the formalism of partially
observable Markov games (Littman, 1994), defined as the tuple given above for the single agent case,
but with observation and action spaces given by the following cartesian products: O =

∏N
i=1Oi ⊆ S

3

Under review as a conference paper at ICLR 2021

and A =
∏N
i=1Ai, for agents i = 1, ..., N . The goal in this setting is to find an optimal joint policy

π∗(a1, ..., aN |o1, ..., oN) that maximises a shared long-term discounted future reward for all agent as
π∗ = argmaxπE[

∑N
i=1

∑∞
t=0 γ

tr(oti, a
t
i, o

t+1
i)].

Early work in MARL simply trained multiple independent Q-learning algorithms (Tan, 1993), which
has since been extended to include deep neural networks, or more specifically independent DQNs
(Tampuu et al., 2017). However, from the perspective of an individual agent, these approaches treat
all other learning agents as part of the environment, resulting in the optimal policy distribution to
become non-stationary. Furthermore, if the environment is only partially observable, the learning task
can become even more difficult, where agents may struggle with credit assignment due to spurious
rewards received from unobserved actions of other agents (Claus and Boutilier, 1998).

To mitigate the issue of non-stationarity, MARL systems are often designed within the paradigm of
centralised training with decentralised execution (CTDE) (Oliehoek et al., 2008; Lowe et al., 2017;
Foerster et al., 2017). In CTDE, a centralised value function, or critic, is used during training, which
conditions on the global state and joint actions from all the agents to make the learning problem
stationary, but is then later removed once the individual agent’s policies have been learned, making
it possible to use each policy independently during system execution. However, individual agent
policies extracted in this way may still perform poorly because training is not specifically aligned with
the goal of performing well under decentralised execution. Therefore, state-of-the-art value-based
MARL approaches such as Q-mix (Rashid et al., 2018) and QTRAN (Son et al., 2019) make use of
value function decomposition strategies (Sunehag et al., 2017) to more closely resemble decentralised
training, where each agent is a recurrent DQN (Hausknecht and Stone, 2015) that has memory to also
deal with partial observability. Another clear way to help with the issue of partial observability is for
agents to be able to communicate.

Learned multi-agent communication has been a key innovation in helping MARL systems to scale
to more complex environments and solve more challenging tasks (Foerster et al., 2016; Sukhbaatar
et al., 2016; Singh et al., 2018; Chu et al., 2020). To facilitate communication in our work, we
formally extend the Markov gameM by having agents connected to each other via communication
channels according to a pre-defined neighbourhood graph G(V, E). The graph G is defined by a
set of nodes (vertices) V along with a set of edge connections E = {(i, j)|i, j ∈ V, i 6= j}, where
each agent is a node in the graph, locally connected to other agent nodes. We define the connected
neighbourhood surrounding agent i as Ni = {j ∈ V|(i, j) ∈ E}. This networked Markov game
MG is then defined by the following tuple (G,S,A, r, p, ρ0, γ). Our communication channels are
recurrent and end-to-end differentiable allowing for agent-to-agent communication protocols to be
learned during training. Unlike work studying the emergence of language through communication
in MARL, e.g. (Lazaridou et al., 2016; Mordatch and Abbeel, 2017; Kajić et al., 2020) our work is
more focused on communication through imagination as a useful system design for task solving, as
apposed to uncovering new insights into emergent phenomena related to the human imagination.

Model-based MARL. To the best of our knowledge, the literature on model-based deep MARL is
quite sparse and very little work has been done in this area. A notable exception is the recent work
by Krupnik et al. (2020) on multi-agent model-based latent space trajectory optimisation. Here a
multi-step generative model, specifically a temporal segment model (Mishra et al., 2017), is used
to generate rollouts in a disentangled latent space and optimisation is performed directly over agent
latent variables. Our work is the first we are aware of in the area of model-based deep MARL that
combines communication with decision-time planning using recurrent neural world models.

