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ABSTRACT

This paper introduces new parameterizations of equilibrium neural networks, i.e.
networks defined by implicit equations. This model class includes standard mul-
tilayer and residual networks as special cases. The new parameterization admits
a Lipschitz bound during training via unconstrained optimization: no projections
or barrier functions are required. Lipschitz bounds are a common proxy for ro-
bustness and appear in many generalization bounds. Furthermore, compared to
previous works we show well-posedness (existence of solutions) under less re-
strictive conditions on the network weights and more natural assumptions on the
activation functions: that they are monotone and slope restricted. These results
are proved by establishing novel connections with convex optimization, operator
splitting on non-Euclidean spaces, and contracting neural ODEs. In image clas-
sification experiments we show that the Lipschitz bounds are very accurate and
improve robustness to adversarial attacks.

1 INTRODUCTION

Deep neural network models have revolutionized the field of machine learning: their accuracy on
practical tasks such as image classification and their scalability have led to an enormous volume of
research on different model structures and their properties (LeCun et al., 2015). In particular, deep
residual networks with skip connections He et al. (2016) have had a major impact, and neural ODEs
have been proposed as an analog with “implicit depth” (Chen et al., 2018). Recently, a new structure
has gained interest: equilibrium networks (Bai et al., 2019; Winston & Kolter, 2020), a.k.a. implicit
deep learning models (El Ghaoui et al., 2019), in which model outputs are defined by implicit
equations incorporating neural networks. This model class is very flexible: it is easy to show that
includes many previous structures as special cases, including standard multi-layer networks, residual
networks, and (in a certain sense) neural ODEs.

However model flexibility in machine learning is always in tension with model regularity or robust-
ness. While deep learning models have exhibited impressive generalisation performance in many
contexts it has also been observed that they can be very brittle, especially when targeted with ad-
versarial attacks (Szegedy et al., 2014). In response to this, there has been a major research effort
to understand and certify robustness properties of deep neural networks, e.g. Raghunathan et al.
(2018a); Tjeng et al. (2018); Liu et al. (2019); Cohen et al. (2019) and many others. Global Lip-
schitz bounds (a.k.a. incremental gain bounds) provide a somewhat crude but nevertheless highly
useful proxy for robustness (Tsuzuku et al., 2018; Fazlyab et al., 2019), and appear in several anal-
yses of generalization (e.g. (Bartlett et al., 2017; Zhou & Schoellig, 2019)).

Inspired by both of these lines of research, in this paper we propose new parameterizations of equi-
librium networks with guaranteed Lipschitz bounds. We build directly on the monotone operator
framework of Winston & Kolter (2020) and the work of Fazlyab et al. (2019) on Lipschitz bounds.

The main contribution of our paper is the ability to enforce tight bounds on the Lipschitz constant
of an equilibrium network during training with essentially no extra computational effort. In addi-
tion, we prove existence of solutions with less restrictive conditions on the weight matrix and more
natural assumptions on the activation functions via novel connections to convex optimization and
contracting dynamical systems. Finally, we show via small-scale image classification experiments
that the proposed parameterizations can provide significant improvement in robustness to adversar-
ial attacks with little degradation in nominal accuracy. Furthermore, we observe small gaps between
certified Lipschitz upper bounds and observed lower bounds computed via adversarial attack.
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2 RELATED WORK

Equilibrium networks, Implicit Deep Models, and Well-Posedness. As mentioned above, it
has been recently shown that many existing network architectures can be incorporated into a flexible
model set called an equilibrium network (Bai et al., 2019; Winston & Kolter, 2020) or implicit deep
model (El Ghaoui et al., 2019). In this unified model set, the network predictions are made not by
forward computation of sequential hidden layers, but by finding a solution to an implicit equation
involving a single layer of all hidden units. One major question for this type of networks is its well-
posedness, i.e. the existence and uniqueness of a solution to the implicit equation for all possible
inputs. El Ghaoui et al. (2019) proposed a computationally verifiable but conservative condition on
the spectral norm of hidden unit weight. In Winston & Kolter (2020), a less conservative condition
was developed based on monotone operator theory. Similar monotonicity constraints were previ-
ously used to ensure well-posedness of a different class of implicit models in the context of nonlin-
ear system identification (Tobenkin et al., 2017, Theorem 1). On the question of well-posedness, our
contribution is a more flexible model set and more natural assumptions on the activation functions:
that they are monotone and slope-restricted.

Neural Network Robustness and Lipschitz Bounds. The Lipschitz constant of a function mea-
sures the worst-case sensitivity of the function, i.e. the maximum “amplification” of difference in
inputs to differences in outputs. The key features of a good Lipschitz bounded learning approach in-
clude a tight estimation for Lipschitz constant and a computationally tractable training method with
bounds enforced. For deep networks, Tsuzuku et al. (2018) proposed a computationally efficient
but conservative approach since its Lipschitz constant estimation method is based on composition of
estimates for different layers, while Anil et al. (2019) proposed a combination of a novel activation
function and weight constraints. For equilibrium networks, El Ghaoui et al. (2019) proposed an esti-
mation of Lipschitz bounds via input-to-state (ISS) stability analysis. Fazlyab et al. (2019) estimates
for deep networks based on incremental quadratic constraints and semidefinite programming (SDP)
were shown to give state-of-the-art results, however this was limited to analysis of an already-trained
network. The SDP test was incorporated into training via the alternating direction method of multi-
pliers (ADMM) in Pauli et al. (2020), however due to the complexity of the SDP the training times
recorded were almost 50 times longer than for unconstrained networks. Our approach uses a similar
condition to Fazlyab et al. (2019) applied to equilibrium networks, however we introduce a novel
direct parameterization method that enables learning robust models via unconstrained optimization,
removing the need for computationally-expensive projections or barrier terms.

3 PROBLEM FORMULATION AND PRELIMINARIES

3.1 PROBLEM STATEMENT

We consider the weight-tied network in which x ∈ Rd denotes the input, and z ∈ Rn denotes the
hidden units, y ∈ Rp denotes the output, given by the following implicit equation

z = σ(Wz + Ux+ bz), y = Woz + by (1)

where W ∈ Rn×n, U ∈ Rn×d, and Wo ∈ Rp×n are the hidden unit, input, and output weights,
respectively, bz ∈ Rn and by ∈ Rp are bias terms. The implicit framework includes most current
neural network architectures (e.g. deep and residual networks) as special cases. To streamline the
presentation we assume that σ : R → R is a single nonlinearity applied elementwise, although our
results also apply in the case that each channel has a different activation function, nonlinear or linear.

Equation (1) is called an equilibrium network since its solutions are equilibrium points of the differ-
ence equation zk+1 = σ(Wzk +Ux+ bz) or the ODE ż(t) = −z(t) + σ(Wz(t) +Ux+ bz). Our
goal is to learn equilibrium networks (1) possessing the following two properties:

• Well-posedness: For every input x and bias bz , equation 1 admits a unique solution z.

• γ-Lipschitz: It has a finite Lipschitz bound of γ, i.e., for any input-output pairs (x1, y1),
(x2, y2) we have ‖y1 − y2‖2 ≤ γ‖x1 − x2‖2.
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3.2 PRELIMINARIES

Monotone operator theory. The theory of monotone operators on Euclidean space (see the survey
Ryu & Boyd (2016)) has been extensively applied in the development of equilibrium networks
(Winston & Kolter, 2020). In this paper, we will use the monotone operator theory on non-Euclidean
spaces (Bauschke et al., 2011), in particular, we are interested in a finite-dimensional Hilbert space
H, which we identify with Rn equipped with a weighted inner product 〈x, y〉Q := y>Qx where
Q � 0. The main benefit is that we can construct a more expressive equilibrium network set. A
brief summary or relevant theory can be found in Appendix C.1; here we give some definitions
that are frequently used throughout the paper. An operator is a set-valued or single-valued function
defined by a subset of the space A ⊆ H×H. A function f : H → R ∪ {∞} is proper if f(x) <∞
for at least one x. The subdifferential and proximal operators of a proper function f are defined as

∂f(x) := {g ∈ H | f(y) ≥ f(x) + 〈y − x, g〉Q, ∀y ∈ H},

proxαf (x) := {z ∈ H | z = arg min
u

1

2
‖u− x‖2Q + αf(u)}

respectively, where ‖x‖Q :=
√
〈x, x〉Q is the induced norm. For n = 1, we only consider the case

ofQ = 1. An operatorA is monotone if 〈u−v, x−y〉Q ≥ 0 and strongly monotone with parameter
m if 〈u− v, x− y〉Q ≥ m‖x− y‖2Q for all (x, u), (y, v) ∈ A. The operator splitting problem is that
of finding a zero of a sum of two operators A and B, i.e. find an x such that 0 ∈ (A+B)(x).

