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ABSTRACT

Translating the internal representations and computations of models into concepts
that humans can understand is a key goal of interpretability. While recent dic-
tionary learning methods such as Sparse Autoencoders (SAEs) provide a promis-
ing route to discover human-interpretable features, they often only recover token-
specific, noisy, or highly local concepts. We argue that this limitation stems from
neglecting the temporal structure of language, where semantic content typically
evolves smoothly over sequences. Building on this insight, we introduce Tempo-
ral Sparse Autoencoders (T-SAEs), which incorporate a novel contrastive loss en-
couraging consistent activations of high-level features over adjacent tokens. This
simple yet powerful modification enables SAEs to disentangle semantic from syn-
tactic features in a self-supervised manner. Across multiple datasets and models,
T-SAEs recover smoother, more coherent semantic concepts without sacrificing
reconstruction quality. Strikingly, they exhibit clear semantic structure despite
being trained without explicit semantic signal, offering a new pathway for unsu-
pervised interpretability in language models.

1 INTRODUCTION

Interpretability aims to translate the internal representations and computations of language models
into concepts that humans can understand, evaluate, and ultimately control. In practice, the most
useful insights often involve high-level drivers of model behavior, such as the semantics a model
encodes or the state it is operating in, rather than surface-level statistical patterns. Recent dictionary
learning methods, such as Sparse Autoencoders (SAEs), have shown promise in explaining language
models. By projecting dense latent representations into a sparse, human-interpretable feature space,
SAEs enable both the recovery of known linguistic patterns and the discovery of novel concepts
within models.

However, when applied to large language models (LLMs), SAEs frequently fall short of this goal.
The features they recover are often token-specific, local, and noisy, capturing superficial syntac-
tic patterns (e.g., “the phrase ‘The’ at the start of sentences”1 or “Sentence
endings or periods,” Figure 1) rather than coherent, high-level semantic concepts. One in-
terpretation of this phenomenon is that LLMs themselves fail to encode deep semantic structure,
functioning instead as sophisticated next-token predictors. A more plausible explanation, however,
is that current concept discovery methods are inadequate; their design biases them toward recovering
shallow patterns even when richer structure exists in the underlying representations. We argue that
this limitation stems from a fundamental issue with how SAEs are formulated. Human language
is inherently structured: meaning is conveyed through context and semantics that evolve smoothly
over time, while syntax is governed by more local dependencies. Yet current dictionary learning
methods ignore this sequential structure, treating tokens as independent and stripped of context.

To address this gap, we introduce the notion of temporal consistency, or the property that high-level
semantic features of a sequence remain stable over adjacent (or nearby) tokens, while low-level
syntactic features may fluctuate more rapidly. For example, in the sentence “Photosynthesis is the

1Neuronpedia, Feature 11795 of Gemmascope’s Gemma2-2b, Residual, 16k SAE

1

https://www.neuronpedia.org/gemma-2-2b/20-gemmascope-res-16k/11795
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Figure 1: A) Human language production involves high-level features such as semantic content and
surrounding context, as well as low-level features such as syntactical requirements and specific word
choices. B) While existing SAEs mostly recover syntactic information, Temporal SAEs balance
recovery of semantics, syntax, and context. C) When decomposing a sequence composed of three
passages: Newton’s Principia, an MMLU genetics question, and the Bhagavat Gita, Temporal SAEs
(bottom) are able to smoothly detect the semantic shifts in the passage, with highly active features
strongly correlating to the true content of the text, whereas existing SAEs (such as Matryoshka, top),
are much noisier, varying on almost a per-token basis, and do not easily depict these shifts.

process by which plants convert sunlight into energy,” a temporally consistent semantic feature might
represent “discussion of plant biology” or “scientific explanation.” This feature should remain active
throughout the entire sentence, because the semantic content does not change from word to word. In
contrast, syntactic features such as “capitalized first word” or “plural noun” activate only at specific
tokens (e.g., “Photosynthesis,” “plants”), reflecting local rather than global structure.

Building on this principle, we propose Temporal Sparse Autoencoders (T-SAEs), a simple modifica-
tion to SAEs that incorporates a temporal contrastive loss encouraging high-level features to activate
consistently over adjacent tokens (Figure 1). This modification, grounded in linguistic intuition, en-
ables SAEs to more reliably capture semantic features while still disentangling them from low-level
syntactic ones. Despite being trained only on a self-supervised context-similarity objective, T-SAEs
yield representations with significantly improved semantic structure, without requiring any explicit
semantic signal. Through experiments, we show that T-SAEs consistently recover higher-level se-
mantic and contextual concepts, exhibit smoother and more temporally consistent activations over
sequences, and remain competitive with existing SAEs on standard benchmarks such as reconstruc-
tion quality.