3 METHOD

In this section, we provide the full details of our approach to model-based deep MARL and outline our
system architecture, which we refer to as MACI: Multi-Agent Communication through Imagination.
We explain the details of the system by way of a walk-through from the perspective of a single agent
i, from time step t to t + 1. At time step t, the agent receives the observation oti and initiates an
imagined rollout of possible future observations and predicted rewards.

Rollout. For k = 1, ...,K rollout steps, the agent produces an action:

aki = AgentControllerMLP(o
k
i , h

k−1
i ,mI,c−1

i), (1)

4

Under review as a conference paper at ICLR 2021

Rollout
(agent 1)

Communication
(agent 2)

World model
LSTM

Encoder

Neighbour
graphAggregator

Environment

Agent
imagination

Agent
Controller

Rollout
(agent 2)

Agent 1

Agent 2

Neighbour graph

3
4

1 2

Incoming messages

Outgoing message

Agent 2 Incoming
messages

(A) (B)

(C)

Figure 2: MACI: Multi-Agent Communication through Imagination – system architecture. (A) Agent
trajectories, real and imagined. (B) Rollout for agent 1. (C) Communication for agent 2.

using a neural network (MLP) controller (we provide specifics, e.g. layer sizes and number of
layers in the appendix), where oki is an imagined observation, hk−1i is the world model hidden
state, and mI,c−1

i is an aggregated incoming message to agent i, from connected agents in agent i’s
neighbourhood, i.e. agents j ∈ Ni. In turn, an imagined rollout is produced by the world model
given an observation oki and an action aki :

ok+1
i , rk+1

i , hki = WorldModelMDN-LSTM(oki , h
k−1
i , aki), (2)

where the world model output includes the imagined next observation ok+1
i , reward rk+1

i and an
updated hidden state hki . To initialise the rollout procedure, we set ok=1 = ot, h(k−1)=0 = ht−1

and mI,(c−1)=0
i = mI,t−1

i . The final output of the rollout after K steps is the agent’s imagination
of the future summarised as follows: Ici = CONCAT([o1i , ..., o

K
i], [r1i , ..., r

K
i], [l1i , ..., l

K
i]), where

lki are the logits associated with aki to maintain differentiability and we concatenate along a depth
dimension to maintain a sequence of length K. Once the agent’s rollout is complete, the agent starts
to communicate its imagination to its neighbours.

Communication. For c = 1, ..., C communication rounds the agent encodes it’s imagination into a
summarised abstract representation to serve as an outgoing message:

mO,c
i = ENCODER1D-CNN(I

c
i), (3)

and sends this message to its connected neighbours. To encode the imagined sequence, we use a 1D
convolutional neural network (CNN). In return, the agent receives all outgoing messages mO,c

j from
its neighbours j ∈ Ni, which is then turned into an incoming message using a simple aggregation
function (e.g. concatenation, average or summation):

mI,c
i = AGGREGATOR({mO,c

j |j ∈ Ni}). (4)

Note that for the next round of communication to begin, another rollout inner loop of K steps must
first take place to produce an updated imagination Ic+1

i . After C communication rounds the agent
takes a real action ati = AgentControllerMLP(o

t
i, h

t
i,m

I,C
i), conditioned on the final message mI,C

i
and receives from the environment the next real observation ot+1 and reward rt+1. Finally, for our
agents, we employ weight sharing and make use of a single world model shared between all agents.
An illustration of the MACI system with two agents is provided in Figure 2.

Training.

5

Under review as a conference paper at ICLR 2021

Block 1: MACI – Methods
AgentController: f
WorldModel: g
Encoder: z
Aggregator: h

Function playEpisode(f, g, z, e=None):
o01, ..., o

0
|V| ∼ penv(oi, e|i ∈ V)

for t = 1, ..., T , environment steps do
Plan
for c = 1, ..., C, communication steps do

Imagine
for agent i ∈ V do

for k = 1, ..., K, rollout steps do
act:
aki = f(oki , h

k−1
i ,mI,c−1

i)
imagine:
ok+1
i , rk+1

i , hki =

g(oki , h
k−1
i , aki)

end
consolidate:
Ici =

CONCAT([o1i , ..., o
K
i], [r1i , ..., r

K
i],

[l1i , ..., l
K
i])

encode outgoing message:
mO,ci = z(Ici)

end
Communicate
for agent i ∈ V do

aggregate incoming messages:
mI,ci = h({mO,cj |for j ∈ Ni}).

