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Abstract— Artificial Intelligence (AI) is rapidly expanding and 

integrating more into daily life to automate tasks, guide decision-
making, and enhance efficiency. However, complex AI models, 
which make decisions without providing clear explanations 
(known as the “black-box problem”), currently restrict trust and 
widespread adoption of AI. 

Explainable Artificial Intelligence (XAI) has emerged to 
address the black-box problem of making AI systems more 
interpretable and transparent so stakeholders can trust, verify, 
and act upon AI-based outcomes. Researchers have developed 
various techniques to foster XAI in the Software Development 
Lifecycle. However, there are gaps in applying XAI techniques in 
the Software Engineering phases. Literature review shows that 
68% of XAI in Software Engineering research is focused on 
maintenance as opposed to 8% on software management and 
requirements. 

In this paper, we present a comprehensive survey of the 
applications of XAI methods such as concept-based explanations, 
Local Interpretable Model-agnostic Explanations (LIME), SHapley 
Additive exPlanations (SHAP), rule extraction, attention 
mechanisms, counterfactual explanations, and example-based 
explanations to the different phases of the Software Development 
Life Cycle (SDLC), including requirements elicitation, design and 
development, testing and deployment, and evolution.  

To the best of our knowledge, this paper presents the first 
comprehensive survey of XAI techniques for every phase of the 
Software Development Life Cycle (SDLC). This survey aims to 
promote explainable AI in Software Engineering and facilitate the 
practical application of complex AI models in AI-driven software 
development. 
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I. INTRODUCTION 
Artificial Intelligence (AI)-aided software techniques 

supported by Large Language Models are rapidly transforming 
software development with increased productivity [1]. AI-aided 
Software Engineering is on the rise and is becoming vital to 
deliver reliable, valid, and maintainable software systems 
[2],[3]. However, trust and widespread adoption of AI are often 
hindered by the “black-box” problem, where complex AI 
models make decisions without providing transparent 
explanations for those decisions [5],[7]. Explainable Artificial 
Intelligence (XAI) has emerged as a non-functional requirement 

in AI systems to address this issue by improving the 
interpretability and transparency of AI systems, allowing 
stakeholders to trust, validate, and act upon AI-driven insights 
[5],[9]. With the growing attention to XAI, it has become 
challenging for practitioners and researchers to navigate and 
select appropriate XAI methods and tools for their specific 
applications [10].  

Researchers have developed XAI methods for AI-aided 
software development. However, this area remains understudied 
[5],[11]. A blanket application of XAI to software engineering 
is insufficient. Different software engineering phases require 
tailored XAI techniques. For example, the literature reveals that 
inconsistent XAI evaluation methods in software engineering 
make it challenging to compare studies and XAI techniques 
across different software engineering phases [7],[12]. This 
disparity is evident in existing research, where studies indicate 
that 68% of XAI in Software Engineering research focused on 
the software maintenance phase versus 8% on the software 
management and requirements [7].  

This paper aims to address the lack of XAI applications in 
the Software Development Lifecycle and recommend ways to 
apply it ethically and truthfully. We address this by finding XAI 
methods such as Local Interpretable Model-agnostic 
Explanations (LIME), SHapley Additive exPlanations (SHAP), 
and Rule Extraction, mixing and matching them to provide 
explainability in key Software Engineering phases: 
requirements elicitation, design and development, testing and 
deployment, and evolution. The following research questions 
guide the paper:    

• RQ1: What are the key explainability challenges that AI 
introduces in software engineering? 

• RQ2: How can tailored XAI techniques for each software 
engineering phase enhance the explainability of AI-aided 
Software Engineering? 

• RQ3: What are the limitations of existing XAI techniques 
in Software Engineering? 