Our contributions are the following:

1. We introduce a simple data-generating process for language that distinguishes between
high-level, temporally consistent semantic variables and low-level, local syntactic vari-
ables. This framework formalizes how we expect language models to encode linguistic
information and provides guidance for designing better interpretability methods.

2. Building on this framework, we propose Temporal SAEs, which partition latent features
into semantic and syntactic components. We introduce a novel temporal contrastive loss
which enforces consistency of high-level activations across sequences, encouraging T-
SAEs to disentangle semantic and syntactic features in a self-supervised manner.

3. Through experiments on multiple models and datasets, we show that T-SAEs: a) Recover
semantic and contextual information more reliably than existing SAEs, b) Exhibit improved
disentanglement between high- and low-level features, c) Maintain competitive perfor-
mance on standard reconstruction benchmarks, and d) Provide practical interpretability
benefits, including a case study on safety-related concepts.

We release our code, trained T-SAEs, and interpreted latents for reproducibility2.
2Link will be provided upon acceptance.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Sparse Autoencoders. In recent years, SAEs have emerged as a popular mechanistic interpretabil-
ity technique for self-supervised concept discovery (Bricken et al., 2023; Templeton et al., 2024; Gao
et al., 2024). While they were initially promising for addressing the problem of polysemanticity,
where a single neuron in a model can represent multiple concepts (Elhage et al., 2022), in prac-
tice, they have been shown to create new problems, such as feature splitting and absorption (Chanin
et al., 2024), where concepts are split across multiple features or absorbed into less interpretable
sub-features. To address these subsequent issues, methods such as Matryoshka SAEs (Bussmann
et al., 2025) and Transcoders (Paulo et al., 2025) have been proposed, which learn hierarchical and
causal features. Recent work has also proposed learning dictionary features that are constrained to
the data manifold (Fel et al., 2025) and reflect intuition about the geometry of model latent spaces
(Hindupur et al., 2025), allowing for the recovery of heterogeneous concepts. However, all of these
works assume a fully unsupervised objective for learning SAEs, treating each token in the training
data as i.i.d., without acknowledging the temporal aspect of language and other sequential modali-
ties. As a result, SAEs are known to suffer from a variety of problems, including “dense” activation
behavior (Sun et al., 2025) and lack of utility for steering (Bhalla et al., 2025; Wu et al., 2025).

Linguistics, Cognitive Science, and Neuroscience. Many foundational works in linguistics study
the relationship between syntactic structure and semantic meaning (Chomsky, 1965), with nearly all
major theories recognizing a fundamental distinction between semantics and syntax. Evidence of
the two having distinct representations has been found in developmental psychology (Brown, 1973)
and neuroscience (Neville et al., 1992; Zhang et al., 2025). In computational linguistics, separate
approaches emerged to model language purely syntactically via Hidden Markov Models (Manning &
Schutze, 1999) or through a bag-of-words approach to model topics with Latent Dirichlet Allocation
(Blei et al., 2003). Griffiths et al. (2004) combine the two into a single model consisting of an HMM
where one “semantic” class denotes a topic model which samples words in an LDA-like fashion.
Importantly, Griffiths et al. (2004) argue that semantics in language exhibit long-range behavior,
with different words or sentences in the same document having similar semantic content, whereas
syntax is mostly dependent on short-range interactions, motivating our method.

Dictionary learning with natural priors. Before dictionary learning was formalized, (Olshausen
& Field, 1996) showed that decomposing natural images in a linear sparse manner leads to Gabor-
like receptive filters, similar to what is found in the visual cortex without any priors on visual data.
More recent approaches realized the benefit of taking data priors into the dictionary learning process.
For instance, low-rankness has proved an effective parsimonious prior beyond sparsity (Davenport
& Romberg, 2016; Vu & Monga, 2017), multi-scale structure in medical imaging (Ong & Lustig,
2016), and Luo et al. (2019) argued that sequential frames in videos exhibit temporal consistency.
Our work draws parallels to this trajectory of research in compressive sensing and dictionary learn-
ing by introducing structural priors to the unsupervised learning of SAEs.