end
end
Step
act:
ati = f(oti, h

t
i,m

I,C
i)

observe:
ot+1
i ∼ penv(oi, e|ati)

space
end
return o1...oT , a1...aT , r1...rT

End Function
Loss functions
Lgk(θ) = (ot − go,θ(ht−1))2 + c(rt − gr,θ(ht−1))2

Lf,ck (θ) = PPO_loss (θ,A, ε))

Block 2: MACI-Training
Initialize f , g and z;
for e = 1, ..., E, training steps do

Initialize experience buffer (ex)
for n = 1, ..., N , episode steps do

ex += playEpisode(f, g, z);
end
Update world model parameters
for e in ex do

playEpisode(f, g, z, e);
θgk+1 =

argmaxθ
1
BT

∑
τ∈B

∑T
t=0 L

g
k(θ

g)
end
Update policy and encoder parameters
for e in ex do

playEpisode(f, g, z, e);
θf,zk+1 =

argmaxθ
1
BT

∑
τ∈B

∑T
t=0 L

f,z
k (θf,z)

end
end

Block 3: Python code outline

def play_episode():
obs = env.reset()
states = zeros() # {id: (world_state, comm_state,
message), ...}

for time_step = 1,..., T if not done:
actions, states = next_actions(obs, states)
obs, reward, done = env.step(actions)

def next_actions(obs, states):
action_values, states = action_values(obs, states)
actions = {id: argmax(q) for id, q in action_values
}

keep world model in sync with env
states = update_world_models(obs, actions, states)

return actions, states

def action_values(obs, states):

for step = 1,..., comm_rounds:
states = update_comm_nets(obs,

aggregate_messages(obs, states))

return {
id: agent.controller_net(ob, state)
for id, agent, ob, state in zip(agents, obs,

states)
}, states

def aggregate_messages(obs, states):
message_from = {

id: agent.encode_plan(ob, state)
for id, agent, ob, state in zip(agents, obs,

states)
}

message_to = {
id: mean(message_from[other] for other in adj)
for id, adj in comm_graph

}

return {
id: state.update_message(message)
for id, state, message in zip(states,

message_to)
}

def agent.encode_plan(current_ob, state):
obs, action_values, rewards = [], [], []

for step in 1,..., rollout_steps:
obs.append(current_ob)
action_values.append(self.controller_net(obs

[-1], state))

current_ob, reward, hidden = self.world_model(
obs[-1], argmax(action_values[-1]), state.

world_state,
)

state = state.update_world(hidden)
rewards.append(reward)

return self.encoder(obs, action_values, rewards)

6

Under review as a conference paper at ICLR 2021

Agent 1

Agent 2

(A)

Agent 1

Agent 2
(invisible to

agent 1)

Goals
reached

Training

(B)

Figure 3: Specialised experimental environments. (A) Digit game. (B) Invisible spread.

4 EXPERIMENTS

We test the feasibility of our system on a set of specialised environments. Each environment is
conceptually simple. However, both environments still prove to be a formidable challenge, even for
state-of-the-art MARL approaches, due their extreme partial observability and the need for agents
to be able to think ahead and communicate to solve the task. Our first environment, Digit game, is
inspired by a similar challenge in (Foerster et al., 2016) and our second environment, invisible spread,
is based off of the popular multi-agent particle environment (Mordatch and Abbeel, 2017; Lowe et al.,
2017). Similar to previous work on model-based MARL (Krupnik et al., 2020), we only consider the
case of two agents. In all our experiments, we compare our system against basic baselines namely,
independent PPO learners (IPPO) (a surprisingly strong baseline) and independent Q-learners (IQL),
as well as state-of-the-art systems, Q-mix and QTRAN. Futhermore, in each experiment we use short
two-step rollouts to guard against compounding model error.