A mixed-methods approach was employed to address these 
research questions, combining a systematic literature review 
(SLR) with a narrative review of relevant literature. The SLR 
analyzed existing XAI in Software Engineering studies to 
identify key themes, evaluate XAI methods, and identify 
research gaps. Searches were conducted in IEEE Xplore, ACM 
Digital Library, Science Direct, Wiley, Google Scholar, and 
Scopus using keywords such as “XAI”, “Explainable Artificial 
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Intelligence”, “Software Engineering”, “AI-aided 
development”, “trust”, “transparency”, and “ethical AI”. The 
Inclusion criteria focused on peer-reviewed articles published 
within the last 6 years that addressed XAI in software 
engineering. A narrative literature review complemented the 
SLR to explore broader perspectives on XAI and Software 
Engineering, which assisted in providing XAI techniques for 
phase-specific Software Engineering. Through synthesizing 
SLR and narrative review results, this paper proposes the first 
comprehensive overview of XAI techniques tailored to each 
Software Development Life Cycle (SDLC) phase. 

The paper is structured as follows: Section 2 reviews the 
literature on AI in Software Engineering, explainable AI, and 
XAI in Software Engineering. Section 3 discusses the proposed 
XAI techniques for each Software Engineering phase to improve 
the explainability of AI-aided software development. Section 4 
presents the discussion, and Section 5 concludes the paper with 
recommendations and future research.  

II. LITERATURE REVIEW 

A. AI in Software Engineering  
AI applications within the Software Engineering process are 

rapidly expanding and are considered significant, particularly 
with the use of Generative AI for tasks like code generation 
[21],[3]. Kokol (2024) conducted a comprehensive knowledge 
synthesis to assess the current status of published literature in AI 
in Software Engineering [11]. Martinez-Fernandz et al. 
conducted a comprehensive study on software engineering for 
AI-based systems, in which the authors did a systematic 
literature review of software engineering practices followed in 
AI-based systems [3]. Gorkem and Giray [22] conducted a study 
on Software Engineering for Machine Learning (ML) systems 
in which they outlined the misconception that sometimes arises 
between Software Engineering for ML which refers to Software 
Engineering approaches to developing ML or AI systems versus 
ML for Software Engineering which deals with the use of ML 
and AI in Software Engineering tasks [3]. This paper focuses on 
the latter, examining explainable AI (XAI) for Software 
Engineering to support the development of reliable, valid, and 
maintainable software systems. Specific AI usages in Software 
Engineering include: 

• Requirements elicitation: Natural language processing 
for document analysis, chatbots for elicitation, data 
mining for user needs [11].  

• Design and implementation: System architecture 
recommendations, user interface and experience 
generation, model selection, code generation, code 
completion, and bug detection [11].  

• Testing and Verification: Test case generation, test 
prioritization, fault localization [25]. 

• Deployment and Monitoring: Performance evaluation, 
failure detection, bias monitoring [25].  

• Maintenance: Bug prediction, refactoring 
recommendations, and change impact analysis [25]. 

Despite demonstrated effectiveness and efficiency, for 
example, correct code generation [21], AI adoption in Software 
Engineering is often marred by the “black-box” phenomenon, 
where AI outputs lack explanations understandable by software 

development stakeholders [27]. This leads to several limitations 
during the requirements elicitation phase (e.g., ambiguity, lack 
of tacit knowledge extraction, bias, etc.), design phase (lack of 
creativity, lack of trade-off analysis, lack of contextual 
awareness, etc.), code development phase (e.g., lack of 
techniques for evaluating correctness, security vulnerabilities, 
maintainability, etc.), and during the testing phase (e.g., test 
oracle problem, test flakiness, scalability concerns, etc.  
[3],[28]). 

B. Explainable AI (XAI)  
Explainability is gaining traction within AI communities as 

a means to address the “black-box” problem, which stems from 
a lack of transparency regarding how AI models operate and 
arrive at their outputs [10],[29]. Explainable AI (XAI) 
techniques are designed to provide reasonable and 
understandable explanations on the complex decision-making 
processes of machine learning models [5], [30]. Vilone and 
Longo (2021) proposed a widely cited classification for XAI 
methods [30], based on the following properties: 

• Stage of explainability: Refers to the period in the process 
of generating outputs when a model generates the 
explanation for the decision it provides. The authors 
discuss two stages called Ante-hoc and Post-hoc. Ante-
hoc generates explanations for decisions from the 
beginning of the training data while aiming to achieve 
optimal performance, and Post-hoc, which provides 
explanations after the model has been trained and made 
predictions. Post-hoc can be either model-specific or 
model-agnostic. Model-agnostic methods apply to any 
model, while model-specific methods apply to specific 
models. 