3 OUR FRAMEWORK: TEMPORAL SPARSE AUTOENCODERS

3.1 FORMULATING THE DATA GENERATING PROCESS

Consider a speaker who is producing language, or a sequence of tokens τ1, ..., τT . When the speaker
produces each token τt, they take into account many factors — their intent in speaking, the prior
context of the token (i.e., what has already been said), syntactic requirements, and other implicit
features corresponding to speaker idiosyncrasies (such as their accent, their method of language
production, or linguistic style). These factors can be modeled as latent variables that control the
language generation process, and they can be generally categorized into two types: variables that
encode high-level or global information, ht, and variables that encode low-level or local information
lt. High-level variables can be thought of as features that are invariant to the specific token, such
as those capturing semantics and intent. Conversely, low-level information pertains to the specific
timestep or token being produced, such as a word’s grammatical gender.

We model the speaker’s language production process as a function mapping the context and these
latent variables to the next token

τt = ϕ(τ t−1,ht, lt),

3
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where τ t−1 represents the previously-uttered tokens τ1, ..., τt−1. We pass tokens τT into a language
model which produces latent vectors {xL

t }Tt=1 ∈ Rd at layer L. For simplicity, we analyze a single
layer and drop the L superscript. We assume that the model represents ht and lt through an invertible
mapping g such that g(ht, lt) = xt. Our goal is to recover the encoding of the data-generating latent
variables by decomposing its representations into interpretable features corresponding to ht, lt. To
do so, we make the following key assumptions:
Assumption 1 (Temporal Consistency.). ht is time invariant, meaning two tokens xt,xt′ sampled
from the same sequence should have similar latents ht ≈ ht′ .
Assumption 2 (Hierarchical Representation of Features.). The mapping g is hierarchical in the
sense that it can operate on just ht and satisfies 0 = ∥g(ht, lt)−xt∥ ≤ ∥g(ht)−xt∥ ≤ ϵ. In other
words, ht can reconstruct xt, but lt contains signal about xt that is not explained by ht.

3.2 TEMPORAL SPARSE AUTOENCODERS

We partition the SAE feature space into high-level and low-level features. Without loss of generality,
we assume the first h indices are our high-level features and the last m−h indices are our low-level
features, where m is the number of features in the SAE. The SAE architecture can be defined as the
following, taking in input xt ∈ Rd:

f(xt) = σ(Wencxt + benc),

x̂(f) = Wdecf(xt) + bdec.

Here, Wenc ∈ Rm×d is the encoder matrix, and Wdec ∈ Rd×m is the decoder comprised of
high-level features Wdec

0:h ∈ Rd×h and low-level features Wdec
h:m ∈ Rd×(m−h) such that their con-

catenation equals Wdec. The encoder and decoder bias are benc ∈ Rd and bdec ∈ Rd, respectively.
We define the following loss function, where the high-level features f0:h(xt) should reconstruct the
input and the low-level features fh:m(xt) should reconstruct the residual, as discussed in Assumption
2, similar to the Matryoshka SAE objective in (Bussmann et al., 2025).

Lmatr(xt) = LH + LL,

LH = ∥xt −Wdec
0:h f0:h(xt) + bdec∥22,

LL = ∥xt −Wdecf(xt) + bdec∥22.
We then add a training objective that encourages Wenc

0:h to learn temporally-consistent features fol-
lowing Assumption 1 about ht: high-level features should be similar for two tokens from the same
sequence, particularly for two adjacent tokens. To enforce this, we add a contrastive term to the
loss function that encourages Wenc

0:hxt to be similar to Wenc
0:hxt−1. Let zt be the high-level features

f0:h(xt), and let s(x,y) be the cosine similarity between vectors x and y in the same latent space.
Our full loss over a batch is subsequently

L =

N∑
i=1

Lmatr(x
(i)
t ) + αLcontr,

Lcontr = − 1

N

N∑
i=1

log
es(z(i)t ,z(i)t−1)∑N
j=1 e

s(z(i)t ,z(j)t−1)
− 1

N

N∑
j=1

log
es(z(j)t−1,z

(j)
t )∑N

i=1 e
s(z(i)t−1,z

(j)
t )

,

where N is our batch size and x
(i)
t , z

(i)
t are the ith model activation and SAE latent vector in the

batch, respectively. In practice, we load activations in pairs xt,xt−1 and shuffle the pairs to get
diversity in each batch. We additionally explore an approach where we sample the contrastive pair
uniformly over past tokens x1, ...,xt−1 to encourage long-range semantic consistency (see Sec. 4.6).