Digit game. At each time step, each agent receives a random one-hot encoded digit (0-9), where the
environment transition dynamics obeys the following rule: ot+1 = (ot + ot−1) mod 10, with o0 = 0.
The challenge is for each agent to produce as action the digit the other agent is likely to receive at the
next time step. If the agent action is correct, the agent gets a reward of 1, if the action is incorrect, it
gets 0. The digit game therefore specifically tests if agents can predict future observations based on
present and past experience (i.e. use their imagination), as well as learn an effective communication
protocol (as the other agent’s observation can only be determined through communication). Figure 3
(A) shows an example of the digit game. In this example, if agent 1 selects as action the digit 8 at
time step t = 2, i.e. a21 = 8, it will receive a reward of 1.

– Results. We provide our experimental results on the digit game environment in Figure 4 (A).
Learning curves are mean rewards averaged over 5 runs and include shaded standard deviation
bounds. Our system, MACI, is shown to have a clear advantage, significantly outperforming all
the other baselines. Due to the fact that we make use of a world model to perform rollouts that
cost compute time, we also show (in the inset plot) the wall-clock time for each system over real
environment steps. Although MACI scales less well than the baselines in this specific instance, we
note that in more complex scenarios, real environment steps may prove more expensive than imagined
rollouts and the sample efficiency of decision-time planning could outweigh the extra model compute
time.

Invisible spread. The goal in this environment is for each agent to occupy a separate landmark
starting from a random location. Agents receive a shared reward based on how close both agents are
to their respective landmarks. The observation space consists of values for the agent’s position and
velocity as well as the positions of the landmarks. To make the task more difficult, we make each
agent invisible to the other. Therefore, agents must coordinate through communication and use their
world models to show their intent (in terms of the landmark they are currently planning to occupy).
Figure 3 (B) shows an example of the invisible spread environment, where the agents are represented
as large purple circles and the landmarks are shown as small black circles.

– Results. We provide our results on the invisible spread environment in Figure 4 (B). Learning
curves are again mean rewards averaged over 5 runs and include shaded standard deviation bounds.
MACI is shown to again have a clear advantage, outperforming all the other baselines. Interestingly,
in this environment, MACI scales well in terms of compute time and is shown to perform close to the
most efficient baseline, IPPO.

7

Under review as a conference paper at ICLR 2021

0 20000 40000 60000 80000 100000 120000 140000
Steps

0

20

40

60

80

100

120

140

M
ea

n
re

wa
rd

(A)
Digit game

ippo
iql
qmix
qtran
maci (ours)

Steps
0

10

20

Ho
ur

s

Wall-clock time

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

1000

800

600

400

200

0

200

M
ea

n
re

w
ar

d

(B)
Invisible spread

ippo
iql
qmix
qtran
maci (ours)

Steps
0

10

H
ou

rs

Wall-clock time

Figure 4: Experimental results (A) Digit game. (B) Invisible spread.

0 20000 40000 60000 80000 100000
Steps

10

20

30

40

50

60

M
ea

n
re

wa
rd

(A)

Digit game
full
comms

0 10000 20000 30000 40000 50000 60000 70000 80000
Steps

550

500

450

400

350

300

M
ea

n
re

w
ar

d

(B) Invisible spread

full
comms

Figure 5: Ablation study (A) Digit game. (B) Invisible spread.

Ablation study. To disentangle the roles of communication and imagination we perform an ablation
study on both environments, digit game and invisible spread. In each case, we train the MACI system
with and without using a world model. We perform 5 independent runs for each case, showing
the average curves with standard deviations bounds. The results of this study is shown in Figure
5. For the digit game, shown in panel (A), the world model is a crucial component determining
final performance. This is to be expected given the strong requirement for future prediction. In the
invisible spread environment, the benefit is less significant and the system seems to rely more heavily
on communication of past and present information.

5 CONCLUSION

Our ability to imagine plays an integral role in our intelligence. Inspired by the idea of language as
the systematic instruction of imagination, we developed a system for multi-agent communication
through imagination (MACI) in the context of model-based deep mutli-agent RL. In our system, each
agent has access to a recurrent world model for decision-time planning and uses a differentiable
message passing channel for learned communication.

