
Published as a conference paper at ICLR 2023

AVERAGE SENSITIVITY OF DECISION TREE LEARNING

Satoshi Hara
Osaka University
satohara@ar.sanken.osaka-u.ac.jp

Yuichi Yoshida
National Institute of Informatics
yyoshida@nii.ac.jp

ABSTRACT

A decision tree is a fundamental model used in data mining and machine learning.
In practice, the training data used to construct a decision tree may change over
time or contain noise, and a drastic change in the learned tree structure owing to
such data perturbation is unfavorable. For example, in data mining, a change in
the tree implies a change in the extracted knowledge, which raises the question
of whether the extracted knowledge is truly reliable or is only a noisy artifact.
To alleviate this issue, we design decision tree learning algorithms that are stable
against insignificant perturbations in the training data. Specifically, we adopt the
notion of average sensitivity as a stability measure, and design an algorithm with
low average sensitivity that outputs a decision tree whose accuracy is close to the
optimal decision tree. The experimental results on real-world datasets demon-
strate that the proposed algorithm enables users to select suitable decision trees
considering the trade-off between average sensitivity and accuracy.

1 INTRODUCTION

A decision tree is a fundamental model in applications such as extracting knowledge in data min-
ing and predicting outcomes in machine learning. Learned decision trees enable the extraction of
hidden structures in the data in an interpretable manner using the if-then format. In data mining,
the extracted structures are of fundamental interest (Rokach & Maimon, 2007; Gorunescu, 2011).
Decision trees also play an essential role in decision making (Zeng et al., 2017; Rudin, 2019; Arrieta
et al., 2020) because unlike complex models, such as deep neural networks, the decisions made by
decision trees are explainable. With the increase of the utility of machine learning models in real-
world problems, decision trees and their variants are widely used particularly for applications such
as high-stake decision making, where explainability is crucial and transparency higher than post-hoc
explanations (e.g., (Angelino et al., 2018; Rudin, 2019; Arrieta et al., 2020)) are required.

Current studies on decision trees and their families mainly focus on developing learning algorithms
to improve two aspects of learned trees: accuracy and interpretability. Here, we demonstrate that
there is a third essential aspect that is missing in current studies: the stability of the learning algo-
rithm against insignificant perturbations on the training data. Decision trees are typically used to
extract knowledge from data and help users make decisions that can be explained. If the learning
algorithm is unstable, the structure of the learned trees can vary significantly even for insignificant
changes in the training data. In data mining, this implies that the extracted knowledge can be unsta-
ble, which raises the question of whether the extracted knowledge is truly reliable or only a noisy
artifact induced by the unstable learning algorithm. In model-based decision making, this implies
that the decision process can change drastically whenever a few additional data are obtained and
the tree is retrained on the new training data. Such noisy decision makers are unacceptable for sev-
eral reasons. For example, stakeholders may lose their trust in such decision makers, or it may be
extremely costly to frequently and drastically update the entire decision making system.

Figure 1 shows an illustrative example of sensitive/stable decision tree learning algorithms. In this
example, the standard greedy tree learning algorithm induces different trees before and after one
data point (large red triangle) is removed (Figure 1(a)). Thus, it can be observed that the greedy
algorithm is sensitive to the removal of data points. The objective of this study is to design a tree
learning algorithm that can induce (almost) same trees against the removal of a few data points
(Figure 1(b)).

1



Published as a conference paper at ICLR 2023

0 2 4
x1

1
0
1
2
3
4

x2

Before Removing     

0 2 4
x1

1
0
1
2
3
4

x2

After Removing   

(a) Standard greedy tree learning algorithm

0 2 4
x1

1
0
1
2
3
4

x2

Before Removing     

0 2 4
x1

1
0
1
2
3
4

x2

After Removing   

(b) Proposed stable tree learning algorithm

Data Points
Class 1
Class 2

Predictions
by Tree

Class 1
Class 2

Figure 1: Decision boundaries of the learned decision trees. (a) The standard greedy tree learning
algorithm is sensitive to the removal of even a single data point (large red triangle) from the training
data. (b) The proposed learning algorithm produces more stable trees.

In this study, we design a decision tree learning algorithm that is stable against insignificant pertur-
bations in the training data. Specifically, we consider the change in (the distribution of) the learned
tree upon deletion of a random data point from the training data, using the notion of average sen-
sitivity (Varma & Yoshida, 2021). Subsequently, we design a (randomized) decision tree learning
algorithm with low average sensitivity while preserving the accuracy of the learned decision tree up
to a tolerance parameter.

A randomized algorithm may output completely different decision trees on the original training data
and on the training data obtained by deleting a random data point even if the output distributions are
close. To alleviate this issue, we design a (randomized) decision tree learning algorithm with low
expected average sensitivity over random bits used in the algorithm, which implies that the output
decision tree on the original training data and that on the training data obtained by deleting a random
data point are close with a high probability over the choice of the random bits used.

Through real-world data experiments, we demonstrate that our learning algorithm exhibits a lower
average sensitivity compared to the standard greedy decision tree learning algorithm, while main-
taining the decrease in accuracy within the prescribed tolerance parameter.

2 RELATED WORK

Decision Tree Learning Algorithms Generally, learning an optimal decision tree is NP-
hard (Laurent & Rivest, 1976), and hence we can obtain optimal trees only for small problems (Bert-
simas & Dunn, 2017; Angelino et al., 2018; Günlük et al., 2021). To avoid this issue, recursive
greedy splitting is widely used for learning (non-optimal) decision trees (Rivest, 1987; Loh, 2011;
Quinlan, 2014), and Bayesian approaches are used to learn a family of decision trees, such as rule
lists and rule sets (Wang et al., 2017; Yang et al., 2017). These studies are concerned with learning
trees with less computation or better interpretability. This study is orthogonal to them in that our
interest is developing stable decision tree learning algorithms, which was not considered before. We
stress that the focus of the current study is to learn a stand-alone decision tree and not to learn a
collection of decision trees for ensemble models (e.g., (Ho, 1995; Breiman, 2001; Friedman, 2001;
Chen & Guestrin, 2016)). For the latter, we want decision trees that make different predictions, and
hence somewhat sensitive algorithms are favorable rather than stable ones.

Average Sensitivity Varma & Yoshida (2021) introduced the notion of average sensitivity and de-
signed algorithms with low average sensitivity for various graph problems including the minimum
spanning tree, minimum cut, and minimum vertex cover problems. Average sensitivity of algorithms
are discussed also for various problems including the maximum matching problem (Yoshida & Zhou,
2021), problems that can be solved by dynamic programming (Kumabe & Yoshida, 2022a;b), spec-
tral clustering (Peng & Yoshida, 2020), and Euclidean k-clustering (Yoshida & Ito, 2022).

Adversarial Robustness Insignificant human-imperceptible perturbations to the input can mis-
lead trained models, and such perturbations are called adversarial attacks. It is known that adversar-
ial attacks are harmful to decision trees (Chen et al., 2019a;b; Kantchelian et al., 2016). To alleviate
this issue, several recent studies have considered the problems of robustness verification (Chen et al.,
2019b; Törnblom & Nadjm-Tehrani, 2019; Wang et al., 2020) and adversarial defense (Chen et al.,
2019a; Andriushchenko & Hein, 2019; Calzavara et al., 2020; Chen et al., 2021). Adversarial at-

2



Published as a conference paper at ICLR 2023

tacks focus on the change in the predicted label against perturbing a single input data point at the
inference time, whereas average sensitivity focuses on the change in the learned decision tree against
perturbing the entire training data at the learning time.

Stability Bousquet and Elisseeff introduced the notion of the stability of a learning algorithm
and discussed its relation to generalization ability (Bousquet & Elisseeff, 2002). Unlike average
sensitivity, this notion only concerns the stability of the loss value against data perturbation. Hence,
it cannot be used to stabilize the structure of learned decision tree.

Differential Privacy Differential privacy (Dwork, 2006) measures the stability of the output
against perturbation to the input. Decision trees have been intensively studied from the perspective
of differential privacy (see (Fletcher & Islam, 2019) and references therein). The average sensitivity
of an algorithm can be bounded by the differential privacy parameter ϵ times the maximum size
of the output (Varma & Yoshida, 2021). In the decision tree learning setting, the bound we obtain
in this manner is roughly O(ϵ · 2B), where B specifies the depth of the output decision tree. By
contrast, our bound (Theorem 4.1) is O(B2B/n), where n is the number of points in the training
data. Our bound is much smaller because we usually set 2B ≪ n to avoid overfitting.