• Scope of explainability: Refers to the extent of an 
explanation produced by XAI methods. The scope can be 
local or global, with local explaining only an instance of 
inference to the user while global providing the entire 
inference of the model to the user. 

• Input and output: Refers to the format of the input and the 
output that can be used by XAI techniques to explain the 
model decision. The XAI technique utilizes the XAI 
input to generate the explanation output. The XAI 
methods need to understand the same kind of data that the 
model itself uses. The most common forms of input 
explanations are images, text, and vectors, while output 
examples are numeric, rules, and visualizations.  

In the following text, we present some of the most common 
XAI techniques and provide a brief description incorporating the 
stage, scope, and input/output properties. Figure 1 shows a brief 
summarization and classification of standard XAI techniques. 

1) Feature Attribution based techniques: These techniques 
center around explaining predictions by assigning importance 
or relevance scores to the input features. They tell 
which features matter most. The most common feature 
attribution based techniques are: 

• LIME (Local Interpretable Model-agnostic 
Explanations) [12],[31]: LIME is a post-hoc, model-
agnostic technique that explains individual predictions. It 
works by approximating the complex model locally with 



   
 

   
 

a simpler, interpretable model (e.g., linear model or 
decision tree). LIME generates new data points by 
perturbing the input features of the instance to be 
explained and then observing how the model's prediction 
changes. It then trains a weighted linear model on top of 
the instance, using the perturbed data and 
resulting predictions. This local linear model’s weights 
are used as explanations, stating the relevance of each 
feature for that specific prediction. It can 
handle varying input types (e.g., tabular, text, images) 
and typically outputs feature importance as output (e.g., 
numeric weights, or highlighted words/pixels). A 
practical example of this technique would be explaining 
why a particular image was classified as a “cat” by 
highlighting  
the pixels that contributed most to the classification. 

• SHAP (SHapley Additive exPlanations): Messalas, 
Andreas, et al. described SHAP as a post-hoc, model-
agnostic XAI technique based on game theory [17]. This 
technique calculates Shapley values, which represent the 
average marginal contribution of each feature to the 
prediction expected over all possible feature 
combinations. SHAP values provide local explanations 
(explanation of one prediction) and global explanations 
(feature importance summary for the entire dataset). The 
input can be anything, e.g., the input of the original 
model. The output often features visualizable importance 
scores (numeric). An example of this technique would be 
explaining why a loan application was rejected by an AI 
model, showing the contribution of each factor (income, 
credit score, debt, etc.) to the rejection decision. 

• Attention Mechanisms: These integrate into the model as 
part of the model architecture, rather than post-hoc. They 
are model-specific and occasionally used in deep 
learning models like Transformers for Natural Language 
Processing (NLP) and computer vision. Samek, 

Wojciech, et al. (2016) in their research [16] showcased 
how attention mechanisms provide a local explanation by 
highlighting the input areas (e.g., words in a sentence, 
regions in an image) the model is paying attention 
to when making predictions. The output is attention 
weights, typically viewed as a heatmap. An application 
example of this method would be in machine translation, 
where it shows which words the model is attending to in 
the source sentence when translating each word in the 
target sentence. 

2) Instance based (or example based) techniques: These 
methods show examples (either real or synthetic) to illustrate 
the model's behavior. They explain "by analogy" or by showing 
"what-if" scenarios. Common techniques include: 

• Counterfactual Explanations [19]: Counterfactual 
explanations are a post-hoc, generally model-agnostic 
method for local explanations. They show how the 
model would make different predictions if certain input 
features differed, giving "what-if" type responses. They 
show the least modification to the input 
features, adequate to change the model's prediction to 
a specified alternative. Input is a data point and the 
model; output is a transformed data point 
(same structure as input) that would result in a different 
prediction. Mothilal, Ramaravind K., et al. (2020) 
proposed a framework [4] for generating and evaluating 
diverse counterfactual explanations based on 
determinantal point processes. Extending the loan 
application example, a counterfactual explanation could 
indicate that a $10,000 boost in the applicant's income 
would suffice for loan approval.  