In our experiments on two specialised environments, digit game and invisible spread, we showed that
using learned communication through imagination can significantly improve MARL system perfor-
mance when compared to state-of-the-art baselines. Although our environments are conceptually
simple, both environments still proved to be a formidable challenge, even for state-of-the-art methods.
Furthermore, the sample efficiency of decision-time planning was shown to outweigh the extra model
compute time in the invisible spread environment.

8

Under review as a conference paper at ICLR 2021

Our work demonstrates the feasibility of a model-based deep MARL system that combines world
models with differentiable communication for joint planning. Specifically, it highlights the potential
benefits of decision-time planning in a multi-agent setting as a means to improve agent cooperation.

An interesting future line of work could explore the combination of background and decision-time
planning in the multi-agent setting. In addition, many interesting innovations from the single agent
model-based RL literature could potentially find fruitful application in MARL. However, scaling
MARL to larger numbers of agents remains a difficult task, and even more so for model-based
methods. We see this work as a first step towards building larger-scale joint planning systems, which
we plan to undertake in future work.

9

Under review as a conference paper at ICLR 2021

REFERENCES

M. Warnock, Imagination. Univ of California Press, 1976.

A. Abraham, The Cambridge Handbook of the Imagination. Cambridge University Press, 2020.

D. Shulman, More than Real. Harvard University Press, 2012.

D. Dor, The instruction of imagination: Language as a social communication technology. Founda-
tions of Human Interacti, 2015.

W. Von Humboldt, On Language: On the Diversity of Human Language Construction and Its
Influence on the Mental Development of the Human Species. Cambridge University Press, 1999.

Y. Bisk, A. Holtzman, J. Thomason, J. Andreas, Y. Bengio, J. Chai, M. Lapata, A. Lazaridou, J. May,
A. Nisnevich et al., “Experience grounds language,” arXiv preprint arXiv:2004.10151, 2020.

J. W. Forrester, “Counterintuitive behavior of social systems,” Theory and decision, vol. 2, no. 2, pp.
109–140, 1971.

L. Chang and D. Y. Tsao, “The code for facial identity in the primate brain,” Cell, vol. 169, no. 6, pp.
1013–1028, 2017.

D. N. Perkins, “Reasoning as imagination,” Interchange, vol. 16, no. 1, pp. 14–26, 1985.

E. Reuland, “Imagination, planning, and working memory: the emergence of language,” Current
Anthropology, vol. 51, no. S1, pp. S99–S110, 2010.

A. G. Barto, “Adaptive critics and the basal ganglia,” Models of information processing in the basal
ganglia, vol. 215, 1995.

W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of prediction and reward,” Science,
vol. 275, no. 5306, pp. 1593–1599, 1997.

R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. Second edition. MIT press
Cambridge, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement
learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton et al., “Mastering the game of go without human knowledge,” nature, vol. 550,
no. 7676, pp. 354–359, 2017.

M. Gregurić, M. Vujić, C. Alexopoulos, and M. Miletić, “Application of deep reinforcement learning
in traffic signal control: An overview and impact of open traffic data,” Applied Sciences, vol. 10,
no. 11, p. 4011, 2020.

J. Binas, L. Luginbuehl, and Y. Bengio, “Reinforcement learning for sustainable agriculture,” in
ICML 2019 Workshop Climate Change: How Can AI Help, 2019.

J. Jeong and H. Kim, “Deep reinforcement learning based renew-able energy error compensable
forecasting,” 2020.

S. Manabe and R. T. Wetherald, “Thermal equilibrium of the atmosphere with a given distribution of
relative humidity,” Journal of the Atmospheric Sciences, vol. 24, no. 3, pp. 241–259, 1967.

J. D. Hays, J. Imbrie, N. J. Shackleton et al., “Variations in the earth’s orbit: pacemaker of the ice
ages,” science, vol. 194, no. 4270, pp. 1121–1132, 1976.

J. Hansen, M. Sato, and R. Ruedy, “Perception of climate change,” Proceedings of the National
Academy of Sciences, vol. 109, no. 37, pp. E2415–E2423, 2012.