Dynamical systems theory. In this paper, we will also treat the solutions of (1) as equilibrium
points of certain dynamical systems ż(t) = f(z(t)). Then, the well-posedness and robustness
properties of (1) can be guaranteed by corresponding properties of the dynamical system’s solution
set. A central focus in robust and nonlinear control theory for more than 50 years – and largely
unified by the modern theory of integral quadratic constraints (Megretski & Rantzer, 1997) – has
been on systems which are interconnections of linear mappings and “simple” nonlinearities, i.e.
those easily bounded in some sense by quadratic functions. Fortuitously, this characteristic is shared
with deep, recurrent, and equilibrium neural networks, a connection that we use heavily in this
paper and has previously been exploited by Fazlyab et al. (2019); El Ghaoui et al. (2019); Revay
et al. (2020) and others. A particular property we are interested in is called contraction (Lohmiller
& Slotine, 1998), i.e., any pair of solutions z1(t) and z2(t) exponentially converge to each other:

‖z1(t)− z2(t)‖ ≤ α‖z1(0)− z2(0)‖e−βt

for all t > 0 and some α, β > 0. Contraction can be established by finding a Riemannian metric
with respect to which nearby trajectories converge, which is a differential analog of a Lyapunov
function. A nice property of a contracting dynamical system is that if it is time-invariant, a unique
equilibrium exists and it possesses a certain level of robustness. Moreover, contraction can also be
linked to monotone operators, i.e. a system is contracting w.r.t. to a constant (state-independent)
metric Q if and only if the operator −f is strongly monotone w.r.t. Q-weighted inner product. We
collect some directly relevant results from systems theory in Appendix C.2.

4 MAIN RESULTS

This section contains the main theoretical results of the paper: conditions implying well-posedness
and Lipschitz-boundedness of equilibrium networks, and direct (unconstrained) parameterizations
such that these conditions are automatically satisfied.
Assumption 1. The activation function σ is monotone and slope-restricted in [0, 1], i.e.,

0 ≤ σ(x)− σ(y)

x− y ≤ 1, ∀x, y ∈ R, x 6= y. (2)

Remark 1. We will show below (Proposition 1 in Section 4.2) that Assumption 1 is equivalent to
the assumption on σ in Winston & Kolter (2020), i.e. that σ(·) = prox1

f (·) for some proper convex
function f . However, the above assumption is arguably more natural, since it is easily verified for
standard activation functions. Note also that if different channels have different activation functions,
then we simply require that they all satisfy (2).
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The following conditions are central to our results on well-posedness and Lipschitz bounds:
Condition 1. There exists a Λ ∈ D+, with D+ denoting diagonal positive-definite matrices, such
that W satisfies

2Λ− ΛW −WTΛ � 0. (3)

Condition 2. Given a prescribed Lipschitz bound γ > 0, there exists Λ ∈ D+ such that W,Wo, U
satisfy

2Λ− ΛW −WTΛ− 1

γ
WT
o Wo −

1

γ
ΛUUTΛ � 0. (4)

Remark 2. Note that Condition 2 implies Condition 1 since 1/γ(WT
o Wo + ΛUUTΛ) � 0. As a

partial converse, if Condition 1 holds, then for any Wo, U there exist a sufficiently large γ such that
Condition 2 is satisfied.

The main theoretical results of this paper are the following:
Theorem 1. If Assumption 1 and Condition 1 hold, then the equilibrium network (1) is well-posed,
i.e. for all x and bz , equation (1) admits a unique solution z. Moreover, it has a finite Lipschitz
bound from x to y.

Theorem 2. If Assumption 1 and Condition 2 hold, then the equilibrium network (1) is well-posed
and has a Lipschitz bound of γ.

As a consequence, we call (1) a Lipschitz bounded equilibrium network (LBEN) if its weights satisfy
either (3) or (4). The full proofs appear in Appendices E.1 and E.2, but here we sketch some of the
main ideas. We can represent (1) as an algebraic interconnection between linear and nonlinear parts:

v = Wz + Ux+ bz, z = σ(v), y = Woz + by. (5)

It can be shown that for any pair of solutions to the nonlinear part za = σ(va), zb = σ(vb), if we
define ∆v = va − vb and ∆z = za − zb then Assumption 1 implies the following:

〈∆v −∆z,∆z〉Λ ≥ 0. (6)

for any Λ ∈ D+. This and Condition 1 can be used to prove global stability of a unique equilibrium
of the differential equation v̇ = −v+Wσ(v) +Ux+ bz , which proves there is a unique solution to
(1) for any inputs. Next, straightforward manipulations of Condition 2 show that any pairs of inputs
xa, xb and outputs ya, yb satisfy the following, where ∆x = xa − xb and ∆y = ya − yb:

γ‖∆x‖22 −
1

γ
‖∆y‖22 ≥ 2〈∆v −∆z,∆z〉Λ ≥ 0,

where the inequality comes (6). This implies the Lipschitz bound ‖∆y‖2 ≤ γ‖∆x‖2 .
Remark 3. In Fazlyab et al. (2019) it was claimed that (6) holds with a richer (more powerful)
class of multipliers Λ which were previously introduced for robust stability analysis of systems with
repeated nonlinearities (Chu & Glover, 1999; D’Amato et al., 2001; Kulkarni & Safonov, 2002).
However this is not true: a counterexample was given in Pauli et al. (2020), and here we provide a
brief explanation: even if the nonlinearities σ(vi) are repeated when considered as functions of vi,
their increments ∆zi = σ(vi + ∆vi)− σ(vi) are not repeated when considered as functions of ∆vi,
since they depend on the particular vi which generally differs between units.

Example 1. We illustrate the extra flexibility of Condition 1 compared to the condition of Winston
& Kolter (2020) by a toy example. Consider W ∈ R2×2 and take a slice near W = 0 of the form

W =

[
0 W12

0 W22

]
, for which we have: 2I −W −WT =

[
2 −W12

−W12 2− 2W22

]
. (7)

By Sylvester’s criterion, this matrix is positive-definite if and only if W22 < 1 and det(2I −W −
WT ) = 4(1−W22)−W 2

12 > 0, which defines a parabolic region in the W12,W22 plane.

Applying our condition (3), without loss of generality take Λ = diag(1, α) with α > 0 and we have

2Λ− ΛW −WTΛ =

[
2 −W12

−W12 2α− 2αW22

]
.
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Figure 1: Valid coefficient ranges for Example 1.
Gray region: the condition from Winston & Kolter (2020) is fea-
sible: 2I −W −WT � 0.

White region (including gray region): our well-posedness con-
dition is feasible: ∃Λ ∈ D+ : 2Λ− ΛW −WTΛ � 0.

Black region: neither condition feasible.

The positivity test is now W22 < 1 and 4α(1−W22)−W 2
12 > 0. For each W12 there is sufficiently

large α such that the second condition is satisfied, since the first implies 1 −W22 > 0. Hence the
only constraint on W is that W22 < 1, which yields a much larger region in the W12,W22 plane
(see Figure 1). Interestingly, in this simple example with ReLU activation, the condition W22 < 1 is
also a necessary condition for well-posedness (El Ghaoui et al., 2019, Theorem 2.8).

4.1 DIRECT PARAMETERIZATION FOR UNCONSTRAINED OPTIMIZATION

Training a network that satisfies Condition 1 or 2 can be formulated as an optimization problem with
convex constraints. In fact, Condition 1 is a linear matrix inequality (LMI) in the variables Λ and
ΛW , from which W can be determined uniquely. Similarly, via Schur complement, Condition 2 is
an LMI in the variables Λ,ΛW,ΛU,Wo, and γ, from which all network weights can be determined.
In a certain theoretical sense LMI constraints are tractable – Nesterov & Nemirovskii (1994) proved
they are polynomial-time solvable – however for even for moderate-scale networks (e.g. ≤ 100
activations) the associated barrier terms or projections become a major computational bottleneck.

In this paper, we propose direct parameterization that allows learning via unconstrained optimization
problem, i.e. all network parameters are transformations of free (unconstrained) matrix variables, in
such a way that LMI constraints (3) or (4) are automatically satisfied.