3 PRELIMINARIES

3.1 DECISION TREE

Let X and Y be input and output spaces, respectively. We call a Boolean function ω : X → {0, 1} a
decision rule. Then, a decision tree is a function ϕ : X → Y represented by a rooted proper binary
tree, that is, it has a special node called the root and each node has either zero or two children,
such that each internal node t is associated with a decision rule ωt : X → {0, 1} and each leaf is
associated with a label yt ∈ Y . Then given an input x ∈ X , the decision tree ϕ predicts a label y
according to PREDICT(ϕ, x) shown in Algorithm 1.

Let L = ((x1, y1), . . . , (xn, yn)) be a training data. The total score of a decision tree ϕ : X → Y
with respect to L is defined to be s(ϕ,L) :=

∑n
i=1 1[ϕ(xi) = yi], where 1[X] is the indicator of the

event X . Note that s(ϕ,L)/n is the accuracy of ϕ on L.

For a nonnegative integer B, let TB be the set of decision trees of depth B. Then, let optB(L) :=
maxϕ∈TB s(ϕ,L) be the maximum total score of a decision tree of depth B. Also for a decision rule
ω : X → {0, 1} and a nonnegative integer B, let Tω,B be the set of decision trees of depth B with
the root node having the decision rule ω. Then we define optω,B(L) := maxϕ∈Tω,B s(ϕ,L). We
clearly have optB(L) = maxω optω,B(L).

For a decision tree ϕ, we denote by |ϕ| the number of nodes (including the leaves) in ϕ. For two
decision trees ϕ and ϕ′, we define the distance dDT(ϕ, ϕ

′) between them as the output of DIS-
TANCE(ϕ, ϕ′) shown in Algorithm 2. Intuitively, the procedure DISTANCE(ϕ, ϕ′) computes the
maximal subtree common to ϕ and ϕ′, and then outputs the total number of remaining nodes after
subtracting the common subtree from ϕ and ϕ′. It is clear that dDT(·, ·) satisfies triangle inequality.

We note that, even if two decision trees ϕ, ϕ′ : X → Y are equal as a function, they may have a
large distance in dDT if they have different tree structures. For interpretability, however, we believe
this is the advantage of using dDT because it is not easy to verify the equivalence of ϕ and ϕ′ when
they have different tree structures and dDT correctly reflect this situation.

3.2 AVERAGE SENSITIVITY

For a training data L = ((x1, y1), . . . , (xn, yn)) and 1 ≤ i ≤ n, let L(i) =
((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)) be the training data obtained from L by
dropping the ith data point.

Let A be a deterministic algorithm that, given a training data, outputs a decision tree. Then, the
average sensitivity of A on L is

1

n

n∑
i=1

dDT(A(L), A(L(i))).

3



Published as a conference paper at ICLR 2023

Algorithm 1:
1 Procedure PREDICT(ϕ, x)
2 Let t be the root node of ϕ;
3 if t is a leaf then return yt;
4 else
5 Let ϕL, ϕR be the decision trees rooted at the left and right children of t, respectively;
6 if ωt(x) = 0 then return PREDICT(ϕL, x);
7 else return PREDICT(ϕR, x);

Algorithm 2:
1 Procedure DISTANCE(ϕ, ϕ′)
2 Let t and t′ be the root nodes of ϕ and ϕ′, respectively;
3 if both t and t′ are leaves then
4 return 0 if yt = yt′ and 2 otherwise.
5 else if either t or t′ is a leaf then return |ϕ|+ |ϕ′|;
6 else if ωt ̸= ωt′ then return |ϕ|+ |ϕ′|;
7 else
8 Let ϕL, ϕR be the decision trees rooted at the left and right children of t, respectively;
9 Let ϕ′L, ϕ

′
R be the decision trees rooted at the left and right children of t′, respectively;

10 return DISTANCE(ϕL, ϕ
′
L) + DISTANCE(ϕR, ϕ

′
R).

Now, we generalize this definition for randomized algorithms. First for two distributions
D and D′ over decision trees, we define their earth mover’s distance as dEM(D,D′) =
minP E(ϕ,ϕ′)∼P dDT(ϕ, ϕ

′), where P is over distributions of pairs of decision trees such that the
marginal distributions on the first and second coordinates are equal to D and D′, respectively. Let A
be a randomized algorithm that, given a training data, outputs a decision tree. Then, we define the
average sensitivity of A on L as

1

n

n∑
i=1

dEM(A(L), A(L(i))), (1)

where we regard A(·) as a distribution over decision trees.

It is natural to consider a variant of average sensitivity such that we delete k data points instead of
a single data point because in practice many data points can be dropped. As discussed in Varma &
Yoshida (2021), this variant can be bounded by k times the average sensitivity above, and hence we
focus on bounding the latter.

4 DECISION TREE CONSTRUCTION

In this section, we provide a decision tree learning algorithm with a high total score and a low
average sensitivity. Specifically, we show the following:
Theorem 4.1. There exists an (possibly inefficient) randomized algorithm that, given a training
data L of size n, a depth bound B, and a parameter ϵ > 0, returns a decision tree ϕ of depth at
most B such that Eϕ[s(ϕ,L)] ≥ (1− ϵ)BoptB(L), and for the set of decision rules Ω, its average

sensitivity is O
(
B2B log |Ω|

ϵn

)
.

We note that we usually choose 2B ≪ n to avoid overfitting and ϵ = Θ(1/B) to achieve constant
approximation, and hence the average sensitivity bound is essentially O(1/n). We note that the
algorithm of Theorem 4.1 makes use of the optimal total score, which is not efficiently computable
in general. We discuss practical implementations of the algorithm in Section 6.

The algorithm of Theorem 4.1 is based on a procedure called STABLEDR, which selects a decision
rule in a stable way (Algorithm 3). This is a simple application of the exponential mechanism (Mc-

4



Published as a conference paper at ICLR 2023

Algorithm 3:
1 Procedure STABLEDR(L, B, ϵ)
2 Select ω ∈ Ω with probability ∝ exp(λ · optω,B(L)), where λ = 2 log |Ω|

ϵ·optB(L) ;
3 return ω.
4 Procedure STABLEDT’(L, B, ϵ, d)
5 if |L| ≤ 1 or d = B then return an optimal label for L;
6 ω ← STABLEDR(L, B, ϵ);
7 Partition L into LL ∪ LR according to ω;
8 ϕL ← STABLEDT’(LL, B, ϵ, d+ 1) and ϕR ← STABLEDT’(LR, B, ϵ, d+ 1);
9 Let ϕω be the decision tree such that the root node t has rule ω and the left and right

children of t are ϕL and ϕR, respectively;
10 return ϕω .
11 Procedure STABLEDT(L, B, ϵ)
12 return STABLEDT’(L, B, ϵ, 0).

Sherry & Talwar, 2007) to optω,B(L) (ω ∈ Ω). Then, the proposed algorithm, STABLEDT (Algo-
rithm 3), works as follows. At each node, we compute a decision rule ω using STABLEDR, split the
training data according to ω, and recursively construct decision trees for each of the split data until
the size of the training data becomes at most one or the depth becomes B.

To understand why the randomized procedure STABLEDR produces stability, consider the following
scenario: Suppose that we have two candidate rules ω1 and ω2 with optimal scores optω1,B(L) = 90
and optω2,B(L) = 89, respectively. The greedy algorithm selects ω1 because it has the larger score.
Suppose that the scores have changed upon the removal of a subset S ⊂ L and now we have
optω2,B(L \ S) = 85 and optω2,B(L \ S) = 86. Then, the greedy algorithm selects ω2 because it
has now the larger score, and hence we never obtain the same tree for L and L \ S . By contrast, the
probability that STABLEDR selects ω1 (resp., ω2) is nearly half for both L and L \ S because ω1

(resp., ω2) is a nearly optimal rule. Hence, the distributions of the trees given by Algorithm 3 are
close between L an L \ S .

