

Explainable Artificial Intelligence Techniques for
Software Development Lifecycle: A Phase-specific

Survey
Lakshit Arora

lakshit@google.com

Sanjay Surendranath Girija
sanjaysg@google.com

Aman Raj
amanraj@google.com

Dipen Pradhan
dipenp@google.com

Google

Ankit Shetgaonkar
ankiit@google.com

Shashank Kapoor
shashankkapoor@google.com

Abstract— Artificial Intelligence (AI) is rapidly expanding and

integrating more into daily life to automate tasks, guide decision-
making, and enhance efficiency. However, complex AI models,
which make decisions without providing clear explanations
(known as the “black-box problem”), currently restrict trust and
widespread adoption of AI.

Explainable Artificial Intelligence (XAI) has emerged to
address the black-box problem of making AI systems more
interpretable and transparent so stakeholders can trust, verify,
and act upon AI-based outcomes. Researchers have developed
various techniques to foster XAI in the Software Development
Lifecycle. However, there are gaps in applying XAI techniques in
the Software Engineering phases. Literature review shows that
68% of XAI in Software Engineering research is focused on
maintenance as opposed to 8% on software management and
requirements.

In this paper, we present a comprehensive survey of the
applications of XAI methods such as concept-based explanations,
Local Interpretable Model-agnostic Explanations (LIME), SHapley
Additive exPlanations (SHAP), rule extraction, attention
mechanisms, counterfactual explanations, and example-based
explanations to the different phases of the Software Development
Life Cycle (SDLC), including requirements elicitation, design and
development, testing and deployment, and evolution.

To the best of our knowledge, this paper presents the first
comprehensive survey of XAI techniques for every phase of the
Software Development Life Cycle (SDLC). This survey aims to
promote explainable AI in Software Engineering and facilitate the
practical application of complex AI models in AI-driven software
development.

Keywords— Software Engineering, Explainable Artificial

Intelligence, Trust, Transparency, Ethical Artificial Intelligence

I. INTRODUCTION
Artificial Intelligence (AI)-aided software techniques

supported by Large Language Models are rapidly transforming
software development with increased productivity [1]. AI-aided
Software Engineering is on the rise and is becoming vital to
deliver reliable, valid, and maintainable software systems
[2],[3]. However, trust and widespread adoption of AI are often
hindered by the “black-box” problem, where complex AI
models make decisions without providing transparent
explanations for those decisions [5],[7]. Explainable Artificial
Intelligence (XAI) has emerged as a non-functional requirement

in AI systems to address this issue by improving the
interpretability and transparency of AI systems, allowing
stakeholders to trust, validate, and act upon AI-driven insights
[5],[9]. With the growing attention to XAI, it has become
challenging for practitioners and researchers to navigate and
select appropriate XAI methods and tools for their specific
applications [10].

Researchers have developed XAI methods for AI-aided
software development. However, this area remains understudied
[5],[11]. A blanket application of XAI to software engineering
is insufficient. Different software engineering phases require
tailored XAI techniques. For example, the literature reveals that
inconsistent XAI evaluation methods in software engineering
make it challenging to compare studies and XAI techniques
across different software engineering phases [7],[12]. This
disparity is evident in existing research, where studies indicate
that 68% of XAI in Software Engineering research focused on
the software maintenance phase versus 8% on the software
management and requirements [7].

This paper aims to address the lack of XAI applications in
the Software Development Lifecycle and recommend ways to
apply it ethically and truthfully. We address this by finding XAI
methods such as Local Interpretable Model-agnostic
Explanations (LIME), SHapley Additive exPlanations (SHAP),
and Rule Extraction, mixing and matching them to provide
explainability in key Software Engineering phases:
requirements elicitation, design and development, testing and
deployment, and evolution. The following research questions
guide the paper:

• RQ1: What are the key explainability challenges that AI
introduces in software engineering?

• RQ2: How can tailored XAI techniques for each software
engineering phase enhance the explainability of AI-aided
Software Engineering?

• RQ3: What are the limitations of existing XAI techniques
in Software Engineering?

A mixed-methods approach was employed to address these
research questions, combining a systematic literature review
(SLR) with a narrative review of relevant literature. The SLR
analyzed existing XAI in Software Engineering studies to
identify key themes, evaluate XAI methods, and identify
research gaps. Searches were conducted in IEEE Xplore, ACM
Digital Library, Science Direct, Wiley, Google Scholar, and
Scopus using keywords such as “XAI”, “Explainable Artificial

Lakshit Arora
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Intelligence”, “Software Engineering”, “AI-aided
development”, “trust”, “transparency”, and “ethical AI”. The
Inclusion criteria focused on peer-reviewed articles published
within the last 6 years that addressed XAI in software
engineering. A narrative literature review complemented the
SLR to explore broader perspectives on XAI and Software
Engineering, which assisted in providing XAI techniques for
phase-specific Software Engineering. Through synthesizing
SLR and narrative review results, this paper proposes the first
comprehensive overview of XAI techniques tailored to each
Software Development Life Cycle (SDLC) phase.