While the contrastive loss is applied only to high-level features, for low-level, token-specific fea-
tures, we do not apply any constraints. By nature of fitting the residual data left unexplained by the
high-level component of the network, our loss naturally encourages the low-level latents to capture
remaining, fluctuating features over a sequence.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate Temporal SAEs. In Sec. 4.2, we evaluate our Temporal SAE’s recovery
and disentanglement of semantic, contextual, and syntactic content, in Sec. 4.3, we report results on

4
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Figure 2: TSNE visualizations of Pythia-160m SAE decompositions of MMLU questions, labeled
by question category (left), question number (middle column), and token part-of-speech (right). We
see that the high-level features from T-SAEs (top) recover semantic and contextual information. The
low-level features of T-SAEs (middle row), as well as Matryoshka SAEs (bottom), recover syntactic
information.

standard SAE evaluation metrics, in Sec. 4.4, we measure various aspects of temporal consistency,
in Sec. 4.5, we present a case study of how SAEs can help to uncover safety-relevant concepts and
mechanisms in LLMs, and finally in Sec. 4.6, we provide results on various ablation studies.

4.1 IMPLEMENTATION DETAILS

Models and Datasets. We conduct all experiments on Pythia-160m (Biderman et al., 2023) and
Gemma2-2b (Team et al., 2024). We compare against baselines of BatchTopK SAEs (Bussmann
et al., 2024), Matryoshka SAEs (Bussmann et al., 2025), and the model latents themselves when
applicable. All models are trained and tested on the Pile (Gao et al., 2020). All probing evaluations
are done on MMLU (Hendrycks et al., 2020), Wikipedia Wikipedia (2004), and FineFineWeb (M-
A-P, 2024).

Hyperparameters. We train Pythia SAEs on layer 8 and Gemma SAEs on layer 12. All SAEs are
trained with a batch-k-sparsity of 20, a dimensionality of 16k features, the BatchTopK activation,
and the auxiliary loss from (Bussmann et al., 2025; Gao et al., 2024). These layers and hyperpa-
rameters are chosen to allow for comparability with pretrained and evaluated SAEs on Neuronpedia
(Lin, 2023). Temporal and Matryoshka SAEs are trained with 20%-80% feature splits, where for
Temporal SAEs the 20% are the high-level features. We use a regularization parameter of 1.0 on the
temporal loss for all Temporal SAEs. For ablations on hyperparameters, please see Section 4.6.

4.2 PROBING FOR SEMANTICS, CONTEXT, AND SYNTAX

To understand the types of features that the temporal loss encourages SAEs to learn, we evaluate
the ability of Temporal SAEs to recover different types of linguistic information, namely semantic,
contextual, and syntactic. We provide qualitative visualizations of these results in Figure 2 and
quantitative probing results in Figure 3.

In Figure 2, we present TSNE visualizations of the Pythia-160m SAE activations for various ques-
tions taken from the MMLU dataset, which we color by the semantic content of the question, the
contextual information for each token, and the syntactic information. In particular, we encode 20
tokens from each question into the SAE’s feature space, and use TSNE as a dimensionality reduction
and visualization method to understand how the SAE embeddings are clustered. We use the ques-
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Figure 3: Accuracy of probes trained on SAE decompositions for various SAEs trained on Gemma2-
2b, as well as probes trained directly on model latents (orange), with semantic labels (right), con-
textual labels (middle), and syntactic labels (right) with varying levels of probe sparsity (setup from
(Kantamneni et al., 2025)). Dense probes are trained on all features.

tion category, such as “High School European History” or “Professional Medicine” as proxies for
the semantic information. The contextual information simply refers to the question ID of each token,
meaning tokens from the same question come from the same context and thus should have the same
color. We use an open-source NLP library, spaCy (Honnibal et al., 2020), to retrieve part-of-speech
labels for each token as a proxy for their syntactic content.

We find that the activations of high-level features from Temporal SAEs cluster strongly according
to semantic content (top left) and contextual content (top middle), meaning tokens from the same
question are represented similarly, as well as questions from the same topic. On the other hand,
activations of the low-level features seem to be more syntactic, with stronger clusters for parts-of-
speech (middle right). Matryoshka SAE embeddings prioritize syntactic information strongly over
semantic and contextual information, with clear clustering for part-of-speech (bottom right) and
minimal clustering for the other two labels.