5 EXPECTED DETERMINISTIC AVERAGE SENSITIVITY

Recall that the average sensitivity (1) for randomized algorithms bounds the earth mover’s distance
between the distributions of A(L) and A(L(i)). This does not immediately imply that, given a
decision tree for L, we can compute a similar decision tree for L(i) with a similar total score because
the mapping from decision trees for L to those for L(i) that achieves the earth mover’s distance is
not always available. To address this issue, we consider bounding the expectation of deterministic
average sensitivity between output decision trees over random bits:

E
π

[
1

n

n∑
i=1

dDT(Aπ(L), Aπ(L(i)))

]
, (2)

where Aπ is the deterministic algorithm obtained from a randomized algorithm A by fixing the ran-
dom bits used in A to π ∈ {0, 1}∗. Then, using the same random bits π, we can obtain similar
decision trees for L and L(i). Note that the average sensitivity (1) is bounded from above by the ex-
pected deterministic average sensitivity (2) because the pair of random variables (Aπ(L), Aπ(L(i)))
induces a joint distribution over pairs of decision trees.

By slightly modifying STABLEDT and the proof of Theorem 4.1, we obtain the following:

Theorem 5.1. There exists a (possibly inefficient) randomized algorithm that, given a training data
L of size n, a depth bound B, and a parameter ϵ > 0, returns a decision tree ϕ of depth at most B
such that Eϕ[s(ϕ,L)] ≥ (1− ϵ)BoptB(L), and for the set of decision rules Ω, its expected average

sensitivity over random bits is O
(
B2B log |Ω|

ϵn

)
.

5



Published as a conference paper at ICLR 2023

Table 1: Datasets

Dataset training
data size

sampled
data size

test data
size

# of
features

# of
classes

tree
depth

sm
al

l breast cancer 546 436 137 10 2 5
diabetes 614 491 154 8 2 1

la
rg

e
cod-rna 59535 1000 271617 8 2 10
covtype 400000 1000 181000 54 7 7
higgs 10500000 1000 500000 28 2 3
ijcnn 49900 1000 91701 22 2 1

sensorless 48509 1000 10000 48 11 9
webspam 300000 1000 50000 254 2 7

6 PRACTICAL IMPLEMENTATIONS

The algorithm STABLEDR and the algorithm of Theorem 5.1 require the value of optω,B(L), which
is NP-hard to compute (Laurent & Rivest, 1976). Although several algorithms based on integer pro-
gramming were proposed (Bertsimas & Dunn, 2017; Günlük et al., 2021), they are not fast enough
to handle large data. To address this issue, we suggest replacing optω,B(L) with optω,1(L) because
the latter can be computed quite efficiently. Note that this strategy is the same as the standard greedy
recursive splitting used for training (non-optimal) decision trees (Rivest, 1987; Loh, 2011; Quinlan,
2014). We use this version in our experiments in Section 7. The same analysis goes through and we
obtain the following.

Theorem 6.1. There exists a randomized algorithm that, given a training data L of size n, a depth
boundB, and a parameter ϵ > 0, returns a decision tree ϕ of depth at mostB such that E[s(ϕ,L)] ≥
(1 − ϵ)opt1(L), and for the set of decision rules Ω, its expected average sensitivity over random

bits is O
(
B2B log |Ω|

ϵn

)
. The time complexity is

∑⌈logn⌉−1
d=0 2B · T (n/2B) · |Ω|, where T (m) is the

running time required to compute optω,1(L′) for ω ∈ Ω with |L′| = m.

We note that, although the approximation guarantee of Theorem 6.1 is weaker than those of Theo-
rems 4.1 and 5.1, practically used decision tree learning algorithms also lack approximation guar-
antees. In Section 7, we empirically confirm that the accuracy of the algorithm of Theorem 6.1 is
not much worse than those of baseline algorithms. We also note that, in many cases, computing
optω,1(L′) takes linear time, and sometimes we can compute optω,1(L′) for many ω’s at once.

7 EXPERIMENTS

We demonstrate that the proposed algorithm can output stable decision trees.

7.1 SETUPS

Datasets We used datasets shown in Table 1.1 We split the datasets into small ones (breast cancer
and diabetes) and large ones (cod-rna, covtype, higgs, ijcnn, sensorless, and webspam). We use
small datasets to demonstrate the stability of the proposed algorithm, and large datasets to study
trade-offs between average sensitivity and accuracy. In the experiments, we used subsamples of
these datasets. For training, we randomly sampled 80% of the data points and 1000 data points
for small and large datasets, respectively. In the experiments, we evaluated the test accuracy of the
learned decision trees using the entire test data.

Tree Learning Algorithms In the experiment, we used the practical implementation described in
Section 6 for training the decision trees. As we have shown in Theorem 6.1, this practical imple-
mentation can output stable decision trees without solving NP-hard problems. We also adopted the
following greedy tree learning algorithm as the baseline for comparison. At each node, the greedy

1These datasets are obtained from https://github.com/chenhongge/RobustTrees We omit-
ted MNIST-based datasets because decision trees are typically not used for images.

6

https://github.com/chenhongge/RobustTrees


Published as a conference paper at ICLR 2023

algorithm selects the decision rule ω with the highest score, i.e., ω ∈ argmaxω∈Ω optω,1(L). When
multiple decision rules exist in argmaxω∈Ω optω,1(L), we select one of them uniformly at random.
We set the tree depth shown in Table 1 so that the greedy algorithm exhibits the highest accuracy in
cross-validation.

We implemented both the greedy and proposed algorithms in Python 3 using the JIT compiler of
Numba. We used the equidistant points {xj,1, . . . , xj,Q} within the interval [xj,min, xj,max] for each
feature xj as the decision rules, where xj,min = xj,1 and xj,max = xj,Q are the minimum and the
maximum of xj in the dataset and we set Q = 500. That is, we set Ω = {u 7→ 1[uj ≤ xj,q]}j,q ,

Procedure We generated 10 sampled training data from the original training data. For each of the
sampled training data, we trained decision trees using the greedy algorithm and proposed algorithms
over different values of ϵ. Because the tree learning algorithms are randomized, we trained trees for
ten different random bits π1, π2, . . . , π10. Through this procedure, we obtained 100 trees for each
tree learning algorithm (over ten sampled training data and ten different random bits). We report
the average of the average sensitivity and the training and test accuracy over these 100 trees. To
estimate the average sensitivity, we trained additional trees using the sampled training data, with m
data points removed at random. Formally, let A(L) be the tree trained using the algorithm A on
L. Then, we consider another tree A(L \ S) trained on the set L \ S with |S| = m. We selected
the sets S1,S2, . . . ,SR at random, and estimated the (normalized) expected deterministic average
sensitivity over random bits as 1

R

∑R
r=1

dDT(Aπt (L),Aπt (L\Sr))
dB

, where πt is the t-th random bits,
and dB = 2B+2−2 is the maximum distance between the trees with depth B, which normalizes the
sensitivity within [0, 1]. We interpret this normalized sensitivity as the fraction of different nodes
between the two trees. We set R = 100, and varied the number m of removed data points from 1 to
30% of the sampled training data.

7.2 RESULT 1: DEPENDENCY ON ϵ

First, we evaluated the dependency of the proposed algorithm on the choice of ϵ for small datasets.
In the experiment, we evaluated the algorithm over nine different ϵ values from 10−2 to 100 on a
logarithmic scale and over the number of removed data points m = 1, 1%, and 10% of the sampled
training data. Figure 2 shows the average sensitivity, training accuracy, and test accuracy. It is
evident from Figures 2 (a) and (d) that the average sensitivity decreases as ϵ increases as suggested by
Theorem 6.1. Empirically, we observed that the average sensitivity is kept almost constant until ϵ =
0.1 and it began to decrease for larger ϵ values. Figures 2 (b) and (e) show that the training accuracy
decreases for ϵ larger than 0.1. These results suggest that the stability of the trees is obtained at
the cost of the decrease in training accuracy. This observation is consistent with Theorem 6.1 as
well. Based on these results, we can empirically confirm the correctness of Theorem 6.1: the trained
decision trees become stable, particularly for larger ϵ, whereas the accuracy decrease. We also note
that Figures 2(c) and (f) suggest that this may not always be the case for test accuracy, which is
outside the scope of our theorem.
7.3 RESULT 2: EXAMPLES OF TREES

Figure 3 shows examples of the trees trained on the breast cancer dataset using the greedy and the
proposed algorithms with ϵ = 0.3 and m = 10% of the sampled training data. In the experiment,
we trained 100 trees on the set L\Sr for r = 1, . . . , 100 to estimate the expected average sensitivity
over random bits. Within these 100 trees, some had identical structures, while others did not. In
the figure, we show the original tree trained using all the sampled training data, and the three most
frequently identical structures within the 100 trees. In this example, the original tree and the most
frequent trees were identical.