• Example-Based Explanations [10]: These are often post-
hoc and model-agnostic, although a few models like k-
nearest neighbor (k-NN) are inherently example-based. 
These methods find similar cases in the training set or 

 
Figure 1: Summarizing and classifying common eXplainable AI (XAI) techniques. 



   
 

   
 

produce counterfactual cases. The input is the trained 
model. The output is a set of examples to clarify the 
internal representation of data. The scope can 
be local (explaining a single prediction) or global 
(representing the whole model).  

3) Concept based techniques: These techniques go beyond 
simple feature importance or examples and tries to explain in 
terms of abstract concepts that the model has (implicitly or 
explicitly) learned. 

• Concept-Based Explanations [12]: These are typically 
model-specific and post-hoc explanations and provide a 
global explanation of the model. They try to discover 
higher-level concepts that are driving the model’s 
decisions. They work by discovering sets of inputs 
activating portions of a model, developing a concept, and 
measuring each discovered concept’s contribution to the 
model’s prediction. The input is usually the trained 
model, and the output describes the concepts involved, 
usually with visualizations. An example of this type of 
explanation would be determining that the concept 
“striped” in an image dataset considerably influences the 
classification of images into “zebra”. Yeh, Chih-Kuan, et 
al. (2020) investigated concept-based explainability for 
Deep Neural Networks (DNNs) by defining 
completeness of concepts, proposed a method to discover 
interpretable and complete concepts, and introduced an 
approach to quantify concept importance [13]. 

4) Rule based techniques: This method explicitly generates 
rules for the model's logic. 

• Rule Extraction [30]:  These techniques attempt to 
extract human-readable rules from a trained model. These 
rules state the model's decision-making process in an "if-
then" form. Both post-hoc (when applied to an existing 
model) and ante-hoc (when the model is to be rule-based 
from the start) are possible. The scope is typically global. 
The aim is to create a simplified but interpretable model 
for the decision process. The input is the trained model, 
and the output is a collection of rules that approximate 
the model’s decision-making. One of these methods is 
exemplified by Guido Bologna by showing a rule 
extraction technique [6] that has been applied to 
ensembles of decision trees and neural networks. 

C. XAI in Software Engineering  
XAI in Software Engineering involves applying XAI 

techniques to different Software Engineering phases and tasks. 
A Comprehensive literature study conducted by A. H. 
Mohammadkhani et. al. (2023) on XAI in Software Engineering 
presented the following findings [7]: 

• Software maintenance: SRL results show this phase is 
most explored, with 68% of XAI applications in Software 
Engineering. 

• Software development: This phase comprises 16% of 
XAI applications in software engineering. 

• Software management and requirements: These two tasks 
received less attention, but as reported in the studies 
surveyed, each accounts for 8% of XAI applications. 

• Other tasks: Software design and testing have not been 
researched. 

III. AI APPLICATIONS, XAI CHALLENGES & XAI METHODS IN 
EACH SDLC PHASE   

In this section, we will go over different phases of the 
Software Development Lifecycle (SDLC). For each phase, we 
will cover 1) the applications of AI in each phase, 2) the AI 
explainability-related challenges in each phase, and 3) XAI 
techniques tailored to each phase that could help address those 
challenges. The SDLC is iterative; the stages often repeat 
multiple times as the software evolves. This paper covers the 
following SDLC phases: 

• Requirement Elicitation: This phase involves discovering 
the stakeholders' needs and constraints and establishing 
what the software needs to do. 

• Design: The design phase takes the gathered 
requirements and turns them into a blueprint for the 
software. It involves creating the system architecture, 
specifying data structures, algorithms, interfaces, and 
modules, and outlining how the system will satisfy the 
requirements. 

• Development (Implementation/Coding): This involves 
coding and implementing the software according to the 
design specifications. Developers transform the design 
into a functional software product. 

• Testing: In this phase, the software is tested to reveal 
defects and ensure it functions according to the 
specifications and requirements. There are several levels 
of testing, including unit, integration, system, and 
acceptance testing. 

• Deployment and Monitoring: Deployment means 
making the software available to use by releasing it to 
users or deploying it into the production environment, 
and monitoring means continuously tracking the 
performance of the deployed system and collecting user 
feedback. 