For well-posedness, i.e. Condition (1), we parameterize via the following free variables: V ∈ Rn×n,
d ∈ Rn, and skew-symmetric1 matrix S = −ST ∈ Rn×n, from which the hidden unit weight is

W = I −Ψ(V TV + εI + S), (8)

where Ψ = diag
(
ed
)

and ε > 0 is some small constant to ensure strict positive-definiteness. Then
it follows from straightforward manipulations that Condition 1 holds with Λ = Ψ−1 if and only if
W can be written as (8). When Ψ = I , this reduces to the parameterization of Winston & Kolter
(2020).

Similarly, for a specific Lipschitz bound, i.e. Condition 2, we add to the parameterization the free
input and output weights U and Wo, and arbitrary γ > 0. We can construct

W = I −Ψ

(
1

2γ
WT
o Wo +

1

2γ
Ψ−1UUTΨ−1 + V TV + εI + S

)
, (9)

for which (4) is automatically satisfied. Again, it can easily be verified that this construction is
necessary and sufficient, i.e. any W satisfying (4) can be constructed via (9).

4.2 MONOTONE OPERATOR PERSPECTIVE

In this section, we will show that finding the solution to LBEN (1) is equivalent to solving a well-
posed operator splitting problem, and hence a unique solution exists. First, we need the following
observation on the activation function σ.
Proposition 1. Assumption 1 holds if and only if there exists a convex proper function f : R →
R ∪ {∞} such that σ(·) = prox1

f (·).

1Note that S can be parameterized via its upper or lower triangular components, or via S = N −NT with
N free, which can be more straightforward if W is defined implicitly via linear operators, e.g. convolutions.
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The proof of Proposition 1 with a construction of f appears in Appendix E.3, along with a list of
f for popular σ. It is well-known in monotone operator theory (Ryu & Boyd, 2016) that for any
convex closed proper function f , the proximal operator prox1

f (x) is monotone and non-expansive
(i.e. slope-restricted in [0, 1]). Proposition 1 is a converse result for scalar functions.
Remark 4. To our knowledge Proposition 1 is novel, however for several popular activation func-
tions the corresponding functions f were computed in Li et al. (2019) (see also Table 3 in Ap-
pendix E.4). Compared with Li et al. (2019), our work gives a necessary and sufficient conditions.

Now we connect LBEN (1) to an operator splitting problem.
Proposition 2. Finding a solution of LBEN (1) is equivalent to solving the well-posed operator
splitting problem 0 ∈ (A+B)(z) with the operators

A(z) = (I −W )(z)− (Ux+ bz), B = ∂f (10)

where f(z) :=
∑n
i=1 λif(zi) with λi as the ith diagonal element of Λ.

The proof appears in Appendix E.4 and Theorem 1 follows directly since the above operator splitting
problem has a unique solution for any x, bz .

Computing an equilibrium. There exist various of operator splitting algorithms to compute the
solution of LBEN (1), e.g., ADMM (Boyd et al., 2011) and Peaceman-Rachford splitting (Kellogg,
1969). Winston & Kolter (2020) found that Peaceman-Rachford splitting converges very rapidly
when properly tuned, and our experience agrees with this.

Gradient backpropagation. As shown in (Winston & Kolter, 2020, Section 3.5), the gradients of
the loss function `(·) can be represented by

∂`

∂(·) =
∂`

∂z?
(I − JW )−1J

∂(Wz? + Ux+ bz)

∂(·) (11)

where z? denotes the solution of (1), (·) denotes some learnable parameters in the parameterization
(8) or (9), and J ∈ Dσ(Wz? + Ux+ bz) with Dσ as the Clarke generalized Jacobian of σ. Since σ
is piecewise differentiable, then the set Dσ(Wz? +Ux+ bz) is a singleton almost everywhere. The
following proposition reveals that (11) is well-defined, see proof in Appendix E.5.
Proposition 3. The matrix I − JW is invertible for all z?, x and bz .

4.3 CONNECTIONS TO CONVEX OPTIMIZATION

Since LBEN (1) is equivalent to an operator splitting problem, an interesting question is whether it
can further be connected to a convex optimization problem. Here we construct an equivalent convex
problem for the LBEN whose parameterization satisfies S = 0.
Proposition 4. If the direct parameterization (either (8) or (9)) of an LBEN satisfies S = 0, then
for all x and bz , the solution of (1) is the minimizer of the following strongly convex optimization
problem:

min
z

〈
1

2
(I −W )z − Ux− bz, z

〉
Λ

+ f(z). (12)

The proof is in Appendix E.6. Furthermore, for an important subclass of LBEN where σ is ReLU,
it has an equivalent convex quadratic programming (QP) formulation.
Proposition 5. Consider an LBEN (1) with ReLU activation. For all x and bz , the solution of (1) is
the minimizer of the following strongly convex QP problem:

min
z

1

2
z>Hz + p>z s.t. z ≥ 0, (I −W )z ≥ Ux+ bz (13)

where H = 2Λ− ΛW −W>Λ and p = −Λ(Ux+ bz).

Note that the QP (13) also works for the case where S is non-zero. The proof (see Appendix E.7) is
built on the “key insights” of ReLU activation from Raghunathan et al. (2018b). This allows one to
compute the solution of LBEN (1) using the many free or commercial QP solvers.
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4.4 CONTRACTING NEURAL ODES

In this section, we will prove the existence of a solution to (1) from a different perspective: by
showing it is the equilibrium of a contracting dynamical system (a “neural ODE”). We first add a
smooth state v(t) ∈ Rn to avoid the algebraic loop in (5). This idea has long been recognized
as helpful for well-posedness questions (Zames, 1964). We define the dynamics of v(t) by the
following ODE:

v̇(t) = −v(t) +Wz(t) + Ux+ bz, z(t) = σ(v(t)). (14)
The well-posedness of (1) is equivalent to the existence and uniqueness of an equilibrium of (14) for
all x and bz , which is established by the following proposition.
Proposition 6. If Assumption 1 and Condition 1 hold, then the neural ODE (14) is contracting w.r.t.
some constant metric P � 0.

The proof is in Appendix E.8. Moreover, the metric P can be found via semidefinite programming.
The above proposition also proves that the nonlinear operator−f with f(v) = −v+Wσ(v)+Ux+
bz , zeros of which define solutions of LBEN (1), is actually monotone w.r.t. the P -weighted inner
product, which gives a first-order cutting-plane oracle for the zero location v? such that f(v?) = 0.
I.e. given a test point vt 6= v?, it proves that v? is in the half-space defined by 〈v?−vt, f(vt)〉P > 0.
This may offer alternative ways to solve LBEN (1), e.g. via Nemirovski (2004); Nesterov (2007).

4.5 FEEDFORWARD NETWORKS AS A SPECIAL CASE

Consider a multi-layer feedforward network of the form

z1 = U0x+ b0, z`+1 = σ(W`z` + b`), ` = 1, . . . , L− 1, y = WLzL + bL, (15)

which can be rewritten as an equilibrium network (1) as shown in Appendix A The above equilibrium
network is obviously well-posed as a unique solution exists. The following proposition shows that
(44) is also an LBEN.
Proposition 7. The LBEN parameterization (8) contains all feedforward networks.

In Winston & Kolter (2020), a set of well-posed equilibrium network, called monotone operator
equilibrium network (MON), is introduced via the following parameterization

W = (1−m)I −A>A+B> −B (16)

where m > 0 is a hyper-parameter, A,B are learnable matrices. The MON parameterization can be
understood as a special case of LBEN with a fixing Ψ = I .
Proposition 8. The MON parameterization (16) does not contain all feedforward networks, and if
m ≥ 1 it does not contain any feedforward networks.

From the proof (see Appendix E.11). The set of feedforward networks in MON shrinks as the hyper-
parameter m increases. Most experiments in Winston & Kolter (2020) use m = 1, which excludes
all feedforward networks.

In the feedforward case, our Lipschitz bound condition (4) is equivalent to the state-of-art bound
estimation method in Fazlyab et al. (2019). The major benefit of our direct parameterization (9) is
that it allows such bounds to be imposed during training without any additional computational cost.
The details are given in Appendix D.

5 EXPERIMENTS

In this section we test our approach on the MNIST and CIFAR-10 image classification problems.
Our numerical experiments focus on model robustness, the trade-off between model performance
and the Lipschitz constant, and the tightness of the Lipschitz bound. We compare the proposed
LBEN to unconstrained equilibrium networks, monotone operator equilibrium network (MON) of
Winston & Kolter (2020), and fully connected networks trained using Lipschitz margin training
(LMT) (Tsuzuku et al., 2018). When studying model robustness to adversarial attacks, we use the
L2 Fast Gradient Method, implemented as part of the Foolbox toolbox (Rauber et al., 2020). All
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(a) Nominal test error vs Lipschitz constant esti-
mates: markers indicate observed lower bounds for
all methods, vertical lines indicate certified upper
bounds for LBEN

(b) Test error with adversarial perturbation versus
size of adversarial perturbation. Lower is better.