The paper is structured as follows: Section 2 reviews the
literature on AI in Software Engineering, explainable AI, and
XAI in Software Engineering. Section 3 discusses the proposed
XAI techniques for each Software Engineering phase to improve
the explainability of AI-aided software development. Section 4
presents the discussion, and Section 5 concludes the paper with
recommendations and future research.

II. LITERATURE REVIEW

A. AI in Software Engineering
AI applications within the Software Engineering process are

rapidly expanding and are considered significant, particularly
with the use of Generative AI for tasks like code generation
[21],[3]. Kokol (2024) conducted a comprehensive knowledge
synthesis to assess the current status of published literature in AI
in Software Engineering [11]. Martinez-Fernandz et al.
conducted a comprehensive study on software engineering for
AI-based systems, in which the authors did a systematic
literature review of software engineering practices followed in
AI-based systems [3]. Gorkem and Giray [22] conducted a study
on Software Engineering for Machine Learning (ML) systems
in which they outlined the misconception that sometimes arises
between Software Engineering for ML which refers to Software
Engineering approaches to developing ML or AI systems versus
ML for Software Engineering which deals with the use of ML
and AI in Software Engineering tasks [3]. This paper focuses on
the latter, examining explainable AI (XAI) for Software
Engineering to support the development of reliable, valid, and
maintainable software systems. Specific AI usages in Software
Engineering include:

• Requirements elicitation: Natural language processing
for document analysis, chatbots for elicitation, data
mining for user needs [11].

• Design and implementation: System architecture
recommendations, user interface and experience
generation, model selection, code generation, code
completion, and bug detection [11].

• Testing and Verification: Test case generation, test
prioritization, fault localization [25].

• Deployment and Monitoring: Performance evaluation,
failure detection, bias monitoring [25].

• Maintenance: Bug prediction, refactoring
recommendations, and change impact analysis [25].

Despite demonstrated effectiveness and efficiency, for
example, correct code generation [21], AI adoption in Software
Engineering is often marred by the “black-box” phenomenon,
where AI outputs lack explanations understandable by software

development stakeholders [27]. This leads to several limitations
during the requirements elicitation phase (e.g., ambiguity, lack
of tacit knowledge extraction, bias, etc.), design phase (lack of
creativity, lack of trade-off analysis, lack of contextual
awareness, etc.), code development phase (e.g., lack of
techniques for evaluating correctness, security vulnerabilities,
maintainability, etc.), and during the testing phase (e.g., test
oracle problem, test flakiness, scalability concerns, etc.
[3],[28]).

B. Explainable AI (XAI)
Explainability is gaining traction within AI communities as

a means to address the “black-box” problem, which stems from
a lack of transparency regarding how AI models operate and
arrive at their outputs [10],[29]. Explainable AI (XAI)
techniques are designed to provide reasonable and
understandable explanations on the complex decision-making
processes of machine learning models [5], [30]. Vilone and
Longo (2021) proposed a widely cited classification for XAI
methods [30], based on the following properties:

• Stage of explainability: Refers to the period in the process
of generating outputs when a model generates the
explanation for the decision it provides. The authors
discuss two stages called Ante-hoc and Post-hoc. Ante-
hoc generates explanations for decisions from the
beginning of the training data while aiming to achieve
optimal performance, and Post-hoc, which provides
explanations after the model has been trained and made
predictions. Post-hoc can be either model-specific or
model-agnostic. Model-agnostic methods apply to any
model, while model-specific methods apply to specific
models.

• Scope of explainability: Refers to the extent of an
explanation produced by XAI methods. The scope can be
local or global, with local explaining only an instance of
inference to the user while global providing the entire
inference of the model to the user.

• Input and output: Refers to the format of the input and the
output that can be used by XAI techniques to explain the
model decision. The XAI technique utilizes the XAI
input to generate the explanation output. The XAI
methods need to understand the same kind of data that the
model itself uses. The most common forms of input
explanations are images, text, and vectors, while output
examples are numeric, rules, and visualizations.

In the following text, we present some of the most common
XAI techniques and provide a brief description incorporating the
stage, scope, and input/output properties. Figure 1 shows a brief
summarization and classification of standard XAI techniques.

1) Feature Attribution based techniques: These techniques
center around explaining predictions by assigning importance
or relevance scores to the input features. They tell
which features matter most. The most common feature
attribution based techniques are:

• LIME (Local Interpretable Model-agnostic
Explanations) [12],[31]: LIME is a post-hoc, model-
agnostic technique that explains individual predictions. It
works by approximating the complex model locally with

a simpler, interpretable model (e.g., linear model or
decision tree). LIME generates new data points by
perturbing the input features of the instance to be
explained and then observing how the model's prediction
changes. It then trains a weighted linear model on top of
the instance, using the perturbed data and
resulting predictions. This local linear model’s weights
are used as explanations, stating the relevance of each
feature for that specific prediction. It can
handle varying input types (e.g., tabular, text, images)
and typically outputs feature importance as output (e.g.,
numeric weights, or highlighted words/pixels). A
practical example of this technique would be explaining
why a particular image was classified as a “cat” by
highlighting
the pixels that contributed most to the classification.