• Maintenance and Evolution: This is the ongoing process 
of modifying the software after it has been deployed to 
correct faults, improve performance, or adapt to the 
changing environment. It includes debugging, new 
feature additions, and system updates. 

A. Requirement Elicitation Phase 
1) Most common AI Applications: A literature review from 

2023 conducted by Cheligeer C et. al. demonstrated how AI 
offers significant potential for automating and enhancing 
requirements elicitation based on the analysis of existing 
documents to infer key information and even create an initial 
draft of requirements [2]. Natural Language Processing (NLP) 
and Large Language Models (LLMs) can be utilized to 
understand user requirements, identify contradictions, and 
prioritize requirements [8],[28]. LLMs can also be used to 
create and improve requirement specifications [15]. AI can also 
assist in requirements elicitation by generating requirements 
from high-level user inputs or documents, eliminating 
ambiguity and identifying missing information [7]. 

2) Most common AI Explainability (XAI) Challenges: XAI 
challenges often emerge during requirement elicitation, where 
appropriate XAI techniques can provide support: 



   
 

   
 

• Ambiguity and Incompleteness: Natural language is 
inherently ambiguous, and requirements are often 
incomplete. AI may misinterpret requirements or miss 
crucial details. AI also might misunderstand ambiguous 
or incomplete user statements, leading to incorrect 
requirements. [28]. 

• Tacit Knowledge: Much knowledge about requirements 
is tacit. Stakeholders have implicit knowledge that they 
do not even realize they possess or cannot easily 
articulate. AI struggles with this during requirement 
elicitation because it needs concrete data [5]. 

• Bias and Fairness: Training data may contain biases, 
leading to unfair requirements [7],[9].  

3) Most common & effective XAI techniques: As per the 
literature review, the most effective XAI techniques in 
addressing XAI challenges include: 

• LIME/SHAP can help by identifying which features of 
existing systems [9] or user actions are most influential 
in producing specific outcomes (e.g., user satisfaction, 
task completion) [19]; such methods can even bring out 
latent requirements. Suppose a feature repeatedly has a 
high SHAP value for positive predictions. In that case, 
it indicates that this feature is significant to users 
[12], even if they did not include it as a requirement. 
SHAP values specifically could assist in detecting biases 
by measuring the contribution of each feature to the 
prediction, making it easier to identify if protected 
attributes (such as race or gender, etc.) or proxies for 
protected attributes are influencing the requirements. 
LIME can also be used, but SHAP is generally preferred 
for its stronger theoretical foundations.  For instance, 
analyzing user interactions with a mobile app prototype 
using LIME/SHAP could reveal that users who complete 
a key task often utilize a particular gesture or navigation 
sequence. This could reveal an unspoken requirement for 
that gesture or navigation flow, even though users did 
not express it clearly through interviews or user studies. 

• Counterfactual Explanations show how small changes to 
input features affect the outcome. They can help 
stakeholders understand the system's sensitivity and 
identify potential trade-offs [9],[12]. This can be 
particularly useful for clarifying ambiguous or vague 
and evolving requirements. For instance, "If we add a 
requirement for X, how will that affect the system's 
ability to satisfy Y?" or "If we relax requirement Z, what 
other requirements become feasible?" 

B. Design Phase 
1) Most common AI Applications: AI is used during the 

design phase of software development for several purposes, 
including architecture recommendation, design pattern 
selection, User Interface (UI) & User Experience (UX) design, 
model selection, and code generation [8]. Specifically, AI can 
assist in suggesting suitable architectures based on 
requirements and constraints, suggesting proper design 
patterns, designing user interface mockups, and even 

recommending optimal ML models for specific tasks within the 
system [3],[7]. 

2) Most common AI Explainability (XAI) Challenges: The 
set of explainability challenges that arise during the design 
phase are mostly justifying why certain architecture or design 
pattern is recommended [3]. This includes highlighting the 
trade-offs that AI considers, such as performance vs. security,  
etc. Also, there might be areas where AI might be uncertain 
while generating software design recommendations. 