Figure 2: Image classification results on MNIST character recognition data set.

models are trained on a either a standard desktop computer with an NVIDIA GeForce RTX 2080
graphics card or using a google cloud instance with a Nvidia Tesla V100 graphics card. Details
of the models and training procedure can be found in Appendix F, all code will be made available
online but links are omitted due to the double-blind review process.

5.1 MNIST EXPERIMENTS WITH FULLY-CONNECTED NETWORKS

In Figure 2a the test error versus the observed Lipschitz constant, computed via adversarial attack for
each of the models trained. We can see clearly that the parameter γ in LBEN offers a trade-off be-
tween test error and Lipschitz constant. Comparing the LBENγ=5 with both MON and LBENγ<∞,
we also note a slight regularizing effect in the lower test error.

By comparison, LMT (Tsuzuku et al., 2018) with c as a tunable regularization parameter displays a
qualitatively similar trade-off, but underperforms LBEN in terms of both test error and robustness.
If we examine the unconstrained equilibrium model, we observe a Lipschitz constant more than an
order of magnitude higher, i.e. this model has regions of extremely high sensitivity, without gaining
any accuracy in terms of test error.

For the LBEN models, the lower and upper bounds on the Lipschitz constant are very close: the
markers are very close to their corresponding lines in Figure 2a, see also the table of numerical
results in Appendix A in which the approximation accuracy is in many cases around 90%.

Next we tested robustness of classification accuracy to adversarial attacks of various sizes, the results
are shown in Figure 2b and summarized in Table 1. We can clearly see that decreasing γ (i.e. stronger
regularization) in the LBEN models results in a far more gradual degradation of performance as
perturbation size increases, with only a mild impact on nominal (zero perturbation) test error.

Next, we examined the impact of our parameterization on computational complexity compared to
other equilibrium models. The test and training errors versus number of epochs are plotted in Figure
5, and we can see that all models converge similarly, and also take roughly the same amount of time
per epoch. This is a clear contrast to the results of Pauli et al. (2020) in which imposing Lipschitz
constraints resulted in fifty-fold increase in training time. Interestingly, we can also see in Figure 5
the effect of regularisation for LBEN with γ = 5: higher training error but lower test error. We have
observed several cases where the unconstrained equilibrium model became unstable during training,
LBEN never exhibits this problem.

Finally, we examined the quality of the Lipschitz bounds as a function of network size, comparing
the upper and lower bounds on fully connected networks with width 20 to 1000. The results are
shown in Figure 6. It can be observed that network size only has a mild effect on the quality of the
Lipschitz bounds, which decrease slightly as width is increased by a factor of 50.
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(a) Nominal test error vs observed lower bound on
Lipschitz constant.

(b) Test error with adversarial perturbation versus
size of adversarial perturbation. Lower is better.

Figure 3: Image classification results on CIFAR-10 data set.

5.2 CIFAR-10 EXPERIMENTS WITH CONVOLUTIONAL NETWORKS

The previous example looked at simple fully connected networks, however, our approach can also be
applied to structured layers such as convolutions. Here, we perform several experiments exploring
the use of convolutional layers on the CIFAR-10 dataset. To study the improved expressibility we
will compare the LBEN to the LBEN with its metric set to the identity, denoted LBEN Λ=I . Note
that the model set LBEN Λ=I,γ<∞ corresponds to the MON. Additional model details can be found
in Appendix F.2.

In Figure 3a, we have plotted the test performance versus the observed Lipschitz constant for the
LBEN and LBEN Λ=I for varying Lipschitz bound γ = 1, 2, 3, 5, 50, along with the LBENγ<∞,
MON, and feed-forward convolutional networks with 40, 81, 160, and 200 channels. Again, we
see that the Lipschitz bound has a regularizing effect, trading off between nominal fit and robust-
ness. Additionally, we see that the LBEN provides both better performance and robustness than
the traditional feed-forward convolutional networks of similar sizes, highlighting the benefit of the
equilibrium network structure.

Comparing LBEN and LBENΛ=I , we can see that the metric gives higher quality models for LBEN
with specified γ, but it is slightly worse for LBEN γ < ∞ compared to MON. This is likely due
to the extra expressiveness of the model leading to some overfitting. This can also be seen in the
training curves in Figure 7.

Figure 3b shows the test error versus the size of adversarial perturbation for the lBEN and 162
channel feed-forward convolutional network. We observe that the LBEN provides a much more
gradual loss in performance than the feed-forward network, with γ = 5 offering an excellent mix of
nominal performance and robustness. The feed-forward networks of different sizes exhibited similar
results, however only one is plotted in Figure 3b for clarity.

6 CONCLUSIONS

In this paper, we have shown that the flexible framework of equilibrium networks can be made
robust via a simple and direct parameterization which results in guaranteed Lipschitz bounds. These
results can also be directly applied (as a special case) to standard multilayer and residual deep neural
networks, and also provide a direct parameterization of nonlinear ODEs satisfying strong stability
and robustness properties.

Extension to equilibrium network structures more general than (1) is an interesting area for future
research. Our results can be extended to more general multivariable “activations” if they can be
described accurately via monotonicity properties or integral quadratic constraints. One particular
example where this is possible is where the “activation” computes the arg min of a quadratic pro-
gram of the sort that appears in constrained model predictive control (Heath & Wills, 2007).
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A EXPERIMENTAL RESULTS ON MNIST CHARACTER RECOGNITION

This appendix contains tables of results on MNIST and CIFAR-10 data sets.

Legend:

• Err: Test error (%),
• ‖a‖2: `2 norm of adversarial attack.
• γup: certified upper bound on Lipschitz constant (for models that provide one).
• γlow: observed lower bound on Lipschitz constant via adversarial attack.

• γ approx: approximation ratio of Lipschitz constant as percentage = 100×
(
γlow
γup

)
.

Models:

• LBEN: the proposed Lipschitz bounded equilibrium network..
• MON: the monotone operator equilibrium network of Winston & Kolter (2020).
• UNC: an unconstrained equilibrium network, i.e. W directly parameterized.
• LMT: Lipschitz Margin Training model as in Tsuzuku et al. (2018).
• Lip-NN: The Lipschitz Neural Network model of Pauli et al. (2020). Note these figures

are as reported in (Pauli et al., 2020), all other figures are calculated by the authors of the
present paper.

Model Err: ‖a‖2 = 0 Err: ‖a‖2 ≤ 5 Err: ‖a‖2 ≤ 10 γup γlow γ approx
LBENγ<∞ 2.03 56.0 82 - 9.8 -
LBENγ=5 1.81 46.4 95.4 5 2.912 58.2%
LBENγ=1 2.36 19.4 85.5 1 0.865 86.5%

LBENγ=0.8 2.59 17.4 80.1 0.8 0.715 89.4%
LBENγ=0.4 4.44 16.1 65.0 0.4 0.372 93%
LBENγ=0.2 7.41 14.4 42.6 0.2 0.184 92%

MON 2.04 55.8 88.6 - 7.75 -
UNC 2.08 48.75 77.9 - 239.0 -

LMTc=1 2.3 59.4 88.1 - 17.5 -
LMTc=100 3.4 65.4 92.0 - 7.66 -
LMTc=250 6.92 61.8 98.4 - 6.92 -
LMTc=1000 12.23 78.4 98.9 - 3.10 -

Lip-NN 3.55 - - 8.74 - -

Table 1: Results from MNIST experiments.
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Figure 5: Left: Training set error versus epochs. Right: Test set error versus epochs. Note that
the left and right plots are on different scales. The time per epoch for the MON, unconstrained,
LBENγ<∞ and LBENγ=5 networks are 14.4, 16.1, 14.9 and 14.8 seconds per epoch respectively.