Probing Validation. In order to validate these visual results, we probe the SAE activations for
these same labels, using both k-sparse probing from Kantamneni et al. (2025) as well as normal
Logistic Regression probes on the full activations. We train probes on k = 1, 5, 10, 20 features,
where we select the features by comparing the mean activations of the positive and negative exam-
ples for each class from the train set. Note that dense probes trained on SAE activations have a
dimensionality of 16k whereas dense probes trained directly on the model’s residual stream have a
dimensionality of 768 for Pythia-160m and 2304 for Gemma2-2b. We find that these results quanti-
tatively reflect the qualitative results from the TSNE plots, with Temporal SAEs outperforming the
baseline SAEs significantly for semantic and contextual labels, with little-to-no performance drop
for syntactic information. Probing results for two more datasets, Wikipedia and FineFineWeb, as
well as for Pythia-160m, are in Appendix A.2.2, with the same trends across all models and datasets.

Feature Disentanglement. While we see that Temporal SAEs recover more semantic and contex-
tual information, can this behavior be attributed to the high-level features alone? Indeed, we observe
specialization between high- and low-level features in Figure 2, where the high-level features ex-
hibit semantic and contextual structure, whereas low-level features exhibit syntactic structure. To
further characterize this behavior, we report probing accuracy on the each feature splits separately
(see Appendix A.2.1), which confirms this same specialization. Interestingly enough, despite not
performing the reconstruction task on their own due to the Matryoshka training loss, the low-level
features are able to recover syntactic information. In contrast, for Matryoshka SAEs, across all
tasks, performance can be attributed almost entirely to the high-level feature split, with the low-level
features being significantly less predictive for semantics, context, and syntax, indicating a lack of
disentanglement of high- and low-level features in the baseline Matryoshka SAEs.

4.3 SAE EVALUATION

In Table 1, we provide results for various standard evaluations of SAEs to ensure that tempo-
ral consistency does not significantly degrade reconstruction quality. We define our metrics as
such. Fraction Variance Explained (FVE): The fraction of the SAE input data’s total variance
that is successfully captured by the SAE decomposition. Cosine Similarity (Cos Sim): The co-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

sine similarity between the SAE inputs and outputs. Fraction Alive: The proportion of SAE
features that activate at least once on the test data. Activation Smoothness: For each sequence
s, we filter for active features (features that fire at least once over the sequence). We compute
∆s = 1

n′

∑n′

i=1 maxt∈[1...T ] |fi(xt) − fi(xt−1)|/∥xt − xt−1∥2 the average max absolute change
over the n′ active features normalized by the change in model latents3. Finally, we average over
multiple sequences to get a smoothness score, S = 1

n

∑n
s ∆s. Automated Interpretability (Au-

tointerp) Score: Score for how correct feature explanations are. We use SAEBench (Karvonen
et al., 2025) to generate and score feature explanations with Llama3.3-70B-Instruct. For each latent,
the LLM generates potential feature explanations based on a range of activating examples. Then,
we collect activating and non-activating examples and ask a judge (also Llama3.3-70B-Instruct) to
use the feature explanation to categorize examples and score its performance.4

We see that Temporal SAEs perform nearly equivalently to both Matryoshka and BatchTopK SAEs
for both Pythia-160m and Gemma2-2b for FVE, Cosine Similarity, Fraction of Alive Features, and
Autointerpretability score, meaning the added improvement in temporal consistency and semantic
information recovery does not come at a significant cost to core SAE performance.

Table 1: Core Performance Metrics. We report smoothness on the high-level split (H) and standard
deviations for autointerpretability scores.

FVE (↑) Cos Sim (↑) Fraction
Alive (↑)

Activation
Smoothness (↓)

Autointerp
Score (↑)

Py
th

ia
16

0m

Temporal SAE 0.94 0.93 0.87 0.09 (H) 0.81 ± 0.17
Matryoshka SAE 0.95 0.94 0.89 0.12 0.83 ± 0.16
BatchTopKSAE 0.95 0.94 0.84 0.13 0.85 ± 0.15

G
em

m
a

2-
2b

Temporal SAE 0.75 0.88 0.78 0.10 (H) 0.83 ± 0.15
Matryoshka SAE 0.75 0.89 0.76 0.14 0.83 ± 0.16
BatchTopKSAE 0.76 0.89 0.66 0.13 0.83 ± 0.16