10

Under review as a conference paper at ICLR 2021

D. Rolnick, P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A. S. Ross, N. Milojevic-
Dupont, N. Jaques, A. Waldman-Brown et al., “Tackling climate change with machine learning,”
arXiv preprint arXiv:1906.05433, 2019.

A. OroojlooyJadid and D. Hajinezhad, “A review of cooperative multi-agent deep reinforcement
learning,” arXiv preprint arXiv:1908.03963, 2019.

E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba, “Benchmarking model-based reinforcement
learning,” arXiv preprint arXiv:1907.02057, 2019.

T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based reinforcement learning: A survey,”
arXiv preprint arXiv:2006.16712, 2020.

J. Andreae, “Learning machines: A unified view,” Encyclopaedia of Linguistics, Information and
Control, Pergamon Press, pp. 261–270, 01 1969.

C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292, 1992.

R. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing.” Machine Learning, pp. 229–256, 1992.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,”
Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for reinforce-
ment learning with function approximation,” in Advances in neural information processing systems,
2000, pp. 1057–1063.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,”
arXiv preprint arXiv:1710.02298, 2017.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor,” arXiv preprint arXiv:1801.01290, 2018.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief survey of deep
reinforcement learning,” arXiv preprint arXiv:1708.05866, 2017.

Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.

R. S. Sutton, “Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming,” in Machine learning proceedings 1990. Elsevier, 1990, pp. 216–224.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning with model-based
acceleration,” in International Conference on Machine Learning, 2016, pp. 2829–2838.

V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine, “Model-based value
estimation for efficient model-free reinforcement learning,” arXiv preprint arXiv:1803.00101,
2018.

J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee, “Sample-efficient reinforcement learning
with stochastic ensemble value expansion,” in Advances in Neural Information Processing Systems,
2018, pp. 8224–8234.

M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model: Model-based policy
optimization,” in Advances in Neural Information Processing Systems, 2019, pp. 12 519–12 530.

11

Under review as a conference paper at ICLR 2021

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent
dynamics for planning from pixels,” in International Conference on Machine Learning. PMLR,
2019, pp. 2555–2565.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors by latent
imagination,” in International Conference on Learning Representations, 2020.

A. Byravan, J. T. Springenberg, A. Abdolmaleki, R. Hafner, M. Neunert, T. Lampe, N. Siegel,
N. Heess, and M. Riedmiller, “Imagined value gradients: Model-based policy optimization with
tranferable latent dynamics models,” in Conference on Robot Learning, 2020, pp. 566–589.

R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,” in International
conference on computers and games. Springer, 2006, pp. 72–83.

T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with deep learning and tree search,” in
Advances in Neural Information Processing Systems, 2017, pp. 5360–5370.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel et al., “Mastering atari, go, chess and shogi by planning with a learned
model,” arXiv preprint arXiv:1911.08265, 2019.

E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal feedback control
of constrained nonlinear stochastic systems,” in Proceedings of the 2005, American Control
Conference, 2005. IEEE, 2005, pp. 300–306.

E. Theodorou, J. Buchli, and S. Schaal, “Learning policy improvements with path integrals,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
2010, pp. 828–835.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7559–7566.

K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learning in a handful
of trials using probabilistic dynamics models,” in Advances in Neural Information Processing
Systems, 2018, pp. 4754–4765.

M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies
through contact,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy evolution,” in Advances in
Neural Information Processing Systems, 2018, pp. 2450–2462.

J. Schmidhuber, “On learning to think: Algorithmic information theory for novel combina-
tions of reinforcement learning controllers and recurrent neural world models,” arXiv preprint
arXiv:1511.09249, 2015.

D. Ha and D. Eck, “A neural representation of sketch drawings,” arXiv preprint arXiv:1704.03477,
2017.

M. Janner, “Model-based reinforcement learning: Theory and practice,” Berkeley Artificial Intelli-
gence Research (BAIR) blog., 2019.

I. Mordatch and J. Hamrick, “Tutorial on model-based methods in reinforcement learning,” Interna-
tional Conference on Machine Learning, 2020.