There are two important implications in Figure 3. Firstly, the second frequent trees of the greedy
algorithm changed drastically from the original tree, whereas in the proposed algorithm, the changes
appeared only in small substructures. These smaller changes in the proposed algorithm induced a
smaller distance dDT(A(L), A(L \ Sr)), resulting in smaller expected deterministic average sensi-
tivity for ϵ > 0.1, as shown in Figure 2.

Secondly, the most frequent trees dominated 10/100 and 72/100 of the cases for the greedy and pro-
posed algorithms, respectively. Therefore, the tree can change frequently upon data point removal

7



Published as a conference paper at ICLR 2023

10 2 10 1 10010 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(a) Sensitivity

10 2 10 1 1000.960
0.962
0.964
0.966
0.968
0.970
0.972
0.974

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(b) Training accuracy

10 2 10 1 100
0.972
0.973
0.974
0.975
0.976
0.977
0.978
0.979

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(c) Test accuracy

The number m of
removed data points

Proposed
m = 1

m = 1%

m = 10%

Greedy
m = 1

m = 1%

m = 10%

10 2 10 1 10010 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(d) Sensitivity

10 2 10 1 100

0.68

0.70

0.72

0.74

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(e) Training accuracy

10 2 10 1 100
0.66

0.68

0.70

0.72

0.74

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(f) Test accuracy

Figure 2: Average sensitivity and accuracy of the trained trees over different ϵ on small datasets,
breast cancer (a)–(c) and diabetes (d)–(e). The blue and red lines denote the results for the proposed
and greedy tree learning algorithms, respectively.

y = 0y = 1
T F

x9 9 y = 1
T F
x3 3

y = 1y = 0
T F

x6 1 y = 1
T F
x4 2

T F
x7 3

y = 0y = 1
T F

x9 9 y = 1
T F
x3 3

y = 1y = 0
T F

x6 1 y = 1
T F
x4 2

T F
x7 3

y = 0y = 1
T F

x3 10 y = 1
T F
x2 8

y = 0y = 1
T F

x7 2

y = 0y = 1
T F

x8 2
T F
x3 1

T F
x4 2

y = 0y = 1
T F

x9 9 y = 1
T F
x3 3

y = 0y = 1
T F

x2 6 y = 1
T F
x4 2

T F
x7 3

y = 0y = 1
T F

x9 9 y = 1
T F
x3 3

y = 1y = 0
T F

x6 1 y = 1
T F
x4 2

T F
x7 3

Original Tree 1st Frequent: 10/100 2nd Frequent: 6/100 3rd Frequent: 6/100

(a) (Greedy) The original tree (leftmost) and the first three frequent trees (the others).

y = 0y = 1
T F

x3 10 y = 1
T F
x2 9

y = 0y = 1
T F

x2 6 y = 1
T F
x4 2

T F
x7 3

y = 0y = 1
T F

x3 10 y = 1
T F
x2 9

y = 0y = 1
T F

x2 6 y = 1
T F
x4 2

T F
x7 3

y = 0y = 1
T F

x3 10 y = 1
T F
x2 9

y = 0y = 1
T F

x2 9 y = 1
T F
x4 2

T F
x7 3

y = 0y = 1
T F

x3 10

y = 0y = 1
T F

x3 4
T F
x4 4

y = 0y = 1
T F

x2 6 y = 1
T F
x4 2

T F
x7 3

y = 0y = 1
T F

x3 10 y = 1
T F
x2 9

y = 0y = 1
T F

x2 6 y = 1
T F
x4 2

T F
x7 3

Original Tree 1st Frequent: 72/100 2nd Frequent: 12/100 3rd Frequent: 2/100

(b) (Proposed) The original tree (leftmost) and the first three frequent trees (the others).

Figure 3: The three most frequent trees on the breast cancer dataset for (a) the greedy and (b)
proposed tree learning algorithms over 100 random data point removals with ϵ = 0.3 andm = 10%.
“T” and “F” on the edges denote the splitting whether the rule in the parent node is True and False,
respectively. In both methods, the most frequent trees are identical to the original tree trained using
all the sampled training data. The red nodes denote differences from the original tree.

in the greedy algorithm, whereas the change is less frequent in the proposed algorithm, where more
than 70% of the trees are identical. These results indicate that the proposed algorithm can induce
trees with small distances and less frequent structural changes. This property is favorable in prac-
tical situations because in data mining applications, the extracted knowledge is guaranteed to not
change drastically, and in machine learning applications, we can continue using almost the same
decision-making process.

7.4 RESULT 3: SENSITIVITY-ACCURACY TRADE-OFF

The results in Figure 2 suggest that the average sensitivity and accuracy are in a trade-off relation
through ϵ. Using a large ϵ, we obtain stable trees with a slight decrease in accuracy, where using a
small ϵ, we obtain accurate trees; however they tend to have high sensitivities.

8



Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8
Average Sensitivity

0.87
0.88
0.89
0.90
0.91
0.92
0.93

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(a) cod-rna

0.0 0.2 0.4 0.6 0.8 1.0
Average Sensitivity

0.66
0.68
0.70
0.72
0.74
0.76

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(b) covtype

0.0 0.2 0.4 0.6 0.8
Average Sensitivity

0.56
0.58
0.60
0.62
0.64
0.66
0.68

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(c) higgs

The number m of
removed data points
Proposed

m = 1

m = 1%

m = 3%

m = 10%

m = 30%

Greedy
m = 1

m = 1%

m = 3%

m = 10%

m = 30%0.0 0.1 0.2 0.3 0.4 0.5
Average Sensitivity

0.90525
0.90550
0.90575
0.90600
0.90625
0.90650
0.90675
0.90700
0.90725

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(d) ijcnn

0.0 0.2 0.4 0.6 0.8
Average Sensitivity

0.86
0.88
0.90
0.92
0.94
0.96

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(e) sensorless

0.0 0.2 0.4 0.6 0.8 1.0
Average Sensitivity

0.82
0.84
0.86
0.88
0.90
0.92
0.94

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(f) webspam

Figure 4: Trade-off curves between average sensitivity and training accuracy when ϵ is changed. We
varied the number of training data points to be removed from one to 30% of the sampled training
data. White markers denote the results of the greedy tree learning.

We computed this trade-off for large datasets by varying ϵ from 10−5 to 100 on a logarithmic scale.
Figure 4 shows the trade-off curves between the average sensitivity and training accuracy. In the
figures, we observe that the average sensitivity and accuracy are in a trade-off relation for most of
the datasets. The trees become stable as ϵ increases, while incurring an accuracy decrease in the
bottom left of the figures. We note that our theory only guarantees that the decrease in training
accuracy is limited. However, the test accuracy results in Figure 7 in Appendix D also confirm that
the drop in test accuracy is limited. Thus, it is not necessary to sacrifice a considerable amount of
the test accuracy to obtain stable decision trees in practice.

The result on cod-rna is an exception that did not exhibit clear trade-off curves. In this dataset,
the trees become less stable and less accurate simultaneously for small ϵ, as shown in the bottom
right of the figures. In particular, the greedy trees tend to be less accurate than stable ones. One
possible reason of this phenomenon is overfitting. In Table 1, the tree depth is set to ten for this
dataset. In such deep trees, the number of training data points that reach a deep node tends to be
small. Then, the greedy selection of the best decision rule based on a small number of data points
can be unstable, some arbitrary rules may be selected by chance, and overfitting occurs. Therefore,
the greedily selected rule is not optimal if we consider deeper trees, i.e., optω,B(L), can be smaller
than some optω′,B(L) even if optω,1(L) > optω′,1(L). On the contrary, the proposed algorithm
randomizes the choice of the decision rule using an exponential mechanism. We conjecture that this
randomization can help prevent suboptimal rules and overfitting, and increase the chance of gaining
more accurate trees.