4.4 TEMPORAL CONSISTENCY

Table 1 indicates that Temporal SAE features are smoother and more consistent than baselines. To
explore this further, we visualize the top feature activations of Temporal SAEs over long sequences
of text (Figs. 1, 4). In Figure 4, we concatenate four sequences of text: a biology question (MMLU),
a letter from Charles Darwin (Project Gutenberg), an article on Animal Farm (Wikipedia), and a
mathematics question (MMLU), and interpret them with a Temporal SAE. We take the top-8 most
active features across the sequence and plot their activations for each token. The Temporal SAE fea-
tures have clear phase transitions between texts, with different features activating and deactivating
for specific sequences. Furthermore, within a sequence, these features are relatively smooth, with-
out spiky, high-frequency changes in activation from token to token. We can even detect periodic
behavior in the biology question, corresponding to each multiple-choice answer option. We note
that there is an interesting leakage of features that continue to fire in later, semantically unrelated
sections of the spliced sequence, highlighting that the model may retain past context and that the
Temporal SAEs are able to identify this information rollover. Figure 1 conducts a similar analysis
over Newton’s Principia (Project Gutenberg), a genetics question (MMLU), and the Bhagavat Gita
(Project Gutenberg) and compares the top features provided by the Temporal SAE to those gener-
ated by a baseline Matryoshka SAE. We find similar consistency and smoothness over sequences
with clear transitions between sequences for the Temporal SAE, whereas the top Matryoshka SAE
features activate across all three sequences without differentiating them, and are much noisier and
high-frequency, fluctuating across tokens. Finally, we interpret these features using automated in-
terpretability and report their explanations in the figure as annotations about the activations. We
find that the labels reflect the true underlying semantic content present in each component sequence,
with the ‘Animal Farm’ Wikipedia article activating a feature for “Historical literature

3fThis can be viewed as the average per-feature Lipschitz constant across sequences.
4Note that both the generation and scoring phase are highly noisy and dependent on the LLM judge.
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and academic writing” in Figure 4 and the Bhagavat Gita excerpt in Figure 1 activating a
“Worship and spiritual practices” feature.

Sequence-level Interpretability. Figure 1 and prior work (Sun et al., 2025) demonstrate how base-
line SAE features are “dense,” in that they fluctuate frequently over a sequence. In doing so, they
can only provide human-interpretable explanations at the token level; as soon as you zoom out, you
get an overwhelming set of activating features with very little structure or parseability. The smooth-
ness of Temporal SAEs unlock a sequence-level understanding of data which was previously much
harder, if not impossible, to parse from baseline SAE explanations (Figs. 1, 4).
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Figure 4: Top 8 most active Gemma2-2b Temporal SAE features over a concatenated sequence
of text. Temporal SAE features exhibit clear phase transitions between sequences, are relatively
smooth, and have explanations relevant to the semantic content of each component sequence.

4.5 A CASE STUDY IN USING TEMPORAL SAES TO UNDERSTAND SAFETY LABELING

For many safety applications where we know what we are trying to measure and avoid, it’s not
necessarily clear that unsupervised concept discovery methods are more effective than supervised
methods, such as probing, steering, or finetuning. However, unsupervised methods can be an in-
credibly helpful tool for surfacing spurious correlations as well as unforeseen failure modes and
vulnerabilities. To illustrate this, we conduct a case study using Temporal SAEs to examine how
models represent and process safety-related concepts.

In particular, we convert the k-sparse probing method into a concept bottleneck approach (Koh
et al., 2020) to investigate safety-related concept learning. Using the PKU-Alignment Beaver-
tails Dataset (Ji et al., 2023), we train sparse probes on a binary safety task, where un-
safe data is sampled from the subcategories drug abuse/weapons/banned substance,
sexually explicit/adult content, and privacy violation. We set k = 32 and
our probe reaches a test AUC of 0.726 compared to a baseline AUC of 0.746 for probing the base
model latent. This allows us to then create a pathway from model representations to safety clas-
sifications, where SAE features serve as human-interpretable concept bottlenecks that explain the
model’s safety assessments.