3) Most common & effective XAI Techniques: As per the 
literature review, the most effective XAI techniques in 
addressing XAI challenges include: 

• Counterfactual Explanations: This is a firm fit for both 
justification and trade-off analysis [5],[33],[35]. 
Counterfactuals directly answer the question, "What 
would need to change in the input (requirements, 
constraints) to get a different design recommendation?" 
This makes them inherently good at showing trade-offs. 
o Example: "The system recommended a 

microservices architecture because the requirements 
emphasized scalability. If high performance was 
prioritized instead, a monolithic architecture might 
have been recommended." 

• Rule Extraction: If the underlying AI model making the 
design recommendations is a decision tree or random 
forest, rule extraction is highly suitable [7], [19]. The 
rules directly show the decision-making logic. 
o Example: "IF requirement_scalability = HIGH 

AND requirement_maintainability = MEDIUM 
THEN architecture = MICROSERVICES." The 
rules are easy to understand and directly show the 
trade-offs and the factors influencing the decision. 

• Concept-Based Explanations: If the AI can be trained to 
recognize and reason about high-level concepts (e.g., 
"scalability," "security," "maintainability"), then 
concept-based explanations could be very effective [12], 
[19]. However, this requires defining and identifying 
relevant concepts, which can be challenging. 
o Example: "The system chose a microservices 

architecture because of its focus on the concept of 
scalability." 

C. Development Phase 
1) Most common AI Applications: In the development (or 

implementation/coding) phase of the SDLC, AI is primarily 
used for code generation, code completion, code 
summarization, and bug detection/repair [26]. AI can also be 
used for code translation and refactoring. Essentially, AI 
streamlines the coding process and assists developers by 
automating repetitive tasks, suggesting code snippets, and 
identifying potential errors [1].  

2) Most common AI Explainability (XAI) 
Challenges:  XAI-related challenges in this phase center mostly 
around correctness and reliability. This includes understanding 
why the AI made certain suggestions, so that developers can 



   
 

   
 

ensure the generated code is functionally correct, secure, and 
maintainable [23],[34]. 

3) Most Common & effective XAI Techniques: As per the 
literature review, the most effective XAI techniques in 
addressing XAI challenges include:  

• LIME/SHAP (Feature Attribution): These model-
agnostic techniques [18-19] can be very helpful 
for debugging and understanding specific code 
suggestions. They highlight which parts of the input 
(e.g., the natural language prompt, the surrounding code 
context) were most influential in generating a particular 
line or block of code. This can help developers 
understand why the AI made a specific suggestion. For 
instance, if a generated function is incorrect, 
LIME/SHAP could show that a particular keyword 
overly influenced the AI in the prompt, or that the AI 
ignored a crucial part of the surrounding code. 

• Example based explanations and counterfactuals: These 
techniques are very well-suited for addressing 
correctness and justification [9], [33]. 
o Examples: Showing similar, correct code snippets 

from the training data can help developers understand 
the learned patterns by the AI and feel confident 
about the suggestions. 

• Counterfactuals: These are particularly effective for 
justification. They answer the question, "What would 
have to vary in the input to get a different output?" This 
can help developers understand the generated code's 
sensitivity to changes in the requirements or context. For 
example, "If you remove the requirement for thread 
safety, the generated code would lack the lock 
mechanism." 

D. Testing 
1) Most common AI Applications: AI in software 

development testing can be utilized in numerous ways, from 
test case generation to test prioritization, test oracle generation, 
fault localization, and even metamorphic testing. 
LLMs alone show promise in test case generation, oracle 
generation, and understanding existing tests [15]. 

2) Most common AI Explainability (XAI) Challenges: In the 
testing phase of software development, the most common XAI 
challenge is understanding why a particular test case failed. 
Determining the expected output of a testcase (the "oracle") is 
often difficult [3]. 

3) Most common & effective XAI Techniques: During the 
literature review, the most effective XAI techniques in 
addressing XAI challenges were found to be: 

• LIME/SHAP (Feature Attribution) [18-19]: They show 
which input features (parts of the test case, code being 
tested, or execution context) were most influential in 
leading to the model's prediction (pass/fail, specific 
output, etc.). This helps understand why a test case failed 
or produced a particular output. For instance, if a test 
case fails, LIME/SHAP could highlight that a specific 

input value or a particular line of code was the primary 
driver of the failure. 