Finally, we emphasize that the results confirm that we gained the freedom to choose decision trees
on these trade-off curves using the proposed algorithm. This will open up a new paradigm for prac-
titioners who have suffered from the high sensitivity of existing learning algorithms. Practitioners
can now tune ϵ and obtain stable trees upon their demand.

8 CONCLUSION

We proposed decision tree learning algorithms with theoretical guarantees on its average sensitivity
and accuracy. We experimentally confirmed that the proposed algorithms performed well on real-
world datasets. An obvious open problem is to show some hardness on the trade-off between average
sensitivity and accuracy. In practice, it is important that the predictions made by the learned model
do not change significantly with slight changes in the training data. Hence, it is also natural to
measure the distance between models by the number of mismatches of their predictions and study
average sensitivity in terms of this distance even for “non-explainable” learning models such as
random decision forests Ho (1995); Breiman (2001) and deep neural networks.

9



Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

In the experiments, we only used publicly available data so that all the results to be reproducible.
The code is available at https://github.com/sato9hara/StableDecisionTree

ACKNOWLEDGEMENT

SH is supported by JST, PRESTO Grant Number JPMJPR20C8. YY is supported by JST, PRESTO
Grant Number JPMJPR192B.

REFERENCES

Maksym Andriushchenko and Matthias Hein. Provably robust boosted decision stumps and trees
against adversarial attacks. NeurIPS, 32:13017–13028, 2019.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning
certifiably optimal rule lists for categorical data. Journal of Machine Learning Research, 18:1–78,
2018.

Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador Garcı́a, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al.
Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges to-
ward responsible ai. Information Fusion, 58:82–115, 2020.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106(7):1039–
1082, 2017.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2:499–526, 2002.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salvatore Or-
lando. Treant: training evasion-aware decision trees. Data Mining and Knowledge Discovery, 34
(5):1390–1420, 2020.

Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust decision trees against ad-
versarial examples. In ICML, pp. 1122–1131, 2019a.

Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane Boning, and Cho-Jui Hsieh. Robustness verifi-
cation of tree-based models. NeurIPS, 32:12317–12328, 2019b.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD, pp. 785–794,
2016.

Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman Jana. Cost-aware robust tree
ensembles for security applications. In USENIX Security, pp. 2291–2308, 2021.

Cynthia Dwork. Differential privacy. In ICALP, pp. 1–12, 2006.

Sam Fletcher and Md Zahidul Islam. Decision tree classification with differential privacy: A survey.
ACM Computing Surveys (CSUR), 52(4):1–33, 2019.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
statistics, 29(5):1189–1232, 2001.

Florin Gorunescu. Data mining: concepts, models and techniques, volume 12. Springer Science &
Business Media, 2011.

Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. Optimal
decision trees for categorical data via integer programming. Journal of Global Optimization, pp.
1–28, 2021.

10

https://github.com/sato9hara/StableDecisionTree


Published as a conference paper at ICLR 2023

Tin Kam Ho. Random decision forests. In ICDAR, pp. 278–282, 1995.

Alex Kantchelian, J Doug Tygar, and Anthony Joseph. Evasion and hardening of tree ensemble
classifiers. In ICML, pp. 2387–2396, 2016.

Soh Kumabe and Yuichi Yoshida. Average sensitivity of dynamic programming. In SODA, pp.
1925–1961, 2022a.

Soh Kumabe and Yuichi Yoshida. Average sensitivity of the knapsack problem. In ESA, volume
244, pp. 75:1–75:14, 2022b.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
Information Processing Letters, 5(1):15–17, 1976.

Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 1(1):14–23, 2011.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, pp. 94–
103, 2007.

Pan Peng and Yuichi Yoshida. Average sensitivity of spectral clustering. In KDD, pp. 1132–1140,
2020.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

Ronald L Rivest. Learning decision lists. Machine learning, 2(3):229–246, 1987.

Lior Rokach and Oded Z Maimon. Data mining with decision trees: theory and applications,
volume 69. World scientific, 2007.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

John Törnblom and Simin Nadjm-Tehrani. An abstraction-refinement approach to formal verifica-
tion of tree ensembles. In SAFECOMP, pp. 301–313, 2019.

Nithin Varma and Yuichi Yoshida. Average sensitivity of graph algorithms. In SODA, pp. 684–703,
2021.

Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille. A
bayesian framework for learning rule sets for interpretable classification. The Journal of Machine
Learning Research, 18(1):2357–2393, 2017.

Yihan Wang, Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. On lp-norm robustness
of ensemble decision stumps and trees. In ICML, pp. 10104–10114, 2020.

Hongyu Yang, Cynthia Rudin, and Margo Seltzer. Scalable bayesian rule lists. In ICML, pp. 3921–
3930, 2017.

Yuichi Yoshida and Shinji Ito. Average sensitivity of euclidean k-clustering. In NeurIPS, 2022. to
appear.

Yuichi Yoshida and Samson Zhou. Sensitivity analysis of the maximum matching problem. In ITCS,
pp. 58:1–58:20, 2021.

Jiaming Zeng, Berk Ustun, and Cynthia Rudin. Interpretable classification models for recidivism
prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(3):689–
722, 2017.

11



Published as a conference paper at ICLR 2023

A ANALYSIS OF STABLEDR

In this section, we show the following performance guarantee for STABLEDR.
Theorem A.1. For a training data L, a depth bound B, and a parameter ϵ > 0, let ω =
STABLEDR(L, B, ϵ). Then, we have Eω

[
optω,B(L)

]
≥ (1 − ϵ)optB(L). Moreover, we have∑n

i=1 dTV(ω, ω
(i)) = O

(
log |Ω|
ϵ

)
, where ω(i) = A(L(i), B, ϵ), and dTV(ω, ω

(i)) denotes the total

variation distance between (the distributions of) ω and ω(i).

The first inequality claims that we can achieve a nearly optimal total score using the output decision
rule ω. The second inequality claims that the distribution of ω does not change significantly when a
data point is removed from the training data. Theorem A.1 is obtained by combining Lemmas A.2
and A.4.

A.1 APPROXIMATION GUARANTEE

First, we show that the selected decision rule does not much deteriorate the total score of an optimal
decision tree.
Lemma A.2. Let ω = STABLEDR(L, B, ϵ). Then, we have

E
ω
[optω,B(L)] ≥ (1− ϵ)optB(L).

Proof. For any c > 0, we have

Pr[optω,B(L) ≤ optB(L)− c]

=

∑
ψ∈Ω:optψ,B(L)≤optB(L)−c exp(λ · optψ,B(L))∑

ψ∈Ω exp(λ · optψ,B(L))

≤ |Ω| exp(λ · (optB(L)− c))∑
ψ∈Ω exp(λ · optψ,B(L))

≤ |Ω| exp(λ · (optB(L)− c))
exp(λ · optB(L))

≤ |Ω| exp(−λc).

Therefore, we have

E[optω,B(L)]
≥ Pr[optω,B(L) ≤ optB(L)− c] · 0

+ Pr[optω,B(L) > optB(L)− c] · (optB(L)− c)
≥ (1− |Ω| exp(−λc)) · (optB(L)− c)
≥ optB(L)− |Ω| exp(−λc)− c.

By setting c = log |Ω|/λ and the choice of λ, the claim holds.

A.2 AVERAGE SENSITIVITY

Next, we analyze the average sensitivity of STABLEDR. For notational simplicity, we write optω
and opt

(i)
ω to denote optω,B(L) and optω,B(L(i)), respectively. The following lemma is useful for

our analysis.
Lemma A.3. For any decision rule ω ∈ Ω, we have

n∑
i=1

(
optω − opt(i)ω

)
≤ optω.

Similarly, we have
n∑
i=1

(
optB(L)− optB(L(i))

)
≤ optB(L).