• SHAP (SHapley Additive exPlanations): Messalas,
Andreas, et al. described SHAP as a post-hoc, model-
agnostic XAI technique based on game theory [17]. This
technique calculates Shapley values, which represent the
average marginal contribution of each feature to the
prediction expected over all possible feature
combinations. SHAP values provide local explanations
(explanation of one prediction) and global explanations
(feature importance summary for the entire dataset). The
input can be anything, e.g., the input of the original
model. The output often features visualizable importance
scores (numeric). An example of this technique would be
explaining why a loan application was rejected by an AI
model, showing the contribution of each factor (income,
credit score, debt, etc.) to the rejection decision.

• Attention Mechanisms: These integrate into the model as
part of the model architecture, rather than post-hoc. They
are model-specific and occasionally used in deep
learning models like Transformers for Natural Language
Processing (NLP) and computer vision. Samek,

Wojciech, et al. (2016) in their research [16] showcased
how attention mechanisms provide a local explanation by
highlighting the input areas (e.g., words in a sentence,
regions in an image) the model is paying attention
to when making predictions. The output is attention
weights, typically viewed as a heatmap. An application
example of this method would be in machine translation,
where it shows which words the model is attending to in
the source sentence when translating each word in the
target sentence.

2) Instance based (or example based) techniques: These
methods show examples (either real or synthetic) to illustrate
the model's behavior. They explain "by analogy" or by showing
"what-if" scenarios. Common techniques include:

• Counterfactual Explanations [19]: Counterfactual
explanations are a post-hoc, generally model-agnostic
method for local explanations. They show how the
model would make different predictions if certain input
features differed, giving "what-if" type responses. They
show the least modification to the input
features, adequate to change the model's prediction to
a specified alternative. Input is a data point and the
model; output is a transformed data point
(same structure as input) that would result in a different
prediction. Mothilal, Ramaravind K., et al. (2020)
proposed a framework [4] for generating and evaluating
diverse counterfactual explanations based on
determinantal point processes. Extending the loan
application example, a counterfactual explanation could
indicate that a $10,000 boost in the applicant's income
would suffice for loan approval.

• Example-Based Explanations [10]: These are often post-
hoc and model-agnostic, although a few models like k-
nearest neighbor (k-NN) are inherently example-based.
These methods find similar cases in the training set or

Figure 1: Summarizing and classifying common eXplainable AI (XAI) techniques.

produce counterfactual cases. The input is the trained
model. The output is a set of examples to clarify the
internal representation of data. The scope can
be local (explaining a single prediction) or global
(representing the whole model).

3) Concept based techniques: These techniques go beyond
simple feature importance or examples and tries to explain in
terms of abstract concepts that the model has (implicitly or
explicitly) learned.

• Concept-Based Explanations [12]: These are typically
model-specific and post-hoc explanations and provide a
global explanation of the model. They try to discover
higher-level concepts that are driving the model’s
decisions. They work by discovering sets of inputs
activating portions of a model, developing a concept, and
measuring each discovered concept’s contribution to the
model’s prediction. The input is usually the trained
model, and the output describes the concepts involved,
usually with visualizations. An example of this type of
explanation would be determining that the concept
“striped” in an image dataset considerably influences the
classification of images into “zebra”. Yeh, Chih-Kuan, et
al. (2020) investigated concept-based explainability for
Deep Neural Networks (DNNs) by defining
completeness of concepts, proposed a method to discover
interpretable and complete concepts, and introduced an
approach to quantify concept importance [13].

4) Rule based techniques: This method explicitly generates
rules for the model's logic.

• Rule Extraction [30]: These techniques attempt to
extract human-readable rules from a trained model. These
rules state the model's decision-making process in an "if-
then" form. Both post-hoc (when applied to an existing
model) and ante-hoc (when the model is to be rule-based
from the start) are possible. The scope is typically global.
The aim is to create a simplified but interpretable model
for the decision process. The input is the trained model,
and the output is a collection of rules that approximate
the model’s decision-making. One of these methods is
exemplified by Guido Bologna by showing a rule
extraction technique [6] that has been applied to
ensembles of decision trees and neural networks.

C. XAI in Software Engineering
XAI in Software Engineering involves applying XAI

techniques to different Software Engineering phases and tasks.
A Comprehensive literature study conducted by A. H.
Mohammadkhani et. al. (2023) on XAI in Software Engineering
presented the following findings [7]:

• Software maintenance: SRL results show this phase is
most explored, with 68% of XAI applications in Software
Engineering.

• Software development: This phase comprises 16% of
XAI applications in software engineering.

• Software management and requirements: These two tasks
received less attention, but as reported in the studies
surveyed, each accounts for 8% of XAI applications.

• Other tasks: Software design and testing have not been
researched.