Figure 6: Approximation accuracy of the Lipschitz bound versus the network width of LBEN from
the MNIST example. The certified upper bound is γup and the observed lower bound is γlow.
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B EXPERIMENTAL RESULTS ON CIFAR-10 DATASET

Model Err: ‖a‖2 = 0 Err: ‖a‖2 ≤ 0.5 Err: ‖a‖2 ≤ 1.0 γup γlow γ approx
LBENγ<∞ 31.1 96.1 100 - 31.1 -
LBENγ=50 28.4 75.5 95.4 50 2.89 5.7%
LBENγ=5 29.9 65.8 85.5 5 1.39 27.8%
LBENγ=3 31.3 64.2 83.5 3 1.14 38.0%
LBENγ=2 37.9 62.5 80.5 2 0.92 46.0%
LBENγ=1 36.2 61.8 78.8 1 0.60 60.0 %
FFW=40 33.07 91.5 99.8 - 6.06 - %
FFW=81 32.6 93.3 100 - 8.42 - %
FFW=162 32.5 95.0 100 - 11.3 - %
FFW=200 32.6 94.5 100 - 12.4 - %

Table 2: Results from CIFAR experiments. FF refers to the feed-forward convolutional network.

Figure 7: LBEN and MON training error versus epochs on CIFAR-10 dataset. The red curves have
the metric set so that Λ = I whereas the blue curves optimize over the metric. The line styles
correspond to different gain bounds. Note that both MON and LBENγ<∞ achieve zero training
error.

C PRELIMINARIES

C.1 MONOTONE OPERATORS WITH NON-EUCLIDEAN INNER PRODUCTS

We present some basic properties of monotone operators on a finite-dimensional Hilbert space H,
which we identify with Rn equipped with a weighted inner product 〈x, y〉Q = y>Qx with Q � 0.
For n = 1, we only consider the case of Q = 1. The induced norm ‖x‖Q is defined as

√
〈x, x〉Q. A

relation or operator is a set-valued or single-valued map defined by a subset of the spaceA ⊆ H×H;
we use the notation A(x) = {y | (x, y) ∈ A}. If A(x) is a singleton, we called A a function.
Some commonly used operators include: the linear operator A(x) = {(x,Ax) | x ∈ H}; the
operator sum A + B = {(x, y + z) | (x, y) ∈ A, (x, z) ∈ B}; the inverse operator A−1 =
{(y, x) | (x, y) ∈ A}; and the subdifferential operator ∂f = {(x, ∂f(x))} with x = dom f and
∂f(x) = {g ∈ H | f(y) ≥ f(x) + 〈y − x, g〉Q, ∀y ∈ H}. An operator A has Lipschitz constant L
if for any (x, u), (y, v) ∈ A

‖u− v‖Q ≤ L‖x− y‖Q. (17)
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An operator A is non-expansive if L = 1 and contractive if L < 1. An operator A is monotone if

〈u− v, x− y〉Q ≥ 0, ∀(x, u), (y, v) ∈ A. (18)

It is strongly monotone with parameter m if

〈u− v, x− y〉Q ≥ m‖x− y‖2Q, ∀(x, u), (y, v) ∈ A. (19)

A monotone operator A is maximal monotone if no other monotone operator strictly contains it,
which is a property required for the convergence of most fixed point iterations. Specifically, an
affine operator A(x) = Wx + b is (maximal) monotone if and only if QW + W>Q � 0 and
strongly monotone if QW + W>Q � mI . A subdifferential ∂f is maximal monotone if and only
if f is a convex closed proper function.

The resolvent and Cayley operators for an operator A are denoted RA and CA and respectively
defined as

RA = (I + αA)−1, CA = 2RA − I (20)

for any α > 0. When A(x) = Wx+ b, then

RA(x) = (I + αW )−1(x− αb) (21)

and when A = ∂f for some CCP function f , then the resolvent is given by a proximal operator

RA(x) = proxαf (x) := arg min
z

1

2
‖x− z‖2Q + αf(z). (22)

The resolvent and Cayley operators are non-expansive for any maximal monotone A, and are con-
tractive for strongly monotone A. Operator splitting methods consider finding a zero in a sum of
operators (assumed here to be maximal monotone), i.e., find z such that 0 ∈ (A + B)(z). For ex-
ample, the convex optimization problem in (12) can be formulated as an operator splitting problem
with A(z) = (I −W )z − b and B = ∂f. Proposition 2 shows that A is strongly monotone and
Lipschitz with some parameters of m and L. Here we give some popular operator splitting methods
for this problem as follows.

• Forward-backward splitting: zk+1 = RB(zk − αA(zk)), i.e.,

uk = ((1− α)I + αW )zk + αb

zk+1 = proxαf (uk)
(23)

• Peaceman-Rachford splitting: uk+1 = CACB(uk), zk = RB(uk), i.e.,

uk+1/2 = 2zk − uk,
zk+1/2 = (I + α(I −W ))−1(uk+1/2 + αb),

uk+1 = 2xk+1/2 − uk+1/2,

zk+1 = proxαf (uk+1).

(24)

• Douglas-Rachford splitting (or ADMM): uk+1 = 1/2(I + CACB)(uk), zk = RB(uk),
i.e.,

uk+1/2 = 2zk − uk,
zk+1/2 = (I + α(I −W ))−1(uk+1/2 + αb),

uk+1 = 2xk+1/2 − uk+1/2,

zk+1 = proxαf (uk+1).

(25)

A sufficient condition for forward-backward splitting to converge is α < 2m/L2. The Peacemance-
Rachford and Douglas-Rachford methods converge for any α > 0, although the convergence speed
will often vary substantially based upon α.
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C.2 DYNAMICAL SYSTEM THEORY

In this section, we present some concepts and results of dynamical system theory that are used in
this paper. We consider a nonlinear system of the form

ż(t) = f(z(t)) (26)

where z(t) ∈ Rn is the state, and the function f is assumed to be Lipschitz continuous. By Picard’s
existence theorem we have a unique a solution for any initial condition. The above system is time-
invariant since f is not explicitly depends on t. System (26) is called linear time-invariant (LTI)
system if f(z) = Az + b for some matrix A ∈ Rn×n and b ∈ Rn. The point z? ∈ Rn is call an
equilibrium of (26) if f(z?) = 0.

The central concern in dynamical system theory is stability. While there are many different stability
notions (Khalil, 2002), here we mainly focus on two of them: exponential stability and contraction
w.r.t a constant metric Q � 0. System (26) is said to be locally exponentially stable at the equilib-
rium z? w.r.t. to the metric Q if there exist some positive constants α, β, δ such that for any initial
condition z(0) ∈ Bδ(z?) := {z | ‖z − z?‖Q < δ}, the following condition holds:

‖z(t)− z?‖ ≤ α‖z(0)− z?‖Qe−βt, ∀t > 0. (27)

And it is said to be globally exponentially stable if the above condition also holds for any δ > 0.
The exponentially stability can be verified via Lyapunov’s second method, i.e., finding a Lyapunov
function V = ‖z‖2P with P � 0 such that V̇ (t) ≤ −2βV (t) along the solutions, i.e.,

(z − z?)>Pf(z) + f(z)>P (z − z?) + 2β(z − z?)>P (z − z?) ≤ 0. (28)

System (26) is said to be contracting w.r.t. the metric Q if there exist some positive constants α, β
such that for any pair of solutions z1(t) and z2(t), we have

‖z1(t)− z2(t)‖Q ≤ α‖z1(0)− z2(0)‖Qe−βt, ∀t > 0. (29)

Note that contraction is a much stronger notion than global exponential stability as Condition (27)
can be implied by Condition (29) by setting z1 = z and z2 = z?. However, unlike the Lyapunov
analysis, contraction analysis can be done via simple local analysis which does not require any
prior-knowledge about the equilibrium z?. Specifically, contraction can be established by the local
exponential stability of the associated differential system defined by

∆̇z = Df(z)∆z

where ∆z(t) is the infinitesimal variation between z(t) and its neighborhood solutions, and Df
is Clarke generalized Jacobian. The condition for (26) to be contracting can be represented as a
state-dependent Linear Matrix Inequality (LMI) as follows

PDf(z) + Df(z)>P + 2βP ≺ 0 (30)

for some P � 0 and all z ∈ Rn. For an LTI system, exponential stability and contraction are
equivalent and the stability condition can be s if A is Hurwitz stable (i.e. all eigenvalues of A have
strictly negative real part).