12



Published as a conference paper at ICLR 2023

Proof. We first consider the first statement. Let ϕ be the optimal decision that attains optω . Note
that ϕ has depth B and the root node of ϕ has the decision rule ω. Then, we have

n∑
i=1

(
optω − opt(i)ω

)
≤

n∑
i=1

(s(ϕ,L)− s(ϕ,L(i))) =

n∑
i=1

1[ϕ(xi) = y]

= s(ϕ,L) = optω.

The second statement follows by a similar argument.

Lemma A.4. Let

ω = STABLEDR(L, B, ϵ),
ω(i) = STABLEDR(L(i), B, ϵ).

Then, we have
n∑
i=1

dTV(ω, ω
(i)) = O

(
log |Ω|
ϵ

)
.

Proof. Notice that
n∑
i=1

dTV(ω, ω
(i)) =

n∑
i=1

∑
ψ∈Ω

max
{
0,Pr[ω = ψ]− Pr[ω(i) = ψ]

}
.

Let λ(i) be λ used in STABLEDR(L(i), B, ϵ). Then we have

max
{
0,Pr[ω = ψ]− Pr[ω(i) = ψ]

}
= max

{
0,

exp(λ · optψ)∑
ψ′∈Ω exp(λ · optψ′)

−
exp(λ(i) · opt(i)ψ )∑

ψ′∈Ω exp(λ(i) · opt(i)ψ′ )

}

≤
exp(λ · optψ)− exp(λ · opt(i)ψ )∑

ψ′∈Ω exp(λ · optψ′)

+ max

{
0,

exp(λ · opt(i)ψ )∑
ψ′∈Ω exp(λ · optψ′)

−
exp(λ(i) · opt(i)ψ )∑

ψ′∈Ω exp(λ(i) · opt(i)ψ′ )

}
, (3)

where the equality is from the design of the algorithm and the inequality is from the following
inequality

max{0, b− a} ≤ (b− x) + max{0, x− a}
which holds for any x ≤ b.
Let Ai,ψ and Bi,ψ denote the first and second terms, respectively, of (3). The following two claims
bound the sums of the first and the second terms over i and ψ.

Claim A.5.
n∑
i=1

∑
ψ∈Ω

Ai,ψ ≤ λ · optB(L).

Claim A.6.
n∑
i=1

∑
ψ∈Ω

Bi,ψ ≤ O(λ · optB(L)).

Before proving these claims, we first complete the proof of the lemma assuming them. Combin-
ing (3) and the two claims above, we have

n∑
i=1

dTV(ω, ω
(i)) ≤ O(λ · optB(L)) + 1 = O

(
log |Ω|
ϵ

)
.

13



Published as a conference paper at ICLR 2023

Theorem A.1 follows by combining Lemmas A.2 and A.4.

Proof of Claim A.5. We have

exp(λ · optψ)− exp(λ · opt(i)ψ )∑
ψ′∈Ω exp(λ · optψ′)

= Pr[ω = ψ]

(
1−

exp(λ · opt(i)ψ )

exp(λ · optψ)

)
= Pr[ω = ψ]

(
1− exp

(
−λ · (optψ − opt

(i)
ψ )
))

≤ λ · Pr[ω = ψ](optψ − opt
(i)
ψ ),

where the inequality is from 1− e−x ≤ x for any x ∈ R. Therefore, we have
n∑
i=1

∑
ψ∈Ω

Ai,ψ

=

n∑
i=1

∑
ψ∈Ω

exp(λ · optψ)− exp(λ · opt(i)ψ )∑
ψ′∈Ω exp(λ · optψ′)

≤ λ
n∑
i=1

∑
ψ∈Ω

Pr[ω = ψ](optψ − opt
(i)
ψ )

≤ λ
∑
ψ∈Ω

Pr[ω = ψ]optψ (by Lemma A.3)

≤ λ · optB(L).
as desired.

Proof of Claim A.6. We first note that

Bi,ψ

= max

{
0,

exp(λ · opt(i)ψ )∑
ψ′∈Ω exp(λ · optψ′)

−
exp(λ(i) · opt(i)ψ )∑

ψ′∈Ω exp(λ(i) · opt(i)ψ′ )

}

≤ max

{
0,

exp(λ · opt(i)ψ )∑
ψ′∈Ω exp(λ · optψ′)

−
exp(λ(i) · opt(i)ψ )∑
ψ′∈Ω exp(λ · optψ′)

}

= max

{
0,

exp(λ · opt(i)ψ )∑
ψ′∈Ω exp(λ · optψ′)

(
1− exp

(
−opt(i)ψ (λ− λ(i))

))}
≤ max

{
0,Pr[ω = ψ]opt

(i)
ψ (λ− λ(i))

}
≤ optB(L) Pr[ω = ψ]|λ− λ(i)|.

Also, we have

n∑
i=1

∣∣∣λ− λ(i)∣∣∣ ≤ λ n∑
i=1

∣∣∣∣∣∣
log |Ω|

optB(L) −
log |Ω|

optB(L(i))

log |Ω|
optB(L)

∣∣∣∣∣∣
≤ λ

n∑
i=1

max


log |Ω|

optB(L) −
log |Ω|

optB(L(i))

log |Ω|
optB(L)

,

log |Ω|
optB(L(i))

− log |Ω|
optB(L)

log |Ω|
optB(L)


≤ λ

n∑
i=1

max

{
log |Ω| − log |Ω|

log |Ω|
,

1
optB(L(i))

− 1
optB(L)

1
optB(L)

}

≤ λ
n∑
i=1

log |Ω| − log |Ω|
log |Ω|

+ λ

n∑
i=1

optB(L)− optB(L(i))

optB(L(i))

14



Published as a conference paper at ICLR 2023

≤ λ
n∑
i=1

log |Ω| − log |Ω|
log |Ω|

+ 2λ

n∑
i=1

optB(L)− optB(L(i))

optB(L)
(by optB(L(i)) ≥ 1)

= O(λ), (by Lemma A.3)

Combining the two inequalities above, we obtain
n∑
i=1

∑
ψ∈Ω

Bi,ψ ≤
n∑
i=1

∑
ψ∈Ω

optB Pr[ω = ψ]|λ− λ(i)| = O (λ · optB(L)) .

B ANALYSIS OF STABLEDT

In this section, we analyze STABLEDT and prove Theorem 4.1

Proof of the first claim of Theorem 4.1. Let L0 be the input training data (so that we can use L to
denote other sets).

We prove the following by backward induction on depth.

E[s(STABLEDT’(L, B, ϵ, d),L)] ≥ (1− ϵ)B−d
optB(L).

Then, the statement holds by setting d = 0.

The claim clearly holds when d = B because we output the optimal label.

Suppose that the claim holds for depth more than d. Consider a particular call
STABLEDT’(L, B, ϵ, d), and let ϕ denote the output decision tree, let ω be the decision rule used in
the root node of ϕ, and let LωL and LωR denote the two training datas obtained from L by splitting it
according to ω. Note that these are random variables. Then, we have

E
ϕ
[s(ϕ,L)] =

∑
ψ∈Ω

Pr[ω = ψ]
(
E[s(STABLEDT’(LψL, B, ϵ, d+ 1),LψL)]

+E[s(STABLEDT’(LψR, B, ϵ, d+ 1),LψR)]
)

≥
∑
ψ∈Ω

Pr[ω = ψ]
(
(1− ϵ)B−d−1

optB−d−1(L
ψ
L)

+ (1− ϵ)B−d−1
optB−d−1(L

ψ
R)
)

≥ (1− ϵ)B−d−1
∑
ψ∈Ω

Pr[ω = ψ]
(
optψ,B−d(L)

)
≥ (1− ϵ)B−d∑

ψ∈Ω

Pr[ω = ψ](1− ϵ)optB−d(L)

≥ (1− ϵ)B−d
optB−d(L),

where the first inequality is based on the induction hypothesis and the second to last inequality is
based on Theorem A.1.

Proof of the second claim of Theorem 4.1. For notational simplicity, we drop the arguments B and
ϵ when calling STABLEDT’(L, B, ϵ, d), because they are fixed in this proof. Additionally, we write
STABLEDT’ instead of STABLEDT’.