III. AI APPLICATIONS, XAI CHALLENGES & XAI METHODS IN
EACH SDLC PHASE

In this section, we will go over different phases of the
Software Development Lifecycle (SDLC). For each phase, we
will cover 1) the applications of AI in each phase, 2) the AI
explainability-related challenges in each phase, and 3) XAI
techniques tailored to each phase that could help address those
challenges. The SDLC is iterative; the stages often repeat
multiple times as the software evolves. This paper covers the
following SDLC phases:

• Requirement Elicitation: This phase involves discovering
the stakeholders' needs and constraints and establishing
what the software needs to do.

• Design: The design phase takes the gathered
requirements and turns them into a blueprint for the
software. It involves creating the system architecture,
specifying data structures, algorithms, interfaces, and
modules, and outlining how the system will satisfy the
requirements.

• Development (Implementation/Coding): This involves
coding and implementing the software according to the
design specifications. Developers transform the design
into a functional software product.

• Testing: In this phase, the software is tested to reveal
defects and ensure it functions according to the
specifications and requirements. There are several levels
of testing, including unit, integration, system, and
acceptance testing.

• Deployment and Monitoring: Deployment means
making the software available to use by releasing it to
users or deploying it into the production environment,
and monitoring means continuously tracking the
performance of the deployed system and collecting user
feedback.

• Maintenance and Evolution: This is the ongoing process
of modifying the software after it has been deployed to
correct faults, improve performance, or adapt to the
changing environment. It includes debugging, new
feature additions, and system updates.

A. Requirement Elicitation Phase
1) Most common AI Applications: A literature review from

2023 conducted by Cheligeer C et. al. demonstrated how AI
offers significant potential for automating and enhancing
requirements elicitation based on the analysis of existing
documents to infer key information and even create an initial
draft of requirements [2]. Natural Language Processing (NLP)
and Large Language Models (LLMs) can be utilized to
understand user requirements, identify contradictions, and
prioritize requirements [8],[28]. LLMs can also be used to
create and improve requirement specifications [15]. AI can also
assist in requirements elicitation by generating requirements
from high-level user inputs or documents, eliminating
ambiguity and identifying missing information [7].

2) Most common AI Explainability (XAI) Challenges: XAI
challenges often emerge during requirement elicitation, where
appropriate XAI techniques can provide support:

• Ambiguity and Incompleteness: Natural language is
inherently ambiguous, and requirements are often
incomplete. AI may misinterpret requirements or miss
crucial details. AI also might misunderstand ambiguous
or incomplete user statements, leading to incorrect
requirements. [28].

• Tacit Knowledge: Much knowledge about requirements
is tacit. Stakeholders have implicit knowledge that they
do not even realize they possess or cannot easily
articulate. AI struggles with this during requirement
elicitation because it needs concrete data [5].

• Bias and Fairness: Training data may contain biases,
leading to unfair requirements [7],[9].

3) Most common & effective XAI techniques: As per the
literature review, the most effective XAI techniques in
addressing XAI challenges include:

• LIME/SHAP can help by identifying which features of
existing systems [9] or user actions are most influential
in producing specific outcomes (e.g., user satisfaction,
task completion) [19]; such methods can even bring out
latent requirements. Suppose a feature repeatedly has a
high SHAP value for positive predictions. In that case,
it indicates that this feature is significant to users
[12], even if they did not include it as a requirement.
SHAP values specifically could assist in detecting biases
by measuring the contribution of each feature to the
prediction, making it easier to identify if protected
attributes (such as race or gender, etc.) or proxies for
protected attributes are influencing the requirements.
LIME can also be used, but SHAP is generally preferred
for its stronger theoretical foundations. For instance,
analyzing user interactions with a mobile app prototype
using LIME/SHAP could reveal that users who complete
a key task often utilize a particular gesture or navigation
sequence. This could reveal an unspoken requirement for
that gesture or navigation flow, even though users did
not express it clearly through interviews or user studies.

• Counterfactual Explanations show how small changes to
input features affect the outcome. They can help
stakeholders understand the system's sensitivity and
identify potential trade-offs [9],[12]. This can be
particularly useful for clarifying ambiguous or vague
and evolving requirements. For instance, "If we add a
requirement for X, how will that affect the system's
ability to satisfy Y?" or "If we relax requirement Z, what
other requirements become feasible?"

B. Design Phase
1) Most common AI Applications: AI is used during the

design phase of software development for several purposes,
including architecture recommendation, design pattern
selection, User Interface (UI) & User Experience (UX) design,
model selection, and code generation [8]. Specifically, AI can
assist in suggesting suitable architectures based on
requirements and constraints, suggesting proper design
patterns, designing user interface mockups, and even

recommending optimal ML models for specific tasks within the
system [3],[7].

2) Most common AI Explainability (XAI) Challenges: The
set of explainability challenges that arise during the design
phase are mostly justifying why certain architecture or design
pattern is recommended [3]. This includes highlighting the
trade-offs that AI considers, such as performance vs. security,
etc. Also, there might be areas where AI might be uncertain
while generating software design recommendations.