For most applications, the dynamic system usually involves an external input x(t) ∈ Rm and an
output y(t) ∈ Rp, whose state-space representation takes the form of

ż(t) = f(z(t), x(t)), y(t) = h(z(t), x(t)). (31)

Here we measure the robustness of the above system under input perturbation by incremental L2-
gain. That is, system (31) has an incremental L2-gain bound of γ if for any pair of inputs x1(·), x2(·)
with

∫ T
0
‖x1(t) − x2(t)‖22dt < ∞ for all T > 0, and any initial conditions z1(0) and z2(0), the

solutions of (31) exists and satisfy∫ T

0

‖y1(t)− y2(t)‖22 dt ≤ γ2

∫ T

0

‖x1(t)− x2(t)‖22 dt+ κ(z1(0), z(0)) (32)

for some function κ(z1, z2) ≥ 0 with κ(z, z) = 0. Note that γ can be viewed as a Lipschitz
bound of all the mappings defined by (31) with some initial condition from the input signal x(·) to
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y(·). For any two constant inputs x1, x2, let z1, z2 and y1, y2 be the corresponding equilibrium and
steady-state output, respectively. From (32) we have

‖y1 − y2‖22 ≤ ‖x1 − x2‖22 + κ(z1, z2)/T,

which implies a Lipschitz bound of γ as T →∞.

A particular class of nonlinear systems that have strong connections to various neural networks is
the so-called Luré system, which takes the form of

ż(t) = Az(t) +Bφ(Cz(t)) (33)

where A,B,C are constant matrices with proper size, and φ is a static nonlinearity with sector
bounded of [α, β]: for all solution (v, w) with w = φ(v)

(w − αv)>(βv − w) ≥ 0 (34)

or equivalently
[
v
w

]>
Π

[
v
w

]
≥ 0 with

Π =

[
2αβI (α+ β)I

(α+ β)I −2I

]
. (35)

This implies that the origin is an equilibrium since φ(0) = 0. The above system can be viewed as a
feedback interconnection of a linear system

G :

{
ż(t) = Az(t) +Bw(t)

v(t) = Cz(t)
(36)

and a nonlinear memoryless component w(t) = φ(v(t)). The above linear system can also be
described by a transfer function G(s) with s ∈ C. We refer to Hespanha (2018) for details about
frequency-domain concepts and results of linear systems. The frequency-domain representation for
the sector bounded condition (34) can be written as[

v̂(jω)
ŵ(jω)

]∗
Π

[
v̂(jω)
ŵ(jω)

]
≥ 0 ∀ω ∈ R (37)

where v̂(jω) and ŵ(jω) are Fourier transforms of v and w, respectively, (·)∗ denotes the com-
plex conjugate. Then, the closed-loop stability of the feedback interconnection can be verified by
the Integral Quadratic Constraint (IQC) theorem (Megretski & Rantzer, 1997). Although the IQC
framework allows for more general dynamic multipliers, here we only focus on the simple constant
multiplier defined in (35).
Theorem 3. LetG be stable and φ be a static nonlinearity with sector bound of [α, β]. The feedback
interconnection of G and φ is stable if here exists ε > 0 such that[

G(jω)
I

]∗
Π

[
G(jω)
I

]
� −εI, ∀ω ∈ R. (38)

The Kalman-Yakubovich-Popov (KYP) lemma (Rantzer, 1996) can be applied to demonstrate the
equivalence of Condition 3 in Theorem 3 to an LMI condition. The result is stated as follows.
Theorem 4. There exists a ε > 0 such that (38) holds if and only if there exists a matrix P = P>

such that [
A>P + PA PB

B>P 0

]
+

[
C> 0
0 I

]
Π

[
C 0
0 I

]
≺ 0.

D LBEN PARAMETERIZATION FOR FEEDFORWARD NETWORKS

Given an equilibrium network (1) with weights U,W , and Wo, we can estimate its Lipschitz bound
γ by solving the following SDP with (n+ 1) decision variables:

min
γ>0,Λ∈D+

γ s.t.

2Λ− ΛW −W>Λ −ΛU W>o
−U>Λ γI 0
Wo 0 γI

 � 0. (39)
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Note that the above LMI constraint is equivalent to (4) via Schur complement. A tight upper bound
is then obtained by minimizing γ. When a deep neural network (a special case of equilibrium
network) is considered, the above SDP yields the same bound estimation as LipSDP-Neuron in
Fazlyab et al. (2019) since both formulations involve minimizing the gain bound γ subject to an
equivalent constraint (41).

Training a feedforward network with a prescribed Lipschitz bound is a challenge problem due to
the LMI constraint (39) as well as the sparse structure of W . Following the similar idea of direct
parameterization, we will construct a parameterization built on (9) to represent the following weight

W =


0

W1
. . .

...
. . . 0

0 · · · WL−1 0

 . (40)

We first look at a simple case where W is a dense strictly lower triangular matrix. Given a square
matrix H , its LDU partition is defined as H = [H]D + [H]L + [H]U where [H]D is a diagonal
matrix, [H]L([H]U ) is a strictly lower(upper) triangular matrix. Given any hyper-parameter γ > 0,
the parameterization contains the following free variables: V ∈ Rn×n,Wo ∈ Rp×n, and Û ∈ Rn×d.
Let S = [H]L − [H]>L , Ψ = [H]−1

D and U = ΨÛ where H = V >V + εI + (W>o Wo + Û Û>)/2γ.
Then, the LBEN parameterization (9) yields

W = I −Ψ

(
1

2γ
WT
o Wo +

1

2γ
Ψ−1UUTΨ−1 + V TV + εI + S

)
= −2[H]−1

D [H]L,

which is a dense lower triangular matrix. To impose the sparse pattern like (40), we need

H =



Λ1 H>1
H1 Λ2 H>2

H2 Λ3 H>3
. . . . . . . . .

HL−2 ΛL−1 H>L−1
HL−1 ΛL


where Λi belongs to D+ with 1 ≤ i ≤ L, and Hj has the same dimension as Wj for 1 ≤ j ≤ L− 1.
To make V >V have the same band structure as H , we further parameterize V as follows

V =


Γ1

Φ1V1 Γ2

. . . . . .
ΦL−1VL−1 ΓL


where Γi,Φj ∈ D+ and V >j Vj = I . The unitary matrix Vj can be parameterized by Vj = eSj where
S>j = −Sj . The diagonal blocks of V >V are Γ2

i + Φ2
i with ΦL = 0 while the lower off-diagonal

blocks are Γj+1ΦjVj with 1 ≤ j ≤ L−1. Similar techniques can be applied to the parameterization
of Wo and Û .

E PROOFS

E.1 PROOF OF THEOREM 1

We presents two proofs for the well-posedness of equilibrium network (1). All these proofs are
based on the following lemma.
Lemma 1 (Simpson-Porco & Bullo (2014)). For a time-invariant contracting dynamical system, all
its solutions converge to a unique equilibrium.

(Monotone operator perspective): This proof is mainly based on Proposition 2, which states that the
solution of (1) is also a zero of the operator splitting problem 0 ∈ (A+B)(z), where the operators
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A and B are given in (10). Condition 1 implies that the operator A is strongly monotone while
Assumption 1 implies that the operator B is maximal monotone. Furthermore, the Clay operator
CA is contractive and CB is non-expansive. Thus, applying Peaceman-Rachford algorithm to 0 ∈
(A + B)(z) yields a contracting discrete-time system (24) since CACB is a contractive operator.
Since (24) is time-invariant, it yields a unique solution z for any x and bz .

(Neural ODE perspective): This proof is built on Proposition 6, which states that the neural ODE
(14) is a contracting continuous-time dynamical system under the Assumption 1 and Condition 1.
For any fixed input x and bz , system (14) is also time-invariant and hence its solution converges to a
unique equilibrium, which is also the solution of (1).

We now prove the Lipschitz boundedness of a well-posed equilibrium network. Condition 1 implies
that there exists a constant ε > 0 such that

2Λ− ΛW −WTΛ � εI.
For any δ ∈ (0, ε) and weights Wo, U , we can find a sufficiently large but finite γ such that

1

γ
(WT

o Wo + ΛUU>Λ) � (ε− δ)I.

Then, Condition 2 holds for Λ and γ since

2Λ− ΛW −WTΛ− 1

γ
(WT

o Wo + ΛUU>Λ) � δI � 0.

From Theorem 2, γ is a Lipschitz bound for the well-posed equilibrium network (1).

E.2 PROOF OF THEOREM 2

Rearranging Eq. (4) yields

2Λ− ΛW −WTΛ � 1

γ
(WT

o Wo + ΛUUTΛ) � 0.

The well-posedness of the equilibrium network (1) follows by Theorem 1. To obtain the Lipschitz
bound, we first apply Schur complement to (4):[

2Λ− ΛW −W>Λ− 1
γW

>
o Wo −ΛU

−U>Λ γI

]
� 0.