Our analysis reveals that the Temporal SAE features most predictive of unsafe content align re-
markably well with intuitive safety concerns. Four of the top five predictive features for unsafe
text include: “disease transmission methods,” “words related to politics
and social issues,” “cybersecurity and hacking concepts,” and “erotic
content,” all topics we would expect a safety classifier to flag as potentially problematic.
Equally revealing are the features most predictive of safe content. Three of the top five concepts
that correlate with safe text classifications include: “concepts of purpose and values,”
“government laws and regulations,” and “health benefits.” This suggests that
models may associate content discussing ethical frameworks, legal compliance, and positive out-
comes with safety. The prominence of these concepts as safety indicators suggests that adversarial
prompts could potentially exploit these associations by framing harmful requests within contexts
that superficially appear to discuss ethics or legal compliance.

4.6 ABLATION STUDIES

In the following ablation studies (Table 2), we explore the effect of varying components in our Tem-
poral SAE training pipeline. All results are reported as the difference between the ablation and

8
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Table 2: Ablation study of training configurations for Pythia-160m Temporal SAEs.

FVE Fraction
Alive

Activation
Smoothness (H) Semantics Context Syntax

Random Contrast 0.0 -0.05 0.0 -0.02 +0.11 -0.10
50:50 Split -0.01 +0.01 0.0 +0.02 +0.09 -0.08
10:90 Split 0.0 -0.07 -0.02 -0.01 +0.01 +0.01
No Contrastive +0.01 +0.06 +0.07 -0.07 -0.1 +0.01

the normal Temporal SAE with the implementation described in Section 4.1. We conduct seman-
tics, context, and syntax sparse probing evaluations on MMLU with k = 5. First, we conduct a
hyperparameter sweep on the high- and low-level feature percentages, varying the proportions to
10:90 and 50:50. As expected, if we increase the size of our high-level split, Temporal SAEs better
recover semantics and context but perform worse on syntax. We next study the impact of contrast-
ing with a token sampled randomly from any previous token in the context window, the t − rth
token with r < 25 rather than from the t − 1st token. When contrasting with a random token,
we incorporate even longer-range dependencies into our temporal constraint; as a result of this, we
see a large increase in performance on the context task and a large decrease in performance on the
syntax task, but with minor change to semantic performance. Depending on the interpretability ap-
plication, this behavior may be preferable to that of the Temporal SAEs trained on the immediate
previous token, highlighting the need to carefully consider the features we hope to find when using
unsupervised concept discovery methods. Finally, we explore the impact of the contrastive com-
ponent of our loss term, and consider the naive baseline of a sample-wise temporal similarity loss,
ℓi = α∥z(i)t − z

(i)
t−1∥22, averaged over a batch. This naive approach enforces less structure in the

high-level feature space, resulting in worse semantic and contextual performance but allowing for
better performance on standard reconstruction metrics.

5 DISCUSSION AND CONCLUSIONS

The efficacy of “bottom-up” interpretability methods, which aim to discover and represent concepts
learned by large neural networks in an unsupervised fashion, has been a fiercely contested topic. In
recent years, dictionary learning methods such as Sparse Autoencoders were hailed as a triumph in
the interpretability community, showing promise in their ability to uncover unexpected and novel
concepts, and providing a potential path forward for steering and control. However, as the excite-
ment wore off, it became clear that SAEs suffer from a variety of issues, one of which being that
they systematically fail to capture the rich conceptual information that drives linguistic understand-
ing, instead exhibiting a bias towards shallow, syntactic features, such as ‘‘the phrase ‘The’
at the start of sentences.’’ This lack of deeper semantic concepts could potentially
be attributed to the underlying LLMs themselves; maybe they don’t truly understand semantics or
pragmatics, and it’s thus unrealistic to expect that interpretability methods would find them. But
more likely than not, current concept discovery methods simply aren’t good enough to reveal the
types of features we generally are interested in and that LLMs likely encode.

In this work, we propose that this is due to a fundamental issue with how dictionary learning methods
for LLMs are trained. Language itself has a rich, well-studied structure spanning syntax, semantics,
and pragmatics; however, current unsupervised methods largely ignore this linguistic knowledge,
leading to poor feature discovery that favors superficial patterns over meaningful concepts. We focus
on a simple but important aspect of language: semantic content has long-range dependencies and
tends to be smooth over a sequence, whereas syntactic information is much more local. We propose
a novel loss function for training SAEs such that a subset of features behaves smoothly over time,
better extracting semantic features from data. Through experiments, we demonstrate that the features
learned by Temporal SAEs are more semantically structured, with minimal loss to reconstruction
performance. We also present a case study demonstrating how this semantic information can be
valuable in practical, real-world applications, such as finding safety vulnerabilities.
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6 REPRODUCIBILITY STATEMENT

All language models, libraries, and datasets used in this paper are publicly available and open-
source. We describe our implementation in our section on Implementation Details (Sec. 4.1), our
training approach and model architecture in detail in Section 4.4, and highlight the existing libraries
and methods we use for evaluation in Section 4.3. We also describe our custom evaluations in detail
in the experiments section 4. Upon publication, we will open-source our codebase and T-SAEs for
further reproducibility.