3) Most common & effective XAI Techniques: As per the
literature review, the most effective XAI techniques in
addressing XAI challenges include:

• Counterfactual Explanations: This is a firm fit for both
justification and trade-off analysis [5],[33],[35].
Counterfactuals directly answer the question, "What
would need to change in the input (requirements,
constraints) to get a different design recommendation?"
This makes them inherently good at showing trade-offs.
o Example: "The system recommended a

microservices architecture because the requirements
emphasized scalability. If high performance was
prioritized instead, a monolithic architecture might
have been recommended."

• Rule Extraction: If the underlying AI model making the
design recommendations is a decision tree or random
forest, rule extraction is highly suitable [7], [19]. The
rules directly show the decision-making logic.
o Example: "IF requirement_scalability = HIGH

AND requirement_maintainability = MEDIUM
THEN architecture = MICROSERVICES." The
rules are easy to understand and directly show the
trade-offs and the factors influencing the decision.

• Concept-Based Explanations: If the AI can be trained to
recognize and reason about high-level concepts (e.g.,
"scalability," "security," "maintainability"), then
concept-based explanations could be very effective [12],
[19]. However, this requires defining and identifying
relevant concepts, which can be challenging.
o Example: "The system chose a microservices

architecture because of its focus on the concept of
scalability."

C. Development Phase
1) Most common AI Applications: In the development (or

implementation/coding) phase of the SDLC, AI is primarily
used for code generation, code completion, code
summarization, and bug detection/repair [26]. AI can also be
used for code translation and refactoring. Essentially, AI
streamlines the coding process and assists developers by
automating repetitive tasks, suggesting code snippets, and
identifying potential errors [1].

2) Most common AI Explainability (XAI)
Challenges: XAI-related challenges in this phase center mostly
around correctness and reliability. This includes understanding
why the AI made certain suggestions, so that developers can

ensure the generated code is functionally correct, secure, and
maintainable [23],[34].

3) Most Common & effective XAI Techniques: As per the
literature review, the most effective XAI techniques in
addressing XAI challenges include:

• LIME/SHAP (Feature Attribution): These model-
agnostic techniques [18-19] can be very helpful
for debugging and understanding specific code
suggestions. They highlight which parts of the input
(e.g., the natural language prompt, the surrounding code
context) were most influential in generating a particular
line or block of code. This can help developers
understand why the AI made a specific suggestion. For
instance, if a generated function is incorrect,
LIME/SHAP could show that a particular keyword
overly influenced the AI in the prompt, or that the AI
ignored a crucial part of the surrounding code.

• Example based explanations and counterfactuals: These
techniques are very well-suited for addressing
correctness and justification [9], [33].
o Examples: Showing similar, correct code snippets

from the training data can help developers understand
the learned patterns by the AI and feel confident
about the suggestions.

• Counterfactuals: These are particularly effective for
justification. They answer the question, "What would
have to vary in the input to get a different output?" This
can help developers understand the generated code's
sensitivity to changes in the requirements or context. For
example, "If you remove the requirement for thread
safety, the generated code would lack the lock
mechanism."

D. Testing
1) Most common AI Applications: AI in software

development testing can be utilized in numerous ways, from
test case generation to test prioritization, test oracle generation,
fault localization, and even metamorphic testing.
LLMs alone show promise in test case generation, oracle
generation, and understanding existing tests [15].

2) Most common AI Explainability (XAI) Challenges: In the
testing phase of software development, the most common XAI
challenge is understanding why a particular test case failed.
Determining the expected output of a testcase (the "oracle") is
often difficult [3].

3) Most common & effective XAI Techniques: During the
literature review, the most effective XAI techniques in
addressing XAI challenges were found to be:

• LIME/SHAP (Feature Attribution) [18-19]: They show
which input features (parts of the test case, code being
tested, or execution context) were most influential in
leading to the model's prediction (pass/fail, specific
output, etc.). This helps understand why a test case failed
or produced a particular output. For instance, if a test
case fails, LIME/SHAP could highlight that a specific

input value or a particular line of code was the primary
driver of the failure.

• Counterfactuals: These are particularly powerful for
justification [9][12]. They answer the question, "What
would need to change in the input to get
a different output?" In the testing context, this could
mean, "What small change to the test case would cause
it to pass (or fail)?".

E. Deployment & Monitoring
 1) Most common AI Applications: During the deployment
and monitoring stage of SDLC, AI can assist with
activities such as anomaly detection, failure prediction,
performance analysis, and facilitating continuous integration
and delivery. Generative AI (GenAI) can be used for
monitoring against possible deployment anomalies and
facilitating rollback strategies when needed, streamlining the
release process [26]. AI can be used for performance analysis by
analyzing metrics and making suggestions for enhancing
deployed software products. Measuring and collecting
performance metrics is the primary use of GenAI, providing
suggestions for improvement. [20].
 2) Most common AI Explainability (XAI) Challenges: AI
applications have several explainability challenges in the
SDLC's deployment and monitoring phase. If AI flags a
performance anomaly, what is the cause? Is it a genuine
problem, or a false alarm? Alternatively, understanding why the
AI flagged a particular log entry as suspicious. Why is AI
predicting a failure? What are the contributing factors? At the
same time, if AI is used for resource management and
optimization, it is important to know why AI made a particular
scaling, balancing, or allocation decision.