M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in Machine
learning proceedings 1994. Elsevier, 1994, pp. 157–163.

M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in Proceedings of
the tenth international conference on machine learning, 1993, pp. 330–337.

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente,
“Multiagent cooperation and competition with deep reinforcement learning,” PloS one, vol. 12,
no. 4, p. e0172395, 2017.

12

Under review as a conference paper at ICLR 2021

C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative multiagent
systems,” AAAI/IAAI, vol. 1998, no. 746-752, p. 2, 1998.

F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate q-value functions for
decentralized pomdps,” Journal of Artificial Intelligence Research, vol. 32, pp. 289–353, 2008.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-agent actor-critic
for mixed cooperative-competitive environments,” in Advances in neural information processing
systems, 2017, pp. 6379–6390.

J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy
gradients,” arXiv preprint arXiv:1705.08926, 2017.

T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson, “Qmix: Mono-
tonic value function factorisation for deep multi-agent reinforcement learning,” arXiv preprint
arXiv:1803.11485, 2018.

K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran: Learning to factorize with trans-
formation for cooperative multi-agent reinforcement learning,” arXiv preprint arXiv:1905.05408,
2019.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Son-
nerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks for cooperative multi-agent
learning,” arXiv preprint arXiv:1706.05296, 2017.

M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable mdps,” arXiv
preprint arXiv:1507.06527, 2015.

J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to communicate with deep
multi-agent reinforcement learning,” in Advances in neural information processing systems, 2016,
pp. 2137–2145.

S. Sukhbaatar, R. Fergus et al., “Learning multiagent communication with backpropagation,” in
Advances in neural information processing systems, 2016, pp. 2244–2252.

A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate at scale in multiagent coopera-
tive and competitive tasks,” arXiv preprint arXiv:1812.09755, 2018.

T. Chu, S. Chinchali, and S. Katti, “Multi-agent reinforcement learning for networked system control,”
arXiv preprint arXiv:2004.01339, 2020.

A. Lazaridou, A. Peysakhovich, and M. Baroni, “Multi-agent cooperation and the emergence of
(natural) language,” arXiv preprint arXiv:1612.07182, 2016.

I. Mordatch and P. Abbeel, “Emergence of grounded compositional language in multi-agent popula-
tions,” arXiv preprint arXiv:1703.04908, 2017.

I. Kajić, E. Aygün, and D. Precup, “Learning to cooperate: Emergent communication in multi-agent
navigation,” arXiv preprint arXiv:2004.01097, 2020.

O. Krupnik, I. Mordatch, and A. Tamar, “Multi-agent reinforcement learning with multi-step genera-
tive models,” in Conference on Robot Learning, 2020, pp. 776–790.

N. Mishra, P. Abbeel, and I. Mordatch, “Prediction and control with temporal segment models,” arXiv
preprint arXiv:1703.04070, 2017.

13

Under review as a conference paper at ICLR 2021

6 APPENDIX

Block 4: MACI – Settings
Environment:
- obs_dim,Dobs
- action_dim,Dact

Hyperparameters:
- message_dim,Dm = 16
- agent_controller_hidden_dim,Da = 16
- agent_controller_hidden_layers,Ha = 1
- world_model_hidden_dim,Dwm = 16
- world_model_hidden_layers,Hwm = 1
- rollout steps,K
- communication steps, C

Architectures:
- Agent controller, f(·):

Type: Feedforward MLP
Input dim: Dm +Dobs +Dwm
Hidden dim: Da
Hidden layers: Ha
Output dim: Dact

- World model, g(·):
Type: LSTM
Input dim: Dobs +Dact
Hidden dim: Dwm
Hidden layers: Hwm
Output dim: Dobs + 1 (reward)

- Encoder, z(·):
Type: 1D convnet
Input width: Dobs +Dact + 1 (reward)
Input length: K
Output dim: Dm

- Aggregator, h(·):
Type: Concatenation

- Neighbour graph:
Type: Fully connected

14

	Introduction
	Background and Related work
	Method
	Experiments
	Conclusion
	Appendix