Let L0 = ((x1, y1), . . . , (xn, yn)) be the input training data (so that we can use L to denote other
sets). For a subset L of L0 and i ∈ {1, 2, . . . , n}, let L(i) := L \ {(xi, yi)}.
For 0 ≤ d ≤ B, let Ld,1, . . . ,Ld,2d be the sets on which STABLEDT’ is called at depth d

(if the number of sets on which STABLEDT’ is called at depth d is less than 2d, we append
empty sets). We can order them so that STABLEDT’(Ld,j , d) calls STABLEDT’(Ld+1,2j−1, d + 1)
and STABLEDT’(Ld+1,2j , d + 1) (if STABLEDT’(Ld,j , d) does not make recursive calls, we set
Ld+1,2j−1 = Ld+1,2j = ∅).

15



Published as a conference paper at ICLR 2023

For fixed {LB,j}j , we have

n∑
i=1

2d∑
j=1

dEM(STABLEDT’(LB,j , B), STABLEDT’(L(i)
B,j , B))

≤
n∑
i=1

2d∑
j=1

1[(xi, yi) ∈ LB,j ] =
n∑
i=1

1[(xi, yi) ∈ L] = |L|

because the output changes only when (xi, yi) ∈ L and the output change is bounded by one.

Let 0 ≤ d < B. Let ωd,j and ω
(i)
d,j be the ω values used in STABLEDT’(Ld,j , d) and STA-

BLEDT’(L(i)
d,j , d), respectively. Note that they are random variables. For a rule ω, Let Lωd+1,2j−1

and Lωd+1,2j be the two sets obtained by partitioning Ld,j according to ω. Then for fixed {Ld,j}j ,
we have

n∑
i=1

2d∑
j=1

dEM(STABLEDT’(Ld,j , d), STABLEDT’(L(i)
d,j , d))

≤
n∑
i=1

2d∑
j=1

(
dTV(ωd,j , ω

(i)
d,j) · 2

B−d

+ E
ωd,j

dEM(STABLEDT’(Lωd,jd+1,2j−1, d+ 1), STABLEDT’(Lωd,j ,(i)d+1,2j−1, d+ 1))

+ E
ωd,j

dEM(STABLEDT’(Lωd,jd+1,2j , d+ 1), STABLEDT’(Lωd,j ,(i)d+1,2j , d+ 1))
)

≤ C · 2B−d
2d∑
j=1

log |Ω|
ϵ

+

n∑
i=1

2d+1∑
j=1

E
ωd,j

dEM(STABLEDT’(Lωd,jd+1,j , d+ 1), STABLEDT’(Lωd,j ,(i)d+1,j , d+ 1))

(by Lemma A.1)

≤ C · 2B log |Ω|
ϵ

+

n∑
i=1

2d+1∑
j=1

E
ωd,j

dEM(STABLEDT’(Lωd,jd+1,j , d+ 1), STABLEDT’(Lωd,j ,(i)d+1,j , d+ 1)),

where C > 0 is some universal constant. By backward induction, we obtain for any d and fixed
{Ld,j}j

n∑
i=1

2d∑
j=1

dEM(STABLEDT’(Ld,j , d), STABLEDT’(L(i)
d,j , d))

≤ C · 2B(B − d) log |Ω|
ϵ

+ n

for every 0 ≤ d ≤ B. By setting d = 0, we obtain the claim.

C MISSING PROOFS OF SECTION 5

In this section, we prove Theorem 5.1. We discuss modifications to STABLEDR and STABLEDT in
Sections C.1 and C.2, respectively.

16



Published as a conference paper at ICLR 2023

Algorithm 4:
1 Procedure SEEDEDSTABLEDR(L, B, ϵ, π)
2 λ← 2 log |Ω|

ϵ·optB(L) ;
3 while true do
4 Sample ω ∈ Ω uniformly at random using π;
5 Sample τ ∈ [0, 1] uniformly at random using π;
6 pω be the probability of choosing ω as given in STABLEDR;
7 if pω > τ then return ω;

8 Procedure SEEDEDSTABLEDT’(L, B, ϵ, d, j, π)
9 if |L| ≤ 1 or d = B then

10 return an optimal label for L.
11 ω ← SEEDEDSTABLEDR(L, B, ϵ, π);
12 Partition L into LL ∪ LR according to ω;
13 πL ← (π1, π3, . . .) and πR ← (π2, π4, . . .);
14 ϕL ← SEEDEDSTABLEDT’(LL, B, ϵ, d+ 1, 2j, πL);
15 ϕR ← SEEDEDSTABLEDT’(LR, B, ϵ, d+ 1, 2j + 1, πR);
16 Let ϕω be the decision tree such that the root node t has rule ω and the left and right

children of t are ϕL and ϕR, respectively;
17 return ϕω .
18 Procedure SEEDEDSTABLEDT(L, B, ϵ, π)
19 return SEEDEDSTABLEDT’(L, B, ϵ, 0, 1, π).

C.1 DECISION RULE SELECTION

In STABLEDR, we sampled a rule ω ∈ Ω by the exponential mechanism McSherry & Talwar (2007).
To bound the expected deterministic average sensitivity over random bits, we perform the following
rejection sampling. We first sample a rule ω ∈ Ω and threshold τ ∈ [0, 1] uniformly at random
by using π. If the threshold τ is more than the probability pω that we sample ω in the exponential
mechanism, then we output ω. Otherwise, we repeat the same process again. The details are given
as SEEDEDSTABLEDR in Algorithm 4.

The following lemma shows that the distributions of STABLEDR and DERANDOMIZEDSTABLEDR
are the same and the derandomized average sensitivity of the latter can be bounded from above by
the average sensitivity of the former.

Lemma C.1. Let

ω = STABLEDR’(L, B, ϵ),
ω(i) = STABLEDR’(L(i), B, ϵ),

ωπ = DERANDOMIZEDSTABLEDR’(L, B, ϵ, π),
ω(i)
π = DERANDOMIZEDSTABLEDR’(L(i), B, ϵ, π).

Then, the distribution of ω and that of ωπ over π are the same. Moreover for any i ∈ {1, 2, . . . , n},
we have

Pr
π
[ωπ ̸= ω(i)

π ] ≤ 2dTV(ω, ω
(i)).

Proof. The first claim is clear from the design of DERANDOMIZEDSTABLEDR.

Now we see the second claim. Let Z =
∑
ψ∈Ω exp(λ · optψ,B(L)) and let Z(i) =

∑
ψ∈Ω exp(λ ·

optψ,B(L(i))). For ω ∈ Ω, we let pω = exp(λ · optω,B(L))/Z. For ω ∈ Ω, we let p(i)ω =

exp(λ · optω,B(L(i)))/Z(i), and for ω ∈ Ω \ Ω, we let p(i)ω = 0. Then, we have

Pr
π
[ωπ ̸= ω(i)

π ] ≤
∑
ψ∈Ω

Pr
τ
[min{pψ, p(i)ψ } < τ < max{pψ, p(i)ψ }]

17



Published as a conference paper at ICLR 2023

=
∑
ψ∈Ω

|pψ − p(i)ψ | = 2dTV(ω, ω
(i)).

By the analysis of STABLEDR and Lemma C.1, we obtain the following:
Theorem C.2. Let ωπ = SEEDEDSTABLEDR(L, B, ϵ, π). We have Eπ[optωπ,B(L)] ≥
(1 − ϵ)optB(L). Moreover for ω

(i)
π = SEEDEDSTABLEDR(L(i), B, ϵ, π), we have

Eπ

[∑n
i=1 dDT(ωπ, ω

(i)
π )
]
= O

(
log |Ω|
ϵ

)
.

C.2 DECISION TREE CONSTRUCTION

We now explain the modification to STABLEDT. Let Ld,1, . . . ,Ld,2d be the sets on which our al-
gorithm is called at depth d as defined in the proof in Section B. Then, we want to make sure that
the same random bits are used when processing particular Ld,j no matter whether the input training
data is L or L(i) (1 ≤ i ≤ n). To this end, at each node in the decision tree, we split the random bits
π = (π1, π2, . . .) into πL = (π1, π3, . . .) and πR = (π2, π4, . . .), and then pass πL and πR on to the
nodes for Ld+1,2j and Ld+1,2j+1, respectively. See Algorithm 4 for details.

We replace Theorem A.1 with Theorem C.2 in the proof of Theorem 4.1, and we obtain Theorem 5.1.