3) Most common & effective XAI Techniques: During the
literature review, the most effective XAI techniques in
addressing XAI challenges were found to be:

• LIME/SHAP (Feature Attribution): These can highlight
which performance metrics (CPU usage, memory,
latency, etc.) were most influential in triggering the
anomaly flag. This helps pinpoint the source of the
problem. If the AI is trained on log data, these can show
which words or phrases in the log entry were most
important for the "suspicious" classification. This helps a
human understand why it was flagged. LIME/SHAP can
reveal which input features (e.g., system state, recent user
actions, etc.) contributed most to the predicted failure.
This helps understand the causes and potentially prevent
the failure. LIME/SHAP can show which factors (e.g.,
current/predicted load, resource availability, etc.) drove
the scaling/balancing/allocation decision. This provides
transparency and allows for auditing.

• Counterfactuals: Extremely valuable for understanding
sensitivity and providing actionable insights.
o Explaining Performance Anomaly: "If the request

rate had been 20% lower, the anomaly would not
have been flagged."

o Explaining Suspicious Log Entry: "If the log entry
had not contained the phrase 'access denied', it would
not have been flagged."

o Explaining Resource Management: "If the predicted
load were 10% lower, fewer servers would have
been allocated."

F. Maintenance & Evolution
1) Most common AI Applications: AI can greatly assist

during this phase, particularly through Large Language Models
(LLMs). AI can help identify and predict potential bugs or
vulnerabilities and even suggest or assist in developing a fix.
AI can create concise descriptions of what the code does to
make understanding and maintenance easy. AI can suggest
improvements in the structure and maintainability of the code.
AI can be further used to automatically produce or update
documentation to keep pace with code changes.

2) Most common AI Explainability (XAI) Challenges: Even
if an AI suggests a bug fix or a refactoring, developers need
to trust that the suggestion is correct and will not introduce new
problems. This is especially crucial in maintenance, where
changes can have cascading effects. Unquestioningly accepting
AI-generated changes is risky.

3) Most common & effective XAI Techniques: During the
literature review, the most effective XAI techniques in
addressing XAI challenges were found to be:

• LIME/SHAP: These can pinpoint the code elements that
the AI model associates with a bug, helping developers
focus their debugging efforts. They can also show the
most significant parts of the code in relation to the
summary generated, allowing developers to comprehend
more precisely why the summary was generated.

• Counterfactual Explanations: These explanations show
how the model's prediction would change if some input
features differed. They answer "what if" questions. They
are highly relevant for Bug Prediction/Fixing, answering
questions like "If this line of code were changed, would
the bug still be present?"

• Attention Mechanisms: Attention visualization can show
which parts of the input code are most relevant to the
generated summary, code, or translation.

IV. DISCUSSION
Explainable AI (XAI) is crucial for Software Engineering to

overcome the 'black-box' problem inherent in AI-aided software
development [18]. The application of XAI across various phases
of Software Engineering promises to increase trust,
transparency, and reliability in the AI-based software
development process [31]. Although AI techniques have been
proven to improve efficiency and decision-making, their non-
transparency typically hinders their use [9],[10]. Nevertheless,
even with advancements on XAI in software engineering, some
gaps remain to be addressed:

• The lack of standardized evaluation metrics for XAI
methods in software engineering makes it challenging to
compare and assess the effectiveness of different
methods. This gap hinders the development of
explainable AI-driven software by complicating
explanation quality assessment and comparison of XAI
methods across software engineering phases [7],[31]

• XAI methods are often ineffective in explaining the
behavior of advanced AI models, such as deep neural

networks. This shortcoming limits the development of
trustworthy AI-driven software systems by making it
difficult to understand the reasoning behind the model's
decisions and to identify potential biases or errors [3].

• Most XAI methods provide technical explanations that
humans cannot easily interpret. This gap hinders the
development of maintainable AI-driven software systems
because it becomes difficult for software engineers to
understand the AI system's behavior and to make changes
or updates accordingly [31].

• XAI methods often lack integration with software
development processes, limiting practical use and
hindering the development of explainable, trustworthy,
and maintainable AI-driven systems. [32].

While existing research findings show that Software
Maintenance has received the most attention in XAI research
[22], this paper provides a comprehensive overview of XAI
techniques across all SDLC phases, particularly highlighting
opportunities in less-explored areas like requirements and
design. However, significant gaps remain in integrating XAI
into earlier stages of Software Engineering, such as
requirements elicitation and design [7]. Explainability can help
refine specifications, enhance requirement traceability, and
mitigate potential biases early in the development process
[28],[3].