Left-multiplying
[
∆>z ∆>x

]
and right-multiplying

[
∆>z ∆>x

]>
gives

2∆>z Λ∆z − 2∆>z ΛW∆z −
1

γ
∆>z W

>
o Wo∆z − 2∆>z ΛU∆x + γ‖∆x‖22 ≥ 0.

Since (5) implies ∆v = W∆z + U∆x and ∆y = Wo∆z , the above inequality is equivalent to

γ‖∆x‖22 −
1

γ
‖∆y‖22 ≥ 2∆>z Λ∆z − 2∆zΛ∆v = 2〈∆v −∆z,∆z〉Λ. (41)

Then, the Lipschitz bound of γ for the equilibrium network (1) follows by (6).

E.3 PROOF OF PROPOSITION 1

(if): It is well-known that if f is convex closed proper function, then prox1
f is monotone and non-

expansive, i.e., it is slope-restricted in [0, 1]. Here f is not necessary to be closed as dom f (i.e.
the range of σ) could be open interval (zl, zr) or half-open interval (zl, zr] or [zl, zr). This can be
resolved by defining f̂ as the restriction of f on the closed interval [ẑl, ẑr], and then make ẑl → zl
and ẑr → zr.

(only if): Assumption 1 implies that σ is a non-decreasing and piece-wise differentiable function on
R. Then, the range of σ is an interval, denoted by Z . We will construct the derivative function f ′
on Z first and then integrate it to obtain f . Let {zj ∈ Z}j∈Z be the sequence containing all points
such that either σ′(x−) = 0 or σ′(x+) = 0 for all x ∈ σ−1(zj). Note that σ−1(z) is a singleton for
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Activation σ(x) Convex f(z) dom f

ReLu max(x, 0) 0 [0,∞)

LeakyReLu max(x, 0.01x) 99
2 min(z, 0)2 R

Tanh tanh(x) 1
2

[
ln(1− z2) + z ln

(
1+z
1−z

)
− z2

]
(−1, 1)

Sigmoid 1/(1 + e−x) z ln z + (1− z) ln(1− z)− z2

2 (0, 1)

Arctan arctan(x) − ln(| cos z|)− z2

2 (−1, 1)

Softplus ln(1 + ex) −Li2(ez)− iπz − z2/2 (0,∞)

Table 3: A list of common activation functions σ(x) and associated convex proper f(z) whose
proximal operator is σ(x). For z /∈ dom f , we have f(z) = ∞. In the case of Softplus activation,
Lis(z) is the polylogarithm function.

all z ∈ (zj , zj+1), whereas σ−1(zj) is a closed interval of the forms (−∞, xr], [xl, xr] or [xl,∞).
Then, we define f ′ as follows

f ′(z) =


min[σ−1(z)]− z, if z = zj and minσ−1(z) > −∞,
max[σ−1(z)]− z, if z = zj and minσ−1(z) = −∞,
σ−1(z)− z, otherwise.

Without loss of generality, we assume that 0 ∈ Z and σ−1(0) is well-defined. We define the function
f as follows

f(z) =

{∫ z
0
f ′(ζ)dζ + C if z ∈ Z,

∞ otherwise,
where C is an arbitrary constant. Note that f is a convex function as f ′ is a piecewise differentiable
function on Z and for those points where x = σ−1(z) is well-defined, f ′ is differentiable with
f ′′(z) = 1/σ′(x) − 1 ≥ 0 as σ′(x) ∈ (0, 1]. Finally, the definition of f ′ implies that 0 ∈ z −
σ−1(z) + ∂f(z), which implies that z = σ(x) is the unique minimizer of 1/2(z − x)2 + f(z).
Furthermore, since σ is well-defined, we can conclude that f is bounded from below. We also
provide a list of f for common activation functions in Table 3. A similar list can also be found in Li
et al. (2019).

E.4 PROOF OF PROPOSITION 2

Similar to Winston & Kolter (2020), we first show that the solution of (1), if it exists, is an fixed
point of the forward-backward iteration (23) with α = 1:

zk+1 = RB(zk − αAzk) = prox1
f (zk − α(I −W )zk + α(Ux+ bz)) = σ(Wzk + Ux+ bz).

The last equality follows by

σ(x) =

 arg minz1
1
2 (z1 − x1)2 + f(z1)

...
arg minzn

1
2 (zn − xn)2 + f(zn)

 = arg min
z

1

2
‖z − x‖2Λ +

n∑
i=1

λif(zi) = prox1
f (x).

Note that the necessary condition for σ(·) to be diagonal is that the weight Λ is positive diagonal.

Now we prove the well-posedness of LBEN by showing that the operator splitting problem 0 ∈
(A+B)(z) has a unique solution for any x and bz . Both Condition 1 and 2 implies that the operator
A is strongly monotone and its Cayley operator CA is contractive. Then, the Peaceman-Rachford
iteration (24) is contracting and hence it converges to a unique fixed point.
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E.5 PROOF OF PROPOSITION 3

The matrix J is diagonal with elements in [0, 1]. Decompose Λ = Π(J+µI) for some small µ > 0,
i.e. Π = Λ(J + µI)−1, which is diagonal and positive-definite. By denoting H = Π(I −W ) +
(I −W )TΠ we obtain the following inequality from (3):

ΠJ(I −W ) + (I −W )TJΠ + µH � εI,
which can be rearranged as

Π(I − JW ) + (I − JW )TΠ � εI + 2Π(I − J)− µH.
Since 2Π(I − J) � 0, we can choose a sufficiently small µ such that

Π(I − JW ) + (I − JW )TΠ � 0,

which further implies that I − JW is strongly monotone w.r.t. Π-weighted inner product, and is
therefore invertible.

E.6 PROOF OF PROPOSITION 4

First, we show that (12) is strongly convex. Since f(z) is a conic combination of convex functions
f(zi), we only need to show that the quadratic term is strongly convex, i.e.,

∇2J = Λ(I −W ) + (I −W )>Λ � 0

where

J(z) =

〈
1

2
(I −W )z − Ux− bz, z

〉
Λ

which follows by either Condition 1 or (2). Moreover, since S = 0 for the direction parameterization
of W , we have Λ(I −W ) = (I −W )>Λ and hence ∂J = A. Then, finding the global minimizer
of the strongly convex optimization problem (12) is equivalent to finding a zero for the operator
splitting problem 0 ∈ ∂(J + f)(z) = (A+B)(z).

E.7 PROOF OF PROPOSITION 5

The proof is based on the “key insights” of ReLU activation from Raghunathan et al. (2018b).
That is, a ReLU constraint z = max(x, 0) is equivalent to the following three linear and quadratic
constraints between z and x: (i) z(z − x) = 0, (ii) z ≥ x, and (iii) z ≥ 0. From this observation an
equilibrium network (1) can be equivalently expressed as the following constraints (I) z>(z−q) = 0,
(II) z ≥ q, and (III) z ≥ 0, where q = Wz + Ux+ b. Note that (II) and (III) can be rewritten as the
linear constraints in the QP problem (13) while (I) is equivalent to J(z) = 0 with

J(z) := z>Λ(z − q) =
1

2
z>Hz + p>z

for any Λ ∈ D+. It is obvious that J(z) ≥ 0 for all z satisfying (II) and (III), and hence the solution
of (1) is a global minimizer of the QP problem (13). If Λ satisfies either Condition 1 or 2, then H
is positive-definite and(13) is a strongly convex QP problem. Thus, its global minimizer is unique,
which is also the solution of LBEN (1).

E.8 PROOF OF PROPOSITION 6

From (14) the dynamics of ∆v and ∆z can be formulated as a feedback interconnection of a linear
system ∆̇v = −∆v + W∆z and a static nonlinearity ∆z = σ(va) − σ(vb). The linear system
can be represented by a transfer function is G(s) = 1/(s + 1)W . The nonlinear component can
be rewritten as ∆z = Φ(va, vb)∆v where Φ as a diagonal matrix with each Φii ∈ [0, 1]. For the
nonlinear component Φ, its input and output signals satisfies the quadratic constraint (6). For the
linear system G, we have the following lemma.
Lemma 2. If Condition 1 holds, then for all ω ∈ {R ∪∞}[

G(jω)
I

]∗ [
0 Λ
Λ −2Λ

] [
G(jω)
I

]
≺ 0. (42)
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The KYP Lemma (Theorem 4) states that (42) is equivalent to the existence of a P = P> such that[
−2P PW
WTP 0

]
+

[
0 Λ
Λ −2Λ

]
≺ 0.