D ADDITIONAL RESULTS

D.1 DETAILED RESULTS IN SECTION 7.2

In Section 7.2, we reported the trends of average sensitivity and accuracies over ϵ on small datasets,
breast cancer and diabetes. Here, we show the detailed results (i) with error bars, and (ii) with a
relaxed version of the tree distance. For (i), in addition to the average results, we also show their
variations. More specifically, we report the 25 and 75 percentiles of the results over 10 random
realizations of the sampled training data. For (ii), we adopt a relaxed version of the tree distance in
Algorithm 5. In the original tree distance in Algorithm 2, we regarded that two trees are (completely)
different when their top rules are different (Line 6). In the relaxed version in Algorithm 5, we regard
that two trees are completely different only when the features used in the top rules are different.
With this relaxation, we regard two subtrees with similar top rules such as ω : u 7→ 1[u1 ≤ 1.0] and
ω′ : u 7→ 1[u1 ≤ 1.01] as identical.

Algorithm 5:
1 Procedure DISTANCE’(ϕ, ϕ′)
2 Let t and t′ be the root nodes of ϕ and ϕ′, respectively;
3 Let ω.feature be the feature used in ω;
4 if both t and t′ are leaves then
5 return 0 if yt = yt′ and 2 otherwise.
6 else if either t or t′ is a leaf then return |ϕ|+ |ϕ′|;
7 else if ωt.feature ̸= ωt′ .feature then return |ϕ|+ |ϕ′|;
8 else
9 Let ϕL, ϕR be the decision trees rooted at the left and right children of t, respectively;

10 Let ϕ′L, ϕ
′
R be the decision trees rooted at the left and right children of t′, respectively;

11 return DISTANCE’(ϕL, ϕ′L) + DISTANCE’(ϕR, ϕ′R).

Figures 5 and 6 show the detailed results on breast cancer and diabetes, respectively. In the figures,
we show the 25 and 75 percentiles using colored shades. The figures named Sensitivity and Sen-
sitivity’ are the average sensitivity computed using the original distance and the relaxed distance,
respectively.

The figures confirm that the decrease of the average sensitivity for ϵ > 0.1 will be sufficiently sig-
nificant, in particular for the number of data removal m = 1% and 10%. The figures on Sensitivity
and Sensitivity’ also confirm that the average sensitivity measured by using the original tree distance

18



Published as a conference paper at ICLR 2023

and the relaxed tree distance are almost identical, implying the choice of the tree distance will only
have negligible impacts to the results.

10 2 10 1 10010 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(a) Sensitivity (m = 1)

10 2 10 1 10010 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(b) Sensitivity (m = 1%)

10 2 10 1 10010 1

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

 A
ve

ra
ge

 S
en

sit
iv

ity

(c) Sensitivity (m = 10%)

The number m of
removed data points

Proposed
m = 1

m = 1%

m = 10%

Greedy
m = 1

m = 1%

m = 10%

10 2 10 1 10010 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(d) Sensitivity’ (m = 1)

10 2 10 1 10010 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(e) Sensitivity’ (m = 1%)

10 2 10 1 10010 1

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

 A
ve

ra
ge

 S
en

sit
iv

ity

(f) Sensitivity’ (m = 10%)

10 2 10 1 100
0.00748
0.00750
0.00752
0.00754
0.00756
0.00758
0.00760
0.00762

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(g) Training accuracy (m =
1)

10 2 10 1 100
0.00748
0.00750
0.00752
0.00754
0.00756
0.00758
0.00760
0.00762

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(h) Training accuracy (m =
1%)

10 2 10 1 100
0.00748
0.00750
0.00752
0.00754
0.00756
0.00758
0.00760
0.00762

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(i) Training accuracy (m =
10%)

10 2 10 1 100

0.00758

0.00760

0.00762

0.00764

0.00766

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(j) Test accuracy (m = 1)

10 2 10 1 100

0.00758

0.00760

0.00762

0.00764

0.00766

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(k) Test accuracy (m = 1%)

10 2 10 1 100

0.00758

0.00760

0.00762

0.00764

0.00766

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(l) Test accuracy (m = 10%)

Figure 5: Detailed results on average sensitivity and accuracy of the trained trees over different ϵ on
breast cancer. The figures named Sensitivity and Sensitivity’ are the average sensitivity computed
using the original distance and the relaxed distance, respectively.

D.2 TEST ACCURACY

For the experiments in Section 7, Figure 7 shows the trade-off curves between average sensitivity
and test accuracy when ϵ is changed.

19



Published as a conference paper at ICLR 2023

10 2 10 1 10010 4

10 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(a) Sensitivity (m = 1)

10 2 10 1 10010 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(b) Sensitivity (m = 1%)

10 2 10 1 10010 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(c) Sensitivity (m = 10%)

The number m of
removed data points

Proposed
m = 1

m = 1%

m = 10%

Greedy
m = 1

m = 1%

m = 10%

10 2 10 1 10010 4

10 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(d) Sensitivity’ (m = 1)

10 2 10 1 10010 3

10 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(e) Sensitivity’ (m = 1%)

10 2 10 1 10010 2

10 1

100

 A
ve

ra
ge

 S
en

sit
iv

ity

(f) Sensitivity’ (m = 10%)

10 2 10 1 100

0.084
0.086
0.088
0.090
0.092
0.094

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(g) Training accuracy (m =
1)

10 2 10 1 100

0.084
0.086
0.088
0.090
0.092
0.094

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y

(h) Training accuracy (m =
1%)

10 2 10 1 100

0.084
0.086
0.088
0.090
0.092
0.094

Av
er

ag
e

 Tr
ai

ni
ng

 A
cc

ur
ac

y
(i) Training accuracy (m =
10%)

10 2 10 1 100

0.082
0.084
0.086
0.088
0.090
0.092
0.094

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(j) Test accuracy (m = 1)

10 2 10 1 100

0.082
0.084
0.086
0.088
0.090
0.092
0.094

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(k) Test accuracy (m = 1%)

10 2 10 1 100

0.082
0.084
0.086
0.088
0.090
0.092
0.094

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(l) Test accuracy (m = 10%)

Figure 6: Detailed results on average sensitivity and accuracy of the trained trees over different ϵ on
diabetes. The figures named Sensitivity and Sensitivity’ are the average sensitivity computed using
the original distance and the relaxed distance, respectively.

0.0 0.2 0.4 0.6 0.8
Average Sensitivity

0.82

0.83

0.84

0.85

0.86

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(a) cod-rna

0.0 0.2 0.4 0.6 0.8 1.0
Average Sensitivity

0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(b) covtype

0.0 0.2 0.4 0.6 0.8
Average Sensitivity

0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(c) higgs

The number m of
removed data points
Proposed

m = 1

m = 1%

m = 3%

m = 10%

m = 30%

Greedy
m = 1

m = 1%

m = 3%

m = 10%

m = 30%0.0 0.1 0.2 0.3 0.4 0.5
Average Sensitivity

0.9024
0.9025
0.9026
0.9027
0.9028
0.9029

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(d) ijcnn

0.0 0.2 0.4 0.6 0.8
Average Sensitivity

0.78

0.80

0.82

0.84

0.86

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(e) sensorless

0.0 0.2 0.4 0.6 0.8 1.0
Average Sensitivity

0.78

0.80

0.82

0.84

0.86

Av
er

ag
e

 Te
st

 A
cc

ur
ac

y

(f) webspam

Figure 7: Trade-off curves between average sensitivity and test accuracy when ϵ is changed. We
varied the number of training data points to be removed from one to 30% of the sampled training
data. White markers denote the results for the greedy tree learning.

20


	Introduction
	Related Work
	Preliminaries
	Decision Tree
	Average Sensitivity

	Decision Tree Construction
	Expected Deterministic Average Sensitivity
	Practical Implementations
	Experiments
	Setups
	Result 1: Dependency on 
	Result 2: Examples of Trees
	Result 3: Sensitivity-Accuracy Trade-Off

	Conclusion
	Analysis of StableDR
	Approximation Guarantee
	Average Sensitivity

	Analysis of StableDT
	Missing proofs of Section 5
	Decision Rule Selection
	Decision Tree Construction

	Additional Results
	Detailed Results in Section 7.2
	Test Accuracy