One of this paper's key contributions is the comprehensive
Software Development lifecycle phase-specific summarization
of XAI techniques to improve explainability in Software
Engineering processes. This paper presents XAI techniques for
some of the key Software Engineering phases. Overall, through
this paper, we want to highlight the necessity of XAI infusion
across the Software Development Lifecycle to fill the
explainability gap that would promote responsible AI-aided
software development [7],[31].

V. CONCLUSION
Transparency and trustworthiness are functionally

imperative in AI systems, particularly within Software
Engineering activities [7]. As AI continues to revolutionize
various domains, advancing XAI paradigms that elucidate these
systems' decision-making processes is critical [35]. Examining
XAI techniques in the different phases of Software Engineering
offers a fertile ground for addressing the inherent complexity in
this field [7].

Enabling explainability is vital for alleviating concerns
around reliability and ethical implications in AI systems, as
evidenced by numerous studies highlighting the necessity of
comprehensible outputs for successful adoption of AI
within Software Engineering [32],[2].

The development of robust XAI tools capable of revealing
the decision-making processes of AI models will enhance user
confidence and facilitate broader acceptance of AI solutions
across diverse fields [35]. To the best of our knowledge, this is
the first work that presents a comprehensive overview of XAI
techniques tailored to each phase of the Software Development
Life Cycle (SDLC). By doing so, we aim to promote explainable
AI in Software Engineering and facilitate the practical use of
complex AI models in AI-driven software development.

Future research needs to explore the optimal application of
the tested and realized XAI approaches in agile and DevOps
focused development paradigms. Also, research must aim to
formulate benchmarking structures that enable fair comparison
among XAI approaches to ensure a better fit with requirements
in real-world applications. This is essential in software
development for developing standard evaluation criteria for XAI
in Software Engineering to assess effectiveness uniformly
across all approaches [12].

REFERENCES
[1] I. Baskhad and S. Tim, “Program Code Generation with Generative

AIs,” Algorithms, vol. 17, no. 2, 2024, doi: 10.3390/a17020062.
[2] Cheligeer C, et. al, Machine learning in requirements elicitation: a

literature review. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing. 2022;36:e32. doi:10.1017/S0890060422000166

[3] S. Martínez-Fernández et al., “Software Engineering for AI-Based
Systems: A Survey,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 2, pp. 1–59, Apr. 2022, doi:
10.1145/3487043.

[4] Mothilal, Ramaravind K., et al. “Explaining Machine Learning
Classifiers through Diverse Counterfactual Explanations.” Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency,
ACM, 2020, pp. 607–17. DOI.org (Crossref),
https://doi.org/10.1145/3351095.3372850.

[5] L. Chazette, et. al, “Explainable software systems: from requirements
analysis to system evaluation,” Requirements Engineering, 2022, doi:
10.1007/s00766-022-00393-5.

[6] Bologna, Guido. “A Rule Extraction Technique Applied to Ensembles of
Neural Networks, Random Forests, and Gradient-Boosted
Trees.” Algorithms, vol. 14, no. 12, Nov. 2021, p. 339. DOI.org
(Crossref), https://doi.org/10.3390/a14120339.

[7] A. H. Mohammadkhani et. al, “A Systematic Literature Review of
Explainable AI for Software Engineering,” arXiv.org, Feb. 2023, doi:
10.48550/arxiv.2302.06065.

[8] Hutchinson, Ben, et al. “Towards Accountability for Machine Learning
Datasets: Practices from Software Engineering and Infrastructure.”
Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, ACM, 2021, pp. 560–75. DOI.org (Crossref),
https://doi.org/10.1145/3442188.3445918.

[9] A. Bennetot et al., “A Practical tutorial on Explainable AI Techniques,”
ACM Computing Surveys, 2024, doi: 10.1145/3670685.

[10] T. Clement, et al, “XAIR: A Systematic Metareview of Explainable AI
(XAI) Aligned to the Software Development Process,” Machine
Learning and Knowledge Extraction, vol. 5, no. 1, pp. 78–108, Jan.
2023, doi: 10.3390/make5010006.

[11] K. Peter, “The Use of AI in Software Engineering: A Synthetic
Knowledge Synthesis of the Recent Research Literature,” Information,
vol. 15, no. 6, 2024, doi: 10.3390/info15060354.

[12] S. Ali et al., “Explainable Artificial Intelligence (XAI): What we know
and what is left to attain Trustworthy Artificial Intelligence,”
Information Fusion, 2023, doi: 10.1016/j.inffus.2023.101805.

[13] Yeh, Chih-Kuan, et al. "On completeness-aware concept-based
explanations in deep neural networks." Advances in neural information
processing systems 33 (2020): 20554-20565.

[14] P. J. Phillips et al., “Four Principles of Explainable Artificial
Intelligence,” null, 2021, doi: 10.6028/nist.ir.8312.