7 ETHICS STATEMENT

Interpretability is closely tied to the ethical development and application of AI systems. On one
hand, developing better understanding of models can help highlight biases and failure modes to
ensure they treat all people ethically. On the other hand, the understanding they bring can allow
malicious actors to more efficiently jailbreak models or control them for nefarious purposes. We are
aware of the potential dual uses of such a technique but hope that improving the transparency of AI
systems will enable the development of safer AI systems.
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A APPENDIX

A.1 TABLE OF CONTENTS

• A.2 Additional benchmark, probing, and TSNE results.
– A.2.1 Probing and benchmark results across splits.
– A.2.2 Probing results on more datasets and models.
– A.2.3 TSNE visualizations of baseline SAEs.

A.2 ADDITIONAL RESULTS

In the following sections, we detail additional results across splits for Temporal SAEs and Ma-
tryoshka SAEs, as well as on additional datasets.

A.2.1 METRICS ACROSS HIGH AND LOW SPLITS

In Figure 5 and Table 3, we report probing and benchmark results across feature splits for Temporal
SAEs and Matryoshka SAEs. We find that the high-level Temporal SAE feature space is smoother
and contains more semantic and contextual information than its low-level. Additionally, we find
syntactic information is equally spread between high- and low-level features due to the Matryoshka
training setup (see discussion on disentanglement in Section 4.2). In contrast, Matryoshka SAEs are
less smooth and place most syntactical information in the high-level split and are worse at semantics
and context tasks across splits.
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Figure 5: Probing results split across high and low splits for Temporal and Matryoshka SAEs.

Table 3: SAE Benchmarks split across high and low splits, when applicable.

Activation
Smoothness High Low

Py
th

ia
16

0m

Temporal SAE 0.12 0.09 0.17
Matryoshka SAE 0.12 0.12 0.13
BatchTopKSAE 0.13 - -

G
em

m
a

2-
2b

Temporal SAE 0.13 0.10 0.15
Matryoshka SAE 0.14 0.15 0.12
BatchTopKSAE 0.13 - -

A.2.2 PROBING RESULTS ON MORE DATASETS

In the following plots, we report semantic, contextual, and syntactic probing results on both Gemma
(Fig. 6) and Pythia (Fig. 7) Temporal SAEs for the FineFineWeb, MMLU, and Wikipedia datasets.
Results for Gemma on MMLU are in the main paper (Fig. 3).

A.2.3 MORE TSNE RESULTS

In Figure 8, we present TSNE visualizations of the Pythia-160m SAE activations for more baseline
methods than shown in Figure 2. Please see Section 4.2 for more information.
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Figure 6: Accuracy of probes trained on SAE decompositions of Wikipedia and FineFineWeb for
various SAEs trained on Gemma2-2b, as well as probes trained directly on model latents (orange),
with semantic labels (right), contextual labels (middle), and syntactic labels (right) with varying
levels of probe sparsity (setup from Kantamneni et al. (2025)). Dense probes are trained on all
features.
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Figure 7: Accuracy of probes trained on SAE decompositions of data from FineFineWeb (top),
MMLU (middle), and Wikipedia (bottom) for various SAEs trained on Pythia-160m, as well as
probes trained directly on model latents (orange), with semantic labels (right), contextual labels
(middle), and syntactic labels (right) with varying levels of probe sparsity (setup from Kantamneni
et al. (2025)). Dense probes are trained on all features.
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Figure 8: TSNE visualizations of Pythia-160m SAE decompositions of MMLU questions, labeled
by question category (left), question number (middle column), and token part of speech (right). We
see that the high-level features from Temporal SAEs (second row) recover semantic and contextual
information. The low-level features of Temporal SAEs (third row), as well as Matryoshka and
BatchTopK SAEs (fourth and fifth row), recover syntactic information. Baseline model latent (last
row) balance a mix of information.
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