It is clear from the upper-left block that P � 0. The above inequality also implies
2〈−∆v +W∆z,∆v〉P ≤ 〈∆z −∆v,∆z〉Λ − ε(‖∆z‖22 + ‖∆v‖22) ≤ −ε(‖∆z‖22 + ‖∆v‖22)

for some ε > 0. The contraction property of the neural ODE (14 follows since
d

dt
‖∆v‖2P = 2〈−∆v +W∆z,∆v〉P ≤ −ε(‖∆z‖22 + ‖∆v‖22) ≤ −2β‖∆v‖2P

for some sufficiently small β > 0. As a byproduct of the above inequality, we will show that the
operator −f with with f(v) = −v +Wσ(v) + Ux+ bz is strictly monotone w.r.t. the P -weighted
inner product since

〈−f(va) + f(vb), va − vb〉P = 〈∆v −W∆z,∆v〉P ≥ β‖∆v‖2P .

E.9 PROOF OF LEMMA 2

Note that (42) is equivalent to
2Λ−G0(jω)ΛW −G0(−jω)WTΛ � µI (43)

where G0(jω) = 1
1+jω . For some ω ∈ (R ∪∞) let g = <G0(jω) = <G0(−jω), where < denotes

real part. It is easy to verify that g = 1/(ω2 + 1) ∈ [0, 1]. From (3) we have
2gΛ− gΛW − gWTΛ � gεI

for some ε > 0. Rearranging the above inequality yields
2Λ− gΛW − gWTΛ � gεI + (1− g)2Λ

Now, since g ∈ [0, 1] the right-hand-side is a convex combination of two positive definite matrices:
εI and 2Λ, therefore (43) holds for some µ > 0 and all ω ∈ (R ∪∞).

E.10 PROOF OF PROPOSITION 7

It is straightforward to verify that an equilibrium network with the following weights is identical to
the feedforward network (15):

z =


z1

z2

...
zL

 , W =


0

W1
. . .

...
. . . 0

0 · · · WL−1 0

 , U =


U0

0
...
0

 , Wo = [0 · · · 0 WL] . (44)

To construct an LBEN parameterization in the form (8) for W , we first need the following lemma.
Lemma 3. Condition 1 holds for any strictly lower triangular W .

Proof. We prove it by showing that for any δ > 0, there exists a Λ ∈ D+ such that
H(Λn,Wn) := Λn(I −Wn) + (I −Wn)>Λn � 22−nδI. (45)

where Λn,Wn are the upper left n × n elements of Λ,W , respectively. For n = 1, λ1 > δ is
sufficient since W1 = 0. Assuming that (45) holds for Λn and Wn, then we have

H(Λn+1,Wn+1)− 21−nδI =

[
H(Λn,Wn)− 21−nδI −Λnw

>
n+1

−wn+1Λn 2(λn+1 − 2−nδ)

]
, (46)

where Λn+1 = diag(Λn, λn+1) and Wn+1 =

[
[Wn 0 ] 0
wn+1 0

]
. By applying Schur complement to

(46), Inequality (45) holds for the case of n+ 1 if λn+1 > 2−nδ + 2n−2|Λnwn+1|2/δ.

Based on the above lemma, we can construct a V such that V >V = 1/2[Λ(I−W )+(I−W )>Λ]−εI
where ε = 21−nδ. By choosing Ψ = Λ−1 and S = (ΛW −W>Λ)/2, the LBEN parameterization
(8) recovers the exact W . Thus, LBEN contains all feedforward networks (44).

We note that “skip connections” as in a residual network can easily be added to the above structure
via additional non-zero blocks in the lower-left part of the weight W .
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E.11 PROOF OF PROPOSITION 8

From the MON parameterization (16) we have

H(m,W ) := 2(1−m)I −W −W> = 2A>A � 0.

Let Wm be the set of non-zero and strictly lower triangular W such that H(m,W ) � 0. Note
that Wm1

⊂ Wm2
if m1 > m2. Because H(m1,W ) � 0 implies H(m2,W ) = H(m1,W ) +

2(m1 − m2)I � 0 for all m2 < m1. Proposition 8 follows if limm→0Wm does not contain
all strictly lower triangular W . Since W is a strictly lower triangular, H(0,W ) is a semidefinite
matrix whose diagnoal elements are 2. As the norm of W increases, H(0,W ) becomes indefinite.
Taking the feedforward network (44) with L = 2 as an example, the set ofW0 is characterized by
W1W

>
1 � 4I since

H(0,W ) =

[
2I −W>1
−W1 2I

]
� 0.

Now we show that Wm = ∅ for all m ≥ 1. Since the diagnoal elements of H(m,W ) are non-
positive when m ≥ 1, the matrix H(m,W ) is not semi-definite for any strictly lower triangular W .

F TRAINING DETAILS

F.1 MNIST EXAMPLE

This section contains the model structures and the details of the training procedure used for the
MNIST examples. All models are trained using the ADAM optimizer Kingma & Ba (2015) with an
initial learning rate of 1×103. All models are trained for 40 Epochs, and the learning rate is reduced
by a factor of 10 every 10 epochs.

The models in the MNIST example are all fully connected models with 80 hidden neurons and ReLU
activations. For the equilibrium models, the forward and backward passes models are performed
using the Peaceman-Rachford iteration scheme with ε = 1 and a tolerance of 1 × 10−2. When
evaluating the models, we decrease the tolerance of the spitting method to 1 × 10−4. We use the
same α tuning procedure as Winston & Kolter (2020). All models were trained using the same initial
point. Note that for LBEN, this requires initializing the metric Λ = I .

The feed-forward models trained using Lipschitz margin training were trained using the original
author’s code which can be found at https://github.com/ytsmiling/lmt.

F.2 CIFAR-10 EXAMPLE

This section contains the model structures and the details of the training procedure used for the
CIFAR-10 examples. All models are trained using the ADAM optimizer Kingma & Ba (2015) with
an initial learning rate of 1 × 103. The models were trained for 25 epochs and the learning rate
was reduced by a factor of 10 after 15 epochs. Each model contains a single convolutional layer, an
average pooling layer with kernel size 2, and a linear output layer.

The convolutional LBEN has 81 channels and is parametrized as discussed below. The MON sim-
ilarly has 81 channels. Unless otherwise stated, the feed-forward convolutional network has 162
channels which gives it approximately the same number of parameters as the LBEN.

The MON was evaluated using the Peaceman-Rachford Iteration scheme.

CONVOLUTIONAL LBEN

Following the approach of Winston & Kolter (2020), we parametrize U and V in equation 9 via
convolutions. The skew symmetric matrix is constructed by taking the skew symmetric part of a
convolution S̄, so that S = 1

2 (S̄− S̄>). Similar, to Winston & Kolter (2020), we also find that using
a weight normalized parametrization improves performance. Specifically, we use the following
parametrization: V =

√
α V̂
|V̂ | , S̄ = β Ŝ

|Ŝ| , U =
√
η Û
|Û | and Wo =

√
ξ Ŵo

|Ŵo|
.
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In Winston & Kolter (2020) Peaceman-Rachford is used and the operator I − W can be quickly
inverted using the fast Fourier transform. This situation is more complicated in our case as the term
W>outWout cannot be represented as a strict convolution and this is not diagonalized by the Fourier
matrix,. Instead, we apply Forward-Backward Splitting algorithm shown in equation 23 which does
not require a matrix inversion.

We have observed that the rate of convergence of the Forward-Backward splitting algorithm is highly
dependent on the monotonicity parameter m. In particular, for the convolutional models, we found
there was a strong trade-off between the ease of solve for the equilibrium versus the model express-
ibility and the accuracy of the Lipschitz bound.

25


	Introduction
	Related work
	Problem Formulation and Preliminaries
	Problem statement
	Preliminaries

	Main Results
	Direct Parameterization for Unconstrained Optimization
	Monotone Operator Perspective
	Connections to Convex Optimization
	Contracting Neural ODEs
	Feedforward Networks as a Special Case

	Experiments
	MNIST Experiments with Fully-Connected Networks
	CIFAR-10 Experiments With Convolutional Networks

	Conclusions
	Experimental Results on MNIST Character Recognition
	Experimental Results on CIFAR-10 dataset
	Preliminaries
	Monotone Operators with Non-Euclidean Inner Products
	Dynamical System Theory

	LBEN Parameterization for Feedforward Networks
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Lemma 2
	Proof of Proposition 7
	Proof of Proposition 8

	Training Details
	MNIST Example
	CIFAR-10 Example