[15] Hou, Xinyi, et al. “Large Language Models for Software Engineering: A
Systematic Literature Review.” ACM Transactions on Software
Engineering and Methodology, vol. 33, no. 8, Nov. 2024, pp. 1–
79. DOI.org (Crossref), https://doi.org/10.1145/3695988.

[16] Samek, Wojciech, et al. “Evaluating the Visualization of What a Deep
Neural Network Has Learned.” IEEE Transactions on Neural Networks
and Learning Systems, vol. 28, no. 11, Nov. 2017, pp. 2660–73. IEEE
Xplore, https://doi.org/10.1109/TNNLS.2016.2599820

[17] Messalas, Andreas, et al. “Model-Agnostic Interpretability with Shapley
Values.” 2019 10th International Conference on Information,
Intelligence, Systems and Applications (IISA), IEEE, 2019, pp. 1–
7. DOI.org (Crossref), https://doi.org/10.1109/IISA.2019.8900669

[18] D. Minh, H. X. Wang, Y. F. Li, and T. N. Nguyen, “Explainable
artificial intelligence: a comprehensive review,” Artificial Intelligence
Review, pp. 1–66, Nov. 2021, doi: 10.1007/s10462-021-10088-y.

[19] Mersha, Melkamu, et al. “Explainable Artificial Intelligence: A Survey
of Needs, Techniques, Applications, and Future
Direction.” Neurocomputing, vol. 599, Sept. 2024, p. 128111. DOI.org
(Crossref), https://doi.org/10.1016/j.neucom.2024.128111.

[20] Simaremare, Mario, et al. “Exploring the Potential of Generative AI:
Use Cases in Software Startups.” Agile Processes in Software
Engineering and Extreme Programming – Workshops, edited by
Lodovica Marchesi et al., vol. 524, Springer Nature Switzerland, 2025,
pp. 3–11. DOI.org (Crossref), https://doi.org/10.1007/978-3-031-72781-
8_1.

[21] M. Merkel and J. Dorpinghaus, “A case study on the transformative
potential of AI in software engineering on LeetCode and ChatGPT,”
2025, doi: https://doi.org/10.48550/arXiv.2501.03639.

[22] Görkem Giray. 2021. A software engineering perspective on engineering
machine learning systems: State of the art and challenges. J. Syst. Softw.
180, C (Oct 2021). https://doi.org/10.1016/j.jss.2021.111031

[23] V. Hassija et al., “Interpreting Black-Box Models: A Review on
Explainable Artificial Intelligence,” Cognitive Computation, vol. 16, pp.
45–74, Aug. 2023, doi: 10.1007/s12559-023-10179-8.

[24] A. Nguyen-Duc et al., “Generative Artificial Intelligence for Software
Engineering -- A Research Agenda,” arXiv.org, Oct. 2023, doi:
10.48550/arxiv.2310.18648..

[25] F. A. Batarseh, R. Mohod, A. Kumar, and J. C. Bui, “The application of
artificial intelligence in software engineering: a review challenging
conventional wisdom,” Data Democracy, pp. 179–232, Jan. 2020, doi:
10.1016/b978-0-12-818366-3.00010-1.

[26] D. Russo, “Navigating the Complexity of Generative AI Adoption in
Software Engineering,” ACM Transactions on Software Engineering
and Methodology, 2023, doi: 10.1145/3652154.

[27] W. J. von Eschenbach and J. R. Warren, “Transparency and the Black
Box Problem: Why We Do Not Trust AI,” Philosophy & Technology,
pp. 1–16, Sep. 2021, doi: 10.1007/s13347-021-00477-0.

[28] C. Gao, X. Hu, S. Gao, X. Xia, and Z. Jin, “The Current Challenges of
Software Engineering in the Era of Large Language Models,” ACM
Transactions on Software Engineering and Methodology, 2025, doi:
10.1145/3712005.

[29] K. A. Eldrandaly, M. Abdel-Basset, M. Ibrahim, and N. M. Abdel-Aziz,
“Explainable and secure artificial intelligence: taxonomy, cases of study,
learned lessons, challenges and future directions,” Enterprise
Information Systems, Jul. 2022, doi: 10.1080/17517575.2022.2098537.

[30] G. Vilone and L. Longo, “Classification of Explainable Artificial
Intelligence Methods through Their Output Formats,” Machine Learning
and Knowledge Extraction, vol. 3, no. 3, pp. 615–661, Aug. 2021, doi:
10.3390/make3030032.

[31] W. Yang et al., “Survey on Explainable AI: From Approaches,
Limitations and Applications Aspects,” Human-Centric Intelligent
Systems, vol. 3, no. 3, pp. 161–188, Aug. 2023, doi: 10.1007/s44230-
023-00038-y.

[32] Z. U. Islam, “Software Engineering Methods for Responsible Artificial
Intelligence,” Adaptive Agents and Multi-Agent Systems, 2021, doi:
10.5555/3463952.3464248.

[33] A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI),” IEEE Access, vol. 6, pp.
52138–52160, Sep. 2018, doi: 10.1109/access.2018.2870052.