• Counterfactuals: These are particularly powerful for 
justification [9][12]. They answer the question, "What 
would need to change in the input to get 
a different output?" In the testing context, this could 
mean, "What small change to the test case would cause 
it to pass (or fail)?". 

E. Deployment & Monitoring 
 1) Most common AI Applications: During the deployment 
and monitoring stage of SDLC, AI can assist with 
activities such as anomaly detection, failure prediction, 
performance analysis, and facilitating continuous integration 
and delivery. Generative AI (GenAI) can be used for 
monitoring against possible deployment anomalies and 
facilitating rollback strategies when needed, streamlining the 
release process [26]. AI can be used for performance analysis by 
analyzing metrics and making suggestions for enhancing 
deployed software products. Measuring and collecting 
performance metrics is the primary use of GenAI, providing 
suggestions for improvement. [20].  
 2) Most common AI Explainability (XAI) Challenges: AI 
applications have several explainability challenges in the 
SDLC's deployment and monitoring phase. If AI flags a 
performance anomaly, what is the cause? Is it a genuine 
problem, or a false alarm? Alternatively, understanding why the 
AI flagged a particular log entry as suspicious. Why is AI 
predicting a failure? What are the contributing factors? At the 
same time, if AI is used for resource management and 
optimization, it is important to know why AI made a particular 
scaling, balancing, or allocation decision.  

3) Most common & effective XAI Techniques: During the 
literature review, the most effective XAI techniques in 
addressing XAI challenges were found to be: 

• LIME/SHAP (Feature Attribution):  These can highlight 
which performance metrics (CPU usage, memory, 
latency, etc.) were most influential in triggering the 
anomaly flag. This helps pinpoint the source of the 
problem. If the AI is trained on log data, these can show 
which words or phrases in the log entry were most 
important for the "suspicious" classification. This helps a 
human understand why it was flagged. LIME/SHAP can 
reveal which input features (e.g., system state, recent user 
actions, etc.) contributed most to the predicted failure. 
This helps understand the causes and potentially prevent 
the failure. LIME/SHAP can show which factors (e.g., 
current/predicted load, resource availability, etc.) drove 
the scaling/balancing/allocation decision. This provides 
transparency and allows for auditing. 

• Counterfactuals: Extremely valuable for understanding 
sensitivity and providing actionable insights.  
o Explaining Performance Anomaly: "If the request 

rate had been 20% lower, the anomaly would not 
have been flagged." 

o Explaining Suspicious Log Entry: "If the log entry 
had not contained the phrase 'access denied', it would 
not have been flagged." 



   
 

   
 

o Explaining Resource Management: "If the predicted 
load were 10% lower, fewer servers would have 
been allocated." 

F. Maintenance & Evolution 
1) Most common AI Applications: AI can greatly assist 

during this phase, particularly through Large Language Models 
(LLMs). AI can help identify and predict potential bugs or 
vulnerabilities and even suggest or assist in developing a fix. 
AI can create concise descriptions of what the code does to 
make understanding and maintenance easy. AI can suggest 
improvements in the structure and maintainability of the code. 
AI can be further used to automatically produce or update 
documentation to keep pace with code changes. 

2) Most common AI Explainability (XAI) Challenges: Even 
if an AI suggests a bug fix or a refactoring, developers need 
to trust that the suggestion is correct and will not introduce new 
problems. This is especially crucial in maintenance, where 
changes can have cascading effects. Unquestioningly accepting 
AI-generated changes is risky. 

3) Most common & effective XAI Techniques: During the 
literature review, the most effective XAI techniques in 
addressing XAI challenges were found to be: 

• LIME/SHAP: These can pinpoint the code elements that 
the AI model associates with a bug, helping developers 
focus their debugging efforts. They can also show the 
most significant parts of the code in relation to the 
summary generated, allowing developers to comprehend 
more precisely why the summary was generated. 

• Counterfactual Explanations: These explanations show 
how the model's prediction would change if some input 
features differed. They answer "what if" questions. They 
are highly relevant for Bug Prediction/Fixing, answering 
questions like "If this line of code were changed, would 
the bug still be present?" 

• Attention Mechanisms: Attention visualization can show 
which parts of the input code are most relevant to the 
generated summary, code, or translation. 

IV. DISCUSSION 
Explainable AI (XAI) is crucial for Software Engineering to 

overcome the 'black-box' problem inherent in AI-aided software 
development [18]. The application of XAI across various phases 
of Software Engineering promises to increase trust, 
transparency, and reliability in the AI-based software 
development process [31]. Although AI techniques have been 
proven to improve efficiency and decision-making, their non-
transparency typically hinders their use [9],[10]. Nevertheless, 
even with advancements on XAI in software engineering, some 
gaps remain to be addressed: 

• The lack of standardized evaluation metrics for XAI 
methods in software engineering makes it challenging to 
compare and assess the effectiveness of different 
methods. This gap hinders the development of 
explainable AI-driven software by complicating 
explanation quality assessment and comparison of XAI 
methods across software engineering phases [7],[31]    

• XAI methods are often ineffective in explaining the 
behavior of advanced AI models, such as deep neural 

networks. This shortcoming limits the development of 
trustworthy AI-driven software systems by making it 
difficult to understand the reasoning behind the model's 
decisions and to identify potential biases or errors [3].   

• Most XAI methods provide technical explanations that 
humans cannot easily interpret. This gap hinders the 
development of maintainable AI-driven software systems 
because it becomes difficult for software engineers to 
understand the AI system's behavior and to make changes 
or updates accordingly [31]. 

• XAI methods often lack integration with software 
development processes, limiting practical use and 
hindering the development of explainable, trustworthy, 
and maintainable AI-driven systems. [32]. 

While existing research findings show that Software 
Maintenance has received the most attention in XAI research 
[22], this paper provides a comprehensive overview of XAI 
techniques across all SDLC phases, particularly highlighting 
opportunities in less-explored areas like requirements and 
design. However, significant gaps remain in integrating XAI 
into earlier stages of Software Engineering, such as 
requirements elicitation and design [7]. Explainability can help 
refine specifications, enhance requirement traceability, and 
mitigate potential biases early in the development process 
[28],[3].   

One of this paper's key contributions is the comprehensive 
Software Development lifecycle phase-specific summarization 
of XAI techniques to improve explainability in Software 
Engineering processes. This paper presents XAI techniques for 
some of the key Software Engineering phases. Overall, through 
this paper, we want to highlight the necessity of XAI infusion 
across the Software Development Lifecycle to fill the 
explainability gap that would promote responsible AI-aided 
software development [7],[31]. 

V. CONCLUSION 
Transparency and trustworthiness are functionally 

imperative in AI systems, particularly within Software 
Engineering activities [7]. As AI continues to revolutionize 
various domains, advancing XAI paradigms that elucidate these 
systems' decision-making processes is critical [35]. Examining 
XAI techniques in the different phases of Software Engineering 
offers a fertile ground for addressing the inherent complexity in 
this field [7].  

Enabling explainability is vital for alleviating concerns 
around reliability and ethical implications in AI systems, as 
evidenced by numerous studies highlighting the necessity of 
comprehensible outputs for successful adoption of AI 
within Software Engineering [32],[2].  

The development of robust XAI tools capable of revealing 
the decision-making processes of AI models will enhance user 
confidence and facilitate broader acceptance of AI solutions 
across diverse fields [35]. To the best of our knowledge, this is 
the first work that presents a comprehensive overview of XAI 
techniques tailored to each phase of the Software Development 
Life Cycle (SDLC). By doing so, we aim to promote explainable 
AI in Software Engineering and facilitate the practical use of 
complex AI models in AI-driven software development. 



   
 

   
 

Future research needs to explore the optimal application of 
the tested and realized XAI approaches in agile and DevOps 
focused development paradigms. Also, research must aim to 
formulate benchmarking structures that enable fair comparison 
among XAI approaches to ensure a better fit with requirements 
in real-world applications. This is essential in software 
development for developing standard evaluation criteria for XAI 
in Software Engineering to assess effectiveness uniformly 
across all approaches [12]. 
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